xref: /linux/drivers/char/random.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  *	void add_device_randomness(const void *buf, unsigned int size);
129  * 	void add_input_randomness(unsigned int type, unsigned int code,
130  *                                unsigned int value);
131  *	void add_interrupt_randomness(int irq, int irq_flags);
132  * 	void add_disk_randomness(struct gendisk *disk);
133  *
134  * add_device_randomness() is for adding data to the random pool that
135  * is likely to differ between two devices (or possibly even per boot).
136  * This would be things like MAC addresses or serial numbers, or the
137  * read-out of the RTC. This does *not* add any actual entropy to the
138  * pool, but it initializes the pool to different values for devices
139  * that might otherwise be identical and have very little entropy
140  * available to them (particularly common in the embedded world).
141  *
142  * add_input_randomness() uses the input layer interrupt timing, as well as
143  * the event type information from the hardware.
144  *
145  * add_interrupt_randomness() uses the interrupt timing as random
146  * inputs to the entropy pool. Using the cycle counters and the irq source
147  * as inputs, it feeds the randomness roughly once a second.
148  *
149  * add_disk_randomness() uses what amounts to the seek time of block
150  * layer request events, on a per-disk_devt basis, as input to the
151  * entropy pool. Note that high-speed solid state drives with very low
152  * seek times do not make for good sources of entropy, as their seek
153  * times are usually fairly consistent.
154  *
155  * All of these routines try to estimate how many bits of randomness a
156  * particular randomness source.  They do this by keeping track of the
157  * first and second order deltas of the event timings.
158  *
159  * Ensuring unpredictability at system startup
160  * ============================================
161  *
162  * When any operating system starts up, it will go through a sequence
163  * of actions that are fairly predictable by an adversary, especially
164  * if the start-up does not involve interaction with a human operator.
165  * This reduces the actual number of bits of unpredictability in the
166  * entropy pool below the value in entropy_count.  In order to
167  * counteract this effect, it helps to carry information in the
168  * entropy pool across shut-downs and start-ups.  To do this, put the
169  * following lines an appropriate script which is run during the boot
170  * sequence:
171  *
172  *	echo "Initializing random number generator..."
173  *	random_seed=/var/run/random-seed
174  *	# Carry a random seed from start-up to start-up
175  *	# Load and then save the whole entropy pool
176  *	if [ -f $random_seed ]; then
177  *		cat $random_seed >/dev/urandom
178  *	else
179  *		touch $random_seed
180  *	fi
181  *	chmod 600 $random_seed
182  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
183  *
184  * and the following lines in an appropriate script which is run as
185  * the system is shutdown:
186  *
187  *	# Carry a random seed from shut-down to start-up
188  *	# Save the whole entropy pool
189  *	echo "Saving random seed..."
190  *	random_seed=/var/run/random-seed
191  *	touch $random_seed
192  *	chmod 600 $random_seed
193  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
194  *
195  * For example, on most modern systems using the System V init
196  * scripts, such code fragments would be found in
197  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
198  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199  *
200  * Effectively, these commands cause the contents of the entropy pool
201  * to be saved at shut-down time and reloaded into the entropy pool at
202  * start-up.  (The 'dd' in the addition to the bootup script is to
203  * make sure that /etc/random-seed is different for every start-up,
204  * even if the system crashes without executing rc.0.)  Even with
205  * complete knowledge of the start-up activities, predicting the state
206  * of the entropy pool requires knowledge of the previous history of
207  * the system.
208  *
209  * Configuring the /dev/random driver under Linux
210  * ==============================================
211  *
212  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213  * the /dev/mem major number (#1).  So if your system does not have
214  * /dev/random and /dev/urandom created already, they can be created
215  * by using the commands:
216  *
217  * 	mknod /dev/random c 1 8
218  * 	mknod /dev/urandom c 1 9
219  *
220  * Acknowledgements:
221  * =================
222  *
223  * Ideas for constructing this random number generator were derived
224  * from Pretty Good Privacy's random number generator, and from private
225  * discussions with Phil Karn.  Colin Plumb provided a faster random
226  * number generator, which speed up the mixing function of the entropy
227  * pool, taken from PGPfone.  Dale Worley has also contributed many
228  * useful ideas and suggestions to improve this driver.
229  *
230  * Any flaws in the design are solely my responsibility, and should
231  * not be attributed to the Phil, Colin, or any of authors of PGP.
232  *
233  * Further background information on this topic may be obtained from
234  * RFC 1750, "Randomness Recommendations for Security", by Donald
235  * Eastlake, Steve Crocker, and Jeff Schiller.
236  */
237 
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/syscalls.h>
263 #include <linux/completion.h>
264 #include <linux/uuid.h>
265 #include <crypto/chacha20.h>
266 
267 #include <asm/processor.h>
268 #include <linux/uaccess.h>
269 #include <asm/irq.h>
270 #include <asm/irq_regs.h>
271 #include <asm/io.h>
272 
273 #define CREATE_TRACE_POINTS
274 #include <trace/events/random.h>
275 
276 /* #define ADD_INTERRUPT_BENCH */
277 
278 /*
279  * Configuration information
280  */
281 #define INPUT_POOL_SHIFT	12
282 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
283 #define OUTPUT_POOL_SHIFT	10
284 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
285 #define SEC_XFER_SIZE		512
286 #define EXTRACT_SIZE		10
287 
288 #define DEBUG_RANDOM_BOOT 0
289 
290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291 
292 /*
293  * To allow fractional bits to be tracked, the entropy_count field is
294  * denominated in units of 1/8th bits.
295  *
296  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297  * credit_entropy_bits() needs to be 64 bits wide.
298  */
299 #define ENTROPY_SHIFT 3
300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301 
302 /*
303  * The minimum number of bits of entropy before we wake up a read on
304  * /dev/random.  Should be enough to do a significant reseed.
305  */
306 static int random_read_wakeup_bits = 64;
307 
308 /*
309  * If the entropy count falls under this number of bits, then we
310  * should wake up processes which are selecting or polling on write
311  * access to /dev/random.
312  */
313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
314 
315 /*
316  * Originally, we used a primitive polynomial of degree .poolwords
317  * over GF(2).  The taps for various sizes are defined below.  They
318  * were chosen to be evenly spaced except for the last tap, which is 1
319  * to get the twisting happening as fast as possible.
320  *
321  * For the purposes of better mixing, we use the CRC-32 polynomial as
322  * well to make a (modified) twisted Generalized Feedback Shift
323  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
324  * generators.  ACM Transactions on Modeling and Computer Simulation
325  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
326  * GFSR generators II.  ACM Transactions on Modeling and Computer
327  * Simulation 4:254-266)
328  *
329  * Thanks to Colin Plumb for suggesting this.
330  *
331  * The mixing operation is much less sensitive than the output hash,
332  * where we use SHA-1.  All that we want of mixing operation is that
333  * it be a good non-cryptographic hash; i.e. it not produce collisions
334  * when fed "random" data of the sort we expect to see.  As long as
335  * the pool state differs for different inputs, we have preserved the
336  * input entropy and done a good job.  The fact that an intelligent
337  * attacker can construct inputs that will produce controlled
338  * alterations to the pool's state is not important because we don't
339  * consider such inputs to contribute any randomness.  The only
340  * property we need with respect to them is that the attacker can't
341  * increase his/her knowledge of the pool's state.  Since all
342  * additions are reversible (knowing the final state and the input,
343  * you can reconstruct the initial state), if an attacker has any
344  * uncertainty about the initial state, he/she can only shuffle that
345  * uncertainty about, but never cause any collisions (which would
346  * decrease the uncertainty).
347  *
348  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
349  * Videau in their paper, "The Linux Pseudorandom Number Generator
350  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
351  * paper, they point out that we are not using a true Twisted GFSR,
352  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
353  * is, with only three taps, instead of the six that we are using).
354  * As a result, the resulting polynomial is neither primitive nor
355  * irreducible, and hence does not have a maximal period over
356  * GF(2**32).  They suggest a slight change to the generator
357  * polynomial which improves the resulting TGFSR polynomial to be
358  * irreducible, which we have made here.
359  */
360 static struct poolinfo {
361 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
362 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
363 	int tap1, tap2, tap3, tap4, tap5;
364 } poolinfo_table[] = {
365 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
366 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
367 	{ S(128),	104,	76,	51,	25,	1 },
368 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
369 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
370 	{ S(32),	26,	19,	14,	7,	1 },
371 #if 0
372 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
373 	{ S(2048),	1638,	1231,	819,	411,	1 },
374 
375 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
376 	{ S(1024),	817,	615,	412,	204,	1 },
377 
378 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
379 	{ S(1024),	819,	616,	410,	207,	2 },
380 
381 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
382 	{ S(512),	411,	308,	208,	104,	1 },
383 
384 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
385 	{ S(512),	409,	307,	206,	102,	2 },
386 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	309,	205,	103,	2 },
388 
389 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
390 	{ S(256),	205,	155,	101,	52,	1 },
391 
392 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
393 	{ S(128),	103,	78,	51,	27,	2 },
394 
395 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
396 	{ S(64),	52,	39,	26,	14,	1 },
397 #endif
398 };
399 
400 /*
401  * Static global variables
402  */
403 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
404 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
405 static struct fasync_struct *fasync;
406 
407 static DEFINE_SPINLOCK(random_ready_list_lock);
408 static LIST_HEAD(random_ready_list);
409 
410 struct crng_state {
411 	__u32		state[16];
412 	unsigned long	init_time;
413 	spinlock_t	lock;
414 };
415 
416 struct crng_state primary_crng = {
417 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
418 };
419 
420 /*
421  * crng_init =  0 --> Uninitialized
422  *		1 --> Initialized
423  *		2 --> Initialized from input_pool
424  *
425  * crng_init is protected by primary_crng->lock, and only increases
426  * its value (from 0->1->2).
427  */
428 static int crng_init = 0;
429 #define crng_ready() (likely(crng_init > 0))
430 static int crng_init_cnt = 0;
431 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
432 static void _extract_crng(struct crng_state *crng,
433 			  __u8 out[CHACHA20_BLOCK_SIZE]);
434 static void _crng_backtrack_protect(struct crng_state *crng,
435 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
436 static void process_random_ready_list(void);
437 
438 /**********************************************************************
439  *
440  * OS independent entropy store.   Here are the functions which handle
441  * storing entropy in an entropy pool.
442  *
443  **********************************************************************/
444 
445 struct entropy_store;
446 struct entropy_store {
447 	/* read-only data: */
448 	const struct poolinfo *poolinfo;
449 	__u32 *pool;
450 	const char *name;
451 	struct entropy_store *pull;
452 	struct work_struct push_work;
453 
454 	/* read-write data: */
455 	unsigned long last_pulled;
456 	spinlock_t lock;
457 	unsigned short add_ptr;
458 	unsigned short input_rotate;
459 	int entropy_count;
460 	int entropy_total;
461 	unsigned int initialized:1;
462 	unsigned int last_data_init:1;
463 	__u8 last_data[EXTRACT_SIZE];
464 };
465 
466 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
467 			       size_t nbytes, int min, int rsvd);
468 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
469 				size_t nbytes, int fips);
470 
471 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
472 static void push_to_pool(struct work_struct *work);
473 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
474 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
475 
476 static struct entropy_store input_pool = {
477 	.poolinfo = &poolinfo_table[0],
478 	.name = "input",
479 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
480 	.pool = input_pool_data
481 };
482 
483 static struct entropy_store blocking_pool = {
484 	.poolinfo = &poolinfo_table[1],
485 	.name = "blocking",
486 	.pull = &input_pool,
487 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
488 	.pool = blocking_pool_data,
489 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
490 					push_to_pool),
491 };
492 
493 static __u32 const twist_table[8] = {
494 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
495 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
496 
497 /*
498  * This function adds bytes into the entropy "pool".  It does not
499  * update the entropy estimate.  The caller should call
500  * credit_entropy_bits if this is appropriate.
501  *
502  * The pool is stirred with a primitive polynomial of the appropriate
503  * degree, and then twisted.  We twist by three bits at a time because
504  * it's cheap to do so and helps slightly in the expected case where
505  * the entropy is concentrated in the low-order bits.
506  */
507 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
508 			    int nbytes)
509 {
510 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
511 	int input_rotate;
512 	int wordmask = r->poolinfo->poolwords - 1;
513 	const char *bytes = in;
514 	__u32 w;
515 
516 	tap1 = r->poolinfo->tap1;
517 	tap2 = r->poolinfo->tap2;
518 	tap3 = r->poolinfo->tap3;
519 	tap4 = r->poolinfo->tap4;
520 	tap5 = r->poolinfo->tap5;
521 
522 	input_rotate = r->input_rotate;
523 	i = r->add_ptr;
524 
525 	/* mix one byte at a time to simplify size handling and churn faster */
526 	while (nbytes--) {
527 		w = rol32(*bytes++, input_rotate);
528 		i = (i - 1) & wordmask;
529 
530 		/* XOR in the various taps */
531 		w ^= r->pool[i];
532 		w ^= r->pool[(i + tap1) & wordmask];
533 		w ^= r->pool[(i + tap2) & wordmask];
534 		w ^= r->pool[(i + tap3) & wordmask];
535 		w ^= r->pool[(i + tap4) & wordmask];
536 		w ^= r->pool[(i + tap5) & wordmask];
537 
538 		/* Mix the result back in with a twist */
539 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
540 
541 		/*
542 		 * Normally, we add 7 bits of rotation to the pool.
543 		 * At the beginning of the pool, add an extra 7 bits
544 		 * rotation, so that successive passes spread the
545 		 * input bits across the pool evenly.
546 		 */
547 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
548 	}
549 
550 	r->input_rotate = input_rotate;
551 	r->add_ptr = i;
552 }
553 
554 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
555 			     int nbytes)
556 {
557 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
558 	_mix_pool_bytes(r, in, nbytes);
559 }
560 
561 static void mix_pool_bytes(struct entropy_store *r, const void *in,
562 			   int nbytes)
563 {
564 	unsigned long flags;
565 
566 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
567 	spin_lock_irqsave(&r->lock, flags);
568 	_mix_pool_bytes(r, in, nbytes);
569 	spin_unlock_irqrestore(&r->lock, flags);
570 }
571 
572 struct fast_pool {
573 	__u32		pool[4];
574 	unsigned long	last;
575 	unsigned short	reg_idx;
576 	unsigned char	count;
577 };
578 
579 /*
580  * This is a fast mixing routine used by the interrupt randomness
581  * collector.  It's hardcoded for an 128 bit pool and assumes that any
582  * locks that might be needed are taken by the caller.
583  */
584 static void fast_mix(struct fast_pool *f)
585 {
586 	__u32 a = f->pool[0],	b = f->pool[1];
587 	__u32 c = f->pool[2],	d = f->pool[3];
588 
589 	a += b;			c += d;
590 	b = rol32(b, 6);	d = rol32(d, 27);
591 	d ^= a;			b ^= c;
592 
593 	a += b;			c += d;
594 	b = rol32(b, 16);	d = rol32(d, 14);
595 	d ^= a;			b ^= c;
596 
597 	a += b;			c += d;
598 	b = rol32(b, 6);	d = rol32(d, 27);
599 	d ^= a;			b ^= c;
600 
601 	a += b;			c += d;
602 	b = rol32(b, 16);	d = rol32(d, 14);
603 	d ^= a;			b ^= c;
604 
605 	f->pool[0] = a;  f->pool[1] = b;
606 	f->pool[2] = c;  f->pool[3] = d;
607 	f->count++;
608 }
609 
610 static void process_random_ready_list(void)
611 {
612 	unsigned long flags;
613 	struct random_ready_callback *rdy, *tmp;
614 
615 	spin_lock_irqsave(&random_ready_list_lock, flags);
616 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
617 		struct module *owner = rdy->owner;
618 
619 		list_del_init(&rdy->list);
620 		rdy->func(rdy);
621 		module_put(owner);
622 	}
623 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
624 }
625 
626 /*
627  * Credit (or debit) the entropy store with n bits of entropy.
628  * Use credit_entropy_bits_safe() if the value comes from userspace
629  * or otherwise should be checked for extreme values.
630  */
631 static void credit_entropy_bits(struct entropy_store *r, int nbits)
632 {
633 	int entropy_count, orig;
634 	const int pool_size = r->poolinfo->poolfracbits;
635 	int nfrac = nbits << ENTROPY_SHIFT;
636 
637 	if (!nbits)
638 		return;
639 
640 retry:
641 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
642 	if (nfrac < 0) {
643 		/* Debit */
644 		entropy_count += nfrac;
645 	} else {
646 		/*
647 		 * Credit: we have to account for the possibility of
648 		 * overwriting already present entropy.	 Even in the
649 		 * ideal case of pure Shannon entropy, new contributions
650 		 * approach the full value asymptotically:
651 		 *
652 		 * entropy <- entropy + (pool_size - entropy) *
653 		 *	(1 - exp(-add_entropy/pool_size))
654 		 *
655 		 * For add_entropy <= pool_size/2 then
656 		 * (1 - exp(-add_entropy/pool_size)) >=
657 		 *    (add_entropy/pool_size)*0.7869...
658 		 * so we can approximate the exponential with
659 		 * 3/4*add_entropy/pool_size and still be on the
660 		 * safe side by adding at most pool_size/2 at a time.
661 		 *
662 		 * The use of pool_size-2 in the while statement is to
663 		 * prevent rounding artifacts from making the loop
664 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
665 		 * turns no matter how large nbits is.
666 		 */
667 		int pnfrac = nfrac;
668 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
669 		/* The +2 corresponds to the /4 in the denominator */
670 
671 		do {
672 			unsigned int anfrac = min(pnfrac, pool_size/2);
673 			unsigned int add =
674 				((pool_size - entropy_count)*anfrac*3) >> s;
675 
676 			entropy_count += add;
677 			pnfrac -= anfrac;
678 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
679 	}
680 
681 	if (unlikely(entropy_count < 0)) {
682 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
683 			r->name, entropy_count);
684 		WARN_ON(1);
685 		entropy_count = 0;
686 	} else if (entropy_count > pool_size)
687 		entropy_count = pool_size;
688 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
689 		goto retry;
690 
691 	r->entropy_total += nbits;
692 	if (!r->initialized && r->entropy_total > 128) {
693 		r->initialized = 1;
694 		r->entropy_total = 0;
695 	}
696 
697 	trace_credit_entropy_bits(r->name, nbits,
698 				  entropy_count >> ENTROPY_SHIFT,
699 				  r->entropy_total, _RET_IP_);
700 
701 	if (r == &input_pool) {
702 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
703 
704 		if (crng_init < 2 && entropy_bits >= 128) {
705 			crng_reseed(&primary_crng, r);
706 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
707 		}
708 
709 		/* should we wake readers? */
710 		if (entropy_bits >= random_read_wakeup_bits) {
711 			wake_up_interruptible(&random_read_wait);
712 			kill_fasync(&fasync, SIGIO, POLL_IN);
713 		}
714 		/* If the input pool is getting full, send some
715 		 * entropy to the blocking pool until it is 75% full.
716 		 */
717 		if (entropy_bits > random_write_wakeup_bits &&
718 		    r->initialized &&
719 		    r->entropy_total >= 2*random_read_wakeup_bits) {
720 			struct entropy_store *other = &blocking_pool;
721 
722 			if (other->entropy_count <=
723 			    3 * other->poolinfo->poolfracbits / 4) {
724 				schedule_work(&other->push_work);
725 				r->entropy_total = 0;
726 			}
727 		}
728 	}
729 }
730 
731 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
732 {
733 	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
734 
735 	if (nbits < 0)
736 		return -EINVAL;
737 
738 	/* Cap the value to avoid overflows */
739 	nbits = min(nbits,  nbits_max);
740 
741 	credit_entropy_bits(r, nbits);
742 	return 0;
743 }
744 
745 /*********************************************************************
746  *
747  * CRNG using CHACHA20
748  *
749  *********************************************************************/
750 
751 #define CRNG_RESEED_INTERVAL (300*HZ)
752 
753 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
754 
755 #ifdef CONFIG_NUMA
756 /*
757  * Hack to deal with crazy userspace progams when they are all trying
758  * to access /dev/urandom in parallel.  The programs are almost
759  * certainly doing something terribly wrong, but we'll work around
760  * their brain damage.
761  */
762 static struct crng_state **crng_node_pool __read_mostly;
763 #endif
764 
765 static void crng_initialize(struct crng_state *crng)
766 {
767 	int		i;
768 	unsigned long	rv;
769 
770 	memcpy(&crng->state[0], "expand 32-byte k", 16);
771 	if (crng == &primary_crng)
772 		_extract_entropy(&input_pool, &crng->state[4],
773 				 sizeof(__u32) * 12, 0);
774 	else
775 		get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
776 	for (i = 4; i < 16; i++) {
777 		if (!arch_get_random_seed_long(&rv) &&
778 		    !arch_get_random_long(&rv))
779 			rv = random_get_entropy();
780 		crng->state[i] ^= rv;
781 	}
782 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
783 }
784 
785 static int crng_fast_load(const char *cp, size_t len)
786 {
787 	unsigned long flags;
788 	char *p;
789 
790 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
791 		return 0;
792 	if (crng_ready()) {
793 		spin_unlock_irqrestore(&primary_crng.lock, flags);
794 		return 0;
795 	}
796 	p = (unsigned char *) &primary_crng.state[4];
797 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
798 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
799 		cp++; crng_init_cnt++; len--;
800 	}
801 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
802 		crng_init = 1;
803 		wake_up_interruptible(&crng_init_wait);
804 		pr_notice("random: fast init done\n");
805 	}
806 	spin_unlock_irqrestore(&primary_crng.lock, flags);
807 	return 1;
808 }
809 
810 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
811 {
812 	unsigned long	flags;
813 	int		i, num;
814 	union {
815 		__u8	block[CHACHA20_BLOCK_SIZE];
816 		__u32	key[8];
817 	} buf;
818 
819 	if (r) {
820 		num = extract_entropy(r, &buf, 32, 16, 0);
821 		if (num == 0)
822 			return;
823 	} else {
824 		_extract_crng(&primary_crng, buf.block);
825 		_crng_backtrack_protect(&primary_crng, buf.block,
826 					CHACHA20_KEY_SIZE);
827 	}
828 	spin_lock_irqsave(&primary_crng.lock, flags);
829 	for (i = 0; i < 8; i++) {
830 		unsigned long	rv;
831 		if (!arch_get_random_seed_long(&rv) &&
832 		    !arch_get_random_long(&rv))
833 			rv = random_get_entropy();
834 		crng->state[i+4] ^= buf.key[i] ^ rv;
835 	}
836 	memzero_explicit(&buf, sizeof(buf));
837 	crng->init_time = jiffies;
838 	if (crng == &primary_crng && crng_init < 2) {
839 		crng_init = 2;
840 		process_random_ready_list();
841 		wake_up_interruptible(&crng_init_wait);
842 		pr_notice("random: crng init done\n");
843 	}
844 	spin_unlock_irqrestore(&primary_crng.lock, flags);
845 }
846 
847 static inline void crng_wait_ready(void)
848 {
849 	wait_event_interruptible(crng_init_wait, crng_ready());
850 }
851 
852 static void _extract_crng(struct crng_state *crng,
853 			  __u8 out[CHACHA20_BLOCK_SIZE])
854 {
855 	unsigned long v, flags;
856 
857 	if (crng_init > 1 &&
858 	    time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
859 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
860 	spin_lock_irqsave(&crng->lock, flags);
861 	if (arch_get_random_long(&v))
862 		crng->state[14] ^= v;
863 	chacha20_block(&crng->state[0], out);
864 	if (crng->state[12] == 0)
865 		crng->state[13]++;
866 	spin_unlock_irqrestore(&crng->lock, flags);
867 }
868 
869 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
870 {
871 	struct crng_state *crng = NULL;
872 
873 #ifdef CONFIG_NUMA
874 	if (crng_node_pool)
875 		crng = crng_node_pool[numa_node_id()];
876 	if (crng == NULL)
877 #endif
878 		crng = &primary_crng;
879 	_extract_crng(crng, out);
880 }
881 
882 /*
883  * Use the leftover bytes from the CRNG block output (if there is
884  * enough) to mutate the CRNG key to provide backtracking protection.
885  */
886 static void _crng_backtrack_protect(struct crng_state *crng,
887 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
888 {
889 	unsigned long	flags;
890 	__u32		*s, *d;
891 	int		i;
892 
893 	used = round_up(used, sizeof(__u32));
894 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
895 		extract_crng(tmp);
896 		used = 0;
897 	}
898 	spin_lock_irqsave(&crng->lock, flags);
899 	s = (__u32 *) &tmp[used];
900 	d = &crng->state[4];
901 	for (i=0; i < 8; i++)
902 		*d++ ^= *s++;
903 	spin_unlock_irqrestore(&crng->lock, flags);
904 }
905 
906 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
907 {
908 	struct crng_state *crng = NULL;
909 
910 #ifdef CONFIG_NUMA
911 	if (crng_node_pool)
912 		crng = crng_node_pool[numa_node_id()];
913 	if (crng == NULL)
914 #endif
915 		crng = &primary_crng;
916 	_crng_backtrack_protect(crng, tmp, used);
917 }
918 
919 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
920 {
921 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
922 	__u8 tmp[CHACHA20_BLOCK_SIZE];
923 	int large_request = (nbytes > 256);
924 
925 	while (nbytes) {
926 		if (large_request && need_resched()) {
927 			if (signal_pending(current)) {
928 				if (ret == 0)
929 					ret = -ERESTARTSYS;
930 				break;
931 			}
932 			schedule();
933 		}
934 
935 		extract_crng(tmp);
936 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
937 		if (copy_to_user(buf, tmp, i)) {
938 			ret = -EFAULT;
939 			break;
940 		}
941 
942 		nbytes -= i;
943 		buf += i;
944 		ret += i;
945 	}
946 	crng_backtrack_protect(tmp, i);
947 
948 	/* Wipe data just written to memory */
949 	memzero_explicit(tmp, sizeof(tmp));
950 
951 	return ret;
952 }
953 
954 
955 /*********************************************************************
956  *
957  * Entropy input management
958  *
959  *********************************************************************/
960 
961 /* There is one of these per entropy source */
962 struct timer_rand_state {
963 	cycles_t last_time;
964 	long last_delta, last_delta2;
965 	unsigned dont_count_entropy:1;
966 };
967 
968 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
969 
970 /*
971  * Add device- or boot-specific data to the input pool to help
972  * initialize it.
973  *
974  * None of this adds any entropy; it is meant to avoid the problem of
975  * the entropy pool having similar initial state across largely
976  * identical devices.
977  */
978 void add_device_randomness(const void *buf, unsigned int size)
979 {
980 	unsigned long time = random_get_entropy() ^ jiffies;
981 	unsigned long flags;
982 
983 	trace_add_device_randomness(size, _RET_IP_);
984 	spin_lock_irqsave(&input_pool.lock, flags);
985 	_mix_pool_bytes(&input_pool, buf, size);
986 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
987 	spin_unlock_irqrestore(&input_pool.lock, flags);
988 }
989 EXPORT_SYMBOL(add_device_randomness);
990 
991 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
992 
993 /*
994  * This function adds entropy to the entropy "pool" by using timing
995  * delays.  It uses the timer_rand_state structure to make an estimate
996  * of how many bits of entropy this call has added to the pool.
997  *
998  * The number "num" is also added to the pool - it should somehow describe
999  * the type of event which just happened.  This is currently 0-255 for
1000  * keyboard scan codes, and 256 upwards for interrupts.
1001  *
1002  */
1003 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1004 {
1005 	struct entropy_store	*r;
1006 	struct {
1007 		long jiffies;
1008 		unsigned cycles;
1009 		unsigned num;
1010 	} sample;
1011 	long delta, delta2, delta3;
1012 
1013 	preempt_disable();
1014 
1015 	sample.jiffies = jiffies;
1016 	sample.cycles = random_get_entropy();
1017 	sample.num = num;
1018 	r = &input_pool;
1019 	mix_pool_bytes(r, &sample, sizeof(sample));
1020 
1021 	/*
1022 	 * Calculate number of bits of randomness we probably added.
1023 	 * We take into account the first, second and third-order deltas
1024 	 * in order to make our estimate.
1025 	 */
1026 
1027 	if (!state->dont_count_entropy) {
1028 		delta = sample.jiffies - state->last_time;
1029 		state->last_time = sample.jiffies;
1030 
1031 		delta2 = delta - state->last_delta;
1032 		state->last_delta = delta;
1033 
1034 		delta3 = delta2 - state->last_delta2;
1035 		state->last_delta2 = delta2;
1036 
1037 		if (delta < 0)
1038 			delta = -delta;
1039 		if (delta2 < 0)
1040 			delta2 = -delta2;
1041 		if (delta3 < 0)
1042 			delta3 = -delta3;
1043 		if (delta > delta2)
1044 			delta = delta2;
1045 		if (delta > delta3)
1046 			delta = delta3;
1047 
1048 		/*
1049 		 * delta is now minimum absolute delta.
1050 		 * Round down by 1 bit on general principles,
1051 		 * and limit entropy entimate to 12 bits.
1052 		 */
1053 		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1054 	}
1055 	preempt_enable();
1056 }
1057 
1058 void add_input_randomness(unsigned int type, unsigned int code,
1059 				 unsigned int value)
1060 {
1061 	static unsigned char last_value;
1062 
1063 	/* ignore autorepeat and the like */
1064 	if (value == last_value)
1065 		return;
1066 
1067 	last_value = value;
1068 	add_timer_randomness(&input_timer_state,
1069 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1070 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1071 }
1072 EXPORT_SYMBOL_GPL(add_input_randomness);
1073 
1074 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1075 
1076 #ifdef ADD_INTERRUPT_BENCH
1077 static unsigned long avg_cycles, avg_deviation;
1078 
1079 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1080 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1081 
1082 static void add_interrupt_bench(cycles_t start)
1083 {
1084         long delta = random_get_entropy() - start;
1085 
1086         /* Use a weighted moving average */
1087         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1088         avg_cycles += delta;
1089         /* And average deviation */
1090         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1091         avg_deviation += delta;
1092 }
1093 #else
1094 #define add_interrupt_bench(x)
1095 #endif
1096 
1097 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1098 {
1099 	__u32 *ptr = (__u32 *) regs;
1100 	unsigned long flags;
1101 
1102 	if (regs == NULL)
1103 		return 0;
1104 	local_irq_save(flags);
1105 	if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1106 		f->reg_idx = 0;
1107 	ptr += f->reg_idx++;
1108 	local_irq_restore(flags);
1109 	return *ptr;
1110 }
1111 
1112 void add_interrupt_randomness(int irq, int irq_flags)
1113 {
1114 	struct entropy_store	*r;
1115 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1116 	struct pt_regs		*regs = get_irq_regs();
1117 	unsigned long		now = jiffies;
1118 	cycles_t		cycles = random_get_entropy();
1119 	__u32			c_high, j_high;
1120 	__u64			ip;
1121 	unsigned long		seed;
1122 	int			credit = 0;
1123 
1124 	if (cycles == 0)
1125 		cycles = get_reg(fast_pool, regs);
1126 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1127 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1128 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1129 	fast_pool->pool[1] ^= now ^ c_high;
1130 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1131 	fast_pool->pool[2] ^= ip;
1132 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1133 		get_reg(fast_pool, regs);
1134 
1135 	fast_mix(fast_pool);
1136 	add_interrupt_bench(cycles);
1137 
1138 	if (!crng_ready()) {
1139 		if ((fast_pool->count >= 64) &&
1140 		    crng_fast_load((char *) fast_pool->pool,
1141 				   sizeof(fast_pool->pool))) {
1142 			fast_pool->count = 0;
1143 			fast_pool->last = now;
1144 		}
1145 		return;
1146 	}
1147 
1148 	if ((fast_pool->count < 64) &&
1149 	    !time_after(now, fast_pool->last + HZ))
1150 		return;
1151 
1152 	r = &input_pool;
1153 	if (!spin_trylock(&r->lock))
1154 		return;
1155 
1156 	fast_pool->last = now;
1157 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1158 
1159 	/*
1160 	 * If we have architectural seed generator, produce a seed and
1161 	 * add it to the pool.  For the sake of paranoia don't let the
1162 	 * architectural seed generator dominate the input from the
1163 	 * interrupt noise.
1164 	 */
1165 	if (arch_get_random_seed_long(&seed)) {
1166 		__mix_pool_bytes(r, &seed, sizeof(seed));
1167 		credit = 1;
1168 	}
1169 	spin_unlock(&r->lock);
1170 
1171 	fast_pool->count = 0;
1172 
1173 	/* award one bit for the contents of the fast pool */
1174 	credit_entropy_bits(r, credit + 1);
1175 }
1176 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1177 
1178 #ifdef CONFIG_BLOCK
1179 void add_disk_randomness(struct gendisk *disk)
1180 {
1181 	if (!disk || !disk->random)
1182 		return;
1183 	/* first major is 1, so we get >= 0x200 here */
1184 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1185 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1186 }
1187 EXPORT_SYMBOL_GPL(add_disk_randomness);
1188 #endif
1189 
1190 /*********************************************************************
1191  *
1192  * Entropy extraction routines
1193  *
1194  *********************************************************************/
1195 
1196 /*
1197  * This utility inline function is responsible for transferring entropy
1198  * from the primary pool to the secondary extraction pool. We make
1199  * sure we pull enough for a 'catastrophic reseed'.
1200  */
1201 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1202 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1203 {
1204 	if (!r->pull ||
1205 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1206 	    r->entropy_count > r->poolinfo->poolfracbits)
1207 		return;
1208 
1209 	_xfer_secondary_pool(r, nbytes);
1210 }
1211 
1212 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1213 {
1214 	__u32	tmp[OUTPUT_POOL_WORDS];
1215 
1216 	int bytes = nbytes;
1217 
1218 	/* pull at least as much as a wakeup */
1219 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1220 	/* but never more than the buffer size */
1221 	bytes = min_t(int, bytes, sizeof(tmp));
1222 
1223 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1224 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1225 	bytes = extract_entropy(r->pull, tmp, bytes,
1226 				random_read_wakeup_bits / 8, 0);
1227 	mix_pool_bytes(r, tmp, bytes);
1228 	credit_entropy_bits(r, bytes*8);
1229 }
1230 
1231 /*
1232  * Used as a workqueue function so that when the input pool is getting
1233  * full, we can "spill over" some entropy to the output pools.  That
1234  * way the output pools can store some of the excess entropy instead
1235  * of letting it go to waste.
1236  */
1237 static void push_to_pool(struct work_struct *work)
1238 {
1239 	struct entropy_store *r = container_of(work, struct entropy_store,
1240 					      push_work);
1241 	BUG_ON(!r);
1242 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1243 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1244 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1245 }
1246 
1247 /*
1248  * This function decides how many bytes to actually take from the
1249  * given pool, and also debits the entropy count accordingly.
1250  */
1251 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1252 		      int reserved)
1253 {
1254 	int entropy_count, orig, have_bytes;
1255 	size_t ibytes, nfrac;
1256 
1257 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1258 
1259 	/* Can we pull enough? */
1260 retry:
1261 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1262 	ibytes = nbytes;
1263 	/* never pull more than available */
1264 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1265 
1266 	if ((have_bytes -= reserved) < 0)
1267 		have_bytes = 0;
1268 	ibytes = min_t(size_t, ibytes, have_bytes);
1269 	if (ibytes < min)
1270 		ibytes = 0;
1271 
1272 	if (unlikely(entropy_count < 0)) {
1273 		pr_warn("random: negative entropy count: pool %s count %d\n",
1274 			r->name, entropy_count);
1275 		WARN_ON(1);
1276 		entropy_count = 0;
1277 	}
1278 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1279 	if ((size_t) entropy_count > nfrac)
1280 		entropy_count -= nfrac;
1281 	else
1282 		entropy_count = 0;
1283 
1284 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1285 		goto retry;
1286 
1287 	trace_debit_entropy(r->name, 8 * ibytes);
1288 	if (ibytes &&
1289 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1290 		wake_up_interruptible(&random_write_wait);
1291 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1292 	}
1293 
1294 	return ibytes;
1295 }
1296 
1297 /*
1298  * This function does the actual extraction for extract_entropy and
1299  * extract_entropy_user.
1300  *
1301  * Note: we assume that .poolwords is a multiple of 16 words.
1302  */
1303 static void extract_buf(struct entropy_store *r, __u8 *out)
1304 {
1305 	int i;
1306 	union {
1307 		__u32 w[5];
1308 		unsigned long l[LONGS(20)];
1309 	} hash;
1310 	__u32 workspace[SHA_WORKSPACE_WORDS];
1311 	unsigned long flags;
1312 
1313 	/*
1314 	 * If we have an architectural hardware random number
1315 	 * generator, use it for SHA's initial vector
1316 	 */
1317 	sha_init(hash.w);
1318 	for (i = 0; i < LONGS(20); i++) {
1319 		unsigned long v;
1320 		if (!arch_get_random_long(&v))
1321 			break;
1322 		hash.l[i] = v;
1323 	}
1324 
1325 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1326 	spin_lock_irqsave(&r->lock, flags);
1327 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1328 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1329 
1330 	/*
1331 	 * We mix the hash back into the pool to prevent backtracking
1332 	 * attacks (where the attacker knows the state of the pool
1333 	 * plus the current outputs, and attempts to find previous
1334 	 * ouputs), unless the hash function can be inverted. By
1335 	 * mixing at least a SHA1 worth of hash data back, we make
1336 	 * brute-forcing the feedback as hard as brute-forcing the
1337 	 * hash.
1338 	 */
1339 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1340 	spin_unlock_irqrestore(&r->lock, flags);
1341 
1342 	memzero_explicit(workspace, sizeof(workspace));
1343 
1344 	/*
1345 	 * In case the hash function has some recognizable output
1346 	 * pattern, we fold it in half. Thus, we always feed back
1347 	 * twice as much data as we output.
1348 	 */
1349 	hash.w[0] ^= hash.w[3];
1350 	hash.w[1] ^= hash.w[4];
1351 	hash.w[2] ^= rol32(hash.w[2], 16);
1352 
1353 	memcpy(out, &hash, EXTRACT_SIZE);
1354 	memzero_explicit(&hash, sizeof(hash));
1355 }
1356 
1357 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1358 				size_t nbytes, int fips)
1359 {
1360 	ssize_t ret = 0, i;
1361 	__u8 tmp[EXTRACT_SIZE];
1362 	unsigned long flags;
1363 
1364 	while (nbytes) {
1365 		extract_buf(r, tmp);
1366 
1367 		if (fips) {
1368 			spin_lock_irqsave(&r->lock, flags);
1369 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1370 				panic("Hardware RNG duplicated output!\n");
1371 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1372 			spin_unlock_irqrestore(&r->lock, flags);
1373 		}
1374 		i = min_t(int, nbytes, EXTRACT_SIZE);
1375 		memcpy(buf, tmp, i);
1376 		nbytes -= i;
1377 		buf += i;
1378 		ret += i;
1379 	}
1380 
1381 	/* Wipe data just returned from memory */
1382 	memzero_explicit(tmp, sizeof(tmp));
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * This function extracts randomness from the "entropy pool", and
1389  * returns it in a buffer.
1390  *
1391  * The min parameter specifies the minimum amount we can pull before
1392  * failing to avoid races that defeat catastrophic reseeding while the
1393  * reserved parameter indicates how much entropy we must leave in the
1394  * pool after each pull to avoid starving other readers.
1395  */
1396 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1397 				 size_t nbytes, int min, int reserved)
1398 {
1399 	__u8 tmp[EXTRACT_SIZE];
1400 	unsigned long flags;
1401 
1402 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1403 	if (fips_enabled) {
1404 		spin_lock_irqsave(&r->lock, flags);
1405 		if (!r->last_data_init) {
1406 			r->last_data_init = 1;
1407 			spin_unlock_irqrestore(&r->lock, flags);
1408 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1409 					      ENTROPY_BITS(r), _RET_IP_);
1410 			xfer_secondary_pool(r, EXTRACT_SIZE);
1411 			extract_buf(r, tmp);
1412 			spin_lock_irqsave(&r->lock, flags);
1413 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1414 		}
1415 		spin_unlock_irqrestore(&r->lock, flags);
1416 	}
1417 
1418 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1419 	xfer_secondary_pool(r, nbytes);
1420 	nbytes = account(r, nbytes, min, reserved);
1421 
1422 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1423 }
1424 
1425 /*
1426  * This function extracts randomness from the "entropy pool", and
1427  * returns it in a userspace buffer.
1428  */
1429 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1430 				    size_t nbytes)
1431 {
1432 	ssize_t ret = 0, i;
1433 	__u8 tmp[EXTRACT_SIZE];
1434 	int large_request = (nbytes > 256);
1435 
1436 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1437 	xfer_secondary_pool(r, nbytes);
1438 	nbytes = account(r, nbytes, 0, 0);
1439 
1440 	while (nbytes) {
1441 		if (large_request && need_resched()) {
1442 			if (signal_pending(current)) {
1443 				if (ret == 0)
1444 					ret = -ERESTARTSYS;
1445 				break;
1446 			}
1447 			schedule();
1448 		}
1449 
1450 		extract_buf(r, tmp);
1451 		i = min_t(int, nbytes, EXTRACT_SIZE);
1452 		if (copy_to_user(buf, tmp, i)) {
1453 			ret = -EFAULT;
1454 			break;
1455 		}
1456 
1457 		nbytes -= i;
1458 		buf += i;
1459 		ret += i;
1460 	}
1461 
1462 	/* Wipe data just returned from memory */
1463 	memzero_explicit(tmp, sizeof(tmp));
1464 
1465 	return ret;
1466 }
1467 
1468 /*
1469  * This function is the exported kernel interface.  It returns some
1470  * number of good random numbers, suitable for key generation, seeding
1471  * TCP sequence numbers, etc.  It does not rely on the hardware random
1472  * number generator.  For random bytes direct from the hardware RNG
1473  * (when available), use get_random_bytes_arch().
1474  */
1475 void get_random_bytes(void *buf, int nbytes)
1476 {
1477 	__u8 tmp[CHACHA20_BLOCK_SIZE];
1478 
1479 #if DEBUG_RANDOM_BOOT > 0
1480 	if (!crng_ready())
1481 		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1482 		       "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1483 #endif
1484 	trace_get_random_bytes(nbytes, _RET_IP_);
1485 
1486 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1487 		extract_crng(buf);
1488 		buf += CHACHA20_BLOCK_SIZE;
1489 		nbytes -= CHACHA20_BLOCK_SIZE;
1490 	}
1491 
1492 	if (nbytes > 0) {
1493 		extract_crng(tmp);
1494 		memcpy(buf, tmp, nbytes);
1495 		crng_backtrack_protect(tmp, nbytes);
1496 	} else
1497 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1498 	memzero_explicit(tmp, sizeof(tmp));
1499 }
1500 EXPORT_SYMBOL(get_random_bytes);
1501 
1502 /*
1503  * Add a callback function that will be invoked when the nonblocking
1504  * pool is initialised.
1505  *
1506  * returns: 0 if callback is successfully added
1507  *	    -EALREADY if pool is already initialised (callback not called)
1508  *	    -ENOENT if module for callback is not alive
1509  */
1510 int add_random_ready_callback(struct random_ready_callback *rdy)
1511 {
1512 	struct module *owner;
1513 	unsigned long flags;
1514 	int err = -EALREADY;
1515 
1516 	if (crng_ready())
1517 		return err;
1518 
1519 	owner = rdy->owner;
1520 	if (!try_module_get(owner))
1521 		return -ENOENT;
1522 
1523 	spin_lock_irqsave(&random_ready_list_lock, flags);
1524 	if (crng_ready())
1525 		goto out;
1526 
1527 	owner = NULL;
1528 
1529 	list_add(&rdy->list, &random_ready_list);
1530 	err = 0;
1531 
1532 out:
1533 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1534 
1535 	module_put(owner);
1536 
1537 	return err;
1538 }
1539 EXPORT_SYMBOL(add_random_ready_callback);
1540 
1541 /*
1542  * Delete a previously registered readiness callback function.
1543  */
1544 void del_random_ready_callback(struct random_ready_callback *rdy)
1545 {
1546 	unsigned long flags;
1547 	struct module *owner = NULL;
1548 
1549 	spin_lock_irqsave(&random_ready_list_lock, flags);
1550 	if (!list_empty(&rdy->list)) {
1551 		list_del_init(&rdy->list);
1552 		owner = rdy->owner;
1553 	}
1554 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1555 
1556 	module_put(owner);
1557 }
1558 EXPORT_SYMBOL(del_random_ready_callback);
1559 
1560 /*
1561  * This function will use the architecture-specific hardware random
1562  * number generator if it is available.  The arch-specific hw RNG will
1563  * almost certainly be faster than what we can do in software, but it
1564  * is impossible to verify that it is implemented securely (as
1565  * opposed, to, say, the AES encryption of a sequence number using a
1566  * key known by the NSA).  So it's useful if we need the speed, but
1567  * only if we're willing to trust the hardware manufacturer not to
1568  * have put in a back door.
1569  */
1570 void get_random_bytes_arch(void *buf, int nbytes)
1571 {
1572 	char *p = buf;
1573 
1574 	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1575 	while (nbytes) {
1576 		unsigned long v;
1577 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1578 
1579 		if (!arch_get_random_long(&v))
1580 			break;
1581 
1582 		memcpy(p, &v, chunk);
1583 		p += chunk;
1584 		nbytes -= chunk;
1585 	}
1586 
1587 	if (nbytes)
1588 		get_random_bytes(p, nbytes);
1589 }
1590 EXPORT_SYMBOL(get_random_bytes_arch);
1591 
1592 
1593 /*
1594  * init_std_data - initialize pool with system data
1595  *
1596  * @r: pool to initialize
1597  *
1598  * This function clears the pool's entropy count and mixes some system
1599  * data into the pool to prepare it for use. The pool is not cleared
1600  * as that can only decrease the entropy in the pool.
1601  */
1602 static void init_std_data(struct entropy_store *r)
1603 {
1604 	int i;
1605 	ktime_t now = ktime_get_real();
1606 	unsigned long rv;
1607 
1608 	r->last_pulled = jiffies;
1609 	mix_pool_bytes(r, &now, sizeof(now));
1610 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1611 		if (!arch_get_random_seed_long(&rv) &&
1612 		    !arch_get_random_long(&rv))
1613 			rv = random_get_entropy();
1614 		mix_pool_bytes(r, &rv, sizeof(rv));
1615 	}
1616 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1617 }
1618 
1619 /*
1620  * Note that setup_arch() may call add_device_randomness()
1621  * long before we get here. This allows seeding of the pools
1622  * with some platform dependent data very early in the boot
1623  * process. But it limits our options here. We must use
1624  * statically allocated structures that already have all
1625  * initializations complete at compile time. We should also
1626  * take care not to overwrite the precious per platform data
1627  * we were given.
1628  */
1629 static int rand_initialize(void)
1630 {
1631 #ifdef CONFIG_NUMA
1632 	int i;
1633 	struct crng_state *crng;
1634 	struct crng_state **pool;
1635 #endif
1636 
1637 	init_std_data(&input_pool);
1638 	init_std_data(&blocking_pool);
1639 	crng_initialize(&primary_crng);
1640 
1641 #ifdef CONFIG_NUMA
1642 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1643 	for_each_online_node(i) {
1644 		crng = kmalloc_node(sizeof(struct crng_state),
1645 				    GFP_KERNEL | __GFP_NOFAIL, i);
1646 		spin_lock_init(&crng->lock);
1647 		crng_initialize(crng);
1648 		pool[i] = crng;
1649 	}
1650 	mb();
1651 	crng_node_pool = pool;
1652 #endif
1653 	return 0;
1654 }
1655 early_initcall(rand_initialize);
1656 
1657 #ifdef CONFIG_BLOCK
1658 void rand_initialize_disk(struct gendisk *disk)
1659 {
1660 	struct timer_rand_state *state;
1661 
1662 	/*
1663 	 * If kzalloc returns null, we just won't use that entropy
1664 	 * source.
1665 	 */
1666 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1667 	if (state) {
1668 		state->last_time = INITIAL_JIFFIES;
1669 		disk->random = state;
1670 	}
1671 }
1672 #endif
1673 
1674 static ssize_t
1675 _random_read(int nonblock, char __user *buf, size_t nbytes)
1676 {
1677 	ssize_t n;
1678 
1679 	if (nbytes == 0)
1680 		return 0;
1681 
1682 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1683 	while (1) {
1684 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1685 		if (n < 0)
1686 			return n;
1687 		trace_random_read(n*8, (nbytes-n)*8,
1688 				  ENTROPY_BITS(&blocking_pool),
1689 				  ENTROPY_BITS(&input_pool));
1690 		if (n > 0)
1691 			return n;
1692 
1693 		/* Pool is (near) empty.  Maybe wait and retry. */
1694 		if (nonblock)
1695 			return -EAGAIN;
1696 
1697 		wait_event_interruptible(random_read_wait,
1698 			ENTROPY_BITS(&input_pool) >=
1699 			random_read_wakeup_bits);
1700 		if (signal_pending(current))
1701 			return -ERESTARTSYS;
1702 	}
1703 }
1704 
1705 static ssize_t
1706 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1707 {
1708 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1709 }
1710 
1711 static ssize_t
1712 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1713 {
1714 	unsigned long flags;
1715 	static int maxwarn = 10;
1716 	int ret;
1717 
1718 	if (!crng_ready() && maxwarn > 0) {
1719 		maxwarn--;
1720 		printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1721 		       "(%zd bytes read)\n",
1722 		       current->comm, nbytes);
1723 		spin_lock_irqsave(&primary_crng.lock, flags);
1724 		crng_init_cnt = 0;
1725 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1726 	}
1727 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1728 	ret = extract_crng_user(buf, nbytes);
1729 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1730 	return ret;
1731 }
1732 
1733 static unsigned int
1734 random_poll(struct file *file, poll_table * wait)
1735 {
1736 	unsigned int mask;
1737 
1738 	poll_wait(file, &random_read_wait, wait);
1739 	poll_wait(file, &random_write_wait, wait);
1740 	mask = 0;
1741 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1742 		mask |= POLLIN | POLLRDNORM;
1743 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1744 		mask |= POLLOUT | POLLWRNORM;
1745 	return mask;
1746 }
1747 
1748 static int
1749 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1750 {
1751 	size_t bytes;
1752 	__u32 buf[16];
1753 	const char __user *p = buffer;
1754 
1755 	while (count > 0) {
1756 		bytes = min(count, sizeof(buf));
1757 		if (copy_from_user(&buf, p, bytes))
1758 			return -EFAULT;
1759 
1760 		count -= bytes;
1761 		p += bytes;
1762 
1763 		mix_pool_bytes(r, buf, bytes);
1764 		cond_resched();
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static ssize_t random_write(struct file *file, const char __user *buffer,
1771 			    size_t count, loff_t *ppos)
1772 {
1773 	size_t ret;
1774 
1775 	ret = write_pool(&input_pool, buffer, count);
1776 	if (ret)
1777 		return ret;
1778 
1779 	return (ssize_t)count;
1780 }
1781 
1782 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1783 {
1784 	int size, ent_count;
1785 	int __user *p = (int __user *)arg;
1786 	int retval;
1787 
1788 	switch (cmd) {
1789 	case RNDGETENTCNT:
1790 		/* inherently racy, no point locking */
1791 		ent_count = ENTROPY_BITS(&input_pool);
1792 		if (put_user(ent_count, p))
1793 			return -EFAULT;
1794 		return 0;
1795 	case RNDADDTOENTCNT:
1796 		if (!capable(CAP_SYS_ADMIN))
1797 			return -EPERM;
1798 		if (get_user(ent_count, p))
1799 			return -EFAULT;
1800 		return credit_entropy_bits_safe(&input_pool, ent_count);
1801 	case RNDADDENTROPY:
1802 		if (!capable(CAP_SYS_ADMIN))
1803 			return -EPERM;
1804 		if (get_user(ent_count, p++))
1805 			return -EFAULT;
1806 		if (ent_count < 0)
1807 			return -EINVAL;
1808 		if (get_user(size, p++))
1809 			return -EFAULT;
1810 		retval = write_pool(&input_pool, (const char __user *)p,
1811 				    size);
1812 		if (retval < 0)
1813 			return retval;
1814 		return credit_entropy_bits_safe(&input_pool, ent_count);
1815 	case RNDZAPENTCNT:
1816 	case RNDCLEARPOOL:
1817 		/*
1818 		 * Clear the entropy pool counters. We no longer clear
1819 		 * the entropy pool, as that's silly.
1820 		 */
1821 		if (!capable(CAP_SYS_ADMIN))
1822 			return -EPERM;
1823 		input_pool.entropy_count = 0;
1824 		blocking_pool.entropy_count = 0;
1825 		return 0;
1826 	default:
1827 		return -EINVAL;
1828 	}
1829 }
1830 
1831 static int random_fasync(int fd, struct file *filp, int on)
1832 {
1833 	return fasync_helper(fd, filp, on, &fasync);
1834 }
1835 
1836 const struct file_operations random_fops = {
1837 	.read  = random_read,
1838 	.write = random_write,
1839 	.poll  = random_poll,
1840 	.unlocked_ioctl = random_ioctl,
1841 	.fasync = random_fasync,
1842 	.llseek = noop_llseek,
1843 };
1844 
1845 const struct file_operations urandom_fops = {
1846 	.read  = urandom_read,
1847 	.write = random_write,
1848 	.unlocked_ioctl = random_ioctl,
1849 	.fasync = random_fasync,
1850 	.llseek = noop_llseek,
1851 };
1852 
1853 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1854 		unsigned int, flags)
1855 {
1856 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1857 		return -EINVAL;
1858 
1859 	if (count > INT_MAX)
1860 		count = INT_MAX;
1861 
1862 	if (flags & GRND_RANDOM)
1863 		return _random_read(flags & GRND_NONBLOCK, buf, count);
1864 
1865 	if (!crng_ready()) {
1866 		if (flags & GRND_NONBLOCK)
1867 			return -EAGAIN;
1868 		crng_wait_ready();
1869 		if (signal_pending(current))
1870 			return -ERESTARTSYS;
1871 	}
1872 	return urandom_read(NULL, buf, count, NULL);
1873 }
1874 
1875 /********************************************************************
1876  *
1877  * Sysctl interface
1878  *
1879  ********************************************************************/
1880 
1881 #ifdef CONFIG_SYSCTL
1882 
1883 #include <linux/sysctl.h>
1884 
1885 static int min_read_thresh = 8, min_write_thresh;
1886 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1887 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1888 static int random_min_urandom_seed = 60;
1889 static char sysctl_bootid[16];
1890 
1891 /*
1892  * This function is used to return both the bootid UUID, and random
1893  * UUID.  The difference is in whether table->data is NULL; if it is,
1894  * then a new UUID is generated and returned to the user.
1895  *
1896  * If the user accesses this via the proc interface, the UUID will be
1897  * returned as an ASCII string in the standard UUID format; if via the
1898  * sysctl system call, as 16 bytes of binary data.
1899  */
1900 static int proc_do_uuid(struct ctl_table *table, int write,
1901 			void __user *buffer, size_t *lenp, loff_t *ppos)
1902 {
1903 	struct ctl_table fake_table;
1904 	unsigned char buf[64], tmp_uuid[16], *uuid;
1905 
1906 	uuid = table->data;
1907 	if (!uuid) {
1908 		uuid = tmp_uuid;
1909 		generate_random_uuid(uuid);
1910 	} else {
1911 		static DEFINE_SPINLOCK(bootid_spinlock);
1912 
1913 		spin_lock(&bootid_spinlock);
1914 		if (!uuid[8])
1915 			generate_random_uuid(uuid);
1916 		spin_unlock(&bootid_spinlock);
1917 	}
1918 
1919 	sprintf(buf, "%pU", uuid);
1920 
1921 	fake_table.data = buf;
1922 	fake_table.maxlen = sizeof(buf);
1923 
1924 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1925 }
1926 
1927 /*
1928  * Return entropy available scaled to integral bits
1929  */
1930 static int proc_do_entropy(struct ctl_table *table, int write,
1931 			   void __user *buffer, size_t *lenp, loff_t *ppos)
1932 {
1933 	struct ctl_table fake_table;
1934 	int entropy_count;
1935 
1936 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1937 
1938 	fake_table.data = &entropy_count;
1939 	fake_table.maxlen = sizeof(entropy_count);
1940 
1941 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1942 }
1943 
1944 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1945 extern struct ctl_table random_table[];
1946 struct ctl_table random_table[] = {
1947 	{
1948 		.procname	= "poolsize",
1949 		.data		= &sysctl_poolsize,
1950 		.maxlen		= sizeof(int),
1951 		.mode		= 0444,
1952 		.proc_handler	= proc_dointvec,
1953 	},
1954 	{
1955 		.procname	= "entropy_avail",
1956 		.maxlen		= sizeof(int),
1957 		.mode		= 0444,
1958 		.proc_handler	= proc_do_entropy,
1959 		.data		= &input_pool.entropy_count,
1960 	},
1961 	{
1962 		.procname	= "read_wakeup_threshold",
1963 		.data		= &random_read_wakeup_bits,
1964 		.maxlen		= sizeof(int),
1965 		.mode		= 0644,
1966 		.proc_handler	= proc_dointvec_minmax,
1967 		.extra1		= &min_read_thresh,
1968 		.extra2		= &max_read_thresh,
1969 	},
1970 	{
1971 		.procname	= "write_wakeup_threshold",
1972 		.data		= &random_write_wakeup_bits,
1973 		.maxlen		= sizeof(int),
1974 		.mode		= 0644,
1975 		.proc_handler	= proc_dointvec_minmax,
1976 		.extra1		= &min_write_thresh,
1977 		.extra2		= &max_write_thresh,
1978 	},
1979 	{
1980 		.procname	= "urandom_min_reseed_secs",
1981 		.data		= &random_min_urandom_seed,
1982 		.maxlen		= sizeof(int),
1983 		.mode		= 0644,
1984 		.proc_handler	= proc_dointvec,
1985 	},
1986 	{
1987 		.procname	= "boot_id",
1988 		.data		= &sysctl_bootid,
1989 		.maxlen		= 16,
1990 		.mode		= 0444,
1991 		.proc_handler	= proc_do_uuid,
1992 	},
1993 	{
1994 		.procname	= "uuid",
1995 		.maxlen		= 16,
1996 		.mode		= 0444,
1997 		.proc_handler	= proc_do_uuid,
1998 	},
1999 #ifdef ADD_INTERRUPT_BENCH
2000 	{
2001 		.procname	= "add_interrupt_avg_cycles",
2002 		.data		= &avg_cycles,
2003 		.maxlen		= sizeof(avg_cycles),
2004 		.mode		= 0444,
2005 		.proc_handler	= proc_doulongvec_minmax,
2006 	},
2007 	{
2008 		.procname	= "add_interrupt_avg_deviation",
2009 		.data		= &avg_deviation,
2010 		.maxlen		= sizeof(avg_deviation),
2011 		.mode		= 0444,
2012 		.proc_handler	= proc_doulongvec_minmax,
2013 	},
2014 #endif
2015 	{ }
2016 };
2017 #endif 	/* CONFIG_SYSCTL */
2018 
2019 struct batched_entropy {
2020 	union {
2021 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2022 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2023 	};
2024 	unsigned int position;
2025 };
2026 
2027 /*
2028  * Get a random word for internal kernel use only. The quality of the random
2029  * number is either as good as RDRAND or as good as /dev/urandom, with the
2030  * goal of being quite fast and not depleting entropy.
2031  */
2032 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2033 u64 get_random_u64(void)
2034 {
2035 	u64 ret;
2036 	struct batched_entropy *batch;
2037 
2038 #if BITS_PER_LONG == 64
2039 	if (arch_get_random_long((unsigned long *)&ret))
2040 		return ret;
2041 #else
2042 	if (arch_get_random_long((unsigned long *)&ret) &&
2043 	    arch_get_random_long((unsigned long *)&ret + 1))
2044 	    return ret;
2045 #endif
2046 
2047 	batch = &get_cpu_var(batched_entropy_u64);
2048 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2049 		extract_crng((u8 *)batch->entropy_u64);
2050 		batch->position = 0;
2051 	}
2052 	ret = batch->entropy_u64[batch->position++];
2053 	put_cpu_var(batched_entropy_u64);
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(get_random_u64);
2057 
2058 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2059 u32 get_random_u32(void)
2060 {
2061 	u32 ret;
2062 	struct batched_entropy *batch;
2063 
2064 	if (arch_get_random_int(&ret))
2065 		return ret;
2066 
2067 	batch = &get_cpu_var(batched_entropy_u32);
2068 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2069 		extract_crng((u8 *)batch->entropy_u32);
2070 		batch->position = 0;
2071 	}
2072 	ret = batch->entropy_u32[batch->position++];
2073 	put_cpu_var(batched_entropy_u32);
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL(get_random_u32);
2077 
2078 /**
2079  * randomize_page - Generate a random, page aligned address
2080  * @start:	The smallest acceptable address the caller will take.
2081  * @range:	The size of the area, starting at @start, within which the
2082  *		random address must fall.
2083  *
2084  * If @start + @range would overflow, @range is capped.
2085  *
2086  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2087  * @start was already page aligned.  We now align it regardless.
2088  *
2089  * Return: A page aligned address within [start, start + range).  On error,
2090  * @start is returned.
2091  */
2092 unsigned long
2093 randomize_page(unsigned long start, unsigned long range)
2094 {
2095 	if (!PAGE_ALIGNED(start)) {
2096 		range -= PAGE_ALIGN(start) - start;
2097 		start = PAGE_ALIGN(start);
2098 	}
2099 
2100 	if (start > ULONG_MAX - range)
2101 		range = ULONG_MAX - start;
2102 
2103 	range >>= PAGE_SHIFT;
2104 
2105 	if (range == 0)
2106 		return start;
2107 
2108 	return start + (get_random_long() % range << PAGE_SHIFT);
2109 }
2110 
2111 /* Interface for in-kernel drivers of true hardware RNGs.
2112  * Those devices may produce endless random bits and will be throttled
2113  * when our pool is full.
2114  */
2115 void add_hwgenerator_randomness(const char *buffer, size_t count,
2116 				size_t entropy)
2117 {
2118 	struct entropy_store *poolp = &input_pool;
2119 
2120 	if (!crng_ready()) {
2121 		crng_fast_load(buffer, count);
2122 		return;
2123 	}
2124 
2125 	/* Suspend writing if we're above the trickle threshold.
2126 	 * We'll be woken up again once below random_write_wakeup_thresh,
2127 	 * or when the calling thread is about to terminate.
2128 	 */
2129 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2130 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2131 	mix_pool_bytes(poolp, buffer, count);
2132 	credit_entropy_bits(poolp, entropy);
2133 }
2134 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2135