1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init is protected by base_crng->lock, and only increases 75 * its value (from empty->early->ready). 76 */ 77 static enum { 78 CRNG_EMPTY = 0, /* Little to no entropy collected */ 79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 81 } crng_init __read_mostly = CRNG_EMPTY; 82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 84 /* Various types of waiters for crng_init->CRNG_READY transition. */ 85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 86 static struct fasync_struct *fasync; 87 88 /* Control how we warn userspace. */ 89 static struct ratelimit_state urandom_warning = 90 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 91 static int ratelimit_disable __read_mostly = 92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 95 96 /* 97 * Returns whether or not the input pool has been seeded and thus guaranteed 98 * to supply cryptographically secure random numbers. This applies to: the 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 100 * ,u64,int,long} family of functions. 101 * 102 * Returns: true if the input pool has been seeded. 103 * false if the input pool has not been seeded. 104 */ 105 bool rng_is_initialized(void) 106 { 107 return crng_ready(); 108 } 109 EXPORT_SYMBOL(rng_is_initialized); 110 111 static void __cold crng_set_ready(struct work_struct *work) 112 { 113 static_branch_enable(&crng_is_ready); 114 } 115 116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 117 static void try_to_generate_entropy(void); 118 119 /* 120 * Wait for the input pool to be seeded and thus guaranteed to supply 121 * cryptographically secure random numbers. This applies to: the /dev/urandom 122 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 123 * family of functions. Using any of these functions without first calling 124 * this function forfeits the guarantee of security. 125 * 126 * Returns: 0 if the input pool has been seeded. 127 * -ERESTARTSYS if the function was interrupted by a signal. 128 */ 129 int wait_for_random_bytes(void) 130 { 131 while (!crng_ready()) { 132 int ret; 133 134 try_to_generate_entropy(); 135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 136 if (ret) 137 return ret > 0 ? 0 : ret; 138 } 139 return 0; 140 } 141 EXPORT_SYMBOL(wait_for_random_bytes); 142 143 #define warn_unseeded_randomness() \ 144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 146 __func__, (void *)_RET_IP_, crng_init) 147 148 149 /********************************************************************* 150 * 151 * Fast key erasure RNG, the "crng". 152 * 153 * These functions expand entropy from the entropy extractor into 154 * long streams for external consumption using the "fast key erasure" 155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 156 * 157 * There are a few exported interfaces for use by other drivers: 158 * 159 * void get_random_bytes(void *buf, size_t len) 160 * u32 get_random_u32() 161 * u64 get_random_u64() 162 * unsigned int get_random_int() 163 * unsigned long get_random_long() 164 * 165 * These interfaces will return the requested number of random bytes 166 * into the given buffer or as a return value. This is equivalent to 167 * a read from /dev/urandom. The u32, u64, int, and long family of 168 * functions may be higher performance for one-off random integers, 169 * because they do a bit of buffering and do not invoke reseeding 170 * until the buffer is emptied. 171 * 172 *********************************************************************/ 173 174 enum { 175 CRNG_RESEED_START_INTERVAL = HZ, 176 CRNG_RESEED_INTERVAL = 60 * HZ 177 }; 178 179 static struct { 180 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 181 unsigned long birth; 182 unsigned long generation; 183 spinlock_t lock; 184 } base_crng = { 185 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 186 }; 187 188 struct crng { 189 u8 key[CHACHA_KEY_SIZE]; 190 unsigned long generation; 191 local_lock_t lock; 192 }; 193 194 static DEFINE_PER_CPU(struct crng, crngs) = { 195 .generation = ULONG_MAX, 196 .lock = INIT_LOCAL_LOCK(crngs.lock), 197 }; 198 199 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 200 static void extract_entropy(void *buf, size_t len); 201 202 /* This extracts a new crng key from the input pool. */ 203 static void crng_reseed(void) 204 { 205 unsigned long flags; 206 unsigned long next_gen; 207 u8 key[CHACHA_KEY_SIZE]; 208 209 extract_entropy(key, sizeof(key)); 210 211 /* 212 * We copy the new key into the base_crng, overwriting the old one, 213 * and update the generation counter. We avoid hitting ULONG_MAX, 214 * because the per-cpu crngs are initialized to ULONG_MAX, so this 215 * forces new CPUs that come online to always initialize. 216 */ 217 spin_lock_irqsave(&base_crng.lock, flags); 218 memcpy(base_crng.key, key, sizeof(base_crng.key)); 219 next_gen = base_crng.generation + 1; 220 if (next_gen == ULONG_MAX) 221 ++next_gen; 222 WRITE_ONCE(base_crng.generation, next_gen); 223 WRITE_ONCE(base_crng.birth, jiffies); 224 if (!static_branch_likely(&crng_is_ready)) 225 crng_init = CRNG_READY; 226 spin_unlock_irqrestore(&base_crng.lock, flags); 227 memzero_explicit(key, sizeof(key)); 228 } 229 230 /* 231 * This generates a ChaCha block using the provided key, and then 232 * immediately overwites that key with half the block. It returns 233 * the resultant ChaCha state to the user, along with the second 234 * half of the block containing 32 bytes of random data that may 235 * be used; random_data_len may not be greater than 32. 236 * 237 * The returned ChaCha state contains within it a copy of the old 238 * key value, at index 4, so the state should always be zeroed out 239 * immediately after using in order to maintain forward secrecy. 240 * If the state cannot be erased in a timely manner, then it is 241 * safer to set the random_data parameter to &chacha_state[4] so 242 * that this function overwrites it before returning. 243 */ 244 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 245 u32 chacha_state[CHACHA_STATE_WORDS], 246 u8 *random_data, size_t random_data_len) 247 { 248 u8 first_block[CHACHA_BLOCK_SIZE]; 249 250 BUG_ON(random_data_len > 32); 251 252 chacha_init_consts(chacha_state); 253 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 254 memset(&chacha_state[12], 0, sizeof(u32) * 4); 255 chacha20_block(chacha_state, first_block); 256 257 memcpy(key, first_block, CHACHA_KEY_SIZE); 258 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 259 memzero_explicit(first_block, sizeof(first_block)); 260 } 261 262 /* 263 * Return whether the crng seed is considered to be sufficiently old 264 * that a reseeding is needed. This happens if the last reseeding 265 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval 266 * proportional to the uptime. 267 */ 268 static bool crng_has_old_seed(void) 269 { 270 static bool early_boot = true; 271 unsigned long interval = CRNG_RESEED_INTERVAL; 272 273 if (unlikely(READ_ONCE(early_boot))) { 274 time64_t uptime = ktime_get_seconds(); 275 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 276 WRITE_ONCE(early_boot, false); 277 else 278 interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 279 (unsigned int)uptime / 2 * HZ); 280 } 281 return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval); 282 } 283 284 /* 285 * This function returns a ChaCha state that you may use for generating 286 * random data. It also returns up to 32 bytes on its own of random data 287 * that may be used; random_data_len may not be greater than 32. 288 */ 289 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 290 u8 *random_data, size_t random_data_len) 291 { 292 unsigned long flags; 293 struct crng *crng; 294 295 BUG_ON(random_data_len > 32); 296 297 /* 298 * For the fast path, we check whether we're ready, unlocked first, and 299 * then re-check once locked later. In the case where we're really not 300 * ready, we do fast key erasure with the base_crng directly, extracting 301 * when crng_init is CRNG_EMPTY. 302 */ 303 if (!crng_ready()) { 304 bool ready; 305 306 spin_lock_irqsave(&base_crng.lock, flags); 307 ready = crng_ready(); 308 if (!ready) { 309 if (crng_init == CRNG_EMPTY) 310 extract_entropy(base_crng.key, sizeof(base_crng.key)); 311 crng_fast_key_erasure(base_crng.key, chacha_state, 312 random_data, random_data_len); 313 } 314 spin_unlock_irqrestore(&base_crng.lock, flags); 315 if (!ready) 316 return; 317 } 318 319 /* 320 * If the base_crng is old enough, we reseed, which in turn bumps the 321 * generation counter that we check below. 322 */ 323 if (unlikely(crng_has_old_seed())) 324 crng_reseed(); 325 326 local_lock_irqsave(&crngs.lock, flags); 327 crng = raw_cpu_ptr(&crngs); 328 329 /* 330 * If our per-cpu crng is older than the base_crng, then it means 331 * somebody reseeded the base_crng. In that case, we do fast key 332 * erasure on the base_crng, and use its output as the new key 333 * for our per-cpu crng. This brings us up to date with base_crng. 334 */ 335 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 336 spin_lock(&base_crng.lock); 337 crng_fast_key_erasure(base_crng.key, chacha_state, 338 crng->key, sizeof(crng->key)); 339 crng->generation = base_crng.generation; 340 spin_unlock(&base_crng.lock); 341 } 342 343 /* 344 * Finally, when we've made it this far, our per-cpu crng has an up 345 * to date key, and we can do fast key erasure with it to produce 346 * some random data and a ChaCha state for the caller. All other 347 * branches of this function are "unlikely", so most of the time we 348 * should wind up here immediately. 349 */ 350 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 351 local_unlock_irqrestore(&crngs.lock, flags); 352 } 353 354 static void _get_random_bytes(void *buf, size_t len) 355 { 356 u32 chacha_state[CHACHA_STATE_WORDS]; 357 u8 tmp[CHACHA_BLOCK_SIZE]; 358 size_t first_block_len; 359 360 if (!len) 361 return; 362 363 first_block_len = min_t(size_t, 32, len); 364 crng_make_state(chacha_state, buf, first_block_len); 365 len -= first_block_len; 366 buf += first_block_len; 367 368 while (len) { 369 if (len < CHACHA_BLOCK_SIZE) { 370 chacha20_block(chacha_state, tmp); 371 memcpy(buf, tmp, len); 372 memzero_explicit(tmp, sizeof(tmp)); 373 break; 374 } 375 376 chacha20_block(chacha_state, buf); 377 if (unlikely(chacha_state[12] == 0)) 378 ++chacha_state[13]; 379 len -= CHACHA_BLOCK_SIZE; 380 buf += CHACHA_BLOCK_SIZE; 381 } 382 383 memzero_explicit(chacha_state, sizeof(chacha_state)); 384 } 385 386 /* 387 * This function is the exported kernel interface. It returns some 388 * number of good random numbers, suitable for key generation, seeding 389 * TCP sequence numbers, etc. In order to ensure that the randomness 390 * by this function is okay, the function wait_for_random_bytes() 391 * should be called and return 0 at least once at any point prior. 392 */ 393 void get_random_bytes(void *buf, size_t len) 394 { 395 warn_unseeded_randomness(); 396 _get_random_bytes(buf, len); 397 } 398 EXPORT_SYMBOL(get_random_bytes); 399 400 static ssize_t get_random_bytes_user(struct iov_iter *iter) 401 { 402 u32 chacha_state[CHACHA_STATE_WORDS]; 403 u8 block[CHACHA_BLOCK_SIZE]; 404 size_t ret = 0, copied; 405 406 if (unlikely(!iov_iter_count(iter))) 407 return 0; 408 409 /* 410 * Immediately overwrite the ChaCha key at index 4 with random 411 * bytes, in case userspace causes copy_to_user() below to sleep 412 * forever, so that we still retain forward secrecy in that case. 413 */ 414 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 415 /* 416 * However, if we're doing a read of len <= 32, we don't need to 417 * use chacha_state after, so we can simply return those bytes to 418 * the user directly. 419 */ 420 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 421 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 422 goto out_zero_chacha; 423 } 424 425 for (;;) { 426 chacha20_block(chacha_state, block); 427 if (unlikely(chacha_state[12] == 0)) 428 ++chacha_state[13]; 429 430 copied = copy_to_iter(block, sizeof(block), iter); 431 ret += copied; 432 if (!iov_iter_count(iter) || copied != sizeof(block)) 433 break; 434 435 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 436 if (ret % PAGE_SIZE == 0) { 437 if (signal_pending(current)) 438 break; 439 cond_resched(); 440 } 441 } 442 443 memzero_explicit(block, sizeof(block)); 444 out_zero_chacha: 445 memzero_explicit(chacha_state, sizeof(chacha_state)); 446 return ret ? ret : -EFAULT; 447 } 448 449 /* 450 * Batched entropy returns random integers. The quality of the random 451 * number is good as /dev/urandom. In order to ensure that the randomness 452 * provided by this function is okay, the function wait_for_random_bytes() 453 * should be called and return 0 at least once at any point prior. 454 */ 455 456 #define DEFINE_BATCHED_ENTROPY(type) \ 457 struct batch_ ##type { \ 458 /* \ 459 * We make this 1.5x a ChaCha block, so that we get the \ 460 * remaining 32 bytes from fast key erasure, plus one full \ 461 * block from the detached ChaCha state. We can increase \ 462 * the size of this later if needed so long as we keep the \ 463 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 464 */ \ 465 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 466 local_lock_t lock; \ 467 unsigned long generation; \ 468 unsigned int position; \ 469 }; \ 470 \ 471 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 472 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 473 .position = UINT_MAX \ 474 }; \ 475 \ 476 type get_random_ ##type(void) \ 477 { \ 478 type ret; \ 479 unsigned long flags; \ 480 struct batch_ ##type *batch; \ 481 unsigned long next_gen; \ 482 \ 483 warn_unseeded_randomness(); \ 484 \ 485 if (!crng_ready()) { \ 486 _get_random_bytes(&ret, sizeof(ret)); \ 487 return ret; \ 488 } \ 489 \ 490 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 491 batch = raw_cpu_ptr(&batched_entropy_##type); \ 492 \ 493 next_gen = READ_ONCE(base_crng.generation); \ 494 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 495 next_gen != batch->generation) { \ 496 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 497 batch->position = 0; \ 498 batch->generation = next_gen; \ 499 } \ 500 \ 501 ret = batch->entropy[batch->position]; \ 502 batch->entropy[batch->position] = 0; \ 503 ++batch->position; \ 504 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 505 return ret; \ 506 } \ 507 EXPORT_SYMBOL(get_random_ ##type); 508 509 DEFINE_BATCHED_ENTROPY(u64) 510 DEFINE_BATCHED_ENTROPY(u32) 511 512 #ifdef CONFIG_SMP 513 /* 514 * This function is called when the CPU is coming up, with entry 515 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 516 */ 517 int __cold random_prepare_cpu(unsigned int cpu) 518 { 519 /* 520 * When the cpu comes back online, immediately invalidate both 521 * the per-cpu crng and all batches, so that we serve fresh 522 * randomness. 523 */ 524 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 525 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 526 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 527 return 0; 528 } 529 #endif 530 531 532 /********************************************************************** 533 * 534 * Entropy accumulation and extraction routines. 535 * 536 * Callers may add entropy via: 537 * 538 * static void mix_pool_bytes(const void *buf, size_t len) 539 * 540 * After which, if added entropy should be credited: 541 * 542 * static void credit_init_bits(size_t bits) 543 * 544 * Finally, extract entropy via: 545 * 546 * static void extract_entropy(void *buf, size_t len) 547 * 548 **********************************************************************/ 549 550 enum { 551 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 552 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 553 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 554 }; 555 556 static struct { 557 struct blake2s_state hash; 558 spinlock_t lock; 559 unsigned int init_bits; 560 } input_pool = { 561 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 562 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 563 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 564 .hash.outlen = BLAKE2S_HASH_SIZE, 565 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 566 }; 567 568 static void _mix_pool_bytes(const void *buf, size_t len) 569 { 570 blake2s_update(&input_pool.hash, buf, len); 571 } 572 573 /* 574 * This function adds bytes into the input pool. It does not 575 * update the initialization bit counter; the caller should call 576 * credit_init_bits if this is appropriate. 577 */ 578 static void mix_pool_bytes(const void *buf, size_t len) 579 { 580 unsigned long flags; 581 582 spin_lock_irqsave(&input_pool.lock, flags); 583 _mix_pool_bytes(buf, len); 584 spin_unlock_irqrestore(&input_pool.lock, flags); 585 } 586 587 /* 588 * This is an HKDF-like construction for using the hashed collected entropy 589 * as a PRF key, that's then expanded block-by-block. 590 */ 591 static void extract_entropy(void *buf, size_t len) 592 { 593 unsigned long flags; 594 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 595 struct { 596 unsigned long rdseed[32 / sizeof(long)]; 597 size_t counter; 598 } block; 599 size_t i; 600 601 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { 602 if (!arch_get_random_seed_long(&block.rdseed[i]) && 603 !arch_get_random_long(&block.rdseed[i])) 604 block.rdseed[i] = random_get_entropy(); 605 } 606 607 spin_lock_irqsave(&input_pool.lock, flags); 608 609 /* seed = HASHPRF(last_key, entropy_input) */ 610 blake2s_final(&input_pool.hash, seed); 611 612 /* next_key = HASHPRF(seed, RDSEED || 0) */ 613 block.counter = 0; 614 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 615 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 616 617 spin_unlock_irqrestore(&input_pool.lock, flags); 618 memzero_explicit(next_key, sizeof(next_key)); 619 620 while (len) { 621 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 622 /* output = HASHPRF(seed, RDSEED || ++counter) */ 623 ++block.counter; 624 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 625 len -= i; 626 buf += i; 627 } 628 629 memzero_explicit(seed, sizeof(seed)); 630 memzero_explicit(&block, sizeof(block)); 631 } 632 633 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 634 635 static void __cold _credit_init_bits(size_t bits) 636 { 637 static struct execute_work set_ready; 638 unsigned int new, orig, add; 639 unsigned long flags; 640 641 if (!bits) 642 return; 643 644 add = min_t(size_t, bits, POOL_BITS); 645 646 do { 647 orig = READ_ONCE(input_pool.init_bits); 648 new = min_t(unsigned int, POOL_BITS, orig + add); 649 } while (cmpxchg(&input_pool.init_bits, orig, new) != orig); 650 651 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 652 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 653 if (static_key_initialized) 654 execute_in_process_context(crng_set_ready, &set_ready); 655 wake_up_interruptible(&crng_init_wait); 656 kill_fasync(&fasync, SIGIO, POLL_IN); 657 pr_notice("crng init done\n"); 658 if (urandom_warning.missed) 659 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 660 urandom_warning.missed); 661 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 662 spin_lock_irqsave(&base_crng.lock, flags); 663 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 664 if (crng_init == CRNG_EMPTY) { 665 extract_entropy(base_crng.key, sizeof(base_crng.key)); 666 crng_init = CRNG_EARLY; 667 } 668 spin_unlock_irqrestore(&base_crng.lock, flags); 669 } 670 } 671 672 673 /********************************************************************** 674 * 675 * Entropy collection routines. 676 * 677 * The following exported functions are used for pushing entropy into 678 * the above entropy accumulation routines: 679 * 680 * void add_device_randomness(const void *buf, size_t len); 681 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); 682 * void add_bootloader_randomness(const void *buf, size_t len); 683 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 684 * void add_interrupt_randomness(int irq); 685 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 686 * void add_disk_randomness(struct gendisk *disk); 687 * 688 * add_device_randomness() adds data to the input pool that 689 * is likely to differ between two devices (or possibly even per boot). 690 * This would be things like MAC addresses or serial numbers, or the 691 * read-out of the RTC. This does *not* credit any actual entropy to 692 * the pool, but it initializes the pool to different values for devices 693 * that might otherwise be identical and have very little entropy 694 * available to them (particularly common in the embedded world). 695 * 696 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 697 * entropy as specified by the caller. If the entropy pool is full it will 698 * block until more entropy is needed. 699 * 700 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 701 * and device tree, and credits its input depending on whether or not the 702 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 703 * 704 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 705 * representing the current instance of a VM to the pool, without crediting, 706 * and then force-reseeds the crng so that it takes effect immediately. 707 * 708 * add_interrupt_randomness() uses the interrupt timing as random 709 * inputs to the entropy pool. Using the cycle counters and the irq source 710 * as inputs, it feeds the input pool roughly once a second or after 64 711 * interrupts, crediting 1 bit of entropy for whichever comes first. 712 * 713 * add_input_randomness() uses the input layer interrupt timing, as well 714 * as the event type information from the hardware. 715 * 716 * add_disk_randomness() uses what amounts to the seek time of block 717 * layer request events, on a per-disk_devt basis, as input to the 718 * entropy pool. Note that high-speed solid state drives with very low 719 * seek times do not make for good sources of entropy, as their seek 720 * times are usually fairly consistent. 721 * 722 * The last two routines try to estimate how many bits of entropy 723 * to credit. They do this by keeping track of the first and second 724 * order deltas of the event timings. 725 * 726 **********************************************************************/ 727 728 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 729 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); 730 static int __init parse_trust_cpu(char *arg) 731 { 732 return kstrtobool(arg, &trust_cpu); 733 } 734 static int __init parse_trust_bootloader(char *arg) 735 { 736 return kstrtobool(arg, &trust_bootloader); 737 } 738 early_param("random.trust_cpu", parse_trust_cpu); 739 early_param("random.trust_bootloader", parse_trust_bootloader); 740 741 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 742 { 743 unsigned long flags, entropy = random_get_entropy(); 744 745 /* 746 * Encode a representation of how long the system has been suspended, 747 * in a way that is distinct from prior system suspends. 748 */ 749 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 750 751 spin_lock_irqsave(&input_pool.lock, flags); 752 _mix_pool_bytes(&action, sizeof(action)); 753 _mix_pool_bytes(stamps, sizeof(stamps)); 754 _mix_pool_bytes(&entropy, sizeof(entropy)); 755 spin_unlock_irqrestore(&input_pool.lock, flags); 756 757 if (crng_ready() && (action == PM_RESTORE_PREPARE || 758 (action == PM_POST_SUSPEND && 759 !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) { 760 crng_reseed(); 761 pr_notice("crng reseeded on system resumption\n"); 762 } 763 return 0; 764 } 765 766 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 767 768 /* 769 * The first collection of entropy occurs at system boot while interrupts 770 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp, 771 * utsname(), and the command line. Depending on the above configuration knob, 772 * RDSEED may be considered sufficient for initialization. Note that much 773 * earlier setup may already have pushed entropy into the input pool by the 774 * time we get here. 775 */ 776 int __init random_init(const char *command_line) 777 { 778 ktime_t now = ktime_get_real(); 779 unsigned int i, arch_bits; 780 unsigned long entropy; 781 782 #if defined(LATENT_ENTROPY_PLUGIN) 783 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 784 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 785 #endif 786 787 for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8; 788 i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) { 789 if (!arch_get_random_seed_long_early(&entropy) && 790 !arch_get_random_long_early(&entropy)) { 791 entropy = random_get_entropy(); 792 arch_bits -= sizeof(entropy) * 8; 793 } 794 _mix_pool_bytes(&entropy, sizeof(entropy)); 795 } 796 _mix_pool_bytes(&now, sizeof(now)); 797 _mix_pool_bytes(utsname(), sizeof(*(utsname()))); 798 _mix_pool_bytes(command_line, strlen(command_line)); 799 add_latent_entropy(); 800 801 /* 802 * If we were initialized by the bootloader before jump labels are 803 * initialized, then we should enable the static branch here, where 804 * it's guaranteed that jump labels have been initialized. 805 */ 806 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 807 crng_set_ready(NULL); 808 809 if (crng_ready()) 810 crng_reseed(); 811 else if (trust_cpu) 812 _credit_init_bits(arch_bits); 813 814 WARN_ON(register_pm_notifier(&pm_notifier)); 815 816 WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG " 817 "entropy collection will consequently suffer."); 818 return 0; 819 } 820 821 /* 822 * Add device- or boot-specific data to the input pool to help 823 * initialize it. 824 * 825 * None of this adds any entropy; it is meant to avoid the problem of 826 * the entropy pool having similar initial state across largely 827 * identical devices. 828 */ 829 void add_device_randomness(const void *buf, size_t len) 830 { 831 unsigned long entropy = random_get_entropy(); 832 unsigned long flags; 833 834 spin_lock_irqsave(&input_pool.lock, flags); 835 _mix_pool_bytes(&entropy, sizeof(entropy)); 836 _mix_pool_bytes(buf, len); 837 spin_unlock_irqrestore(&input_pool.lock, flags); 838 } 839 EXPORT_SYMBOL(add_device_randomness); 840 841 /* 842 * Interface for in-kernel drivers of true hardware RNGs. 843 * Those devices may produce endless random bits and will be throttled 844 * when our pool is full. 845 */ 846 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) 847 { 848 mix_pool_bytes(buf, len); 849 credit_init_bits(entropy); 850 851 /* 852 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless 853 * we're not yet initialized. 854 */ 855 if (!kthread_should_stop() && crng_ready()) 856 schedule_timeout_interruptible(CRNG_RESEED_INTERVAL); 857 } 858 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 859 860 /* 861 * Handle random seed passed by bootloader, and credit it if 862 * CONFIG_RANDOM_TRUST_BOOTLOADER is set. 863 */ 864 void __init add_bootloader_randomness(const void *buf, size_t len) 865 { 866 mix_pool_bytes(buf, len); 867 if (trust_bootloader) 868 credit_init_bits(len * 8); 869 } 870 871 #if IS_ENABLED(CONFIG_VMGENID) 872 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 873 874 /* 875 * Handle a new unique VM ID, which is unique, not secret, so we 876 * don't credit it, but we do immediately force a reseed after so 877 * that it's used by the crng posthaste. 878 */ 879 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 880 { 881 add_device_randomness(unique_vm_id, len); 882 if (crng_ready()) { 883 crng_reseed(); 884 pr_notice("crng reseeded due to virtual machine fork\n"); 885 } 886 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 887 } 888 #if IS_MODULE(CONFIG_VMGENID) 889 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 890 #endif 891 892 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 893 { 894 return blocking_notifier_chain_register(&vmfork_chain, nb); 895 } 896 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 897 898 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 899 { 900 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 901 } 902 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 903 #endif 904 905 struct fast_pool { 906 struct work_struct mix; 907 unsigned long pool[4]; 908 unsigned long last; 909 unsigned int count; 910 }; 911 912 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 913 #ifdef CONFIG_64BIT 914 #define FASTMIX_PERM SIPHASH_PERMUTATION 915 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 } 916 #else 917 #define FASTMIX_PERM HSIPHASH_PERMUTATION 918 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 } 919 #endif 920 }; 921 922 /* 923 * This is [Half]SipHash-1-x, starting from an empty key. Because 924 * the key is fixed, it assumes that its inputs are non-malicious, 925 * and therefore this has no security on its own. s represents the 926 * four-word SipHash state, while v represents a two-word input. 927 */ 928 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 929 { 930 s[3] ^= v1; 931 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 932 s[0] ^= v1; 933 s[3] ^= v2; 934 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 935 s[0] ^= v2; 936 } 937 938 #ifdef CONFIG_SMP 939 /* 940 * This function is called when the CPU has just come online, with 941 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 942 */ 943 int __cold random_online_cpu(unsigned int cpu) 944 { 945 /* 946 * During CPU shutdown and before CPU onlining, add_interrupt_ 947 * randomness() may schedule mix_interrupt_randomness(), and 948 * set the MIX_INFLIGHT flag. However, because the worker can 949 * be scheduled on a different CPU during this period, that 950 * flag will never be cleared. For that reason, we zero out 951 * the flag here, which runs just after workqueues are onlined 952 * for the CPU again. This also has the effect of setting the 953 * irq randomness count to zero so that new accumulated irqs 954 * are fresh. 955 */ 956 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 957 return 0; 958 } 959 #endif 960 961 static void mix_interrupt_randomness(struct work_struct *work) 962 { 963 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 964 /* 965 * The size of the copied stack pool is explicitly 2 longs so that we 966 * only ever ingest half of the siphash output each time, retaining 967 * the other half as the next "key" that carries over. The entropy is 968 * supposed to be sufficiently dispersed between bits so on average 969 * we don't wind up "losing" some. 970 */ 971 unsigned long pool[2]; 972 unsigned int count; 973 974 /* Check to see if we're running on the wrong CPU due to hotplug. */ 975 local_irq_disable(); 976 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 977 local_irq_enable(); 978 return; 979 } 980 981 /* 982 * Copy the pool to the stack so that the mixer always has a 983 * consistent view, before we reenable irqs again. 984 */ 985 memcpy(pool, fast_pool->pool, sizeof(pool)); 986 count = fast_pool->count; 987 fast_pool->count = 0; 988 fast_pool->last = jiffies; 989 local_irq_enable(); 990 991 mix_pool_bytes(pool, sizeof(pool)); 992 credit_init_bits(max(1u, (count & U16_MAX) / 64)); 993 994 memzero_explicit(pool, sizeof(pool)); 995 } 996 997 void add_interrupt_randomness(int irq) 998 { 999 enum { MIX_INFLIGHT = 1U << 31 }; 1000 unsigned long entropy = random_get_entropy(); 1001 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1002 struct pt_regs *regs = get_irq_regs(); 1003 unsigned int new_count; 1004 1005 fast_mix(fast_pool->pool, entropy, 1006 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1007 new_count = ++fast_pool->count; 1008 1009 if (new_count & MIX_INFLIGHT) 1010 return; 1011 1012 if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ)) 1013 return; 1014 1015 if (unlikely(!fast_pool->mix.func)) 1016 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); 1017 fast_pool->count |= MIX_INFLIGHT; 1018 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); 1019 } 1020 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1021 1022 /* There is one of these per entropy source */ 1023 struct timer_rand_state { 1024 unsigned long last_time; 1025 long last_delta, last_delta2; 1026 }; 1027 1028 /* 1029 * This function adds entropy to the entropy "pool" by using timing 1030 * delays. It uses the timer_rand_state structure to make an estimate 1031 * of how many bits of entropy this call has added to the pool. The 1032 * value "num" is also added to the pool; it should somehow describe 1033 * the type of event that just happened. 1034 */ 1035 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1036 { 1037 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1038 long delta, delta2, delta3; 1039 unsigned int bits; 1040 1041 /* 1042 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1043 * sometime after, so mix into the fast pool. 1044 */ 1045 if (in_hardirq()) { 1046 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1047 } else { 1048 spin_lock_irqsave(&input_pool.lock, flags); 1049 _mix_pool_bytes(&entropy, sizeof(entropy)); 1050 _mix_pool_bytes(&num, sizeof(num)); 1051 spin_unlock_irqrestore(&input_pool.lock, flags); 1052 } 1053 1054 if (crng_ready()) 1055 return; 1056 1057 /* 1058 * Calculate number of bits of randomness we probably added. 1059 * We take into account the first, second and third-order deltas 1060 * in order to make our estimate. 1061 */ 1062 delta = now - READ_ONCE(state->last_time); 1063 WRITE_ONCE(state->last_time, now); 1064 1065 delta2 = delta - READ_ONCE(state->last_delta); 1066 WRITE_ONCE(state->last_delta, delta); 1067 1068 delta3 = delta2 - READ_ONCE(state->last_delta2); 1069 WRITE_ONCE(state->last_delta2, delta2); 1070 1071 if (delta < 0) 1072 delta = -delta; 1073 if (delta2 < 0) 1074 delta2 = -delta2; 1075 if (delta3 < 0) 1076 delta3 = -delta3; 1077 if (delta > delta2) 1078 delta = delta2; 1079 if (delta > delta3) 1080 delta = delta3; 1081 1082 /* 1083 * delta is now minimum absolute delta. Round down by 1 bit 1084 * on general principles, and limit entropy estimate to 11 bits. 1085 */ 1086 bits = min(fls(delta >> 1), 11); 1087 1088 /* 1089 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1090 * will run after this, which uses a different crediting scheme of 1 bit 1091 * per every 64 interrupts. In order to let that function do accounting 1092 * close to the one in this function, we credit a full 64/64 bit per bit, 1093 * and then subtract one to account for the extra one added. 1094 */ 1095 if (in_hardirq()) 1096 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1097 else 1098 _credit_init_bits(bits); 1099 } 1100 1101 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1102 { 1103 static unsigned char last_value; 1104 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1105 1106 /* Ignore autorepeat and the like. */ 1107 if (value == last_value) 1108 return; 1109 1110 last_value = value; 1111 add_timer_randomness(&input_timer_state, 1112 (type << 4) ^ code ^ (code >> 4) ^ value); 1113 } 1114 EXPORT_SYMBOL_GPL(add_input_randomness); 1115 1116 #ifdef CONFIG_BLOCK 1117 void add_disk_randomness(struct gendisk *disk) 1118 { 1119 if (!disk || !disk->random) 1120 return; 1121 /* First major is 1, so we get >= 0x200 here. */ 1122 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1123 } 1124 EXPORT_SYMBOL_GPL(add_disk_randomness); 1125 1126 void __cold rand_initialize_disk(struct gendisk *disk) 1127 { 1128 struct timer_rand_state *state; 1129 1130 /* 1131 * If kzalloc returns null, we just won't use that entropy 1132 * source. 1133 */ 1134 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1135 if (state) { 1136 state->last_time = INITIAL_JIFFIES; 1137 disk->random = state; 1138 } 1139 } 1140 #endif 1141 1142 struct entropy_timer_state { 1143 unsigned long entropy; 1144 struct timer_list timer; 1145 unsigned int samples, samples_per_bit; 1146 }; 1147 1148 /* 1149 * Each time the timer fires, we expect that we got an unpredictable 1150 * jump in the cycle counter. Even if the timer is running on another 1151 * CPU, the timer activity will be touching the stack of the CPU that is 1152 * generating entropy.. 1153 * 1154 * Note that we don't re-arm the timer in the timer itself - we are 1155 * happy to be scheduled away, since that just makes the load more 1156 * complex, but we do not want the timer to keep ticking unless the 1157 * entropy loop is running. 1158 * 1159 * So the re-arming always happens in the entropy loop itself. 1160 */ 1161 static void __cold entropy_timer(struct timer_list *timer) 1162 { 1163 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1164 1165 if (++state->samples == state->samples_per_bit) { 1166 credit_init_bits(1); 1167 state->samples = 0; 1168 } 1169 } 1170 1171 /* 1172 * If we have an actual cycle counter, see if we can 1173 * generate enough entropy with timing noise 1174 */ 1175 static void __cold try_to_generate_entropy(void) 1176 { 1177 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 }; 1178 struct entropy_timer_state stack; 1179 unsigned int i, num_different = 0; 1180 unsigned long last = random_get_entropy(); 1181 1182 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1183 stack.entropy = random_get_entropy(); 1184 if (stack.entropy != last) 1185 ++num_different; 1186 last = stack.entropy; 1187 } 1188 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1189 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT) 1190 return; 1191 1192 stack.samples = 0; 1193 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1194 while (!crng_ready() && !signal_pending(current)) { 1195 if (!timer_pending(&stack.timer)) 1196 mod_timer(&stack.timer, jiffies + 1); 1197 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1198 schedule(); 1199 stack.entropy = random_get_entropy(); 1200 } 1201 1202 del_timer_sync(&stack.timer); 1203 destroy_timer_on_stack(&stack.timer); 1204 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1205 } 1206 1207 1208 /********************************************************************** 1209 * 1210 * Userspace reader/writer interfaces. 1211 * 1212 * getrandom(2) is the primary modern interface into the RNG and should 1213 * be used in preference to anything else. 1214 * 1215 * Reading from /dev/random has the same functionality as calling 1216 * getrandom(2) with flags=0. In earlier versions, however, it had 1217 * vastly different semantics and should therefore be avoided, to 1218 * prevent backwards compatibility issues. 1219 * 1220 * Reading from /dev/urandom has the same functionality as calling 1221 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1222 * waiting for the RNG to be ready, it should not be used. 1223 * 1224 * Writing to either /dev/random or /dev/urandom adds entropy to 1225 * the input pool but does not credit it. 1226 * 1227 * Polling on /dev/random indicates when the RNG is initialized, on 1228 * the read side, and when it wants new entropy, on the write side. 1229 * 1230 * Both /dev/random and /dev/urandom have the same set of ioctls for 1231 * adding entropy, getting the entropy count, zeroing the count, and 1232 * reseeding the crng. 1233 * 1234 **********************************************************************/ 1235 1236 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1237 { 1238 struct iov_iter iter; 1239 struct iovec iov; 1240 int ret; 1241 1242 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1243 return -EINVAL; 1244 1245 /* 1246 * Requesting insecure and blocking randomness at the same time makes 1247 * no sense. 1248 */ 1249 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1250 return -EINVAL; 1251 1252 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1253 if (flags & GRND_NONBLOCK) 1254 return -EAGAIN; 1255 ret = wait_for_random_bytes(); 1256 if (unlikely(ret)) 1257 return ret; 1258 } 1259 1260 ret = import_single_range(READ, ubuf, len, &iov, &iter); 1261 if (unlikely(ret)) 1262 return ret; 1263 return get_random_bytes_user(&iter); 1264 } 1265 1266 static __poll_t random_poll(struct file *file, poll_table *wait) 1267 { 1268 poll_wait(file, &crng_init_wait, wait); 1269 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1270 } 1271 1272 static ssize_t write_pool_user(struct iov_iter *iter) 1273 { 1274 u8 block[BLAKE2S_BLOCK_SIZE]; 1275 ssize_t ret = 0; 1276 size_t copied; 1277 1278 if (unlikely(!iov_iter_count(iter))) 1279 return 0; 1280 1281 for (;;) { 1282 copied = copy_from_iter(block, sizeof(block), iter); 1283 ret += copied; 1284 mix_pool_bytes(block, copied); 1285 if (!iov_iter_count(iter) || copied != sizeof(block)) 1286 break; 1287 1288 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1289 if (ret % PAGE_SIZE == 0) { 1290 if (signal_pending(current)) 1291 break; 1292 cond_resched(); 1293 } 1294 } 1295 1296 memzero_explicit(block, sizeof(block)); 1297 return ret ? ret : -EFAULT; 1298 } 1299 1300 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1301 { 1302 return write_pool_user(iter); 1303 } 1304 1305 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1306 { 1307 static int maxwarn = 10; 1308 1309 /* 1310 * Opportunistically attempt to initialize the RNG on platforms that 1311 * have fast cycle counters, but don't (for now) require it to succeed. 1312 */ 1313 if (!crng_ready()) 1314 try_to_generate_entropy(); 1315 1316 if (!crng_ready()) { 1317 if (!ratelimit_disable && maxwarn <= 0) 1318 ++urandom_warning.missed; 1319 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1320 --maxwarn; 1321 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1322 current->comm, iov_iter_count(iter)); 1323 } 1324 } 1325 1326 return get_random_bytes_user(iter); 1327 } 1328 1329 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1330 { 1331 int ret; 1332 1333 ret = wait_for_random_bytes(); 1334 if (ret != 0) 1335 return ret; 1336 return get_random_bytes_user(iter); 1337 } 1338 1339 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1340 { 1341 int __user *p = (int __user *)arg; 1342 int ent_count; 1343 1344 switch (cmd) { 1345 case RNDGETENTCNT: 1346 /* Inherently racy, no point locking. */ 1347 if (put_user(input_pool.init_bits, p)) 1348 return -EFAULT; 1349 return 0; 1350 case RNDADDTOENTCNT: 1351 if (!capable(CAP_SYS_ADMIN)) 1352 return -EPERM; 1353 if (get_user(ent_count, p)) 1354 return -EFAULT; 1355 if (ent_count < 0) 1356 return -EINVAL; 1357 credit_init_bits(ent_count); 1358 return 0; 1359 case RNDADDENTROPY: { 1360 struct iov_iter iter; 1361 struct iovec iov; 1362 ssize_t ret; 1363 int len; 1364 1365 if (!capable(CAP_SYS_ADMIN)) 1366 return -EPERM; 1367 if (get_user(ent_count, p++)) 1368 return -EFAULT; 1369 if (ent_count < 0) 1370 return -EINVAL; 1371 if (get_user(len, p++)) 1372 return -EFAULT; 1373 ret = import_single_range(WRITE, p, len, &iov, &iter); 1374 if (unlikely(ret)) 1375 return ret; 1376 ret = write_pool_user(&iter); 1377 if (unlikely(ret < 0)) 1378 return ret; 1379 /* Since we're crediting, enforce that it was all written into the pool. */ 1380 if (unlikely(ret != len)) 1381 return -EFAULT; 1382 credit_init_bits(ent_count); 1383 return 0; 1384 } 1385 case RNDZAPENTCNT: 1386 case RNDCLEARPOOL: 1387 /* No longer has any effect. */ 1388 if (!capable(CAP_SYS_ADMIN)) 1389 return -EPERM; 1390 return 0; 1391 case RNDRESEEDCRNG: 1392 if (!capable(CAP_SYS_ADMIN)) 1393 return -EPERM; 1394 if (!crng_ready()) 1395 return -ENODATA; 1396 crng_reseed(); 1397 return 0; 1398 default: 1399 return -EINVAL; 1400 } 1401 } 1402 1403 static int random_fasync(int fd, struct file *filp, int on) 1404 { 1405 return fasync_helper(fd, filp, on, &fasync); 1406 } 1407 1408 const struct file_operations random_fops = { 1409 .read_iter = random_read_iter, 1410 .write_iter = random_write_iter, 1411 .poll = random_poll, 1412 .unlocked_ioctl = random_ioctl, 1413 .compat_ioctl = compat_ptr_ioctl, 1414 .fasync = random_fasync, 1415 .llseek = noop_llseek, 1416 .splice_read = generic_file_splice_read, 1417 .splice_write = iter_file_splice_write, 1418 }; 1419 1420 const struct file_operations urandom_fops = { 1421 .read_iter = urandom_read_iter, 1422 .write_iter = random_write_iter, 1423 .unlocked_ioctl = random_ioctl, 1424 .compat_ioctl = compat_ptr_ioctl, 1425 .fasync = random_fasync, 1426 .llseek = noop_llseek, 1427 .splice_read = generic_file_splice_read, 1428 .splice_write = iter_file_splice_write, 1429 }; 1430 1431 1432 /******************************************************************** 1433 * 1434 * Sysctl interface. 1435 * 1436 * These are partly unused legacy knobs with dummy values to not break 1437 * userspace and partly still useful things. They are usually accessible 1438 * in /proc/sys/kernel/random/ and are as follows: 1439 * 1440 * - boot_id - a UUID representing the current boot. 1441 * 1442 * - uuid - a random UUID, different each time the file is read. 1443 * 1444 * - poolsize - the number of bits of entropy that the input pool can 1445 * hold, tied to the POOL_BITS constant. 1446 * 1447 * - entropy_avail - the number of bits of entropy currently in the 1448 * input pool. Always <= poolsize. 1449 * 1450 * - write_wakeup_threshold - the amount of entropy in the input pool 1451 * below which write polls to /dev/random will unblock, requesting 1452 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1453 * to avoid breaking old userspaces, but writing to it does not 1454 * change any behavior of the RNG. 1455 * 1456 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1457 * It is writable to avoid breaking old userspaces, but writing 1458 * to it does not change any behavior of the RNG. 1459 * 1460 ********************************************************************/ 1461 1462 #ifdef CONFIG_SYSCTL 1463 1464 #include <linux/sysctl.h> 1465 1466 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1467 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1468 static int sysctl_poolsize = POOL_BITS; 1469 static u8 sysctl_bootid[UUID_SIZE]; 1470 1471 /* 1472 * This function is used to return both the bootid UUID, and random 1473 * UUID. The difference is in whether table->data is NULL; if it is, 1474 * then a new UUID is generated and returned to the user. 1475 */ 1476 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1477 size_t *lenp, loff_t *ppos) 1478 { 1479 u8 tmp_uuid[UUID_SIZE], *uuid; 1480 char uuid_string[UUID_STRING_LEN + 1]; 1481 struct ctl_table fake_table = { 1482 .data = uuid_string, 1483 .maxlen = UUID_STRING_LEN 1484 }; 1485 1486 if (write) 1487 return -EPERM; 1488 1489 uuid = table->data; 1490 if (!uuid) { 1491 uuid = tmp_uuid; 1492 generate_random_uuid(uuid); 1493 } else { 1494 static DEFINE_SPINLOCK(bootid_spinlock); 1495 1496 spin_lock(&bootid_spinlock); 1497 if (!uuid[8]) 1498 generate_random_uuid(uuid); 1499 spin_unlock(&bootid_spinlock); 1500 } 1501 1502 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1503 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1504 } 1505 1506 /* The same as proc_dointvec, but writes don't change anything. */ 1507 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1508 size_t *lenp, loff_t *ppos) 1509 { 1510 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1511 } 1512 1513 static struct ctl_table random_table[] = { 1514 { 1515 .procname = "poolsize", 1516 .data = &sysctl_poolsize, 1517 .maxlen = sizeof(int), 1518 .mode = 0444, 1519 .proc_handler = proc_dointvec, 1520 }, 1521 { 1522 .procname = "entropy_avail", 1523 .data = &input_pool.init_bits, 1524 .maxlen = sizeof(int), 1525 .mode = 0444, 1526 .proc_handler = proc_dointvec, 1527 }, 1528 { 1529 .procname = "write_wakeup_threshold", 1530 .data = &sysctl_random_write_wakeup_bits, 1531 .maxlen = sizeof(int), 1532 .mode = 0644, 1533 .proc_handler = proc_do_rointvec, 1534 }, 1535 { 1536 .procname = "urandom_min_reseed_secs", 1537 .data = &sysctl_random_min_urandom_seed, 1538 .maxlen = sizeof(int), 1539 .mode = 0644, 1540 .proc_handler = proc_do_rointvec, 1541 }, 1542 { 1543 .procname = "boot_id", 1544 .data = &sysctl_bootid, 1545 .mode = 0444, 1546 .proc_handler = proc_do_uuid, 1547 }, 1548 { 1549 .procname = "uuid", 1550 .mode = 0444, 1551 .proc_handler = proc_do_uuid, 1552 }, 1553 { } 1554 }; 1555 1556 /* 1557 * random_init() is called before sysctl_init(), 1558 * so we cannot call register_sysctl_init() in random_init() 1559 */ 1560 static int __init random_sysctls_init(void) 1561 { 1562 register_sysctl_init("kernel/random", random_table); 1563 return 0; 1564 } 1565 device_initcall(random_sysctls_init); 1566 #endif 1567