1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <linux/sched/isolation.h> 57 #include <crypto/chacha.h> 58 #include <crypto/blake2s.h> 59 #ifdef CONFIG_VDSO_GETRANDOM 60 #include <vdso/getrandom.h> 61 #include <vdso/datapage.h> 62 #include <vdso/vsyscall.h> 63 #endif 64 #include <asm/archrandom.h> 65 #include <asm/processor.h> 66 #include <asm/irq.h> 67 #include <asm/irq_regs.h> 68 #include <asm/io.h> 69 70 /********************************************************************* 71 * 72 * Initialization and readiness waiting. 73 * 74 * Much of the RNG infrastructure is devoted to various dependencies 75 * being able to wait until the RNG has collected enough entropy and 76 * is ready for safe consumption. 77 * 78 *********************************************************************/ 79 80 /* 81 * crng_init is protected by base_crng->lock, and only increases 82 * its value (from empty->early->ready). 83 */ 84 static enum { 85 CRNG_EMPTY = 0, /* Little to no entropy collected */ 86 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 87 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 88 } crng_init __read_mostly = CRNG_EMPTY; 89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 91 /* Various types of waiters for crng_init->CRNG_READY transition. */ 92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 93 static struct fasync_struct *fasync; 94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 95 96 /* Control how we warn userspace. */ 97 static struct ratelimit_state urandom_warning = 98 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 99 static int ratelimit_disable __read_mostly = 100 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 103 104 /* 105 * Returns whether or not the input pool has been seeded and thus guaranteed 106 * to supply cryptographically secure random numbers. This applies to: the 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 108 * u16,u32,u64,long} family of functions. 109 * 110 * Returns: true if the input pool has been seeded. 111 * false if the input pool has not been seeded. 112 */ 113 bool rng_is_initialized(void) 114 { 115 return crng_ready(); 116 } 117 EXPORT_SYMBOL(rng_is_initialized); 118 119 static void __cold crng_set_ready(struct work_struct *work) 120 { 121 static_branch_enable(&crng_is_ready); 122 } 123 124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 125 static void try_to_generate_entropy(void); 126 127 /* 128 * Wait for the input pool to be seeded and thus guaranteed to supply 129 * cryptographically secure random numbers. This applies to: the /dev/urandom 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 131 * long} family of functions. Using any of these functions without first 132 * calling this function forfeits the guarantee of security. 133 * 134 * Returns: 0 if the input pool has been seeded. 135 * -ERESTARTSYS if the function was interrupted by a signal. 136 */ 137 int wait_for_random_bytes(void) 138 { 139 while (!crng_ready()) { 140 int ret; 141 142 try_to_generate_entropy(); 143 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 144 if (ret) 145 return ret > 0 ? 0 : ret; 146 } 147 return 0; 148 } 149 EXPORT_SYMBOL(wait_for_random_bytes); 150 151 /* 152 * Add a callback function that will be invoked when the crng is initialised, 153 * or immediately if it already has been. Only use this is you are absolutely 154 * sure it is required. Most users should instead be able to test 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 156 */ 157 int __cold execute_with_initialized_rng(struct notifier_block *nb) 158 { 159 unsigned long flags; 160 int ret = 0; 161 162 spin_lock_irqsave(&random_ready_notifier.lock, flags); 163 if (crng_ready()) 164 nb->notifier_call(nb, 0, NULL); 165 else 166 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 167 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 168 return ret; 169 } 170 171 #define warn_unseeded_randomness() \ 172 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 173 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 174 __func__, (void *)_RET_IP_, crng_init) 175 176 177 /********************************************************************* 178 * 179 * Fast key erasure RNG, the "crng". 180 * 181 * These functions expand entropy from the entropy extractor into 182 * long streams for external consumption using the "fast key erasure" 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 184 * 185 * There are a few exported interfaces for use by other drivers: 186 * 187 * void get_random_bytes(void *buf, size_t len) 188 * u8 get_random_u8() 189 * u16 get_random_u16() 190 * u32 get_random_u32() 191 * u32 get_random_u32_below(u32 ceil) 192 * u32 get_random_u32_above(u32 floor) 193 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 194 * u64 get_random_u64() 195 * unsigned long get_random_long() 196 * 197 * These interfaces will return the requested number of random bytes 198 * into the given buffer or as a return value. This is equivalent to 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 200 * functions may be higher performance for one-off random integers, 201 * because they do a bit of buffering and do not invoke reseeding 202 * until the buffer is emptied. 203 * 204 *********************************************************************/ 205 206 enum { 207 CRNG_RESEED_START_INTERVAL = HZ, 208 CRNG_RESEED_INTERVAL = 60 * HZ 209 }; 210 211 static struct { 212 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 213 unsigned long generation; 214 spinlock_t lock; 215 } base_crng = { 216 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 217 }; 218 219 struct crng { 220 u8 key[CHACHA_KEY_SIZE]; 221 unsigned long generation; 222 local_lock_t lock; 223 }; 224 225 static DEFINE_PER_CPU(struct crng, crngs) = { 226 .generation = ULONG_MAX, 227 .lock = INIT_LOCAL_LOCK(crngs.lock), 228 }; 229 230 /* 231 * Return the interval until the next reseeding, which is normally 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 233 * proportional to the uptime. 234 */ 235 static unsigned int crng_reseed_interval(void) 236 { 237 static bool early_boot = true; 238 239 if (unlikely(READ_ONCE(early_boot))) { 240 time64_t uptime = ktime_get_seconds(); 241 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 242 WRITE_ONCE(early_boot, false); 243 else 244 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 245 (unsigned int)uptime / 2 * HZ); 246 } 247 return CRNG_RESEED_INTERVAL; 248 } 249 250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 251 static void extract_entropy(void *buf, size_t len); 252 253 /* This extracts a new crng key from the input pool. */ 254 static void crng_reseed(struct work_struct *work) 255 { 256 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 257 unsigned long flags; 258 unsigned long next_gen; 259 u8 key[CHACHA_KEY_SIZE]; 260 261 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 262 if (likely(system_unbound_wq)) 263 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 264 265 extract_entropy(key, sizeof(key)); 266 267 /* 268 * We copy the new key into the base_crng, overwriting the old one, 269 * and update the generation counter. We avoid hitting ULONG_MAX, 270 * because the per-cpu crngs are initialized to ULONG_MAX, so this 271 * forces new CPUs that come online to always initialize. 272 */ 273 spin_lock_irqsave(&base_crng.lock, flags); 274 memcpy(base_crng.key, key, sizeof(base_crng.key)); 275 next_gen = base_crng.generation + 1; 276 if (next_gen == ULONG_MAX) 277 ++next_gen; 278 WRITE_ONCE(base_crng.generation, next_gen); 279 #ifdef CONFIG_VDSO_GETRANDOM 280 /* base_crng.generation's invalid value is ULONG_MAX, while 281 * _vdso_rng_data.generation's invalid value is 0, so add one to the 282 * former to arrive at the latter. Use smp_store_release so that this 283 * is ordered with the write above to base_crng.generation. Pairs with 284 * the smp_rmb() before the syscall in the vDSO code. 285 * 286 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit 287 * operations are not supported on those architectures. This is safe 288 * because base_crng.generation is a 32-bit value. On big-endian 289 * architectures it will be stored in the upper 32 bits, but that's okay 290 * because the vDSO side only checks whether the value changed, without 291 * actually using or interpreting the value. 292 */ 293 smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1); 294 #endif 295 if (!static_branch_likely(&crng_is_ready)) 296 crng_init = CRNG_READY; 297 spin_unlock_irqrestore(&base_crng.lock, flags); 298 memzero_explicit(key, sizeof(key)); 299 } 300 301 /* 302 * This generates a ChaCha block using the provided key, and then 303 * immediately overwrites that key with half the block. It returns 304 * the resultant ChaCha state to the user, along with the second 305 * half of the block containing 32 bytes of random data that may 306 * be used; random_data_len may not be greater than 32. 307 * 308 * The returned ChaCha state contains within it a copy of the old 309 * key value, at index 4, so the state should always be zeroed out 310 * immediately after using in order to maintain forward secrecy. 311 * If the state cannot be erased in a timely manner, then it is 312 * safer to set the random_data parameter to &chacha_state[4] so 313 * that this function overwrites it before returning. 314 */ 315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 316 u32 chacha_state[CHACHA_STATE_WORDS], 317 u8 *random_data, size_t random_data_len) 318 { 319 u8 first_block[CHACHA_BLOCK_SIZE]; 320 321 BUG_ON(random_data_len > 32); 322 323 chacha_init_consts(chacha_state); 324 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 325 memset(&chacha_state[12], 0, sizeof(u32) * 4); 326 chacha20_block(chacha_state, first_block); 327 328 memcpy(key, first_block, CHACHA_KEY_SIZE); 329 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 330 memzero_explicit(first_block, sizeof(first_block)); 331 } 332 333 /* 334 * This function returns a ChaCha state that you may use for generating 335 * random data. It also returns up to 32 bytes on its own of random data 336 * that may be used; random_data_len may not be greater than 32. 337 */ 338 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 339 u8 *random_data, size_t random_data_len) 340 { 341 unsigned long flags; 342 struct crng *crng; 343 344 BUG_ON(random_data_len > 32); 345 346 /* 347 * For the fast path, we check whether we're ready, unlocked first, and 348 * then re-check once locked later. In the case where we're really not 349 * ready, we do fast key erasure with the base_crng directly, extracting 350 * when crng_init is CRNG_EMPTY. 351 */ 352 if (!crng_ready()) { 353 bool ready; 354 355 spin_lock_irqsave(&base_crng.lock, flags); 356 ready = crng_ready(); 357 if (!ready) { 358 if (crng_init == CRNG_EMPTY) 359 extract_entropy(base_crng.key, sizeof(base_crng.key)); 360 crng_fast_key_erasure(base_crng.key, chacha_state, 361 random_data, random_data_len); 362 } 363 spin_unlock_irqrestore(&base_crng.lock, flags); 364 if (!ready) 365 return; 366 } 367 368 local_lock_irqsave(&crngs.lock, flags); 369 crng = raw_cpu_ptr(&crngs); 370 371 /* 372 * If our per-cpu crng is older than the base_crng, then it means 373 * somebody reseeded the base_crng. In that case, we do fast key 374 * erasure on the base_crng, and use its output as the new key 375 * for our per-cpu crng. This brings us up to date with base_crng. 376 */ 377 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 378 spin_lock(&base_crng.lock); 379 crng_fast_key_erasure(base_crng.key, chacha_state, 380 crng->key, sizeof(crng->key)); 381 crng->generation = base_crng.generation; 382 spin_unlock(&base_crng.lock); 383 } 384 385 /* 386 * Finally, when we've made it this far, our per-cpu crng has an up 387 * to date key, and we can do fast key erasure with it to produce 388 * some random data and a ChaCha state for the caller. All other 389 * branches of this function are "unlikely", so most of the time we 390 * should wind up here immediately. 391 */ 392 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 393 local_unlock_irqrestore(&crngs.lock, flags); 394 } 395 396 static void _get_random_bytes(void *buf, size_t len) 397 { 398 u32 chacha_state[CHACHA_STATE_WORDS]; 399 u8 tmp[CHACHA_BLOCK_SIZE]; 400 size_t first_block_len; 401 402 if (!len) 403 return; 404 405 first_block_len = min_t(size_t, 32, len); 406 crng_make_state(chacha_state, buf, first_block_len); 407 len -= first_block_len; 408 buf += first_block_len; 409 410 while (len) { 411 if (len < CHACHA_BLOCK_SIZE) { 412 chacha20_block(chacha_state, tmp); 413 memcpy(buf, tmp, len); 414 memzero_explicit(tmp, sizeof(tmp)); 415 break; 416 } 417 418 chacha20_block(chacha_state, buf); 419 if (unlikely(chacha_state[12] == 0)) 420 ++chacha_state[13]; 421 len -= CHACHA_BLOCK_SIZE; 422 buf += CHACHA_BLOCK_SIZE; 423 } 424 425 memzero_explicit(chacha_state, sizeof(chacha_state)); 426 } 427 428 /* 429 * This returns random bytes in arbitrary quantities. The quality of the 430 * random bytes is good as /dev/urandom. In order to ensure that the 431 * randomness provided by this function is okay, the function 432 * wait_for_random_bytes() should be called and return 0 at least once 433 * at any point prior. 434 */ 435 void get_random_bytes(void *buf, size_t len) 436 { 437 warn_unseeded_randomness(); 438 _get_random_bytes(buf, len); 439 } 440 EXPORT_SYMBOL(get_random_bytes); 441 442 static ssize_t get_random_bytes_user(struct iov_iter *iter) 443 { 444 u32 chacha_state[CHACHA_STATE_WORDS]; 445 u8 block[CHACHA_BLOCK_SIZE]; 446 size_t ret = 0, copied; 447 448 if (unlikely(!iov_iter_count(iter))) 449 return 0; 450 451 /* 452 * Immediately overwrite the ChaCha key at index 4 with random 453 * bytes, in case userspace causes copy_to_iter() below to sleep 454 * forever, so that we still retain forward secrecy in that case. 455 */ 456 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 457 /* 458 * However, if we're doing a read of len <= 32, we don't need to 459 * use chacha_state after, so we can simply return those bytes to 460 * the user directly. 461 */ 462 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 463 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 464 goto out_zero_chacha; 465 } 466 467 for (;;) { 468 chacha20_block(chacha_state, block); 469 if (unlikely(chacha_state[12] == 0)) 470 ++chacha_state[13]; 471 472 copied = copy_to_iter(block, sizeof(block), iter); 473 ret += copied; 474 if (!iov_iter_count(iter) || copied != sizeof(block)) 475 break; 476 477 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 478 if (ret % PAGE_SIZE == 0) { 479 if (signal_pending(current)) 480 break; 481 cond_resched(); 482 } 483 } 484 485 memzero_explicit(block, sizeof(block)); 486 out_zero_chacha: 487 memzero_explicit(chacha_state, sizeof(chacha_state)); 488 return ret ? ret : -EFAULT; 489 } 490 491 /* 492 * Batched entropy returns random integers. The quality of the random 493 * number is good as /dev/urandom. In order to ensure that the randomness 494 * provided by this function is okay, the function wait_for_random_bytes() 495 * should be called and return 0 at least once at any point prior. 496 */ 497 498 #define DEFINE_BATCHED_ENTROPY(type) \ 499 struct batch_ ##type { \ 500 /* \ 501 * We make this 1.5x a ChaCha block, so that we get the \ 502 * remaining 32 bytes from fast key erasure, plus one full \ 503 * block from the detached ChaCha state. We can increase \ 504 * the size of this later if needed so long as we keep the \ 505 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 506 */ \ 507 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 508 local_lock_t lock; \ 509 unsigned long generation; \ 510 unsigned int position; \ 511 }; \ 512 \ 513 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 514 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 515 .position = UINT_MAX \ 516 }; \ 517 \ 518 type get_random_ ##type(void) \ 519 { \ 520 type ret; \ 521 unsigned long flags; \ 522 struct batch_ ##type *batch; \ 523 unsigned long next_gen; \ 524 \ 525 warn_unseeded_randomness(); \ 526 \ 527 if (!crng_ready()) { \ 528 _get_random_bytes(&ret, sizeof(ret)); \ 529 return ret; \ 530 } \ 531 \ 532 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 533 batch = raw_cpu_ptr(&batched_entropy_##type); \ 534 \ 535 next_gen = READ_ONCE(base_crng.generation); \ 536 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 537 next_gen != batch->generation) { \ 538 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 539 batch->position = 0; \ 540 batch->generation = next_gen; \ 541 } \ 542 \ 543 ret = batch->entropy[batch->position]; \ 544 batch->entropy[batch->position] = 0; \ 545 ++batch->position; \ 546 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 547 return ret; \ 548 } \ 549 EXPORT_SYMBOL(get_random_ ##type); 550 551 DEFINE_BATCHED_ENTROPY(u8) 552 DEFINE_BATCHED_ENTROPY(u16) 553 DEFINE_BATCHED_ENTROPY(u32) 554 DEFINE_BATCHED_ENTROPY(u64) 555 556 u32 __get_random_u32_below(u32 ceil) 557 { 558 /* 559 * This is the slow path for variable ceil. It is still fast, most of 560 * the time, by doing traditional reciprocal multiplication and 561 * opportunistically comparing the lower half to ceil itself, before 562 * falling back to computing a larger bound, and then rejecting samples 563 * whose lower half would indicate a range indivisible by ceil. The use 564 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 565 * in 32-bits. 566 */ 567 u32 rand = get_random_u32(); 568 u64 mult; 569 570 /* 571 * This function is technically undefined for ceil == 0, and in fact 572 * for the non-underscored constant version in the header, we build bug 573 * on that. But for the non-constant case, it's convenient to have that 574 * evaluate to being a straight call to get_random_u32(), so that 575 * get_random_u32_inclusive() can work over its whole range without 576 * undefined behavior. 577 */ 578 if (unlikely(!ceil)) 579 return rand; 580 581 mult = (u64)ceil * rand; 582 if (unlikely((u32)mult < ceil)) { 583 u32 bound = -ceil % ceil; 584 while (unlikely((u32)mult < bound)) 585 mult = (u64)ceil * get_random_u32(); 586 } 587 return mult >> 32; 588 } 589 EXPORT_SYMBOL(__get_random_u32_below); 590 591 #ifdef CONFIG_SMP 592 /* 593 * This function is called when the CPU is coming up, with entry 594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 595 */ 596 int __cold random_prepare_cpu(unsigned int cpu) 597 { 598 /* 599 * When the cpu comes back online, immediately invalidate both 600 * the per-cpu crng and all batches, so that we serve fresh 601 * randomness. 602 */ 603 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 604 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 605 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 606 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 607 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 608 return 0; 609 } 610 #endif 611 612 613 /********************************************************************** 614 * 615 * Entropy accumulation and extraction routines. 616 * 617 * Callers may add entropy via: 618 * 619 * static void mix_pool_bytes(const void *buf, size_t len) 620 * 621 * After which, if added entropy should be credited: 622 * 623 * static void credit_init_bits(size_t bits) 624 * 625 * Finally, extract entropy via: 626 * 627 * static void extract_entropy(void *buf, size_t len) 628 * 629 **********************************************************************/ 630 631 enum { 632 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 633 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 634 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 635 }; 636 637 static struct { 638 struct blake2s_state hash; 639 spinlock_t lock; 640 unsigned int init_bits; 641 } input_pool = { 642 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 643 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 644 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 645 .hash.outlen = BLAKE2S_HASH_SIZE, 646 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 647 }; 648 649 static void _mix_pool_bytes(const void *buf, size_t len) 650 { 651 blake2s_update(&input_pool.hash, buf, len); 652 } 653 654 /* 655 * This function adds bytes into the input pool. It does not 656 * update the initialization bit counter; the caller should call 657 * credit_init_bits if this is appropriate. 658 */ 659 static void mix_pool_bytes(const void *buf, size_t len) 660 { 661 unsigned long flags; 662 663 spin_lock_irqsave(&input_pool.lock, flags); 664 _mix_pool_bytes(buf, len); 665 spin_unlock_irqrestore(&input_pool.lock, flags); 666 } 667 668 /* 669 * This is an HKDF-like construction for using the hashed collected entropy 670 * as a PRF key, that's then expanded block-by-block. 671 */ 672 static void extract_entropy(void *buf, size_t len) 673 { 674 unsigned long flags; 675 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 676 struct { 677 unsigned long rdseed[32 / sizeof(long)]; 678 size_t counter; 679 } block; 680 size_t i, longs; 681 682 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 683 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 684 if (longs) { 685 i += longs; 686 continue; 687 } 688 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 689 if (longs) { 690 i += longs; 691 continue; 692 } 693 block.rdseed[i++] = random_get_entropy(); 694 } 695 696 spin_lock_irqsave(&input_pool.lock, flags); 697 698 /* seed = HASHPRF(last_key, entropy_input) */ 699 blake2s_final(&input_pool.hash, seed); 700 701 /* next_key = HASHPRF(seed, RDSEED || 0) */ 702 block.counter = 0; 703 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 704 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 705 706 spin_unlock_irqrestore(&input_pool.lock, flags); 707 memzero_explicit(next_key, sizeof(next_key)); 708 709 while (len) { 710 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 711 /* output = HASHPRF(seed, RDSEED || ++counter) */ 712 ++block.counter; 713 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 714 len -= i; 715 buf += i; 716 } 717 718 memzero_explicit(seed, sizeof(seed)); 719 memzero_explicit(&block, sizeof(block)); 720 } 721 722 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 723 724 static void __cold _credit_init_bits(size_t bits) 725 { 726 static DECLARE_WORK(set_ready, crng_set_ready); 727 unsigned int new, orig, add; 728 unsigned long flags; 729 730 if (!bits) 731 return; 732 733 add = min_t(size_t, bits, POOL_BITS); 734 735 orig = READ_ONCE(input_pool.init_bits); 736 do { 737 new = min_t(unsigned int, POOL_BITS, orig + add); 738 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 739 740 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 741 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 742 if (static_key_initialized && system_unbound_wq) 743 queue_work(system_unbound_wq, &set_ready); 744 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 745 #ifdef CONFIG_VDSO_GETRANDOM 746 WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true); 747 #endif 748 wake_up_interruptible(&crng_init_wait); 749 kill_fasync(&fasync, SIGIO, POLL_IN); 750 pr_notice("crng init done\n"); 751 if (urandom_warning.missed) 752 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 753 urandom_warning.missed); 754 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 755 spin_lock_irqsave(&base_crng.lock, flags); 756 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 757 if (crng_init == CRNG_EMPTY) { 758 extract_entropy(base_crng.key, sizeof(base_crng.key)); 759 crng_init = CRNG_EARLY; 760 } 761 spin_unlock_irqrestore(&base_crng.lock, flags); 762 } 763 } 764 765 766 /********************************************************************** 767 * 768 * Entropy collection routines. 769 * 770 * The following exported functions are used for pushing entropy into 771 * the above entropy accumulation routines: 772 * 773 * void add_device_randomness(const void *buf, size_t len); 774 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 775 * void add_bootloader_randomness(const void *buf, size_t len); 776 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 777 * void add_interrupt_randomness(int irq); 778 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 779 * void add_disk_randomness(struct gendisk *disk); 780 * 781 * add_device_randomness() adds data to the input pool that 782 * is likely to differ between two devices (or possibly even per boot). 783 * This would be things like MAC addresses or serial numbers, or the 784 * read-out of the RTC. This does *not* credit any actual entropy to 785 * the pool, but it initializes the pool to different values for devices 786 * that might otherwise be identical and have very little entropy 787 * available to them (particularly common in the embedded world). 788 * 789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 790 * entropy as specified by the caller. If the entropy pool is full it will 791 * block until more entropy is needed. 792 * 793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 794 * and device tree, and credits its input depending on whether or not the 795 * command line option 'random.trust_bootloader'. 796 * 797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 798 * representing the current instance of a VM to the pool, without crediting, 799 * and then force-reseeds the crng so that it takes effect immediately. 800 * 801 * add_interrupt_randomness() uses the interrupt timing as random 802 * inputs to the entropy pool. Using the cycle counters and the irq source 803 * as inputs, it feeds the input pool roughly once a second or after 64 804 * interrupts, crediting 1 bit of entropy for whichever comes first. 805 * 806 * add_input_randomness() uses the input layer interrupt timing, as well 807 * as the event type information from the hardware. 808 * 809 * add_disk_randomness() uses what amounts to the seek time of block 810 * layer request events, on a per-disk_devt basis, as input to the 811 * entropy pool. Note that high-speed solid state drives with very low 812 * seek times do not make for good sources of entropy, as their seek 813 * times are usually fairly consistent. 814 * 815 * The last two routines try to estimate how many bits of entropy 816 * to credit. They do this by keeping track of the first and second 817 * order deltas of the event timings. 818 * 819 **********************************************************************/ 820 821 static bool trust_cpu __initdata = true; 822 static bool trust_bootloader __initdata = true; 823 static int __init parse_trust_cpu(char *arg) 824 { 825 return kstrtobool(arg, &trust_cpu); 826 } 827 static int __init parse_trust_bootloader(char *arg) 828 { 829 return kstrtobool(arg, &trust_bootloader); 830 } 831 early_param("random.trust_cpu", parse_trust_cpu); 832 early_param("random.trust_bootloader", parse_trust_bootloader); 833 834 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 835 { 836 unsigned long flags, entropy = random_get_entropy(); 837 838 /* 839 * Encode a representation of how long the system has been suspended, 840 * in a way that is distinct from prior system suspends. 841 */ 842 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 843 844 spin_lock_irqsave(&input_pool.lock, flags); 845 _mix_pool_bytes(&action, sizeof(action)); 846 _mix_pool_bytes(stamps, sizeof(stamps)); 847 _mix_pool_bytes(&entropy, sizeof(entropy)); 848 spin_unlock_irqrestore(&input_pool.lock, flags); 849 850 if (crng_ready() && (action == PM_RESTORE_PREPARE || 851 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 852 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 853 crng_reseed(NULL); 854 pr_notice("crng reseeded on system resumption\n"); 855 } 856 return 0; 857 } 858 859 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 860 861 /* 862 * This is called extremely early, before time keeping functionality is 863 * available, but arch randomness is. Interrupts are not yet enabled. 864 */ 865 void __init random_init_early(const char *command_line) 866 { 867 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 868 size_t i, longs, arch_bits; 869 870 #if defined(LATENT_ENTROPY_PLUGIN) 871 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 872 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 873 #endif 874 875 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 876 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 877 if (longs) { 878 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 879 i += longs; 880 continue; 881 } 882 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 883 if (longs) { 884 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 885 i += longs; 886 continue; 887 } 888 arch_bits -= sizeof(*entropy) * 8; 889 ++i; 890 } 891 892 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 893 _mix_pool_bytes(command_line, strlen(command_line)); 894 895 /* Reseed if already seeded by earlier phases. */ 896 if (crng_ready()) 897 crng_reseed(NULL); 898 else if (trust_cpu) 899 _credit_init_bits(arch_bits); 900 } 901 902 /* 903 * This is called a little bit after the prior function, and now there is 904 * access to timestamps counters. Interrupts are not yet enabled. 905 */ 906 void __init random_init(void) 907 { 908 unsigned long entropy = random_get_entropy(); 909 ktime_t now = ktime_get_real(); 910 911 _mix_pool_bytes(&now, sizeof(now)); 912 _mix_pool_bytes(&entropy, sizeof(entropy)); 913 add_latent_entropy(); 914 915 /* 916 * If we were initialized by the cpu or bootloader before jump labels 917 * or workqueues are initialized, then we should enable the static 918 * branch here, where it's guaranteed that these have been initialized. 919 */ 920 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 921 crng_set_ready(NULL); 922 923 /* Reseed if already seeded by earlier phases. */ 924 if (crng_ready()) 925 crng_reseed(NULL); 926 927 WARN_ON(register_pm_notifier(&pm_notifier)); 928 929 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 930 "entropy collection will consequently suffer."); 931 } 932 933 /* 934 * Add device- or boot-specific data to the input pool to help 935 * initialize it. 936 * 937 * None of this adds any entropy; it is meant to avoid the problem of 938 * the entropy pool having similar initial state across largely 939 * identical devices. 940 */ 941 void add_device_randomness(const void *buf, size_t len) 942 { 943 unsigned long entropy = random_get_entropy(); 944 unsigned long flags; 945 946 spin_lock_irqsave(&input_pool.lock, flags); 947 _mix_pool_bytes(&entropy, sizeof(entropy)); 948 _mix_pool_bytes(buf, len); 949 spin_unlock_irqrestore(&input_pool.lock, flags); 950 } 951 EXPORT_SYMBOL(add_device_randomness); 952 953 /* 954 * Interface for in-kernel drivers of true hardware RNGs. Those devices 955 * may produce endless random bits, so this function will sleep for 956 * some amount of time after, if the sleep_after parameter is true. 957 */ 958 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 959 { 960 mix_pool_bytes(buf, len); 961 credit_init_bits(entropy); 962 963 /* 964 * Throttle writing to once every reseed interval, unless we're not yet 965 * initialized or no entropy is credited. 966 */ 967 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 968 schedule_timeout_interruptible(crng_reseed_interval()); 969 } 970 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 971 972 /* 973 * Handle random seed passed by bootloader, and credit it depending 974 * on the command line option 'random.trust_bootloader'. 975 */ 976 void __init add_bootloader_randomness(const void *buf, size_t len) 977 { 978 mix_pool_bytes(buf, len); 979 if (trust_bootloader) 980 credit_init_bits(len * 8); 981 } 982 983 #if IS_ENABLED(CONFIG_VMGENID) 984 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 985 986 /* 987 * Handle a new unique VM ID, which is unique, not secret, so we 988 * don't credit it, but we do immediately force a reseed after so 989 * that it's used by the crng posthaste. 990 */ 991 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 992 { 993 add_device_randomness(unique_vm_id, len); 994 if (crng_ready()) { 995 crng_reseed(NULL); 996 pr_notice("crng reseeded due to virtual machine fork\n"); 997 } 998 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 999 } 1000 #if IS_MODULE(CONFIG_VMGENID) 1001 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 1002 #endif 1003 1004 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 1005 { 1006 return blocking_notifier_chain_register(&vmfork_chain, nb); 1007 } 1008 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1009 1010 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 1011 { 1012 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1013 } 1014 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1015 #endif 1016 1017 struct fast_pool { 1018 unsigned long pool[4]; 1019 unsigned long last; 1020 unsigned int count; 1021 struct timer_list mix; 1022 }; 1023 1024 static void mix_interrupt_randomness(struct timer_list *work); 1025 1026 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1027 #ifdef CONFIG_64BIT 1028 #define FASTMIX_PERM SIPHASH_PERMUTATION 1029 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1030 #else 1031 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1032 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1033 #endif 1034 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1035 }; 1036 1037 /* 1038 * This is [Half]SipHash-1-x, starting from an empty key. Because 1039 * the key is fixed, it assumes that its inputs are non-malicious, 1040 * and therefore this has no security on its own. s represents the 1041 * four-word SipHash state, while v represents a two-word input. 1042 */ 1043 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1044 { 1045 s[3] ^= v1; 1046 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1047 s[0] ^= v1; 1048 s[3] ^= v2; 1049 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1050 s[0] ^= v2; 1051 } 1052 1053 #ifdef CONFIG_SMP 1054 /* 1055 * This function is called when the CPU has just come online, with 1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1057 */ 1058 int __cold random_online_cpu(unsigned int cpu) 1059 { 1060 /* 1061 * During CPU shutdown and before CPU onlining, add_interrupt_ 1062 * randomness() may schedule mix_interrupt_randomness(), and 1063 * set the MIX_INFLIGHT flag. However, because the worker can 1064 * be scheduled on a different CPU during this period, that 1065 * flag will never be cleared. For that reason, we zero out 1066 * the flag here, which runs just after workqueues are onlined 1067 * for the CPU again. This also has the effect of setting the 1068 * irq randomness count to zero so that new accumulated irqs 1069 * are fresh. 1070 */ 1071 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1072 return 0; 1073 } 1074 #endif 1075 1076 static void mix_interrupt_randomness(struct timer_list *work) 1077 { 1078 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1079 /* 1080 * The size of the copied stack pool is explicitly 2 longs so that we 1081 * only ever ingest half of the siphash output each time, retaining 1082 * the other half as the next "key" that carries over. The entropy is 1083 * supposed to be sufficiently dispersed between bits so on average 1084 * we don't wind up "losing" some. 1085 */ 1086 unsigned long pool[2]; 1087 unsigned int count; 1088 1089 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1090 local_irq_disable(); 1091 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1092 local_irq_enable(); 1093 return; 1094 } 1095 1096 /* 1097 * Copy the pool to the stack so that the mixer always has a 1098 * consistent view, before we reenable irqs again. 1099 */ 1100 memcpy(pool, fast_pool->pool, sizeof(pool)); 1101 count = fast_pool->count; 1102 fast_pool->count = 0; 1103 fast_pool->last = jiffies; 1104 local_irq_enable(); 1105 1106 mix_pool_bytes(pool, sizeof(pool)); 1107 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1108 1109 memzero_explicit(pool, sizeof(pool)); 1110 } 1111 1112 void add_interrupt_randomness(int irq) 1113 { 1114 enum { MIX_INFLIGHT = 1U << 31 }; 1115 unsigned long entropy = random_get_entropy(); 1116 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1117 struct pt_regs *regs = get_irq_regs(); 1118 unsigned int new_count; 1119 1120 fast_mix(fast_pool->pool, entropy, 1121 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1122 new_count = ++fast_pool->count; 1123 1124 if (new_count & MIX_INFLIGHT) 1125 return; 1126 1127 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1128 return; 1129 1130 fast_pool->count |= MIX_INFLIGHT; 1131 if (!timer_pending(&fast_pool->mix)) { 1132 fast_pool->mix.expires = jiffies; 1133 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1134 } 1135 } 1136 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1137 1138 /* There is one of these per entropy source */ 1139 struct timer_rand_state { 1140 unsigned long last_time; 1141 long last_delta, last_delta2; 1142 }; 1143 1144 /* 1145 * This function adds entropy to the entropy "pool" by using timing 1146 * delays. It uses the timer_rand_state structure to make an estimate 1147 * of how many bits of entropy this call has added to the pool. The 1148 * value "num" is also added to the pool; it should somehow describe 1149 * the type of event that just happened. 1150 */ 1151 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1152 { 1153 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1154 long delta, delta2, delta3; 1155 unsigned int bits; 1156 1157 /* 1158 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1159 * sometime after, so mix into the fast pool. 1160 */ 1161 if (in_hardirq()) { 1162 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1163 } else { 1164 spin_lock_irqsave(&input_pool.lock, flags); 1165 _mix_pool_bytes(&entropy, sizeof(entropy)); 1166 _mix_pool_bytes(&num, sizeof(num)); 1167 spin_unlock_irqrestore(&input_pool.lock, flags); 1168 } 1169 1170 if (crng_ready()) 1171 return; 1172 1173 /* 1174 * Calculate number of bits of randomness we probably added. 1175 * We take into account the first, second and third-order deltas 1176 * in order to make our estimate. 1177 */ 1178 delta = now - READ_ONCE(state->last_time); 1179 WRITE_ONCE(state->last_time, now); 1180 1181 delta2 = delta - READ_ONCE(state->last_delta); 1182 WRITE_ONCE(state->last_delta, delta); 1183 1184 delta3 = delta2 - READ_ONCE(state->last_delta2); 1185 WRITE_ONCE(state->last_delta2, delta2); 1186 1187 if (delta < 0) 1188 delta = -delta; 1189 if (delta2 < 0) 1190 delta2 = -delta2; 1191 if (delta3 < 0) 1192 delta3 = -delta3; 1193 if (delta > delta2) 1194 delta = delta2; 1195 if (delta > delta3) 1196 delta = delta3; 1197 1198 /* 1199 * delta is now minimum absolute delta. Round down by 1 bit 1200 * on general principles, and limit entropy estimate to 11 bits. 1201 */ 1202 bits = min(fls(delta >> 1), 11); 1203 1204 /* 1205 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1206 * will run after this, which uses a different crediting scheme of 1 bit 1207 * per every 64 interrupts. In order to let that function do accounting 1208 * close to the one in this function, we credit a full 64/64 bit per bit, 1209 * and then subtract one to account for the extra one added. 1210 */ 1211 if (in_hardirq()) 1212 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1213 else 1214 _credit_init_bits(bits); 1215 } 1216 1217 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1218 { 1219 static unsigned char last_value; 1220 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1221 1222 /* Ignore autorepeat and the like. */ 1223 if (value == last_value) 1224 return; 1225 1226 last_value = value; 1227 add_timer_randomness(&input_timer_state, 1228 (type << 4) ^ code ^ (code >> 4) ^ value); 1229 } 1230 EXPORT_SYMBOL_GPL(add_input_randomness); 1231 1232 #ifdef CONFIG_BLOCK 1233 void add_disk_randomness(struct gendisk *disk) 1234 { 1235 if (!disk || !disk->random) 1236 return; 1237 /* First major is 1, so we get >= 0x200 here. */ 1238 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1239 } 1240 EXPORT_SYMBOL_GPL(add_disk_randomness); 1241 1242 void __cold rand_initialize_disk(struct gendisk *disk) 1243 { 1244 struct timer_rand_state *state; 1245 1246 /* 1247 * If kzalloc returns null, we just won't use that entropy 1248 * source. 1249 */ 1250 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1251 if (state) { 1252 state->last_time = INITIAL_JIFFIES; 1253 disk->random = state; 1254 } 1255 } 1256 #endif 1257 1258 struct entropy_timer_state { 1259 unsigned long entropy; 1260 struct timer_list timer; 1261 atomic_t samples; 1262 unsigned int samples_per_bit; 1263 }; 1264 1265 /* 1266 * Each time the timer fires, we expect that we got an unpredictable jump in 1267 * the cycle counter. Even if the timer is running on another CPU, the timer 1268 * activity will be touching the stack of the CPU that is generating entropy. 1269 * 1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be 1271 * scheduled away, since that just makes the load more complex, but we do not 1272 * want the timer to keep ticking unless the entropy loop is running. 1273 * 1274 * So the re-arming always happens in the entropy loop itself. 1275 */ 1276 static void __cold entropy_timer(struct timer_list *timer) 1277 { 1278 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1279 unsigned long entropy = random_get_entropy(); 1280 1281 mix_pool_bytes(&entropy, sizeof(entropy)); 1282 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) 1283 credit_init_bits(1); 1284 } 1285 1286 /* 1287 * If we have an actual cycle counter, see if we can generate enough entropy 1288 * with timing noise. 1289 */ 1290 static void __cold try_to_generate_entropy(void) 1291 { 1292 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1293 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; 1294 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); 1295 unsigned int i, num_different = 0; 1296 unsigned long last = random_get_entropy(); 1297 int cpu = -1; 1298 1299 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1300 stack->entropy = random_get_entropy(); 1301 if (stack->entropy != last) 1302 ++num_different; 1303 last = stack->entropy; 1304 } 1305 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1306 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) 1307 return; 1308 1309 atomic_set(&stack->samples, 0); 1310 timer_setup_on_stack(&stack->timer, entropy_timer, 0); 1311 while (!crng_ready() && !signal_pending(current)) { 1312 /* 1313 * Check !timer_pending() and then ensure that any previous callback has finished 1314 * executing by checking try_to_del_timer_sync(), before queueing the next one. 1315 */ 1316 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) { 1317 struct cpumask timer_cpus; 1318 unsigned int num_cpus; 1319 1320 /* 1321 * Preemption must be disabled here, both to read the current CPU number 1322 * and to avoid scheduling a timer on a dead CPU. 1323 */ 1324 preempt_disable(); 1325 1326 /* Only schedule callbacks on timer CPUs that are online. */ 1327 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); 1328 num_cpus = cpumask_weight(&timer_cpus); 1329 /* In very bizarre case of misconfiguration, fallback to all online. */ 1330 if (unlikely(num_cpus == 0)) { 1331 timer_cpus = *cpu_online_mask; 1332 num_cpus = cpumask_weight(&timer_cpus); 1333 } 1334 1335 /* Basic CPU round-robin, which avoids the current CPU. */ 1336 do { 1337 cpu = cpumask_next(cpu, &timer_cpus); 1338 if (cpu >= nr_cpu_ids) 1339 cpu = cpumask_first(&timer_cpus); 1340 } while (cpu == smp_processor_id() && num_cpus > 1); 1341 1342 /* Expiring the timer at `jiffies` means it's the next tick. */ 1343 stack->timer.expires = jiffies; 1344 1345 add_timer_on(&stack->timer, cpu); 1346 1347 preempt_enable(); 1348 } 1349 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1350 schedule(); 1351 stack->entropy = random_get_entropy(); 1352 } 1353 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1354 1355 del_timer_sync(&stack->timer); 1356 destroy_timer_on_stack(&stack->timer); 1357 } 1358 1359 1360 /********************************************************************** 1361 * 1362 * Userspace reader/writer interfaces. 1363 * 1364 * getrandom(2) is the primary modern interface into the RNG and should 1365 * be used in preference to anything else. 1366 * 1367 * Reading from /dev/random has the same functionality as calling 1368 * getrandom(2) with flags=0. In earlier versions, however, it had 1369 * vastly different semantics and should therefore be avoided, to 1370 * prevent backwards compatibility issues. 1371 * 1372 * Reading from /dev/urandom has the same functionality as calling 1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1374 * waiting for the RNG to be ready, it should not be used. 1375 * 1376 * Writing to either /dev/random or /dev/urandom adds entropy to 1377 * the input pool but does not credit it. 1378 * 1379 * Polling on /dev/random indicates when the RNG is initialized, on 1380 * the read side, and when it wants new entropy, on the write side. 1381 * 1382 * Both /dev/random and /dev/urandom have the same set of ioctls for 1383 * adding entropy, getting the entropy count, zeroing the count, and 1384 * reseeding the crng. 1385 * 1386 **********************************************************************/ 1387 1388 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1389 { 1390 struct iov_iter iter; 1391 int ret; 1392 1393 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1394 return -EINVAL; 1395 1396 /* 1397 * Requesting insecure and blocking randomness at the same time makes 1398 * no sense. 1399 */ 1400 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1401 return -EINVAL; 1402 1403 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1404 if (flags & GRND_NONBLOCK) 1405 return -EAGAIN; 1406 ret = wait_for_random_bytes(); 1407 if (unlikely(ret)) 1408 return ret; 1409 } 1410 1411 ret = import_ubuf(ITER_DEST, ubuf, len, &iter); 1412 if (unlikely(ret)) 1413 return ret; 1414 return get_random_bytes_user(&iter); 1415 } 1416 1417 static __poll_t random_poll(struct file *file, poll_table *wait) 1418 { 1419 poll_wait(file, &crng_init_wait, wait); 1420 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1421 } 1422 1423 static ssize_t write_pool_user(struct iov_iter *iter) 1424 { 1425 u8 block[BLAKE2S_BLOCK_SIZE]; 1426 ssize_t ret = 0; 1427 size_t copied; 1428 1429 if (unlikely(!iov_iter_count(iter))) 1430 return 0; 1431 1432 for (;;) { 1433 copied = copy_from_iter(block, sizeof(block), iter); 1434 ret += copied; 1435 mix_pool_bytes(block, copied); 1436 if (!iov_iter_count(iter) || copied != sizeof(block)) 1437 break; 1438 1439 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1440 if (ret % PAGE_SIZE == 0) { 1441 if (signal_pending(current)) 1442 break; 1443 cond_resched(); 1444 } 1445 } 1446 1447 memzero_explicit(block, sizeof(block)); 1448 return ret ? ret : -EFAULT; 1449 } 1450 1451 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1452 { 1453 return write_pool_user(iter); 1454 } 1455 1456 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1457 { 1458 static int maxwarn = 10; 1459 1460 /* 1461 * Opportunistically attempt to initialize the RNG on platforms that 1462 * have fast cycle counters, but don't (for now) require it to succeed. 1463 */ 1464 if (!crng_ready()) 1465 try_to_generate_entropy(); 1466 1467 if (!crng_ready()) { 1468 if (!ratelimit_disable && maxwarn <= 0) 1469 ++urandom_warning.missed; 1470 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1471 --maxwarn; 1472 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1473 current->comm, iov_iter_count(iter)); 1474 } 1475 } 1476 1477 return get_random_bytes_user(iter); 1478 } 1479 1480 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1481 { 1482 int ret; 1483 1484 if (!crng_ready() && 1485 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1486 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1487 return -EAGAIN; 1488 1489 ret = wait_for_random_bytes(); 1490 if (ret != 0) 1491 return ret; 1492 return get_random_bytes_user(iter); 1493 } 1494 1495 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1496 { 1497 int __user *p = (int __user *)arg; 1498 int ent_count; 1499 1500 switch (cmd) { 1501 case RNDGETENTCNT: 1502 /* Inherently racy, no point locking. */ 1503 if (put_user(input_pool.init_bits, p)) 1504 return -EFAULT; 1505 return 0; 1506 case RNDADDTOENTCNT: 1507 if (!capable(CAP_SYS_ADMIN)) 1508 return -EPERM; 1509 if (get_user(ent_count, p)) 1510 return -EFAULT; 1511 if (ent_count < 0) 1512 return -EINVAL; 1513 credit_init_bits(ent_count); 1514 return 0; 1515 case RNDADDENTROPY: { 1516 struct iov_iter iter; 1517 ssize_t ret; 1518 int len; 1519 1520 if (!capable(CAP_SYS_ADMIN)) 1521 return -EPERM; 1522 if (get_user(ent_count, p++)) 1523 return -EFAULT; 1524 if (ent_count < 0) 1525 return -EINVAL; 1526 if (get_user(len, p++)) 1527 return -EFAULT; 1528 ret = import_ubuf(ITER_SOURCE, p, len, &iter); 1529 if (unlikely(ret)) 1530 return ret; 1531 ret = write_pool_user(&iter); 1532 if (unlikely(ret < 0)) 1533 return ret; 1534 /* Since we're crediting, enforce that it was all written into the pool. */ 1535 if (unlikely(ret != len)) 1536 return -EFAULT; 1537 credit_init_bits(ent_count); 1538 return 0; 1539 } 1540 case RNDZAPENTCNT: 1541 case RNDCLEARPOOL: 1542 /* No longer has any effect. */ 1543 if (!capable(CAP_SYS_ADMIN)) 1544 return -EPERM; 1545 return 0; 1546 case RNDRESEEDCRNG: 1547 if (!capable(CAP_SYS_ADMIN)) 1548 return -EPERM; 1549 if (!crng_ready()) 1550 return -ENODATA; 1551 crng_reseed(NULL); 1552 return 0; 1553 default: 1554 return -EINVAL; 1555 } 1556 } 1557 1558 static int random_fasync(int fd, struct file *filp, int on) 1559 { 1560 return fasync_helper(fd, filp, on, &fasync); 1561 } 1562 1563 const struct file_operations random_fops = { 1564 .read_iter = random_read_iter, 1565 .write_iter = random_write_iter, 1566 .poll = random_poll, 1567 .unlocked_ioctl = random_ioctl, 1568 .compat_ioctl = compat_ptr_ioctl, 1569 .fasync = random_fasync, 1570 .llseek = noop_llseek, 1571 .splice_read = copy_splice_read, 1572 .splice_write = iter_file_splice_write, 1573 }; 1574 1575 const struct file_operations urandom_fops = { 1576 .read_iter = urandom_read_iter, 1577 .write_iter = random_write_iter, 1578 .unlocked_ioctl = random_ioctl, 1579 .compat_ioctl = compat_ptr_ioctl, 1580 .fasync = random_fasync, 1581 .llseek = noop_llseek, 1582 .splice_read = copy_splice_read, 1583 .splice_write = iter_file_splice_write, 1584 }; 1585 1586 1587 /******************************************************************** 1588 * 1589 * Sysctl interface. 1590 * 1591 * These are partly unused legacy knobs with dummy values to not break 1592 * userspace and partly still useful things. They are usually accessible 1593 * in /proc/sys/kernel/random/ and are as follows: 1594 * 1595 * - boot_id - a UUID representing the current boot. 1596 * 1597 * - uuid - a random UUID, different each time the file is read. 1598 * 1599 * - poolsize - the number of bits of entropy that the input pool can 1600 * hold, tied to the POOL_BITS constant. 1601 * 1602 * - entropy_avail - the number of bits of entropy currently in the 1603 * input pool. Always <= poolsize. 1604 * 1605 * - write_wakeup_threshold - the amount of entropy in the input pool 1606 * below which write polls to /dev/random will unblock, requesting 1607 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1608 * to avoid breaking old userspaces, but writing to it does not 1609 * change any behavior of the RNG. 1610 * 1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1612 * It is writable to avoid breaking old userspaces, but writing 1613 * to it does not change any behavior of the RNG. 1614 * 1615 ********************************************************************/ 1616 1617 #ifdef CONFIG_SYSCTL 1618 1619 #include <linux/sysctl.h> 1620 1621 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1622 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1623 static int sysctl_poolsize = POOL_BITS; 1624 static u8 sysctl_bootid[UUID_SIZE]; 1625 1626 /* 1627 * This function is used to return both the bootid UUID, and random 1628 * UUID. The difference is in whether table->data is NULL; if it is, 1629 * then a new UUID is generated and returned to the user. 1630 */ 1631 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, 1632 size_t *lenp, loff_t *ppos) 1633 { 1634 u8 tmp_uuid[UUID_SIZE], *uuid; 1635 char uuid_string[UUID_STRING_LEN + 1]; 1636 struct ctl_table fake_table = { 1637 .data = uuid_string, 1638 .maxlen = UUID_STRING_LEN 1639 }; 1640 1641 if (write) 1642 return -EPERM; 1643 1644 uuid = table->data; 1645 if (!uuid) { 1646 uuid = tmp_uuid; 1647 generate_random_uuid(uuid); 1648 } else { 1649 static DEFINE_SPINLOCK(bootid_spinlock); 1650 1651 spin_lock(&bootid_spinlock); 1652 if (!uuid[8]) 1653 generate_random_uuid(uuid); 1654 spin_unlock(&bootid_spinlock); 1655 } 1656 1657 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1658 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1659 } 1660 1661 /* The same as proc_dointvec, but writes don't change anything. */ 1662 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, 1663 size_t *lenp, loff_t *ppos) 1664 { 1665 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1666 } 1667 1668 static struct ctl_table random_table[] = { 1669 { 1670 .procname = "poolsize", 1671 .data = &sysctl_poolsize, 1672 .maxlen = sizeof(int), 1673 .mode = 0444, 1674 .proc_handler = proc_dointvec, 1675 }, 1676 { 1677 .procname = "entropy_avail", 1678 .data = &input_pool.init_bits, 1679 .maxlen = sizeof(int), 1680 .mode = 0444, 1681 .proc_handler = proc_dointvec, 1682 }, 1683 { 1684 .procname = "write_wakeup_threshold", 1685 .data = &sysctl_random_write_wakeup_bits, 1686 .maxlen = sizeof(int), 1687 .mode = 0644, 1688 .proc_handler = proc_do_rointvec, 1689 }, 1690 { 1691 .procname = "urandom_min_reseed_secs", 1692 .data = &sysctl_random_min_urandom_seed, 1693 .maxlen = sizeof(int), 1694 .mode = 0644, 1695 .proc_handler = proc_do_rointvec, 1696 }, 1697 { 1698 .procname = "boot_id", 1699 .data = &sysctl_bootid, 1700 .mode = 0444, 1701 .proc_handler = proc_do_uuid, 1702 }, 1703 { 1704 .procname = "uuid", 1705 .mode = 0444, 1706 .proc_handler = proc_do_uuid, 1707 }, 1708 }; 1709 1710 /* 1711 * random_init() is called before sysctl_init(), 1712 * so we cannot call register_sysctl_init() in random_init() 1713 */ 1714 static int __init random_sysctls_init(void) 1715 { 1716 register_sysctl_init("kernel/random", random_table); 1717 return 0; 1718 } 1719 device_initcall(random_sysctls_init); 1720 #endif 1721