1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <linux/sched/isolation.h> 57 #include <crypto/chacha.h> 58 #include <crypto/blake2s.h> 59 #ifdef CONFIG_VDSO_GETRANDOM 60 #include <vdso/getrandom.h> 61 #include <vdso/datapage.h> 62 #endif 63 #include <asm/archrandom.h> 64 #include <asm/processor.h> 65 #include <asm/irq.h> 66 #include <asm/irq_regs.h> 67 #include <asm/io.h> 68 69 /********************************************************************* 70 * 71 * Initialization and readiness waiting. 72 * 73 * Much of the RNG infrastructure is devoted to various dependencies 74 * being able to wait until the RNG has collected enough entropy and 75 * is ready for safe consumption. 76 * 77 *********************************************************************/ 78 79 /* 80 * crng_init is protected by base_crng->lock, and only increases 81 * its value (from empty->early->ready). 82 */ 83 static enum { 84 CRNG_EMPTY = 0, /* Little to no entropy collected */ 85 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 86 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 87 } crng_init __read_mostly = CRNG_EMPTY; 88 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 89 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 90 /* Various types of waiters for crng_init->CRNG_READY transition. */ 91 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 92 static struct fasync_struct *fasync; 93 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 94 95 /* Control how we warn userspace. */ 96 static struct ratelimit_state urandom_warning = 97 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 98 static int ratelimit_disable __read_mostly = 99 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 100 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 101 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 102 103 /* 104 * Returns whether or not the input pool has been seeded and thus guaranteed 105 * to supply cryptographically secure random numbers. This applies to: the 106 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 107 * u16,u32,u64,long} family of functions. 108 * 109 * Returns: true if the input pool has been seeded. 110 * false if the input pool has not been seeded. 111 */ 112 bool rng_is_initialized(void) 113 { 114 return crng_ready(); 115 } 116 EXPORT_SYMBOL(rng_is_initialized); 117 118 static void __cold crng_set_ready(struct work_struct *work) 119 { 120 static_branch_enable(&crng_is_ready); 121 } 122 123 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 124 static void try_to_generate_entropy(void); 125 126 /* 127 * Wait for the input pool to be seeded and thus guaranteed to supply 128 * cryptographically secure random numbers. This applies to: the /dev/urandom 129 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 130 * long} family of functions. Using any of these functions without first 131 * calling this function forfeits the guarantee of security. 132 * 133 * Returns: 0 if the input pool has been seeded. 134 * -ERESTARTSYS if the function was interrupted by a signal. 135 */ 136 int wait_for_random_bytes(void) 137 { 138 while (!crng_ready()) { 139 int ret; 140 141 try_to_generate_entropy(); 142 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 143 if (ret) 144 return ret > 0 ? 0 : ret; 145 } 146 return 0; 147 } 148 EXPORT_SYMBOL(wait_for_random_bytes); 149 150 /* 151 * Add a callback function that will be invoked when the crng is initialised, 152 * or immediately if it already has been. Only use this is you are absolutely 153 * sure it is required. Most users should instead be able to test 154 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 155 */ 156 int __cold execute_with_initialized_rng(struct notifier_block *nb) 157 { 158 unsigned long flags; 159 int ret = 0; 160 161 spin_lock_irqsave(&random_ready_notifier.lock, flags); 162 if (crng_ready()) 163 nb->notifier_call(nb, 0, NULL); 164 else 165 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 166 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 167 return ret; 168 } 169 170 #define warn_unseeded_randomness() \ 171 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 172 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 173 __func__, (void *)_RET_IP_, crng_init) 174 175 176 /********************************************************************* 177 * 178 * Fast key erasure RNG, the "crng". 179 * 180 * These functions expand entropy from the entropy extractor into 181 * long streams for external consumption using the "fast key erasure" 182 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 183 * 184 * There are a few exported interfaces for use by other drivers: 185 * 186 * void get_random_bytes(void *buf, size_t len) 187 * u8 get_random_u8() 188 * u16 get_random_u16() 189 * u32 get_random_u32() 190 * u32 get_random_u32_below(u32 ceil) 191 * u32 get_random_u32_above(u32 floor) 192 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 193 * u64 get_random_u64() 194 * unsigned long get_random_long() 195 * 196 * These interfaces will return the requested number of random bytes 197 * into the given buffer or as a return value. This is equivalent to 198 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 199 * functions may be higher performance for one-off random integers, 200 * because they do a bit of buffering and do not invoke reseeding 201 * until the buffer is emptied. 202 * 203 *********************************************************************/ 204 205 enum { 206 CRNG_RESEED_START_INTERVAL = HZ, 207 CRNG_RESEED_INTERVAL = 60 * HZ 208 }; 209 210 static struct { 211 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 212 unsigned long generation; 213 spinlock_t lock; 214 } base_crng = { 215 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 216 }; 217 218 struct crng { 219 u8 key[CHACHA_KEY_SIZE]; 220 unsigned long generation; 221 local_lock_t lock; 222 }; 223 224 static DEFINE_PER_CPU(struct crng, crngs) = { 225 .generation = ULONG_MAX, 226 .lock = INIT_LOCAL_LOCK(crngs.lock), 227 }; 228 229 /* 230 * Return the interval until the next reseeding, which is normally 231 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 232 * proportional to the uptime. 233 */ 234 static unsigned int crng_reseed_interval(void) 235 { 236 static bool early_boot = true; 237 238 if (unlikely(READ_ONCE(early_boot))) { 239 time64_t uptime = ktime_get_seconds(); 240 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 241 WRITE_ONCE(early_boot, false); 242 else 243 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 244 (unsigned int)uptime / 2 * HZ); 245 } 246 return CRNG_RESEED_INTERVAL; 247 } 248 249 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 250 static void extract_entropy(void *buf, size_t len); 251 252 /* This extracts a new crng key from the input pool. */ 253 static void crng_reseed(struct work_struct *work) 254 { 255 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 256 unsigned long flags; 257 unsigned long next_gen; 258 u8 key[CHACHA_KEY_SIZE]; 259 260 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 261 if (likely(system_unbound_wq)) 262 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 263 264 extract_entropy(key, sizeof(key)); 265 266 /* 267 * We copy the new key into the base_crng, overwriting the old one, 268 * and update the generation counter. We avoid hitting ULONG_MAX, 269 * because the per-cpu crngs are initialized to ULONG_MAX, so this 270 * forces new CPUs that come online to always initialize. 271 */ 272 spin_lock_irqsave(&base_crng.lock, flags); 273 memcpy(base_crng.key, key, sizeof(base_crng.key)); 274 next_gen = base_crng.generation + 1; 275 if (next_gen == ULONG_MAX) 276 ++next_gen; 277 WRITE_ONCE(base_crng.generation, next_gen); 278 #ifdef CONFIG_VDSO_GETRANDOM 279 /* base_crng.generation's invalid value is ULONG_MAX, while 280 * _vdso_rng_data.generation's invalid value is 0, so add one to the 281 * former to arrive at the latter. Use smp_store_release so that this 282 * is ordered with the write above to base_crng.generation. Pairs with 283 * the smp_rmb() before the syscall in the vDSO code. 284 */ 285 smp_store_release(&_vdso_rng_data.generation, next_gen + 1); 286 #endif 287 if (!static_branch_likely(&crng_is_ready)) 288 crng_init = CRNG_READY; 289 spin_unlock_irqrestore(&base_crng.lock, flags); 290 memzero_explicit(key, sizeof(key)); 291 } 292 293 /* 294 * This generates a ChaCha block using the provided key, and then 295 * immediately overwrites that key with half the block. It returns 296 * the resultant ChaCha state to the user, along with the second 297 * half of the block containing 32 bytes of random data that may 298 * be used; random_data_len may not be greater than 32. 299 * 300 * The returned ChaCha state contains within it a copy of the old 301 * key value, at index 4, so the state should always be zeroed out 302 * immediately after using in order to maintain forward secrecy. 303 * If the state cannot be erased in a timely manner, then it is 304 * safer to set the random_data parameter to &chacha_state[4] so 305 * that this function overwrites it before returning. 306 */ 307 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 308 u32 chacha_state[CHACHA_STATE_WORDS], 309 u8 *random_data, size_t random_data_len) 310 { 311 u8 first_block[CHACHA_BLOCK_SIZE]; 312 313 BUG_ON(random_data_len > 32); 314 315 chacha_init_consts(chacha_state); 316 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 317 memset(&chacha_state[12], 0, sizeof(u32) * 4); 318 chacha20_block(chacha_state, first_block); 319 320 memcpy(key, first_block, CHACHA_KEY_SIZE); 321 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 322 memzero_explicit(first_block, sizeof(first_block)); 323 } 324 325 /* 326 * This function returns a ChaCha state that you may use for generating 327 * random data. It also returns up to 32 bytes on its own of random data 328 * that may be used; random_data_len may not be greater than 32. 329 */ 330 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 331 u8 *random_data, size_t random_data_len) 332 { 333 unsigned long flags; 334 struct crng *crng; 335 336 BUG_ON(random_data_len > 32); 337 338 /* 339 * For the fast path, we check whether we're ready, unlocked first, and 340 * then re-check once locked later. In the case where we're really not 341 * ready, we do fast key erasure with the base_crng directly, extracting 342 * when crng_init is CRNG_EMPTY. 343 */ 344 if (!crng_ready()) { 345 bool ready; 346 347 spin_lock_irqsave(&base_crng.lock, flags); 348 ready = crng_ready(); 349 if (!ready) { 350 if (crng_init == CRNG_EMPTY) 351 extract_entropy(base_crng.key, sizeof(base_crng.key)); 352 crng_fast_key_erasure(base_crng.key, chacha_state, 353 random_data, random_data_len); 354 } 355 spin_unlock_irqrestore(&base_crng.lock, flags); 356 if (!ready) 357 return; 358 } 359 360 local_lock_irqsave(&crngs.lock, flags); 361 crng = raw_cpu_ptr(&crngs); 362 363 /* 364 * If our per-cpu crng is older than the base_crng, then it means 365 * somebody reseeded the base_crng. In that case, we do fast key 366 * erasure on the base_crng, and use its output as the new key 367 * for our per-cpu crng. This brings us up to date with base_crng. 368 */ 369 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 370 spin_lock(&base_crng.lock); 371 crng_fast_key_erasure(base_crng.key, chacha_state, 372 crng->key, sizeof(crng->key)); 373 crng->generation = base_crng.generation; 374 spin_unlock(&base_crng.lock); 375 } 376 377 /* 378 * Finally, when we've made it this far, our per-cpu crng has an up 379 * to date key, and we can do fast key erasure with it to produce 380 * some random data and a ChaCha state for the caller. All other 381 * branches of this function are "unlikely", so most of the time we 382 * should wind up here immediately. 383 */ 384 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 385 local_unlock_irqrestore(&crngs.lock, flags); 386 } 387 388 static void _get_random_bytes(void *buf, size_t len) 389 { 390 u32 chacha_state[CHACHA_STATE_WORDS]; 391 u8 tmp[CHACHA_BLOCK_SIZE]; 392 size_t first_block_len; 393 394 if (!len) 395 return; 396 397 first_block_len = min_t(size_t, 32, len); 398 crng_make_state(chacha_state, buf, first_block_len); 399 len -= first_block_len; 400 buf += first_block_len; 401 402 while (len) { 403 if (len < CHACHA_BLOCK_SIZE) { 404 chacha20_block(chacha_state, tmp); 405 memcpy(buf, tmp, len); 406 memzero_explicit(tmp, sizeof(tmp)); 407 break; 408 } 409 410 chacha20_block(chacha_state, buf); 411 if (unlikely(chacha_state[12] == 0)) 412 ++chacha_state[13]; 413 len -= CHACHA_BLOCK_SIZE; 414 buf += CHACHA_BLOCK_SIZE; 415 } 416 417 memzero_explicit(chacha_state, sizeof(chacha_state)); 418 } 419 420 /* 421 * This returns random bytes in arbitrary quantities. The quality of the 422 * random bytes is good as /dev/urandom. In order to ensure that the 423 * randomness provided by this function is okay, the function 424 * wait_for_random_bytes() should be called and return 0 at least once 425 * at any point prior. 426 */ 427 void get_random_bytes(void *buf, size_t len) 428 { 429 warn_unseeded_randomness(); 430 _get_random_bytes(buf, len); 431 } 432 EXPORT_SYMBOL(get_random_bytes); 433 434 static ssize_t get_random_bytes_user(struct iov_iter *iter) 435 { 436 u32 chacha_state[CHACHA_STATE_WORDS]; 437 u8 block[CHACHA_BLOCK_SIZE]; 438 size_t ret = 0, copied; 439 440 if (unlikely(!iov_iter_count(iter))) 441 return 0; 442 443 /* 444 * Immediately overwrite the ChaCha key at index 4 with random 445 * bytes, in case userspace causes copy_to_iter() below to sleep 446 * forever, so that we still retain forward secrecy in that case. 447 */ 448 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 449 /* 450 * However, if we're doing a read of len <= 32, we don't need to 451 * use chacha_state after, so we can simply return those bytes to 452 * the user directly. 453 */ 454 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 455 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 456 goto out_zero_chacha; 457 } 458 459 for (;;) { 460 chacha20_block(chacha_state, block); 461 if (unlikely(chacha_state[12] == 0)) 462 ++chacha_state[13]; 463 464 copied = copy_to_iter(block, sizeof(block), iter); 465 ret += copied; 466 if (!iov_iter_count(iter) || copied != sizeof(block)) 467 break; 468 469 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 470 if (ret % PAGE_SIZE == 0) { 471 if (signal_pending(current)) 472 break; 473 cond_resched(); 474 } 475 } 476 477 memzero_explicit(block, sizeof(block)); 478 out_zero_chacha: 479 memzero_explicit(chacha_state, sizeof(chacha_state)); 480 return ret ? ret : -EFAULT; 481 } 482 483 /* 484 * Batched entropy returns random integers. The quality of the random 485 * number is good as /dev/urandom. In order to ensure that the randomness 486 * provided by this function is okay, the function wait_for_random_bytes() 487 * should be called and return 0 at least once at any point prior. 488 */ 489 490 #define DEFINE_BATCHED_ENTROPY(type) \ 491 struct batch_ ##type { \ 492 /* \ 493 * We make this 1.5x a ChaCha block, so that we get the \ 494 * remaining 32 bytes from fast key erasure, plus one full \ 495 * block from the detached ChaCha state. We can increase \ 496 * the size of this later if needed so long as we keep the \ 497 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 498 */ \ 499 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 500 local_lock_t lock; \ 501 unsigned long generation; \ 502 unsigned int position; \ 503 }; \ 504 \ 505 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 506 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 507 .position = UINT_MAX \ 508 }; \ 509 \ 510 type get_random_ ##type(void) \ 511 { \ 512 type ret; \ 513 unsigned long flags; \ 514 struct batch_ ##type *batch; \ 515 unsigned long next_gen; \ 516 \ 517 warn_unseeded_randomness(); \ 518 \ 519 if (!crng_ready()) { \ 520 _get_random_bytes(&ret, sizeof(ret)); \ 521 return ret; \ 522 } \ 523 \ 524 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 525 batch = raw_cpu_ptr(&batched_entropy_##type); \ 526 \ 527 next_gen = READ_ONCE(base_crng.generation); \ 528 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 529 next_gen != batch->generation) { \ 530 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 531 batch->position = 0; \ 532 batch->generation = next_gen; \ 533 } \ 534 \ 535 ret = batch->entropy[batch->position]; \ 536 batch->entropy[batch->position] = 0; \ 537 ++batch->position; \ 538 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 539 return ret; \ 540 } \ 541 EXPORT_SYMBOL(get_random_ ##type); 542 543 DEFINE_BATCHED_ENTROPY(u8) 544 DEFINE_BATCHED_ENTROPY(u16) 545 DEFINE_BATCHED_ENTROPY(u32) 546 DEFINE_BATCHED_ENTROPY(u64) 547 548 u32 __get_random_u32_below(u32 ceil) 549 { 550 /* 551 * This is the slow path for variable ceil. It is still fast, most of 552 * the time, by doing traditional reciprocal multiplication and 553 * opportunistically comparing the lower half to ceil itself, before 554 * falling back to computing a larger bound, and then rejecting samples 555 * whose lower half would indicate a range indivisible by ceil. The use 556 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 557 * in 32-bits. 558 */ 559 u32 rand = get_random_u32(); 560 u64 mult; 561 562 /* 563 * This function is technically undefined for ceil == 0, and in fact 564 * for the non-underscored constant version in the header, we build bug 565 * on that. But for the non-constant case, it's convenient to have that 566 * evaluate to being a straight call to get_random_u32(), so that 567 * get_random_u32_inclusive() can work over its whole range without 568 * undefined behavior. 569 */ 570 if (unlikely(!ceil)) 571 return rand; 572 573 mult = (u64)ceil * rand; 574 if (unlikely((u32)mult < ceil)) { 575 u32 bound = -ceil % ceil; 576 while (unlikely((u32)mult < bound)) 577 mult = (u64)ceil * get_random_u32(); 578 } 579 return mult >> 32; 580 } 581 EXPORT_SYMBOL(__get_random_u32_below); 582 583 #ifdef CONFIG_SMP 584 /* 585 * This function is called when the CPU is coming up, with entry 586 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 587 */ 588 int __cold random_prepare_cpu(unsigned int cpu) 589 { 590 /* 591 * When the cpu comes back online, immediately invalidate both 592 * the per-cpu crng and all batches, so that we serve fresh 593 * randomness. 594 */ 595 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 596 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 597 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 598 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 599 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 600 return 0; 601 } 602 #endif 603 604 605 /********************************************************************** 606 * 607 * Entropy accumulation and extraction routines. 608 * 609 * Callers may add entropy via: 610 * 611 * static void mix_pool_bytes(const void *buf, size_t len) 612 * 613 * After which, if added entropy should be credited: 614 * 615 * static void credit_init_bits(size_t bits) 616 * 617 * Finally, extract entropy via: 618 * 619 * static void extract_entropy(void *buf, size_t len) 620 * 621 **********************************************************************/ 622 623 enum { 624 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 625 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 626 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 627 }; 628 629 static struct { 630 struct blake2s_state hash; 631 spinlock_t lock; 632 unsigned int init_bits; 633 } input_pool = { 634 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 635 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 636 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 637 .hash.outlen = BLAKE2S_HASH_SIZE, 638 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 639 }; 640 641 static void _mix_pool_bytes(const void *buf, size_t len) 642 { 643 blake2s_update(&input_pool.hash, buf, len); 644 } 645 646 /* 647 * This function adds bytes into the input pool. It does not 648 * update the initialization bit counter; the caller should call 649 * credit_init_bits if this is appropriate. 650 */ 651 static void mix_pool_bytes(const void *buf, size_t len) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&input_pool.lock, flags); 656 _mix_pool_bytes(buf, len); 657 spin_unlock_irqrestore(&input_pool.lock, flags); 658 } 659 660 /* 661 * This is an HKDF-like construction for using the hashed collected entropy 662 * as a PRF key, that's then expanded block-by-block. 663 */ 664 static void extract_entropy(void *buf, size_t len) 665 { 666 unsigned long flags; 667 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 668 struct { 669 unsigned long rdseed[32 / sizeof(long)]; 670 size_t counter; 671 } block; 672 size_t i, longs; 673 674 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 675 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 676 if (longs) { 677 i += longs; 678 continue; 679 } 680 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 681 if (longs) { 682 i += longs; 683 continue; 684 } 685 block.rdseed[i++] = random_get_entropy(); 686 } 687 688 spin_lock_irqsave(&input_pool.lock, flags); 689 690 /* seed = HASHPRF(last_key, entropy_input) */ 691 blake2s_final(&input_pool.hash, seed); 692 693 /* next_key = HASHPRF(seed, RDSEED || 0) */ 694 block.counter = 0; 695 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 696 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 697 698 spin_unlock_irqrestore(&input_pool.lock, flags); 699 memzero_explicit(next_key, sizeof(next_key)); 700 701 while (len) { 702 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 703 /* output = HASHPRF(seed, RDSEED || ++counter) */ 704 ++block.counter; 705 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 706 len -= i; 707 buf += i; 708 } 709 710 memzero_explicit(seed, sizeof(seed)); 711 memzero_explicit(&block, sizeof(block)); 712 } 713 714 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 715 716 static void __cold _credit_init_bits(size_t bits) 717 { 718 static DECLARE_WORK(set_ready, crng_set_ready); 719 unsigned int new, orig, add; 720 unsigned long flags; 721 722 if (!bits) 723 return; 724 725 add = min_t(size_t, bits, POOL_BITS); 726 727 orig = READ_ONCE(input_pool.init_bits); 728 do { 729 new = min_t(unsigned int, POOL_BITS, orig + add); 730 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 731 732 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 733 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 734 if (static_key_initialized && system_unbound_wq) 735 queue_work(system_unbound_wq, &set_ready); 736 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 737 #ifdef CONFIG_VDSO_GETRANDOM 738 WRITE_ONCE(_vdso_rng_data.is_ready, true); 739 #endif 740 wake_up_interruptible(&crng_init_wait); 741 kill_fasync(&fasync, SIGIO, POLL_IN); 742 pr_notice("crng init done\n"); 743 if (urandom_warning.missed) 744 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 745 urandom_warning.missed); 746 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 747 spin_lock_irqsave(&base_crng.lock, flags); 748 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 749 if (crng_init == CRNG_EMPTY) { 750 extract_entropy(base_crng.key, sizeof(base_crng.key)); 751 crng_init = CRNG_EARLY; 752 } 753 spin_unlock_irqrestore(&base_crng.lock, flags); 754 } 755 } 756 757 758 /********************************************************************** 759 * 760 * Entropy collection routines. 761 * 762 * The following exported functions are used for pushing entropy into 763 * the above entropy accumulation routines: 764 * 765 * void add_device_randomness(const void *buf, size_t len); 766 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 767 * void add_bootloader_randomness(const void *buf, size_t len); 768 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 769 * void add_interrupt_randomness(int irq); 770 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 771 * void add_disk_randomness(struct gendisk *disk); 772 * 773 * add_device_randomness() adds data to the input pool that 774 * is likely to differ between two devices (or possibly even per boot). 775 * This would be things like MAC addresses or serial numbers, or the 776 * read-out of the RTC. This does *not* credit any actual entropy to 777 * the pool, but it initializes the pool to different values for devices 778 * that might otherwise be identical and have very little entropy 779 * available to them (particularly common in the embedded world). 780 * 781 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 782 * entropy as specified by the caller. If the entropy pool is full it will 783 * block until more entropy is needed. 784 * 785 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 786 * and device tree, and credits its input depending on whether or not the 787 * command line option 'random.trust_bootloader'. 788 * 789 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 790 * representing the current instance of a VM to the pool, without crediting, 791 * and then force-reseeds the crng so that it takes effect immediately. 792 * 793 * add_interrupt_randomness() uses the interrupt timing as random 794 * inputs to the entropy pool. Using the cycle counters and the irq source 795 * as inputs, it feeds the input pool roughly once a second or after 64 796 * interrupts, crediting 1 bit of entropy for whichever comes first. 797 * 798 * add_input_randomness() uses the input layer interrupt timing, as well 799 * as the event type information from the hardware. 800 * 801 * add_disk_randomness() uses what amounts to the seek time of block 802 * layer request events, on a per-disk_devt basis, as input to the 803 * entropy pool. Note that high-speed solid state drives with very low 804 * seek times do not make for good sources of entropy, as their seek 805 * times are usually fairly consistent. 806 * 807 * The last two routines try to estimate how many bits of entropy 808 * to credit. They do this by keeping track of the first and second 809 * order deltas of the event timings. 810 * 811 **********************************************************************/ 812 813 static bool trust_cpu __initdata = true; 814 static bool trust_bootloader __initdata = true; 815 static int __init parse_trust_cpu(char *arg) 816 { 817 return kstrtobool(arg, &trust_cpu); 818 } 819 static int __init parse_trust_bootloader(char *arg) 820 { 821 return kstrtobool(arg, &trust_bootloader); 822 } 823 early_param("random.trust_cpu", parse_trust_cpu); 824 early_param("random.trust_bootloader", parse_trust_bootloader); 825 826 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 827 { 828 unsigned long flags, entropy = random_get_entropy(); 829 830 /* 831 * Encode a representation of how long the system has been suspended, 832 * in a way that is distinct from prior system suspends. 833 */ 834 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 835 836 spin_lock_irqsave(&input_pool.lock, flags); 837 _mix_pool_bytes(&action, sizeof(action)); 838 _mix_pool_bytes(stamps, sizeof(stamps)); 839 _mix_pool_bytes(&entropy, sizeof(entropy)); 840 spin_unlock_irqrestore(&input_pool.lock, flags); 841 842 if (crng_ready() && (action == PM_RESTORE_PREPARE || 843 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 844 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 845 crng_reseed(NULL); 846 pr_notice("crng reseeded on system resumption\n"); 847 } 848 return 0; 849 } 850 851 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 852 853 /* 854 * This is called extremely early, before time keeping functionality is 855 * available, but arch randomness is. Interrupts are not yet enabled. 856 */ 857 void __init random_init_early(const char *command_line) 858 { 859 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 860 size_t i, longs, arch_bits; 861 862 #if defined(LATENT_ENTROPY_PLUGIN) 863 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 864 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 865 #endif 866 867 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 868 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 869 if (longs) { 870 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 871 i += longs; 872 continue; 873 } 874 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 875 if (longs) { 876 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 877 i += longs; 878 continue; 879 } 880 arch_bits -= sizeof(*entropy) * 8; 881 ++i; 882 } 883 884 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 885 _mix_pool_bytes(command_line, strlen(command_line)); 886 887 /* Reseed if already seeded by earlier phases. */ 888 if (crng_ready()) 889 crng_reseed(NULL); 890 else if (trust_cpu) 891 _credit_init_bits(arch_bits); 892 } 893 894 /* 895 * This is called a little bit after the prior function, and now there is 896 * access to timestamps counters. Interrupts are not yet enabled. 897 */ 898 void __init random_init(void) 899 { 900 unsigned long entropy = random_get_entropy(); 901 ktime_t now = ktime_get_real(); 902 903 _mix_pool_bytes(&now, sizeof(now)); 904 _mix_pool_bytes(&entropy, sizeof(entropy)); 905 add_latent_entropy(); 906 907 /* 908 * If we were initialized by the cpu or bootloader before jump labels 909 * or workqueues are initialized, then we should enable the static 910 * branch here, where it's guaranteed that these have been initialized. 911 */ 912 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 913 crng_set_ready(NULL); 914 915 /* Reseed if already seeded by earlier phases. */ 916 if (crng_ready()) 917 crng_reseed(NULL); 918 919 WARN_ON(register_pm_notifier(&pm_notifier)); 920 921 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 922 "entropy collection will consequently suffer."); 923 } 924 925 /* 926 * Add device- or boot-specific data to the input pool to help 927 * initialize it. 928 * 929 * None of this adds any entropy; it is meant to avoid the problem of 930 * the entropy pool having similar initial state across largely 931 * identical devices. 932 */ 933 void add_device_randomness(const void *buf, size_t len) 934 { 935 unsigned long entropy = random_get_entropy(); 936 unsigned long flags; 937 938 spin_lock_irqsave(&input_pool.lock, flags); 939 _mix_pool_bytes(&entropy, sizeof(entropy)); 940 _mix_pool_bytes(buf, len); 941 spin_unlock_irqrestore(&input_pool.lock, flags); 942 } 943 EXPORT_SYMBOL(add_device_randomness); 944 945 /* 946 * Interface for in-kernel drivers of true hardware RNGs. Those devices 947 * may produce endless random bits, so this function will sleep for 948 * some amount of time after, if the sleep_after parameter is true. 949 */ 950 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 951 { 952 mix_pool_bytes(buf, len); 953 credit_init_bits(entropy); 954 955 /* 956 * Throttle writing to once every reseed interval, unless we're not yet 957 * initialized or no entropy is credited. 958 */ 959 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 960 schedule_timeout_interruptible(crng_reseed_interval()); 961 } 962 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 963 964 /* 965 * Handle random seed passed by bootloader, and credit it depending 966 * on the command line option 'random.trust_bootloader'. 967 */ 968 void __init add_bootloader_randomness(const void *buf, size_t len) 969 { 970 mix_pool_bytes(buf, len); 971 if (trust_bootloader) 972 credit_init_bits(len * 8); 973 } 974 975 #if IS_ENABLED(CONFIG_VMGENID) 976 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 977 978 /* 979 * Handle a new unique VM ID, which is unique, not secret, so we 980 * don't credit it, but we do immediately force a reseed after so 981 * that it's used by the crng posthaste. 982 */ 983 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 984 { 985 add_device_randomness(unique_vm_id, len); 986 if (crng_ready()) { 987 crng_reseed(NULL); 988 pr_notice("crng reseeded due to virtual machine fork\n"); 989 } 990 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 991 } 992 #if IS_MODULE(CONFIG_VMGENID) 993 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 994 #endif 995 996 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 997 { 998 return blocking_notifier_chain_register(&vmfork_chain, nb); 999 } 1000 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1001 1002 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 1003 { 1004 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1005 } 1006 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1007 #endif 1008 1009 struct fast_pool { 1010 unsigned long pool[4]; 1011 unsigned long last; 1012 unsigned int count; 1013 struct timer_list mix; 1014 }; 1015 1016 static void mix_interrupt_randomness(struct timer_list *work); 1017 1018 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1019 #ifdef CONFIG_64BIT 1020 #define FASTMIX_PERM SIPHASH_PERMUTATION 1021 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1022 #else 1023 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1024 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1025 #endif 1026 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1027 }; 1028 1029 /* 1030 * This is [Half]SipHash-1-x, starting from an empty key. Because 1031 * the key is fixed, it assumes that its inputs are non-malicious, 1032 * and therefore this has no security on its own. s represents the 1033 * four-word SipHash state, while v represents a two-word input. 1034 */ 1035 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1036 { 1037 s[3] ^= v1; 1038 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1039 s[0] ^= v1; 1040 s[3] ^= v2; 1041 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1042 s[0] ^= v2; 1043 } 1044 1045 #ifdef CONFIG_SMP 1046 /* 1047 * This function is called when the CPU has just come online, with 1048 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1049 */ 1050 int __cold random_online_cpu(unsigned int cpu) 1051 { 1052 /* 1053 * During CPU shutdown and before CPU onlining, add_interrupt_ 1054 * randomness() may schedule mix_interrupt_randomness(), and 1055 * set the MIX_INFLIGHT flag. However, because the worker can 1056 * be scheduled on a different CPU during this period, that 1057 * flag will never be cleared. For that reason, we zero out 1058 * the flag here, which runs just after workqueues are onlined 1059 * for the CPU again. This also has the effect of setting the 1060 * irq randomness count to zero so that new accumulated irqs 1061 * are fresh. 1062 */ 1063 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1064 return 0; 1065 } 1066 #endif 1067 1068 static void mix_interrupt_randomness(struct timer_list *work) 1069 { 1070 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1071 /* 1072 * The size of the copied stack pool is explicitly 2 longs so that we 1073 * only ever ingest half of the siphash output each time, retaining 1074 * the other half as the next "key" that carries over. The entropy is 1075 * supposed to be sufficiently dispersed between bits so on average 1076 * we don't wind up "losing" some. 1077 */ 1078 unsigned long pool[2]; 1079 unsigned int count; 1080 1081 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1082 local_irq_disable(); 1083 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1084 local_irq_enable(); 1085 return; 1086 } 1087 1088 /* 1089 * Copy the pool to the stack so that the mixer always has a 1090 * consistent view, before we reenable irqs again. 1091 */ 1092 memcpy(pool, fast_pool->pool, sizeof(pool)); 1093 count = fast_pool->count; 1094 fast_pool->count = 0; 1095 fast_pool->last = jiffies; 1096 local_irq_enable(); 1097 1098 mix_pool_bytes(pool, sizeof(pool)); 1099 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1100 1101 memzero_explicit(pool, sizeof(pool)); 1102 } 1103 1104 void add_interrupt_randomness(int irq) 1105 { 1106 enum { MIX_INFLIGHT = 1U << 31 }; 1107 unsigned long entropy = random_get_entropy(); 1108 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1109 struct pt_regs *regs = get_irq_regs(); 1110 unsigned int new_count; 1111 1112 fast_mix(fast_pool->pool, entropy, 1113 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1114 new_count = ++fast_pool->count; 1115 1116 if (new_count & MIX_INFLIGHT) 1117 return; 1118 1119 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1120 return; 1121 1122 fast_pool->count |= MIX_INFLIGHT; 1123 if (!timer_pending(&fast_pool->mix)) { 1124 fast_pool->mix.expires = jiffies; 1125 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1126 } 1127 } 1128 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1129 1130 /* There is one of these per entropy source */ 1131 struct timer_rand_state { 1132 unsigned long last_time; 1133 long last_delta, last_delta2; 1134 }; 1135 1136 /* 1137 * This function adds entropy to the entropy "pool" by using timing 1138 * delays. It uses the timer_rand_state structure to make an estimate 1139 * of how many bits of entropy this call has added to the pool. The 1140 * value "num" is also added to the pool; it should somehow describe 1141 * the type of event that just happened. 1142 */ 1143 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1144 { 1145 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1146 long delta, delta2, delta3; 1147 unsigned int bits; 1148 1149 /* 1150 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1151 * sometime after, so mix into the fast pool. 1152 */ 1153 if (in_hardirq()) { 1154 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1155 } else { 1156 spin_lock_irqsave(&input_pool.lock, flags); 1157 _mix_pool_bytes(&entropy, sizeof(entropy)); 1158 _mix_pool_bytes(&num, sizeof(num)); 1159 spin_unlock_irqrestore(&input_pool.lock, flags); 1160 } 1161 1162 if (crng_ready()) 1163 return; 1164 1165 /* 1166 * Calculate number of bits of randomness we probably added. 1167 * We take into account the first, second and third-order deltas 1168 * in order to make our estimate. 1169 */ 1170 delta = now - READ_ONCE(state->last_time); 1171 WRITE_ONCE(state->last_time, now); 1172 1173 delta2 = delta - READ_ONCE(state->last_delta); 1174 WRITE_ONCE(state->last_delta, delta); 1175 1176 delta3 = delta2 - READ_ONCE(state->last_delta2); 1177 WRITE_ONCE(state->last_delta2, delta2); 1178 1179 if (delta < 0) 1180 delta = -delta; 1181 if (delta2 < 0) 1182 delta2 = -delta2; 1183 if (delta3 < 0) 1184 delta3 = -delta3; 1185 if (delta > delta2) 1186 delta = delta2; 1187 if (delta > delta3) 1188 delta = delta3; 1189 1190 /* 1191 * delta is now minimum absolute delta. Round down by 1 bit 1192 * on general principles, and limit entropy estimate to 11 bits. 1193 */ 1194 bits = min(fls(delta >> 1), 11); 1195 1196 /* 1197 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1198 * will run after this, which uses a different crediting scheme of 1 bit 1199 * per every 64 interrupts. In order to let that function do accounting 1200 * close to the one in this function, we credit a full 64/64 bit per bit, 1201 * and then subtract one to account for the extra one added. 1202 */ 1203 if (in_hardirq()) 1204 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1205 else 1206 _credit_init_bits(bits); 1207 } 1208 1209 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1210 { 1211 static unsigned char last_value; 1212 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1213 1214 /* Ignore autorepeat and the like. */ 1215 if (value == last_value) 1216 return; 1217 1218 last_value = value; 1219 add_timer_randomness(&input_timer_state, 1220 (type << 4) ^ code ^ (code >> 4) ^ value); 1221 } 1222 EXPORT_SYMBOL_GPL(add_input_randomness); 1223 1224 #ifdef CONFIG_BLOCK 1225 void add_disk_randomness(struct gendisk *disk) 1226 { 1227 if (!disk || !disk->random) 1228 return; 1229 /* First major is 1, so we get >= 0x200 here. */ 1230 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1231 } 1232 EXPORT_SYMBOL_GPL(add_disk_randomness); 1233 1234 void __cold rand_initialize_disk(struct gendisk *disk) 1235 { 1236 struct timer_rand_state *state; 1237 1238 /* 1239 * If kzalloc returns null, we just won't use that entropy 1240 * source. 1241 */ 1242 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1243 if (state) { 1244 state->last_time = INITIAL_JIFFIES; 1245 disk->random = state; 1246 } 1247 } 1248 #endif 1249 1250 struct entropy_timer_state { 1251 unsigned long entropy; 1252 struct timer_list timer; 1253 atomic_t samples; 1254 unsigned int samples_per_bit; 1255 }; 1256 1257 /* 1258 * Each time the timer fires, we expect that we got an unpredictable jump in 1259 * the cycle counter. Even if the timer is running on another CPU, the timer 1260 * activity will be touching the stack of the CPU that is generating entropy. 1261 * 1262 * Note that we don't re-arm the timer in the timer itself - we are happy to be 1263 * scheduled away, since that just makes the load more complex, but we do not 1264 * want the timer to keep ticking unless the entropy loop is running. 1265 * 1266 * So the re-arming always happens in the entropy loop itself. 1267 */ 1268 static void __cold entropy_timer(struct timer_list *timer) 1269 { 1270 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1271 unsigned long entropy = random_get_entropy(); 1272 1273 mix_pool_bytes(&entropy, sizeof(entropy)); 1274 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) 1275 credit_init_bits(1); 1276 } 1277 1278 /* 1279 * If we have an actual cycle counter, see if we can generate enough entropy 1280 * with timing noise. 1281 */ 1282 static void __cold try_to_generate_entropy(void) 1283 { 1284 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1285 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; 1286 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); 1287 unsigned int i, num_different = 0; 1288 unsigned long last = random_get_entropy(); 1289 int cpu = -1; 1290 1291 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1292 stack->entropy = random_get_entropy(); 1293 if (stack->entropy != last) 1294 ++num_different; 1295 last = stack->entropy; 1296 } 1297 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1298 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) 1299 return; 1300 1301 atomic_set(&stack->samples, 0); 1302 timer_setup_on_stack(&stack->timer, entropy_timer, 0); 1303 while (!crng_ready() && !signal_pending(current)) { 1304 /* 1305 * Check !timer_pending() and then ensure that any previous callback has finished 1306 * executing by checking try_to_del_timer_sync(), before queueing the next one. 1307 */ 1308 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) { 1309 struct cpumask timer_cpus; 1310 unsigned int num_cpus; 1311 1312 /* 1313 * Preemption must be disabled here, both to read the current CPU number 1314 * and to avoid scheduling a timer on a dead CPU. 1315 */ 1316 preempt_disable(); 1317 1318 /* Only schedule callbacks on timer CPUs that are online. */ 1319 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); 1320 num_cpus = cpumask_weight(&timer_cpus); 1321 /* In very bizarre case of misconfiguration, fallback to all online. */ 1322 if (unlikely(num_cpus == 0)) { 1323 timer_cpus = *cpu_online_mask; 1324 num_cpus = cpumask_weight(&timer_cpus); 1325 } 1326 1327 /* Basic CPU round-robin, which avoids the current CPU. */ 1328 do { 1329 cpu = cpumask_next(cpu, &timer_cpus); 1330 if (cpu >= nr_cpu_ids) 1331 cpu = cpumask_first(&timer_cpus); 1332 } while (cpu == smp_processor_id() && num_cpus > 1); 1333 1334 /* Expiring the timer at `jiffies` means it's the next tick. */ 1335 stack->timer.expires = jiffies; 1336 1337 add_timer_on(&stack->timer, cpu); 1338 1339 preempt_enable(); 1340 } 1341 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1342 schedule(); 1343 stack->entropy = random_get_entropy(); 1344 } 1345 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1346 1347 del_timer_sync(&stack->timer); 1348 destroy_timer_on_stack(&stack->timer); 1349 } 1350 1351 1352 /********************************************************************** 1353 * 1354 * Userspace reader/writer interfaces. 1355 * 1356 * getrandom(2) is the primary modern interface into the RNG and should 1357 * be used in preference to anything else. 1358 * 1359 * Reading from /dev/random has the same functionality as calling 1360 * getrandom(2) with flags=0. In earlier versions, however, it had 1361 * vastly different semantics and should therefore be avoided, to 1362 * prevent backwards compatibility issues. 1363 * 1364 * Reading from /dev/urandom has the same functionality as calling 1365 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1366 * waiting for the RNG to be ready, it should not be used. 1367 * 1368 * Writing to either /dev/random or /dev/urandom adds entropy to 1369 * the input pool but does not credit it. 1370 * 1371 * Polling on /dev/random indicates when the RNG is initialized, on 1372 * the read side, and when it wants new entropy, on the write side. 1373 * 1374 * Both /dev/random and /dev/urandom have the same set of ioctls for 1375 * adding entropy, getting the entropy count, zeroing the count, and 1376 * reseeding the crng. 1377 * 1378 **********************************************************************/ 1379 1380 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1381 { 1382 struct iov_iter iter; 1383 int ret; 1384 1385 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1386 return -EINVAL; 1387 1388 /* 1389 * Requesting insecure and blocking randomness at the same time makes 1390 * no sense. 1391 */ 1392 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1393 return -EINVAL; 1394 1395 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1396 if (flags & GRND_NONBLOCK) 1397 return -EAGAIN; 1398 ret = wait_for_random_bytes(); 1399 if (unlikely(ret)) 1400 return ret; 1401 } 1402 1403 ret = import_ubuf(ITER_DEST, ubuf, len, &iter); 1404 if (unlikely(ret)) 1405 return ret; 1406 return get_random_bytes_user(&iter); 1407 } 1408 1409 static __poll_t random_poll(struct file *file, poll_table *wait) 1410 { 1411 poll_wait(file, &crng_init_wait, wait); 1412 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1413 } 1414 1415 static ssize_t write_pool_user(struct iov_iter *iter) 1416 { 1417 u8 block[BLAKE2S_BLOCK_SIZE]; 1418 ssize_t ret = 0; 1419 size_t copied; 1420 1421 if (unlikely(!iov_iter_count(iter))) 1422 return 0; 1423 1424 for (;;) { 1425 copied = copy_from_iter(block, sizeof(block), iter); 1426 ret += copied; 1427 mix_pool_bytes(block, copied); 1428 if (!iov_iter_count(iter) || copied != sizeof(block)) 1429 break; 1430 1431 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1432 if (ret % PAGE_SIZE == 0) { 1433 if (signal_pending(current)) 1434 break; 1435 cond_resched(); 1436 } 1437 } 1438 1439 memzero_explicit(block, sizeof(block)); 1440 return ret ? ret : -EFAULT; 1441 } 1442 1443 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1444 { 1445 return write_pool_user(iter); 1446 } 1447 1448 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1449 { 1450 static int maxwarn = 10; 1451 1452 /* 1453 * Opportunistically attempt to initialize the RNG on platforms that 1454 * have fast cycle counters, but don't (for now) require it to succeed. 1455 */ 1456 if (!crng_ready()) 1457 try_to_generate_entropy(); 1458 1459 if (!crng_ready()) { 1460 if (!ratelimit_disable && maxwarn <= 0) 1461 ++urandom_warning.missed; 1462 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1463 --maxwarn; 1464 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1465 current->comm, iov_iter_count(iter)); 1466 } 1467 } 1468 1469 return get_random_bytes_user(iter); 1470 } 1471 1472 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1473 { 1474 int ret; 1475 1476 if (!crng_ready() && 1477 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1478 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1479 return -EAGAIN; 1480 1481 ret = wait_for_random_bytes(); 1482 if (ret != 0) 1483 return ret; 1484 return get_random_bytes_user(iter); 1485 } 1486 1487 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1488 { 1489 int __user *p = (int __user *)arg; 1490 int ent_count; 1491 1492 switch (cmd) { 1493 case RNDGETENTCNT: 1494 /* Inherently racy, no point locking. */ 1495 if (put_user(input_pool.init_bits, p)) 1496 return -EFAULT; 1497 return 0; 1498 case RNDADDTOENTCNT: 1499 if (!capable(CAP_SYS_ADMIN)) 1500 return -EPERM; 1501 if (get_user(ent_count, p)) 1502 return -EFAULT; 1503 if (ent_count < 0) 1504 return -EINVAL; 1505 credit_init_bits(ent_count); 1506 return 0; 1507 case RNDADDENTROPY: { 1508 struct iov_iter iter; 1509 ssize_t ret; 1510 int len; 1511 1512 if (!capable(CAP_SYS_ADMIN)) 1513 return -EPERM; 1514 if (get_user(ent_count, p++)) 1515 return -EFAULT; 1516 if (ent_count < 0) 1517 return -EINVAL; 1518 if (get_user(len, p++)) 1519 return -EFAULT; 1520 ret = import_ubuf(ITER_SOURCE, p, len, &iter); 1521 if (unlikely(ret)) 1522 return ret; 1523 ret = write_pool_user(&iter); 1524 if (unlikely(ret < 0)) 1525 return ret; 1526 /* Since we're crediting, enforce that it was all written into the pool. */ 1527 if (unlikely(ret != len)) 1528 return -EFAULT; 1529 credit_init_bits(ent_count); 1530 return 0; 1531 } 1532 case RNDZAPENTCNT: 1533 case RNDCLEARPOOL: 1534 /* No longer has any effect. */ 1535 if (!capable(CAP_SYS_ADMIN)) 1536 return -EPERM; 1537 return 0; 1538 case RNDRESEEDCRNG: 1539 if (!capable(CAP_SYS_ADMIN)) 1540 return -EPERM; 1541 if (!crng_ready()) 1542 return -ENODATA; 1543 crng_reseed(NULL); 1544 return 0; 1545 default: 1546 return -EINVAL; 1547 } 1548 } 1549 1550 static int random_fasync(int fd, struct file *filp, int on) 1551 { 1552 return fasync_helper(fd, filp, on, &fasync); 1553 } 1554 1555 const struct file_operations random_fops = { 1556 .read_iter = random_read_iter, 1557 .write_iter = random_write_iter, 1558 .poll = random_poll, 1559 .unlocked_ioctl = random_ioctl, 1560 .compat_ioctl = compat_ptr_ioctl, 1561 .fasync = random_fasync, 1562 .llseek = noop_llseek, 1563 .splice_read = copy_splice_read, 1564 .splice_write = iter_file_splice_write, 1565 }; 1566 1567 const struct file_operations urandom_fops = { 1568 .read_iter = urandom_read_iter, 1569 .write_iter = random_write_iter, 1570 .unlocked_ioctl = random_ioctl, 1571 .compat_ioctl = compat_ptr_ioctl, 1572 .fasync = random_fasync, 1573 .llseek = noop_llseek, 1574 .splice_read = copy_splice_read, 1575 .splice_write = iter_file_splice_write, 1576 }; 1577 1578 1579 /******************************************************************** 1580 * 1581 * Sysctl interface. 1582 * 1583 * These are partly unused legacy knobs with dummy values to not break 1584 * userspace and partly still useful things. They are usually accessible 1585 * in /proc/sys/kernel/random/ and are as follows: 1586 * 1587 * - boot_id - a UUID representing the current boot. 1588 * 1589 * - uuid - a random UUID, different each time the file is read. 1590 * 1591 * - poolsize - the number of bits of entropy that the input pool can 1592 * hold, tied to the POOL_BITS constant. 1593 * 1594 * - entropy_avail - the number of bits of entropy currently in the 1595 * input pool. Always <= poolsize. 1596 * 1597 * - write_wakeup_threshold - the amount of entropy in the input pool 1598 * below which write polls to /dev/random will unblock, requesting 1599 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1600 * to avoid breaking old userspaces, but writing to it does not 1601 * change any behavior of the RNG. 1602 * 1603 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1604 * It is writable to avoid breaking old userspaces, but writing 1605 * to it does not change any behavior of the RNG. 1606 * 1607 ********************************************************************/ 1608 1609 #ifdef CONFIG_SYSCTL 1610 1611 #include <linux/sysctl.h> 1612 1613 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1614 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1615 static int sysctl_poolsize = POOL_BITS; 1616 static u8 sysctl_bootid[UUID_SIZE]; 1617 1618 /* 1619 * This function is used to return both the bootid UUID, and random 1620 * UUID. The difference is in whether table->data is NULL; if it is, 1621 * then a new UUID is generated and returned to the user. 1622 */ 1623 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, 1624 size_t *lenp, loff_t *ppos) 1625 { 1626 u8 tmp_uuid[UUID_SIZE], *uuid; 1627 char uuid_string[UUID_STRING_LEN + 1]; 1628 struct ctl_table fake_table = { 1629 .data = uuid_string, 1630 .maxlen = UUID_STRING_LEN 1631 }; 1632 1633 if (write) 1634 return -EPERM; 1635 1636 uuid = table->data; 1637 if (!uuid) { 1638 uuid = tmp_uuid; 1639 generate_random_uuid(uuid); 1640 } else { 1641 static DEFINE_SPINLOCK(bootid_spinlock); 1642 1643 spin_lock(&bootid_spinlock); 1644 if (!uuid[8]) 1645 generate_random_uuid(uuid); 1646 spin_unlock(&bootid_spinlock); 1647 } 1648 1649 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1650 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1651 } 1652 1653 /* The same as proc_dointvec, but writes don't change anything. */ 1654 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, 1655 size_t *lenp, loff_t *ppos) 1656 { 1657 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1658 } 1659 1660 static struct ctl_table random_table[] = { 1661 { 1662 .procname = "poolsize", 1663 .data = &sysctl_poolsize, 1664 .maxlen = sizeof(int), 1665 .mode = 0444, 1666 .proc_handler = proc_dointvec, 1667 }, 1668 { 1669 .procname = "entropy_avail", 1670 .data = &input_pool.init_bits, 1671 .maxlen = sizeof(int), 1672 .mode = 0444, 1673 .proc_handler = proc_dointvec, 1674 }, 1675 { 1676 .procname = "write_wakeup_threshold", 1677 .data = &sysctl_random_write_wakeup_bits, 1678 .maxlen = sizeof(int), 1679 .mode = 0644, 1680 .proc_handler = proc_do_rointvec, 1681 }, 1682 { 1683 .procname = "urandom_min_reseed_secs", 1684 .data = &sysctl_random_min_urandom_seed, 1685 .maxlen = sizeof(int), 1686 .mode = 0644, 1687 .proc_handler = proc_do_rointvec, 1688 }, 1689 { 1690 .procname = "boot_id", 1691 .data = &sysctl_bootid, 1692 .mode = 0444, 1693 .proc_handler = proc_do_uuid, 1694 }, 1695 { 1696 .procname = "uuid", 1697 .mode = 0444, 1698 .proc_handler = proc_do_uuid, 1699 }, 1700 }; 1701 1702 /* 1703 * random_init() is called before sysctl_init(), 1704 * so we cannot call register_sysctl_init() in random_init() 1705 */ 1706 static int __init random_sysctls_init(void) 1707 { 1708 register_sysctl_init("kernel/random", random_table); 1709 return 0; 1710 } 1711 device_initcall(random_sysctls_init); 1712 #endif 1713