xref: /linux/drivers/char/random.c (revision d9c6a72d6fa29d3a7999dda726577e5d1fccafa5)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/kmemcheck.h>
263 #include <linux/workqueue.h>
264 #include <linux/irq.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 #define DEBUG_RANDOM_BOOT 0
292 
293 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
294 
295 /*
296  * To allow fractional bits to be tracked, the entropy_count field is
297  * denominated in units of 1/8th bits.
298  *
299  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
300  * credit_entropy_bits() needs to be 64 bits wide.
301  */
302 #define ENTROPY_SHIFT 3
303 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
304 
305 /*
306  * The minimum number of bits of entropy before we wake up a read on
307  * /dev/random.  Should be enough to do a significant reseed.
308  */
309 static int random_read_wakeup_bits = 64;
310 
311 /*
312  * If the entropy count falls under this number of bits, then we
313  * should wake up processes which are selecting or polling on write
314  * access to /dev/random.
315  */
316 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
317 
318 /*
319  * Originally, we used a primitive polynomial of degree .poolwords
320  * over GF(2).  The taps for various sizes are defined below.  They
321  * were chosen to be evenly spaced except for the last tap, which is 1
322  * to get the twisting happening as fast as possible.
323  *
324  * For the purposes of better mixing, we use the CRC-32 polynomial as
325  * well to make a (modified) twisted Generalized Feedback Shift
326  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
327  * generators.  ACM Transactions on Modeling and Computer Simulation
328  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
329  * GFSR generators II.  ACM Transactions on Modeling and Computer
330  * Simulation 4:254-266)
331  *
332  * Thanks to Colin Plumb for suggesting this.
333  *
334  * The mixing operation is much less sensitive than the output hash,
335  * where we use SHA-1.  All that we want of mixing operation is that
336  * it be a good non-cryptographic hash; i.e. it not produce collisions
337  * when fed "random" data of the sort we expect to see.  As long as
338  * the pool state differs for different inputs, we have preserved the
339  * input entropy and done a good job.  The fact that an intelligent
340  * attacker can construct inputs that will produce controlled
341  * alterations to the pool's state is not important because we don't
342  * consider such inputs to contribute any randomness.  The only
343  * property we need with respect to them is that the attacker can't
344  * increase his/her knowledge of the pool's state.  Since all
345  * additions are reversible (knowing the final state and the input,
346  * you can reconstruct the initial state), if an attacker has any
347  * uncertainty about the initial state, he/she can only shuffle that
348  * uncertainty about, but never cause any collisions (which would
349  * decrease the uncertainty).
350  *
351  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
352  * Videau in their paper, "The Linux Pseudorandom Number Generator
353  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
354  * paper, they point out that we are not using a true Twisted GFSR,
355  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
356  * is, with only three taps, instead of the six that we are using).
357  * As a result, the resulting polynomial is neither primitive nor
358  * irreducible, and hence does not have a maximal period over
359  * GF(2**32).  They suggest a slight change to the generator
360  * polynomial which improves the resulting TGFSR polynomial to be
361  * irreducible, which we have made here.
362  */
363 static struct poolinfo {
364 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
365 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
366 	int tap1, tap2, tap3, tap4, tap5;
367 } poolinfo_table[] = {
368 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
369 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
370 	{ S(128),	104,	76,	51,	25,	1 },
371 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
372 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
373 	{ S(32),	26,	19,	14,	7,	1 },
374 #if 0
375 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
376 	{ S(2048),	1638,	1231,	819,	411,	1 },
377 
378 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
379 	{ S(1024),	817,	615,	412,	204,	1 },
380 
381 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
382 	{ S(1024),	819,	616,	410,	207,	2 },
383 
384 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
385 	{ S(512),	411,	308,	208,	104,	1 },
386 
387 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
388 	{ S(512),	409,	307,	206,	102,	2 },
389 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
390 	{ S(512),	409,	309,	205,	103,	2 },
391 
392 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
393 	{ S(256),	205,	155,	101,	52,	1 },
394 
395 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
396 	{ S(128),	103,	78,	51,	27,	2 },
397 
398 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
399 	{ S(64),	52,	39,	26,	14,	1 },
400 #endif
401 };
402 
403 /*
404  * Static global variables
405  */
406 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
407 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
408 static struct fasync_struct *fasync;
409 
410 static DEFINE_SPINLOCK(random_ready_list_lock);
411 static LIST_HEAD(random_ready_list);
412 
413 struct crng_state {
414 	__u32		state[16];
415 	unsigned long	init_time;
416 	spinlock_t	lock;
417 };
418 
419 struct crng_state primary_crng = {
420 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
421 };
422 
423 /*
424  * crng_init =  0 --> Uninitialized
425  *		1 --> Initialized
426  *		2 --> Initialized from input_pool
427  *
428  * crng_init is protected by primary_crng->lock, and only increases
429  * its value (from 0->1->2).
430  */
431 static int crng_init = 0;
432 #define crng_ready() (likely(crng_init > 0))
433 static int crng_init_cnt = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 			  __u8 out[CHACHA20_BLOCK_SIZE]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
439 static void process_random_ready_list(void);
440 
441 /**********************************************************************
442  *
443  * OS independent entropy store.   Here are the functions which handle
444  * storing entropy in an entropy pool.
445  *
446  **********************************************************************/
447 
448 struct entropy_store;
449 struct entropy_store {
450 	/* read-only data: */
451 	const struct poolinfo *poolinfo;
452 	__u32 *pool;
453 	const char *name;
454 	struct entropy_store *pull;
455 	struct work_struct push_work;
456 
457 	/* read-write data: */
458 	unsigned long last_pulled;
459 	spinlock_t lock;
460 	unsigned short add_ptr;
461 	unsigned short input_rotate;
462 	int entropy_count;
463 	int entropy_total;
464 	unsigned int initialized:1;
465 	unsigned int last_data_init:1;
466 	__u8 last_data[EXTRACT_SIZE];
467 };
468 
469 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 			       size_t nbytes, int min, int rsvd);
471 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 				size_t nbytes, int fips);
473 
474 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
475 static void push_to_pool(struct work_struct *work);
476 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
478 
479 static struct entropy_store input_pool = {
480 	.poolinfo = &poolinfo_table[0],
481 	.name = "input",
482 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
483 	.pool = input_pool_data
484 };
485 
486 static struct entropy_store blocking_pool = {
487 	.poolinfo = &poolinfo_table[1],
488 	.name = "blocking",
489 	.pull = &input_pool,
490 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
491 	.pool = blocking_pool_data,
492 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 					push_to_pool),
494 };
495 
496 static __u32 const twist_table[8] = {
497 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499 
500 /*
501  * This function adds bytes into the entropy "pool".  It does not
502  * update the entropy estimate.  The caller should call
503  * credit_entropy_bits if this is appropriate.
504  *
505  * The pool is stirred with a primitive polynomial of the appropriate
506  * degree, and then twisted.  We twist by three bits at a time because
507  * it's cheap to do so and helps slightly in the expected case where
508  * the entropy is concentrated in the low-order bits.
509  */
510 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
511 			    int nbytes)
512 {
513 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
514 	int input_rotate;
515 	int wordmask = r->poolinfo->poolwords - 1;
516 	const char *bytes = in;
517 	__u32 w;
518 
519 	tap1 = r->poolinfo->tap1;
520 	tap2 = r->poolinfo->tap2;
521 	tap3 = r->poolinfo->tap3;
522 	tap4 = r->poolinfo->tap4;
523 	tap5 = r->poolinfo->tap5;
524 
525 	input_rotate = r->input_rotate;
526 	i = r->add_ptr;
527 
528 	/* mix one byte at a time to simplify size handling and churn faster */
529 	while (nbytes--) {
530 		w = rol32(*bytes++, input_rotate);
531 		i = (i - 1) & wordmask;
532 
533 		/* XOR in the various taps */
534 		w ^= r->pool[i];
535 		w ^= r->pool[(i + tap1) & wordmask];
536 		w ^= r->pool[(i + tap2) & wordmask];
537 		w ^= r->pool[(i + tap3) & wordmask];
538 		w ^= r->pool[(i + tap4) & wordmask];
539 		w ^= r->pool[(i + tap5) & wordmask];
540 
541 		/* Mix the result back in with a twist */
542 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
543 
544 		/*
545 		 * Normally, we add 7 bits of rotation to the pool.
546 		 * At the beginning of the pool, add an extra 7 bits
547 		 * rotation, so that successive passes spread the
548 		 * input bits across the pool evenly.
549 		 */
550 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
551 	}
552 
553 	r->input_rotate = input_rotate;
554 	r->add_ptr = i;
555 }
556 
557 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
558 			     int nbytes)
559 {
560 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
561 	_mix_pool_bytes(r, in, nbytes);
562 }
563 
564 static void mix_pool_bytes(struct entropy_store *r, const void *in,
565 			   int nbytes)
566 {
567 	unsigned long flags;
568 
569 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
570 	spin_lock_irqsave(&r->lock, flags);
571 	_mix_pool_bytes(r, in, nbytes);
572 	spin_unlock_irqrestore(&r->lock, flags);
573 }
574 
575 struct fast_pool {
576 	__u32		pool[4];
577 	unsigned long	last;
578 	unsigned short	reg_idx;
579 	unsigned char	count;
580 };
581 
582 /*
583  * This is a fast mixing routine used by the interrupt randomness
584  * collector.  It's hardcoded for an 128 bit pool and assumes that any
585  * locks that might be needed are taken by the caller.
586  */
587 static void fast_mix(struct fast_pool *f)
588 {
589 	__u32 a = f->pool[0],	b = f->pool[1];
590 	__u32 c = f->pool[2],	d = f->pool[3];
591 
592 	a += b;			c += d;
593 	b = rol32(b, 6);	d = rol32(d, 27);
594 	d ^= a;			b ^= c;
595 
596 	a += b;			c += d;
597 	b = rol32(b, 16);	d = rol32(d, 14);
598 	d ^= a;			b ^= c;
599 
600 	a += b;			c += d;
601 	b = rol32(b, 6);	d = rol32(d, 27);
602 	d ^= a;			b ^= c;
603 
604 	a += b;			c += d;
605 	b = rol32(b, 16);	d = rol32(d, 14);
606 	d ^= a;			b ^= c;
607 
608 	f->pool[0] = a;  f->pool[1] = b;
609 	f->pool[2] = c;  f->pool[3] = d;
610 	f->count++;
611 }
612 
613 static void process_random_ready_list(void)
614 {
615 	unsigned long flags;
616 	struct random_ready_callback *rdy, *tmp;
617 
618 	spin_lock_irqsave(&random_ready_list_lock, flags);
619 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 		struct module *owner = rdy->owner;
621 
622 		list_del_init(&rdy->list);
623 		rdy->func(rdy);
624 		module_put(owner);
625 	}
626 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
627 }
628 
629 /*
630  * Credit (or debit) the entropy store with n bits of entropy.
631  * Use credit_entropy_bits_safe() if the value comes from userspace
632  * or otherwise should be checked for extreme values.
633  */
634 static void credit_entropy_bits(struct entropy_store *r, int nbits)
635 {
636 	int entropy_count, orig;
637 	const int pool_size = r->poolinfo->poolfracbits;
638 	int nfrac = nbits << ENTROPY_SHIFT;
639 
640 	if (!nbits)
641 		return;
642 
643 retry:
644 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
645 	if (nfrac < 0) {
646 		/* Debit */
647 		entropy_count += nfrac;
648 	} else {
649 		/*
650 		 * Credit: we have to account for the possibility of
651 		 * overwriting already present entropy.	 Even in the
652 		 * ideal case of pure Shannon entropy, new contributions
653 		 * approach the full value asymptotically:
654 		 *
655 		 * entropy <- entropy + (pool_size - entropy) *
656 		 *	(1 - exp(-add_entropy/pool_size))
657 		 *
658 		 * For add_entropy <= pool_size/2 then
659 		 * (1 - exp(-add_entropy/pool_size)) >=
660 		 *    (add_entropy/pool_size)*0.7869...
661 		 * so we can approximate the exponential with
662 		 * 3/4*add_entropy/pool_size and still be on the
663 		 * safe side by adding at most pool_size/2 at a time.
664 		 *
665 		 * The use of pool_size-2 in the while statement is to
666 		 * prevent rounding artifacts from making the loop
667 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 		 * turns no matter how large nbits is.
669 		 */
670 		int pnfrac = nfrac;
671 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 		/* The +2 corresponds to the /4 in the denominator */
673 
674 		do {
675 			unsigned int anfrac = min(pnfrac, pool_size/2);
676 			unsigned int add =
677 				((pool_size - entropy_count)*anfrac*3) >> s;
678 
679 			entropy_count += add;
680 			pnfrac -= anfrac;
681 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 	}
683 
684 	if (unlikely(entropy_count < 0)) {
685 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 			r->name, entropy_count);
687 		WARN_ON(1);
688 		entropy_count = 0;
689 	} else if (entropy_count > pool_size)
690 		entropy_count = pool_size;
691 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 		goto retry;
693 
694 	r->entropy_total += nbits;
695 	if (!r->initialized && r->entropy_total > 128) {
696 		r->initialized = 1;
697 		r->entropy_total = 0;
698 	}
699 
700 	trace_credit_entropy_bits(r->name, nbits,
701 				  entropy_count >> ENTROPY_SHIFT,
702 				  r->entropy_total, _RET_IP_);
703 
704 	if (r == &input_pool) {
705 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
706 
707 		if (crng_init < 2 && entropy_bits >= 128) {
708 			crng_reseed(&primary_crng, r);
709 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 		}
711 
712 		/* should we wake readers? */
713 		if (entropy_bits >= random_read_wakeup_bits) {
714 			wake_up_interruptible(&random_read_wait);
715 			kill_fasync(&fasync, SIGIO, POLL_IN);
716 		}
717 		/* If the input pool is getting full, send some
718 		 * entropy to the blocking pool until it is 75% full.
719 		 */
720 		if (entropy_bits > random_write_wakeup_bits &&
721 		    r->initialized &&
722 		    r->entropy_total >= 2*random_read_wakeup_bits) {
723 			struct entropy_store *other = &blocking_pool;
724 
725 			if (other->entropy_count <=
726 			    3 * other->poolinfo->poolfracbits / 4) {
727 				schedule_work(&other->push_work);
728 				r->entropy_total = 0;
729 			}
730 		}
731 	}
732 }
733 
734 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
735 {
736 	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
737 
738 	if (nbits < 0)
739 		return -EINVAL;
740 
741 	/* Cap the value to avoid overflows */
742 	nbits = min(nbits,  nbits_max);
743 
744 	credit_entropy_bits(r, nbits);
745 	return 0;
746 }
747 
748 /*********************************************************************
749  *
750  * CRNG using CHACHA20
751  *
752  *********************************************************************/
753 
754 #define CRNG_RESEED_INTERVAL (300*HZ)
755 
756 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
757 
758 #ifdef CONFIG_NUMA
759 /*
760  * Hack to deal with crazy userspace progams when they are all trying
761  * to access /dev/urandom in parallel.  The programs are almost
762  * certainly doing something terribly wrong, but we'll work around
763  * their brain damage.
764  */
765 static struct crng_state **crng_node_pool __read_mostly;
766 #endif
767 
768 static void invalidate_batched_entropy(void);
769 
770 static void crng_initialize(struct crng_state *crng)
771 {
772 	int		i;
773 	unsigned long	rv;
774 
775 	memcpy(&crng->state[0], "expand 32-byte k", 16);
776 	if (crng == &primary_crng)
777 		_extract_entropy(&input_pool, &crng->state[4],
778 				 sizeof(__u32) * 12, 0);
779 	else
780 		get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
781 	for (i = 4; i < 16; i++) {
782 		if (!arch_get_random_seed_long(&rv) &&
783 		    !arch_get_random_long(&rv))
784 			rv = random_get_entropy();
785 		crng->state[i] ^= rv;
786 	}
787 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788 }
789 
790 static int crng_fast_load(const char *cp, size_t len)
791 {
792 	unsigned long flags;
793 	char *p;
794 
795 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 		return 0;
797 	if (crng_ready()) {
798 		spin_unlock_irqrestore(&primary_crng.lock, flags);
799 		return 0;
800 	}
801 	p = (unsigned char *) &primary_crng.state[4];
802 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 		cp++; crng_init_cnt++; len--;
805 	}
806 	spin_unlock_irqrestore(&primary_crng.lock, flags);
807 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
808 		invalidate_batched_entropy();
809 		crng_init = 1;
810 		wake_up_interruptible(&crng_init_wait);
811 		pr_notice("random: fast init done\n");
812 	}
813 	return 1;
814 }
815 
816 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
817 {
818 	unsigned long	flags;
819 	int		i, num;
820 	union {
821 		__u8	block[CHACHA20_BLOCK_SIZE];
822 		__u32	key[8];
823 	} buf;
824 
825 	if (r) {
826 		num = extract_entropy(r, &buf, 32, 16, 0);
827 		if (num == 0)
828 			return;
829 	} else {
830 		_extract_crng(&primary_crng, buf.block);
831 		_crng_backtrack_protect(&primary_crng, buf.block,
832 					CHACHA20_KEY_SIZE);
833 	}
834 	spin_lock_irqsave(&primary_crng.lock, flags);
835 	for (i = 0; i < 8; i++) {
836 		unsigned long	rv;
837 		if (!arch_get_random_seed_long(&rv) &&
838 		    !arch_get_random_long(&rv))
839 			rv = random_get_entropy();
840 		crng->state[i+4] ^= buf.key[i] ^ rv;
841 	}
842 	memzero_explicit(&buf, sizeof(buf));
843 	crng->init_time = jiffies;
844 	spin_unlock_irqrestore(&primary_crng.lock, flags);
845 	if (crng == &primary_crng && crng_init < 2) {
846 		invalidate_batched_entropy();
847 		crng_init = 2;
848 		process_random_ready_list();
849 		wake_up_interruptible(&crng_init_wait);
850 		pr_notice("random: crng init done\n");
851 	}
852 }
853 
854 static inline void crng_wait_ready(void)
855 {
856 	wait_event_interruptible(crng_init_wait, crng_ready());
857 }
858 
859 static void _extract_crng(struct crng_state *crng,
860 			  __u8 out[CHACHA20_BLOCK_SIZE])
861 {
862 	unsigned long v, flags;
863 
864 	if (crng_init > 1 &&
865 	    time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
866 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
867 	spin_lock_irqsave(&crng->lock, flags);
868 	if (arch_get_random_long(&v))
869 		crng->state[14] ^= v;
870 	chacha20_block(&crng->state[0], out);
871 	if (crng->state[12] == 0)
872 		crng->state[13]++;
873 	spin_unlock_irqrestore(&crng->lock, flags);
874 }
875 
876 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
877 {
878 	struct crng_state *crng = NULL;
879 
880 #ifdef CONFIG_NUMA
881 	if (crng_node_pool)
882 		crng = crng_node_pool[numa_node_id()];
883 	if (crng == NULL)
884 #endif
885 		crng = &primary_crng;
886 	_extract_crng(crng, out);
887 }
888 
889 /*
890  * Use the leftover bytes from the CRNG block output (if there is
891  * enough) to mutate the CRNG key to provide backtracking protection.
892  */
893 static void _crng_backtrack_protect(struct crng_state *crng,
894 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
895 {
896 	unsigned long	flags;
897 	__u32		*s, *d;
898 	int		i;
899 
900 	used = round_up(used, sizeof(__u32));
901 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
902 		extract_crng(tmp);
903 		used = 0;
904 	}
905 	spin_lock_irqsave(&crng->lock, flags);
906 	s = (__u32 *) &tmp[used];
907 	d = &crng->state[4];
908 	for (i=0; i < 8; i++)
909 		*d++ ^= *s++;
910 	spin_unlock_irqrestore(&crng->lock, flags);
911 }
912 
913 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
914 {
915 	struct crng_state *crng = NULL;
916 
917 #ifdef CONFIG_NUMA
918 	if (crng_node_pool)
919 		crng = crng_node_pool[numa_node_id()];
920 	if (crng == NULL)
921 #endif
922 		crng = &primary_crng;
923 	_crng_backtrack_protect(crng, tmp, used);
924 }
925 
926 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
927 {
928 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
929 	__u8 tmp[CHACHA20_BLOCK_SIZE];
930 	int large_request = (nbytes > 256);
931 
932 	while (nbytes) {
933 		if (large_request && need_resched()) {
934 			if (signal_pending(current)) {
935 				if (ret == 0)
936 					ret = -ERESTARTSYS;
937 				break;
938 			}
939 			schedule();
940 		}
941 
942 		extract_crng(tmp);
943 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
944 		if (copy_to_user(buf, tmp, i)) {
945 			ret = -EFAULT;
946 			break;
947 		}
948 
949 		nbytes -= i;
950 		buf += i;
951 		ret += i;
952 	}
953 	crng_backtrack_protect(tmp, i);
954 
955 	/* Wipe data just written to memory */
956 	memzero_explicit(tmp, sizeof(tmp));
957 
958 	return ret;
959 }
960 
961 
962 /*********************************************************************
963  *
964  * Entropy input management
965  *
966  *********************************************************************/
967 
968 /* There is one of these per entropy source */
969 struct timer_rand_state {
970 	cycles_t last_time;
971 	long last_delta, last_delta2;
972 	unsigned dont_count_entropy:1;
973 };
974 
975 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
976 
977 /*
978  * Add device- or boot-specific data to the input pool to help
979  * initialize it.
980  *
981  * None of this adds any entropy; it is meant to avoid the problem of
982  * the entropy pool having similar initial state across largely
983  * identical devices.
984  */
985 void add_device_randomness(const void *buf, unsigned int size)
986 {
987 	unsigned long time = random_get_entropy() ^ jiffies;
988 	unsigned long flags;
989 
990 	if (!crng_ready()) {
991 		crng_fast_load(buf, size);
992 		return;
993 	}
994 
995 	trace_add_device_randomness(size, _RET_IP_);
996 	spin_lock_irqsave(&input_pool.lock, flags);
997 	_mix_pool_bytes(&input_pool, buf, size);
998 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
999 	spin_unlock_irqrestore(&input_pool.lock, flags);
1000 }
1001 EXPORT_SYMBOL(add_device_randomness);
1002 
1003 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1004 
1005 /*
1006  * This function adds entropy to the entropy "pool" by using timing
1007  * delays.  It uses the timer_rand_state structure to make an estimate
1008  * of how many bits of entropy this call has added to the pool.
1009  *
1010  * The number "num" is also added to the pool - it should somehow describe
1011  * the type of event which just happened.  This is currently 0-255 for
1012  * keyboard scan codes, and 256 upwards for interrupts.
1013  *
1014  */
1015 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1016 {
1017 	struct entropy_store	*r;
1018 	struct {
1019 		long jiffies;
1020 		unsigned cycles;
1021 		unsigned num;
1022 	} sample;
1023 	long delta, delta2, delta3;
1024 
1025 	preempt_disable();
1026 
1027 	sample.jiffies = jiffies;
1028 	sample.cycles = random_get_entropy();
1029 	sample.num = num;
1030 	r = &input_pool;
1031 	mix_pool_bytes(r, &sample, sizeof(sample));
1032 
1033 	/*
1034 	 * Calculate number of bits of randomness we probably added.
1035 	 * We take into account the first, second and third-order deltas
1036 	 * in order to make our estimate.
1037 	 */
1038 
1039 	if (!state->dont_count_entropy) {
1040 		delta = sample.jiffies - state->last_time;
1041 		state->last_time = sample.jiffies;
1042 
1043 		delta2 = delta - state->last_delta;
1044 		state->last_delta = delta;
1045 
1046 		delta3 = delta2 - state->last_delta2;
1047 		state->last_delta2 = delta2;
1048 
1049 		if (delta < 0)
1050 			delta = -delta;
1051 		if (delta2 < 0)
1052 			delta2 = -delta2;
1053 		if (delta3 < 0)
1054 			delta3 = -delta3;
1055 		if (delta > delta2)
1056 			delta = delta2;
1057 		if (delta > delta3)
1058 			delta = delta3;
1059 
1060 		/*
1061 		 * delta is now minimum absolute delta.
1062 		 * Round down by 1 bit on general principles,
1063 		 * and limit entropy entimate to 12 bits.
1064 		 */
1065 		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1066 	}
1067 	preempt_enable();
1068 }
1069 
1070 void add_input_randomness(unsigned int type, unsigned int code,
1071 				 unsigned int value)
1072 {
1073 	static unsigned char last_value;
1074 
1075 	/* ignore autorepeat and the like */
1076 	if (value == last_value)
1077 		return;
1078 
1079 	last_value = value;
1080 	add_timer_randomness(&input_timer_state,
1081 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1082 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1083 }
1084 EXPORT_SYMBOL_GPL(add_input_randomness);
1085 
1086 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1087 
1088 #ifdef ADD_INTERRUPT_BENCH
1089 static unsigned long avg_cycles, avg_deviation;
1090 
1091 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1092 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1093 
1094 static void add_interrupt_bench(cycles_t start)
1095 {
1096         long delta = random_get_entropy() - start;
1097 
1098         /* Use a weighted moving average */
1099         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1100         avg_cycles += delta;
1101         /* And average deviation */
1102         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1103         avg_deviation += delta;
1104 }
1105 #else
1106 #define add_interrupt_bench(x)
1107 #endif
1108 
1109 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1110 {
1111 	__u32 *ptr = (__u32 *) regs;
1112 	unsigned int idx;
1113 
1114 	if (regs == NULL)
1115 		return 0;
1116 	idx = READ_ONCE(f->reg_idx);
1117 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1118 		idx = 0;
1119 	ptr += idx++;
1120 	WRITE_ONCE(f->reg_idx, idx);
1121 	return *ptr;
1122 }
1123 
1124 void add_interrupt_randomness(int irq, int irq_flags)
1125 {
1126 	struct entropy_store	*r;
1127 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1128 	struct pt_regs		*regs = get_irq_regs();
1129 	unsigned long		now = jiffies;
1130 	cycles_t		cycles = random_get_entropy();
1131 	__u32			c_high, j_high;
1132 	__u64			ip;
1133 	unsigned long		seed;
1134 	int			credit = 0;
1135 
1136 	if (cycles == 0)
1137 		cycles = get_reg(fast_pool, regs);
1138 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1139 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1140 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1141 	fast_pool->pool[1] ^= now ^ c_high;
1142 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1143 	fast_pool->pool[2] ^= ip;
1144 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1145 		get_reg(fast_pool, regs);
1146 
1147 	fast_mix(fast_pool);
1148 	add_interrupt_bench(cycles);
1149 
1150 	if (!crng_ready()) {
1151 		if ((fast_pool->count >= 64) &&
1152 		    crng_fast_load((char *) fast_pool->pool,
1153 				   sizeof(fast_pool->pool))) {
1154 			fast_pool->count = 0;
1155 			fast_pool->last = now;
1156 		}
1157 		return;
1158 	}
1159 
1160 	if ((fast_pool->count < 64) &&
1161 	    !time_after(now, fast_pool->last + HZ))
1162 		return;
1163 
1164 	r = &input_pool;
1165 	if (!spin_trylock(&r->lock))
1166 		return;
1167 
1168 	fast_pool->last = now;
1169 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1170 
1171 	/*
1172 	 * If we have architectural seed generator, produce a seed and
1173 	 * add it to the pool.  For the sake of paranoia don't let the
1174 	 * architectural seed generator dominate the input from the
1175 	 * interrupt noise.
1176 	 */
1177 	if (arch_get_random_seed_long(&seed)) {
1178 		__mix_pool_bytes(r, &seed, sizeof(seed));
1179 		credit = 1;
1180 	}
1181 	spin_unlock(&r->lock);
1182 
1183 	fast_pool->count = 0;
1184 
1185 	/* award one bit for the contents of the fast pool */
1186 	credit_entropy_bits(r, credit + 1);
1187 }
1188 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1189 
1190 #ifdef CONFIG_BLOCK
1191 void add_disk_randomness(struct gendisk *disk)
1192 {
1193 	if (!disk || !disk->random)
1194 		return;
1195 	/* first major is 1, so we get >= 0x200 here */
1196 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1197 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1198 }
1199 EXPORT_SYMBOL_GPL(add_disk_randomness);
1200 #endif
1201 
1202 /*********************************************************************
1203  *
1204  * Entropy extraction routines
1205  *
1206  *********************************************************************/
1207 
1208 /*
1209  * This utility inline function is responsible for transferring entropy
1210  * from the primary pool to the secondary extraction pool. We make
1211  * sure we pull enough for a 'catastrophic reseed'.
1212  */
1213 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1214 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1215 {
1216 	if (!r->pull ||
1217 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1218 	    r->entropy_count > r->poolinfo->poolfracbits)
1219 		return;
1220 
1221 	_xfer_secondary_pool(r, nbytes);
1222 }
1223 
1224 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1225 {
1226 	__u32	tmp[OUTPUT_POOL_WORDS];
1227 
1228 	int bytes = nbytes;
1229 
1230 	/* pull at least as much as a wakeup */
1231 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1232 	/* but never more than the buffer size */
1233 	bytes = min_t(int, bytes, sizeof(tmp));
1234 
1235 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1236 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1237 	bytes = extract_entropy(r->pull, tmp, bytes,
1238 				random_read_wakeup_bits / 8, 0);
1239 	mix_pool_bytes(r, tmp, bytes);
1240 	credit_entropy_bits(r, bytes*8);
1241 }
1242 
1243 /*
1244  * Used as a workqueue function so that when the input pool is getting
1245  * full, we can "spill over" some entropy to the output pools.  That
1246  * way the output pools can store some of the excess entropy instead
1247  * of letting it go to waste.
1248  */
1249 static void push_to_pool(struct work_struct *work)
1250 {
1251 	struct entropy_store *r = container_of(work, struct entropy_store,
1252 					      push_work);
1253 	BUG_ON(!r);
1254 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1255 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1256 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1257 }
1258 
1259 /*
1260  * This function decides how many bytes to actually take from the
1261  * given pool, and also debits the entropy count accordingly.
1262  */
1263 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1264 		      int reserved)
1265 {
1266 	int entropy_count, orig, have_bytes;
1267 	size_t ibytes, nfrac;
1268 
1269 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1270 
1271 	/* Can we pull enough? */
1272 retry:
1273 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1274 	ibytes = nbytes;
1275 	/* never pull more than available */
1276 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1277 
1278 	if ((have_bytes -= reserved) < 0)
1279 		have_bytes = 0;
1280 	ibytes = min_t(size_t, ibytes, have_bytes);
1281 	if (ibytes < min)
1282 		ibytes = 0;
1283 
1284 	if (unlikely(entropy_count < 0)) {
1285 		pr_warn("random: negative entropy count: pool %s count %d\n",
1286 			r->name, entropy_count);
1287 		WARN_ON(1);
1288 		entropy_count = 0;
1289 	}
1290 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1291 	if ((size_t) entropy_count > nfrac)
1292 		entropy_count -= nfrac;
1293 	else
1294 		entropy_count = 0;
1295 
1296 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1297 		goto retry;
1298 
1299 	trace_debit_entropy(r->name, 8 * ibytes);
1300 	if (ibytes &&
1301 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1302 		wake_up_interruptible(&random_write_wait);
1303 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1304 	}
1305 
1306 	return ibytes;
1307 }
1308 
1309 /*
1310  * This function does the actual extraction for extract_entropy and
1311  * extract_entropy_user.
1312  *
1313  * Note: we assume that .poolwords is a multiple of 16 words.
1314  */
1315 static void extract_buf(struct entropy_store *r, __u8 *out)
1316 {
1317 	int i;
1318 	union {
1319 		__u32 w[5];
1320 		unsigned long l[LONGS(20)];
1321 	} hash;
1322 	__u32 workspace[SHA_WORKSPACE_WORDS];
1323 	unsigned long flags;
1324 
1325 	/*
1326 	 * If we have an architectural hardware random number
1327 	 * generator, use it for SHA's initial vector
1328 	 */
1329 	sha_init(hash.w);
1330 	for (i = 0; i < LONGS(20); i++) {
1331 		unsigned long v;
1332 		if (!arch_get_random_long(&v))
1333 			break;
1334 		hash.l[i] = v;
1335 	}
1336 
1337 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1338 	spin_lock_irqsave(&r->lock, flags);
1339 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1340 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1341 
1342 	/*
1343 	 * We mix the hash back into the pool to prevent backtracking
1344 	 * attacks (where the attacker knows the state of the pool
1345 	 * plus the current outputs, and attempts to find previous
1346 	 * ouputs), unless the hash function can be inverted. By
1347 	 * mixing at least a SHA1 worth of hash data back, we make
1348 	 * brute-forcing the feedback as hard as brute-forcing the
1349 	 * hash.
1350 	 */
1351 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1352 	spin_unlock_irqrestore(&r->lock, flags);
1353 
1354 	memzero_explicit(workspace, sizeof(workspace));
1355 
1356 	/*
1357 	 * In case the hash function has some recognizable output
1358 	 * pattern, we fold it in half. Thus, we always feed back
1359 	 * twice as much data as we output.
1360 	 */
1361 	hash.w[0] ^= hash.w[3];
1362 	hash.w[1] ^= hash.w[4];
1363 	hash.w[2] ^= rol32(hash.w[2], 16);
1364 
1365 	memcpy(out, &hash, EXTRACT_SIZE);
1366 	memzero_explicit(&hash, sizeof(hash));
1367 }
1368 
1369 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1370 				size_t nbytes, int fips)
1371 {
1372 	ssize_t ret = 0, i;
1373 	__u8 tmp[EXTRACT_SIZE];
1374 	unsigned long flags;
1375 
1376 	while (nbytes) {
1377 		extract_buf(r, tmp);
1378 
1379 		if (fips) {
1380 			spin_lock_irqsave(&r->lock, flags);
1381 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1382 				panic("Hardware RNG duplicated output!\n");
1383 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1384 			spin_unlock_irqrestore(&r->lock, flags);
1385 		}
1386 		i = min_t(int, nbytes, EXTRACT_SIZE);
1387 		memcpy(buf, tmp, i);
1388 		nbytes -= i;
1389 		buf += i;
1390 		ret += i;
1391 	}
1392 
1393 	/* Wipe data just returned from memory */
1394 	memzero_explicit(tmp, sizeof(tmp));
1395 
1396 	return ret;
1397 }
1398 
1399 /*
1400  * This function extracts randomness from the "entropy pool", and
1401  * returns it in a buffer.
1402  *
1403  * The min parameter specifies the minimum amount we can pull before
1404  * failing to avoid races that defeat catastrophic reseeding while the
1405  * reserved parameter indicates how much entropy we must leave in the
1406  * pool after each pull to avoid starving other readers.
1407  */
1408 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1409 				 size_t nbytes, int min, int reserved)
1410 {
1411 	__u8 tmp[EXTRACT_SIZE];
1412 	unsigned long flags;
1413 
1414 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1415 	if (fips_enabled) {
1416 		spin_lock_irqsave(&r->lock, flags);
1417 		if (!r->last_data_init) {
1418 			r->last_data_init = 1;
1419 			spin_unlock_irqrestore(&r->lock, flags);
1420 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1421 					      ENTROPY_BITS(r), _RET_IP_);
1422 			xfer_secondary_pool(r, EXTRACT_SIZE);
1423 			extract_buf(r, tmp);
1424 			spin_lock_irqsave(&r->lock, flags);
1425 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1426 		}
1427 		spin_unlock_irqrestore(&r->lock, flags);
1428 	}
1429 
1430 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1431 	xfer_secondary_pool(r, nbytes);
1432 	nbytes = account(r, nbytes, min, reserved);
1433 
1434 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1435 }
1436 
1437 /*
1438  * This function extracts randomness from the "entropy pool", and
1439  * returns it in a userspace buffer.
1440  */
1441 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1442 				    size_t nbytes)
1443 {
1444 	ssize_t ret = 0, i;
1445 	__u8 tmp[EXTRACT_SIZE];
1446 	int large_request = (nbytes > 256);
1447 
1448 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1449 	xfer_secondary_pool(r, nbytes);
1450 	nbytes = account(r, nbytes, 0, 0);
1451 
1452 	while (nbytes) {
1453 		if (large_request && need_resched()) {
1454 			if (signal_pending(current)) {
1455 				if (ret == 0)
1456 					ret = -ERESTARTSYS;
1457 				break;
1458 			}
1459 			schedule();
1460 		}
1461 
1462 		extract_buf(r, tmp);
1463 		i = min_t(int, nbytes, EXTRACT_SIZE);
1464 		if (copy_to_user(buf, tmp, i)) {
1465 			ret = -EFAULT;
1466 			break;
1467 		}
1468 
1469 		nbytes -= i;
1470 		buf += i;
1471 		ret += i;
1472 	}
1473 
1474 	/* Wipe data just returned from memory */
1475 	memzero_explicit(tmp, sizeof(tmp));
1476 
1477 	return ret;
1478 }
1479 
1480 /*
1481  * This function is the exported kernel interface.  It returns some
1482  * number of good random numbers, suitable for key generation, seeding
1483  * TCP sequence numbers, etc.  It does not rely on the hardware random
1484  * number generator.  For random bytes direct from the hardware RNG
1485  * (when available), use get_random_bytes_arch().
1486  */
1487 void get_random_bytes(void *buf, int nbytes)
1488 {
1489 	__u8 tmp[CHACHA20_BLOCK_SIZE];
1490 
1491 #if DEBUG_RANDOM_BOOT > 0
1492 	if (!crng_ready())
1493 		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1494 		       "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1495 #endif
1496 	trace_get_random_bytes(nbytes, _RET_IP_);
1497 
1498 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1499 		extract_crng(buf);
1500 		buf += CHACHA20_BLOCK_SIZE;
1501 		nbytes -= CHACHA20_BLOCK_SIZE;
1502 	}
1503 
1504 	if (nbytes > 0) {
1505 		extract_crng(tmp);
1506 		memcpy(buf, tmp, nbytes);
1507 		crng_backtrack_protect(tmp, nbytes);
1508 	} else
1509 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1510 	memzero_explicit(tmp, sizeof(tmp));
1511 }
1512 EXPORT_SYMBOL(get_random_bytes);
1513 
1514 /*
1515  * Add a callback function that will be invoked when the nonblocking
1516  * pool is initialised.
1517  *
1518  * returns: 0 if callback is successfully added
1519  *	    -EALREADY if pool is already initialised (callback not called)
1520  *	    -ENOENT if module for callback is not alive
1521  */
1522 int add_random_ready_callback(struct random_ready_callback *rdy)
1523 {
1524 	struct module *owner;
1525 	unsigned long flags;
1526 	int err = -EALREADY;
1527 
1528 	if (crng_ready())
1529 		return err;
1530 
1531 	owner = rdy->owner;
1532 	if (!try_module_get(owner))
1533 		return -ENOENT;
1534 
1535 	spin_lock_irqsave(&random_ready_list_lock, flags);
1536 	if (crng_ready())
1537 		goto out;
1538 
1539 	owner = NULL;
1540 
1541 	list_add(&rdy->list, &random_ready_list);
1542 	err = 0;
1543 
1544 out:
1545 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1546 
1547 	module_put(owner);
1548 
1549 	return err;
1550 }
1551 EXPORT_SYMBOL(add_random_ready_callback);
1552 
1553 /*
1554  * Delete a previously registered readiness callback function.
1555  */
1556 void del_random_ready_callback(struct random_ready_callback *rdy)
1557 {
1558 	unsigned long flags;
1559 	struct module *owner = NULL;
1560 
1561 	spin_lock_irqsave(&random_ready_list_lock, flags);
1562 	if (!list_empty(&rdy->list)) {
1563 		list_del_init(&rdy->list);
1564 		owner = rdy->owner;
1565 	}
1566 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1567 
1568 	module_put(owner);
1569 }
1570 EXPORT_SYMBOL(del_random_ready_callback);
1571 
1572 /*
1573  * This function will use the architecture-specific hardware random
1574  * number generator if it is available.  The arch-specific hw RNG will
1575  * almost certainly be faster than what we can do in software, but it
1576  * is impossible to verify that it is implemented securely (as
1577  * opposed, to, say, the AES encryption of a sequence number using a
1578  * key known by the NSA).  So it's useful if we need the speed, but
1579  * only if we're willing to trust the hardware manufacturer not to
1580  * have put in a back door.
1581  */
1582 void get_random_bytes_arch(void *buf, int nbytes)
1583 {
1584 	char *p = buf;
1585 
1586 	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1587 	while (nbytes) {
1588 		unsigned long v;
1589 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1590 
1591 		if (!arch_get_random_long(&v))
1592 			break;
1593 
1594 		memcpy(p, &v, chunk);
1595 		p += chunk;
1596 		nbytes -= chunk;
1597 	}
1598 
1599 	if (nbytes)
1600 		get_random_bytes(p, nbytes);
1601 }
1602 EXPORT_SYMBOL(get_random_bytes_arch);
1603 
1604 
1605 /*
1606  * init_std_data - initialize pool with system data
1607  *
1608  * @r: pool to initialize
1609  *
1610  * This function clears the pool's entropy count and mixes some system
1611  * data into the pool to prepare it for use. The pool is not cleared
1612  * as that can only decrease the entropy in the pool.
1613  */
1614 static void init_std_data(struct entropy_store *r)
1615 {
1616 	int i;
1617 	ktime_t now = ktime_get_real();
1618 	unsigned long rv;
1619 
1620 	r->last_pulled = jiffies;
1621 	mix_pool_bytes(r, &now, sizeof(now));
1622 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1623 		if (!arch_get_random_seed_long(&rv) &&
1624 		    !arch_get_random_long(&rv))
1625 			rv = random_get_entropy();
1626 		mix_pool_bytes(r, &rv, sizeof(rv));
1627 	}
1628 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1629 }
1630 
1631 /*
1632  * Note that setup_arch() may call add_device_randomness()
1633  * long before we get here. This allows seeding of the pools
1634  * with some platform dependent data very early in the boot
1635  * process. But it limits our options here. We must use
1636  * statically allocated structures that already have all
1637  * initializations complete at compile time. We should also
1638  * take care not to overwrite the precious per platform data
1639  * we were given.
1640  */
1641 static int rand_initialize(void)
1642 {
1643 #ifdef CONFIG_NUMA
1644 	int i;
1645 	struct crng_state *crng;
1646 	struct crng_state **pool;
1647 #endif
1648 
1649 	init_std_data(&input_pool);
1650 	init_std_data(&blocking_pool);
1651 	crng_initialize(&primary_crng);
1652 
1653 #ifdef CONFIG_NUMA
1654 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1655 	for_each_online_node(i) {
1656 		crng = kmalloc_node(sizeof(struct crng_state),
1657 				    GFP_KERNEL | __GFP_NOFAIL, i);
1658 		spin_lock_init(&crng->lock);
1659 		crng_initialize(crng);
1660 		pool[i] = crng;
1661 	}
1662 	mb();
1663 	crng_node_pool = pool;
1664 #endif
1665 	return 0;
1666 }
1667 early_initcall(rand_initialize);
1668 
1669 #ifdef CONFIG_BLOCK
1670 void rand_initialize_disk(struct gendisk *disk)
1671 {
1672 	struct timer_rand_state *state;
1673 
1674 	/*
1675 	 * If kzalloc returns null, we just won't use that entropy
1676 	 * source.
1677 	 */
1678 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1679 	if (state) {
1680 		state->last_time = INITIAL_JIFFIES;
1681 		disk->random = state;
1682 	}
1683 }
1684 #endif
1685 
1686 static ssize_t
1687 _random_read(int nonblock, char __user *buf, size_t nbytes)
1688 {
1689 	ssize_t n;
1690 
1691 	if (nbytes == 0)
1692 		return 0;
1693 
1694 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1695 	while (1) {
1696 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1697 		if (n < 0)
1698 			return n;
1699 		trace_random_read(n*8, (nbytes-n)*8,
1700 				  ENTROPY_BITS(&blocking_pool),
1701 				  ENTROPY_BITS(&input_pool));
1702 		if (n > 0)
1703 			return n;
1704 
1705 		/* Pool is (near) empty.  Maybe wait and retry. */
1706 		if (nonblock)
1707 			return -EAGAIN;
1708 
1709 		wait_event_interruptible(random_read_wait,
1710 			ENTROPY_BITS(&input_pool) >=
1711 			random_read_wakeup_bits);
1712 		if (signal_pending(current))
1713 			return -ERESTARTSYS;
1714 	}
1715 }
1716 
1717 static ssize_t
1718 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1719 {
1720 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1721 }
1722 
1723 static ssize_t
1724 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1725 {
1726 	unsigned long flags;
1727 	static int maxwarn = 10;
1728 	int ret;
1729 
1730 	if (!crng_ready() && maxwarn > 0) {
1731 		maxwarn--;
1732 		printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1733 		       "(%zd bytes read)\n",
1734 		       current->comm, nbytes);
1735 		spin_lock_irqsave(&primary_crng.lock, flags);
1736 		crng_init_cnt = 0;
1737 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1738 	}
1739 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1740 	ret = extract_crng_user(buf, nbytes);
1741 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1742 	return ret;
1743 }
1744 
1745 static unsigned int
1746 random_poll(struct file *file, poll_table * wait)
1747 {
1748 	unsigned int mask;
1749 
1750 	poll_wait(file, &random_read_wait, wait);
1751 	poll_wait(file, &random_write_wait, wait);
1752 	mask = 0;
1753 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1754 		mask |= POLLIN | POLLRDNORM;
1755 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1756 		mask |= POLLOUT | POLLWRNORM;
1757 	return mask;
1758 }
1759 
1760 static int
1761 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1762 {
1763 	size_t bytes;
1764 	__u32 buf[16];
1765 	const char __user *p = buffer;
1766 
1767 	while (count > 0) {
1768 		bytes = min(count, sizeof(buf));
1769 		if (copy_from_user(&buf, p, bytes))
1770 			return -EFAULT;
1771 
1772 		count -= bytes;
1773 		p += bytes;
1774 
1775 		mix_pool_bytes(r, buf, bytes);
1776 		cond_resched();
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static ssize_t random_write(struct file *file, const char __user *buffer,
1783 			    size_t count, loff_t *ppos)
1784 {
1785 	size_t ret;
1786 
1787 	ret = write_pool(&input_pool, buffer, count);
1788 	if (ret)
1789 		return ret;
1790 
1791 	return (ssize_t)count;
1792 }
1793 
1794 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1795 {
1796 	int size, ent_count;
1797 	int __user *p = (int __user *)arg;
1798 	int retval;
1799 
1800 	switch (cmd) {
1801 	case RNDGETENTCNT:
1802 		/* inherently racy, no point locking */
1803 		ent_count = ENTROPY_BITS(&input_pool);
1804 		if (put_user(ent_count, p))
1805 			return -EFAULT;
1806 		return 0;
1807 	case RNDADDTOENTCNT:
1808 		if (!capable(CAP_SYS_ADMIN))
1809 			return -EPERM;
1810 		if (get_user(ent_count, p))
1811 			return -EFAULT;
1812 		return credit_entropy_bits_safe(&input_pool, ent_count);
1813 	case RNDADDENTROPY:
1814 		if (!capable(CAP_SYS_ADMIN))
1815 			return -EPERM;
1816 		if (get_user(ent_count, p++))
1817 			return -EFAULT;
1818 		if (ent_count < 0)
1819 			return -EINVAL;
1820 		if (get_user(size, p++))
1821 			return -EFAULT;
1822 		retval = write_pool(&input_pool, (const char __user *)p,
1823 				    size);
1824 		if (retval < 0)
1825 			return retval;
1826 		return credit_entropy_bits_safe(&input_pool, ent_count);
1827 	case RNDZAPENTCNT:
1828 	case RNDCLEARPOOL:
1829 		/*
1830 		 * Clear the entropy pool counters. We no longer clear
1831 		 * the entropy pool, as that's silly.
1832 		 */
1833 		if (!capable(CAP_SYS_ADMIN))
1834 			return -EPERM;
1835 		input_pool.entropy_count = 0;
1836 		blocking_pool.entropy_count = 0;
1837 		return 0;
1838 	default:
1839 		return -EINVAL;
1840 	}
1841 }
1842 
1843 static int random_fasync(int fd, struct file *filp, int on)
1844 {
1845 	return fasync_helper(fd, filp, on, &fasync);
1846 }
1847 
1848 const struct file_operations random_fops = {
1849 	.read  = random_read,
1850 	.write = random_write,
1851 	.poll  = random_poll,
1852 	.unlocked_ioctl = random_ioctl,
1853 	.fasync = random_fasync,
1854 	.llseek = noop_llseek,
1855 };
1856 
1857 const struct file_operations urandom_fops = {
1858 	.read  = urandom_read,
1859 	.write = random_write,
1860 	.unlocked_ioctl = random_ioctl,
1861 	.fasync = random_fasync,
1862 	.llseek = noop_llseek,
1863 };
1864 
1865 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1866 		unsigned int, flags)
1867 {
1868 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1869 		return -EINVAL;
1870 
1871 	if (count > INT_MAX)
1872 		count = INT_MAX;
1873 
1874 	if (flags & GRND_RANDOM)
1875 		return _random_read(flags & GRND_NONBLOCK, buf, count);
1876 
1877 	if (!crng_ready()) {
1878 		if (flags & GRND_NONBLOCK)
1879 			return -EAGAIN;
1880 		crng_wait_ready();
1881 		if (signal_pending(current))
1882 			return -ERESTARTSYS;
1883 	}
1884 	return urandom_read(NULL, buf, count, NULL);
1885 }
1886 
1887 /********************************************************************
1888  *
1889  * Sysctl interface
1890  *
1891  ********************************************************************/
1892 
1893 #ifdef CONFIG_SYSCTL
1894 
1895 #include <linux/sysctl.h>
1896 
1897 static int min_read_thresh = 8, min_write_thresh;
1898 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1899 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1900 static int random_min_urandom_seed = 60;
1901 static char sysctl_bootid[16];
1902 
1903 /*
1904  * This function is used to return both the bootid UUID, and random
1905  * UUID.  The difference is in whether table->data is NULL; if it is,
1906  * then a new UUID is generated and returned to the user.
1907  *
1908  * If the user accesses this via the proc interface, the UUID will be
1909  * returned as an ASCII string in the standard UUID format; if via the
1910  * sysctl system call, as 16 bytes of binary data.
1911  */
1912 static int proc_do_uuid(struct ctl_table *table, int write,
1913 			void __user *buffer, size_t *lenp, loff_t *ppos)
1914 {
1915 	struct ctl_table fake_table;
1916 	unsigned char buf[64], tmp_uuid[16], *uuid;
1917 
1918 	uuid = table->data;
1919 	if (!uuid) {
1920 		uuid = tmp_uuid;
1921 		generate_random_uuid(uuid);
1922 	} else {
1923 		static DEFINE_SPINLOCK(bootid_spinlock);
1924 
1925 		spin_lock(&bootid_spinlock);
1926 		if (!uuid[8])
1927 			generate_random_uuid(uuid);
1928 		spin_unlock(&bootid_spinlock);
1929 	}
1930 
1931 	sprintf(buf, "%pU", uuid);
1932 
1933 	fake_table.data = buf;
1934 	fake_table.maxlen = sizeof(buf);
1935 
1936 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1937 }
1938 
1939 /*
1940  * Return entropy available scaled to integral bits
1941  */
1942 static int proc_do_entropy(struct ctl_table *table, int write,
1943 			   void __user *buffer, size_t *lenp, loff_t *ppos)
1944 {
1945 	struct ctl_table fake_table;
1946 	int entropy_count;
1947 
1948 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1949 
1950 	fake_table.data = &entropy_count;
1951 	fake_table.maxlen = sizeof(entropy_count);
1952 
1953 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1954 }
1955 
1956 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1957 extern struct ctl_table random_table[];
1958 struct ctl_table random_table[] = {
1959 	{
1960 		.procname	= "poolsize",
1961 		.data		= &sysctl_poolsize,
1962 		.maxlen		= sizeof(int),
1963 		.mode		= 0444,
1964 		.proc_handler	= proc_dointvec,
1965 	},
1966 	{
1967 		.procname	= "entropy_avail",
1968 		.maxlen		= sizeof(int),
1969 		.mode		= 0444,
1970 		.proc_handler	= proc_do_entropy,
1971 		.data		= &input_pool.entropy_count,
1972 	},
1973 	{
1974 		.procname	= "read_wakeup_threshold",
1975 		.data		= &random_read_wakeup_bits,
1976 		.maxlen		= sizeof(int),
1977 		.mode		= 0644,
1978 		.proc_handler	= proc_dointvec_minmax,
1979 		.extra1		= &min_read_thresh,
1980 		.extra2		= &max_read_thresh,
1981 	},
1982 	{
1983 		.procname	= "write_wakeup_threshold",
1984 		.data		= &random_write_wakeup_bits,
1985 		.maxlen		= sizeof(int),
1986 		.mode		= 0644,
1987 		.proc_handler	= proc_dointvec_minmax,
1988 		.extra1		= &min_write_thresh,
1989 		.extra2		= &max_write_thresh,
1990 	},
1991 	{
1992 		.procname	= "urandom_min_reseed_secs",
1993 		.data		= &random_min_urandom_seed,
1994 		.maxlen		= sizeof(int),
1995 		.mode		= 0644,
1996 		.proc_handler	= proc_dointvec,
1997 	},
1998 	{
1999 		.procname	= "boot_id",
2000 		.data		= &sysctl_bootid,
2001 		.maxlen		= 16,
2002 		.mode		= 0444,
2003 		.proc_handler	= proc_do_uuid,
2004 	},
2005 	{
2006 		.procname	= "uuid",
2007 		.maxlen		= 16,
2008 		.mode		= 0444,
2009 		.proc_handler	= proc_do_uuid,
2010 	},
2011 #ifdef ADD_INTERRUPT_BENCH
2012 	{
2013 		.procname	= "add_interrupt_avg_cycles",
2014 		.data		= &avg_cycles,
2015 		.maxlen		= sizeof(avg_cycles),
2016 		.mode		= 0444,
2017 		.proc_handler	= proc_doulongvec_minmax,
2018 	},
2019 	{
2020 		.procname	= "add_interrupt_avg_deviation",
2021 		.data		= &avg_deviation,
2022 		.maxlen		= sizeof(avg_deviation),
2023 		.mode		= 0444,
2024 		.proc_handler	= proc_doulongvec_minmax,
2025 	},
2026 #endif
2027 	{ }
2028 };
2029 #endif 	/* CONFIG_SYSCTL */
2030 
2031 struct batched_entropy {
2032 	union {
2033 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2034 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2035 	};
2036 	unsigned int position;
2037 };
2038 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2039 
2040 /*
2041  * Get a random word for internal kernel use only. The quality of the random
2042  * number is either as good as RDRAND or as good as /dev/urandom, with the
2043  * goal of being quite fast and not depleting entropy.
2044  */
2045 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2046 u64 get_random_u64(void)
2047 {
2048 	u64 ret;
2049 	bool use_lock = READ_ONCE(crng_init) < 2;
2050 	unsigned long flags = 0;
2051 	struct batched_entropy *batch;
2052 
2053 #if BITS_PER_LONG == 64
2054 	if (arch_get_random_long((unsigned long *)&ret))
2055 		return ret;
2056 #else
2057 	if (arch_get_random_long((unsigned long *)&ret) &&
2058 	    arch_get_random_long((unsigned long *)&ret + 1))
2059 	    return ret;
2060 #endif
2061 
2062 	batch = &get_cpu_var(batched_entropy_u64);
2063 	if (use_lock)
2064 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2065 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2066 		extract_crng((u8 *)batch->entropy_u64);
2067 		batch->position = 0;
2068 	}
2069 	ret = batch->entropy_u64[batch->position++];
2070 	if (use_lock)
2071 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2072 	put_cpu_var(batched_entropy_u64);
2073 	return ret;
2074 }
2075 EXPORT_SYMBOL(get_random_u64);
2076 
2077 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2078 u32 get_random_u32(void)
2079 {
2080 	u32 ret;
2081 	bool use_lock = READ_ONCE(crng_init) < 2;
2082 	unsigned long flags = 0;
2083 	struct batched_entropy *batch;
2084 
2085 	if (arch_get_random_int(&ret))
2086 		return ret;
2087 
2088 	batch = &get_cpu_var(batched_entropy_u32);
2089 	if (use_lock)
2090 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2091 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2092 		extract_crng((u8 *)batch->entropy_u32);
2093 		batch->position = 0;
2094 	}
2095 	ret = batch->entropy_u32[batch->position++];
2096 	if (use_lock)
2097 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2098 	put_cpu_var(batched_entropy_u32);
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL(get_random_u32);
2102 
2103 /* It's important to invalidate all potential batched entropy that might
2104  * be stored before the crng is initialized, which we can do lazily by
2105  * simply resetting the counter to zero so that it's re-extracted on the
2106  * next usage. */
2107 static void invalidate_batched_entropy(void)
2108 {
2109 	int cpu;
2110 	unsigned long flags;
2111 
2112 	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2113 	for_each_possible_cpu (cpu) {
2114 		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2115 		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2116 	}
2117 	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2118 }
2119 
2120 /**
2121  * randomize_page - Generate a random, page aligned address
2122  * @start:	The smallest acceptable address the caller will take.
2123  * @range:	The size of the area, starting at @start, within which the
2124  *		random address must fall.
2125  *
2126  * If @start + @range would overflow, @range is capped.
2127  *
2128  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2129  * @start was already page aligned.  We now align it regardless.
2130  *
2131  * Return: A page aligned address within [start, start + range).  On error,
2132  * @start is returned.
2133  */
2134 unsigned long
2135 randomize_page(unsigned long start, unsigned long range)
2136 {
2137 	if (!PAGE_ALIGNED(start)) {
2138 		range -= PAGE_ALIGN(start) - start;
2139 		start = PAGE_ALIGN(start);
2140 	}
2141 
2142 	if (start > ULONG_MAX - range)
2143 		range = ULONG_MAX - start;
2144 
2145 	range >>= PAGE_SHIFT;
2146 
2147 	if (range == 0)
2148 		return start;
2149 
2150 	return start + (get_random_long() % range << PAGE_SHIFT);
2151 }
2152 
2153 /* Interface for in-kernel drivers of true hardware RNGs.
2154  * Those devices may produce endless random bits and will be throttled
2155  * when our pool is full.
2156  */
2157 void add_hwgenerator_randomness(const char *buffer, size_t count,
2158 				size_t entropy)
2159 {
2160 	struct entropy_store *poolp = &input_pool;
2161 
2162 	if (!crng_ready()) {
2163 		crng_fast_load(buffer, count);
2164 		return;
2165 	}
2166 
2167 	/* Suspend writing if we're above the trickle threshold.
2168 	 * We'll be woken up again once below random_write_wakeup_thresh,
2169 	 * or when the calling thread is about to terminate.
2170 	 */
2171 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2172 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2173 	mix_pool_bytes(poolp, buffer, count);
2174 	credit_entropy_bits(poolp, entropy);
2175 }
2176 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2177