1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init is protected by base_crng->lock, and only increases 75 * its value (from empty->early->ready). 76 */ 77 static enum { 78 CRNG_EMPTY = 0, /* Little to no entropy collected */ 79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 81 } crng_init __read_mostly = CRNG_EMPTY; 82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 84 /* Various types of waiters for crng_init->CRNG_READY transition. */ 85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 86 static struct fasync_struct *fasync; 87 88 /* Control how we warn userspace. */ 89 static struct ratelimit_state urandom_warning = 90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 91 static int ratelimit_disable __read_mostly = 92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 95 96 /* 97 * Returns whether or not the input pool has been seeded and thus guaranteed 98 * to supply cryptographically secure random numbers. This applies to: the 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 100 * u16,u32,u64,long} family of functions. 101 * 102 * Returns: true if the input pool has been seeded. 103 * false if the input pool has not been seeded. 104 */ 105 bool rng_is_initialized(void) 106 { 107 return crng_ready(); 108 } 109 EXPORT_SYMBOL(rng_is_initialized); 110 111 static void __cold crng_set_ready(struct work_struct *work) 112 { 113 static_branch_enable(&crng_is_ready); 114 } 115 116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 117 static void try_to_generate_entropy(void); 118 119 /* 120 * Wait for the input pool to be seeded and thus guaranteed to supply 121 * cryptographically secure random numbers. This applies to: the /dev/urandom 122 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 123 * int,long} family of functions. Using any of these functions without first 124 * calling this function forfeits the guarantee of security. 125 * 126 * Returns: 0 if the input pool has been seeded. 127 * -ERESTARTSYS if the function was interrupted by a signal. 128 */ 129 int wait_for_random_bytes(void) 130 { 131 while (!crng_ready()) { 132 int ret; 133 134 try_to_generate_entropy(); 135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 136 if (ret) 137 return ret > 0 ? 0 : ret; 138 } 139 return 0; 140 } 141 EXPORT_SYMBOL(wait_for_random_bytes); 142 143 #define warn_unseeded_randomness() \ 144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 146 __func__, (void *)_RET_IP_, crng_init) 147 148 149 /********************************************************************* 150 * 151 * Fast key erasure RNG, the "crng". 152 * 153 * These functions expand entropy from the entropy extractor into 154 * long streams for external consumption using the "fast key erasure" 155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 156 * 157 * There are a few exported interfaces for use by other drivers: 158 * 159 * void get_random_bytes(void *buf, size_t len) 160 * u8 get_random_u8() 161 * u16 get_random_u16() 162 * u32 get_random_u32() 163 * u32 get_random_u32_below(u32 ceil) 164 * u32 get_random_u32_above(u32 floor) 165 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 166 * u64 get_random_u64() 167 * unsigned long get_random_long() 168 * 169 * These interfaces will return the requested number of random bytes 170 * into the given buffer or as a return value. This is equivalent to 171 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 172 * functions may be higher performance for one-off random integers, 173 * because they do a bit of buffering and do not invoke reseeding 174 * until the buffer is emptied. 175 * 176 *********************************************************************/ 177 178 enum { 179 CRNG_RESEED_START_INTERVAL = HZ, 180 CRNG_RESEED_INTERVAL = 60 * HZ 181 }; 182 183 static struct { 184 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 185 unsigned long birth; 186 unsigned long generation; 187 spinlock_t lock; 188 } base_crng = { 189 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 190 }; 191 192 struct crng { 193 u8 key[CHACHA_KEY_SIZE]; 194 unsigned long generation; 195 local_lock_t lock; 196 }; 197 198 static DEFINE_PER_CPU(struct crng, crngs) = { 199 .generation = ULONG_MAX, 200 .lock = INIT_LOCAL_LOCK(crngs.lock), 201 }; 202 203 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 204 static void extract_entropy(void *buf, size_t len); 205 206 /* This extracts a new crng key from the input pool. */ 207 static void crng_reseed(void) 208 { 209 unsigned long flags; 210 unsigned long next_gen; 211 u8 key[CHACHA_KEY_SIZE]; 212 213 extract_entropy(key, sizeof(key)); 214 215 /* 216 * We copy the new key into the base_crng, overwriting the old one, 217 * and update the generation counter. We avoid hitting ULONG_MAX, 218 * because the per-cpu crngs are initialized to ULONG_MAX, so this 219 * forces new CPUs that come online to always initialize. 220 */ 221 spin_lock_irqsave(&base_crng.lock, flags); 222 memcpy(base_crng.key, key, sizeof(base_crng.key)); 223 next_gen = base_crng.generation + 1; 224 if (next_gen == ULONG_MAX) 225 ++next_gen; 226 WRITE_ONCE(base_crng.generation, next_gen); 227 WRITE_ONCE(base_crng.birth, jiffies); 228 if (!static_branch_likely(&crng_is_ready)) 229 crng_init = CRNG_READY; 230 spin_unlock_irqrestore(&base_crng.lock, flags); 231 memzero_explicit(key, sizeof(key)); 232 } 233 234 /* 235 * This generates a ChaCha block using the provided key, and then 236 * immediately overwrites that key with half the block. It returns 237 * the resultant ChaCha state to the user, along with the second 238 * half of the block containing 32 bytes of random data that may 239 * be used; random_data_len may not be greater than 32. 240 * 241 * The returned ChaCha state contains within it a copy of the old 242 * key value, at index 4, so the state should always be zeroed out 243 * immediately after using in order to maintain forward secrecy. 244 * If the state cannot be erased in a timely manner, then it is 245 * safer to set the random_data parameter to &chacha_state[4] so 246 * that this function overwrites it before returning. 247 */ 248 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 249 u32 chacha_state[CHACHA_STATE_WORDS], 250 u8 *random_data, size_t random_data_len) 251 { 252 u8 first_block[CHACHA_BLOCK_SIZE]; 253 254 BUG_ON(random_data_len > 32); 255 256 chacha_init_consts(chacha_state); 257 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 258 memset(&chacha_state[12], 0, sizeof(u32) * 4); 259 chacha20_block(chacha_state, first_block); 260 261 memcpy(key, first_block, CHACHA_KEY_SIZE); 262 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 263 memzero_explicit(first_block, sizeof(first_block)); 264 } 265 266 /* 267 * Return the interval until the next reseeding, which is normally 268 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 269 * proportional to the uptime. 270 */ 271 static unsigned int crng_reseed_interval(void) 272 { 273 static bool early_boot = true; 274 275 if (unlikely(READ_ONCE(early_boot))) { 276 time64_t uptime = ktime_get_seconds(); 277 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 278 WRITE_ONCE(early_boot, false); 279 else 280 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 281 (unsigned int)uptime / 2 * HZ); 282 } 283 return CRNG_RESEED_INTERVAL; 284 } 285 286 /* 287 * This function returns a ChaCha state that you may use for generating 288 * random data. It also returns up to 32 bytes on its own of random data 289 * that may be used; random_data_len may not be greater than 32. 290 */ 291 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 292 u8 *random_data, size_t random_data_len) 293 { 294 unsigned long flags; 295 struct crng *crng; 296 297 BUG_ON(random_data_len > 32); 298 299 /* 300 * For the fast path, we check whether we're ready, unlocked first, and 301 * then re-check once locked later. In the case where we're really not 302 * ready, we do fast key erasure with the base_crng directly, extracting 303 * when crng_init is CRNG_EMPTY. 304 */ 305 if (!crng_ready()) { 306 bool ready; 307 308 spin_lock_irqsave(&base_crng.lock, flags); 309 ready = crng_ready(); 310 if (!ready) { 311 if (crng_init == CRNG_EMPTY) 312 extract_entropy(base_crng.key, sizeof(base_crng.key)); 313 crng_fast_key_erasure(base_crng.key, chacha_state, 314 random_data, random_data_len); 315 } 316 spin_unlock_irqrestore(&base_crng.lock, flags); 317 if (!ready) 318 return; 319 } 320 321 /* 322 * If the base_crng is old enough, we reseed, which in turn bumps the 323 * generation counter that we check below. 324 */ 325 if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval()))) 326 crng_reseed(); 327 328 local_lock_irqsave(&crngs.lock, flags); 329 crng = raw_cpu_ptr(&crngs); 330 331 /* 332 * If our per-cpu crng is older than the base_crng, then it means 333 * somebody reseeded the base_crng. In that case, we do fast key 334 * erasure on the base_crng, and use its output as the new key 335 * for our per-cpu crng. This brings us up to date with base_crng. 336 */ 337 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 338 spin_lock(&base_crng.lock); 339 crng_fast_key_erasure(base_crng.key, chacha_state, 340 crng->key, sizeof(crng->key)); 341 crng->generation = base_crng.generation; 342 spin_unlock(&base_crng.lock); 343 } 344 345 /* 346 * Finally, when we've made it this far, our per-cpu crng has an up 347 * to date key, and we can do fast key erasure with it to produce 348 * some random data and a ChaCha state for the caller. All other 349 * branches of this function are "unlikely", so most of the time we 350 * should wind up here immediately. 351 */ 352 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 353 local_unlock_irqrestore(&crngs.lock, flags); 354 } 355 356 static void _get_random_bytes(void *buf, size_t len) 357 { 358 u32 chacha_state[CHACHA_STATE_WORDS]; 359 u8 tmp[CHACHA_BLOCK_SIZE]; 360 size_t first_block_len; 361 362 if (!len) 363 return; 364 365 first_block_len = min_t(size_t, 32, len); 366 crng_make_state(chacha_state, buf, first_block_len); 367 len -= first_block_len; 368 buf += first_block_len; 369 370 while (len) { 371 if (len < CHACHA_BLOCK_SIZE) { 372 chacha20_block(chacha_state, tmp); 373 memcpy(buf, tmp, len); 374 memzero_explicit(tmp, sizeof(tmp)); 375 break; 376 } 377 378 chacha20_block(chacha_state, buf); 379 if (unlikely(chacha_state[12] == 0)) 380 ++chacha_state[13]; 381 len -= CHACHA_BLOCK_SIZE; 382 buf += CHACHA_BLOCK_SIZE; 383 } 384 385 memzero_explicit(chacha_state, sizeof(chacha_state)); 386 } 387 388 /* 389 * This function is the exported kernel interface. It returns some number of 390 * good random numbers, suitable for key generation, seeding TCP sequence 391 * numbers, etc. In order to ensure that the randomness returned by this 392 * function is okay, the function wait_for_random_bytes() should be called and 393 * return 0 at least once at any point prior. 394 */ 395 void get_random_bytes(void *buf, size_t len) 396 { 397 warn_unseeded_randomness(); 398 _get_random_bytes(buf, len); 399 } 400 EXPORT_SYMBOL(get_random_bytes); 401 402 static ssize_t get_random_bytes_user(struct iov_iter *iter) 403 { 404 u32 chacha_state[CHACHA_STATE_WORDS]; 405 u8 block[CHACHA_BLOCK_SIZE]; 406 size_t ret = 0, copied; 407 408 if (unlikely(!iov_iter_count(iter))) 409 return 0; 410 411 /* 412 * Immediately overwrite the ChaCha key at index 4 with random 413 * bytes, in case userspace causes copy_to_iter() below to sleep 414 * forever, so that we still retain forward secrecy in that case. 415 */ 416 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 417 /* 418 * However, if we're doing a read of len <= 32, we don't need to 419 * use chacha_state after, so we can simply return those bytes to 420 * the user directly. 421 */ 422 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 423 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 424 goto out_zero_chacha; 425 } 426 427 for (;;) { 428 chacha20_block(chacha_state, block); 429 if (unlikely(chacha_state[12] == 0)) 430 ++chacha_state[13]; 431 432 copied = copy_to_iter(block, sizeof(block), iter); 433 ret += copied; 434 if (!iov_iter_count(iter) || copied != sizeof(block)) 435 break; 436 437 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 438 if (ret % PAGE_SIZE == 0) { 439 if (signal_pending(current)) 440 break; 441 cond_resched(); 442 } 443 } 444 445 memzero_explicit(block, sizeof(block)); 446 out_zero_chacha: 447 memzero_explicit(chacha_state, sizeof(chacha_state)); 448 return ret ? ret : -EFAULT; 449 } 450 451 /* 452 * Batched entropy returns random integers. The quality of the random 453 * number is good as /dev/urandom. In order to ensure that the randomness 454 * provided by this function is okay, the function wait_for_random_bytes() 455 * should be called and return 0 at least once at any point prior. 456 */ 457 458 #define DEFINE_BATCHED_ENTROPY(type) \ 459 struct batch_ ##type { \ 460 /* \ 461 * We make this 1.5x a ChaCha block, so that we get the \ 462 * remaining 32 bytes from fast key erasure, plus one full \ 463 * block from the detached ChaCha state. We can increase \ 464 * the size of this later if needed so long as we keep the \ 465 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 466 */ \ 467 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 468 local_lock_t lock; \ 469 unsigned long generation; \ 470 unsigned int position; \ 471 }; \ 472 \ 473 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 474 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 475 .position = UINT_MAX \ 476 }; \ 477 \ 478 type get_random_ ##type(void) \ 479 { \ 480 type ret; \ 481 unsigned long flags; \ 482 struct batch_ ##type *batch; \ 483 unsigned long next_gen; \ 484 \ 485 warn_unseeded_randomness(); \ 486 \ 487 if (!crng_ready()) { \ 488 _get_random_bytes(&ret, sizeof(ret)); \ 489 return ret; \ 490 } \ 491 \ 492 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 493 batch = raw_cpu_ptr(&batched_entropy_##type); \ 494 \ 495 next_gen = READ_ONCE(base_crng.generation); \ 496 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 497 next_gen != batch->generation) { \ 498 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 499 batch->position = 0; \ 500 batch->generation = next_gen; \ 501 } \ 502 \ 503 ret = batch->entropy[batch->position]; \ 504 batch->entropy[batch->position] = 0; \ 505 ++batch->position; \ 506 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 507 return ret; \ 508 } \ 509 EXPORT_SYMBOL(get_random_ ##type); 510 511 DEFINE_BATCHED_ENTROPY(u8) 512 DEFINE_BATCHED_ENTROPY(u16) 513 DEFINE_BATCHED_ENTROPY(u32) 514 DEFINE_BATCHED_ENTROPY(u64) 515 516 u32 __get_random_u32_below(u32 ceil) 517 { 518 /* 519 * This is the slow path for variable ceil. It is still fast, most of 520 * the time, by doing traditional reciprocal multiplication and 521 * opportunistically comparing the lower half to ceil itself, before 522 * falling back to computing a larger bound, and then rejecting samples 523 * whose lower half would indicate a range indivisible by ceil. The use 524 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 525 * in 32-bits. 526 */ 527 u32 rand = get_random_u32(); 528 u64 mult; 529 530 /* 531 * This function is technically undefined for ceil == 0, and in fact 532 * for the non-underscored constant version in the header, we build bug 533 * on that. But for the non-constant case, it's convenient to have that 534 * evaluate to being a straight call to get_random_u32(), so that 535 * get_random_u32_inclusive() can work over its whole range without 536 * undefined behavior. 537 */ 538 if (unlikely(!ceil)) 539 return rand; 540 541 mult = (u64)ceil * rand; 542 if (unlikely((u32)mult < ceil)) { 543 u32 bound = -ceil % ceil; 544 while (unlikely((u32)mult < bound)) 545 mult = (u64)ceil * get_random_u32(); 546 } 547 return mult >> 32; 548 } 549 EXPORT_SYMBOL(__get_random_u32_below); 550 551 #ifdef CONFIG_SMP 552 /* 553 * This function is called when the CPU is coming up, with entry 554 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 555 */ 556 int __cold random_prepare_cpu(unsigned int cpu) 557 { 558 /* 559 * When the cpu comes back online, immediately invalidate both 560 * the per-cpu crng and all batches, so that we serve fresh 561 * randomness. 562 */ 563 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 564 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 565 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 566 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 567 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 568 return 0; 569 } 570 #endif 571 572 573 /********************************************************************** 574 * 575 * Entropy accumulation and extraction routines. 576 * 577 * Callers may add entropy via: 578 * 579 * static void mix_pool_bytes(const void *buf, size_t len) 580 * 581 * After which, if added entropy should be credited: 582 * 583 * static void credit_init_bits(size_t bits) 584 * 585 * Finally, extract entropy via: 586 * 587 * static void extract_entropy(void *buf, size_t len) 588 * 589 **********************************************************************/ 590 591 enum { 592 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 593 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 594 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 595 }; 596 597 static struct { 598 struct blake2s_state hash; 599 spinlock_t lock; 600 unsigned int init_bits; 601 } input_pool = { 602 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 603 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 604 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 605 .hash.outlen = BLAKE2S_HASH_SIZE, 606 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 607 }; 608 609 static void _mix_pool_bytes(const void *buf, size_t len) 610 { 611 blake2s_update(&input_pool.hash, buf, len); 612 } 613 614 /* 615 * This function adds bytes into the input pool. It does not 616 * update the initialization bit counter; the caller should call 617 * credit_init_bits if this is appropriate. 618 */ 619 static void mix_pool_bytes(const void *buf, size_t len) 620 { 621 unsigned long flags; 622 623 spin_lock_irqsave(&input_pool.lock, flags); 624 _mix_pool_bytes(buf, len); 625 spin_unlock_irqrestore(&input_pool.lock, flags); 626 } 627 628 /* 629 * This is an HKDF-like construction for using the hashed collected entropy 630 * as a PRF key, that's then expanded block-by-block. 631 */ 632 static void extract_entropy(void *buf, size_t len) 633 { 634 unsigned long flags; 635 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 636 struct { 637 unsigned long rdseed[32 / sizeof(long)]; 638 size_t counter; 639 } block; 640 size_t i, longs; 641 642 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 643 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 644 if (longs) { 645 i += longs; 646 continue; 647 } 648 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 649 if (longs) { 650 i += longs; 651 continue; 652 } 653 block.rdseed[i++] = random_get_entropy(); 654 } 655 656 spin_lock_irqsave(&input_pool.lock, flags); 657 658 /* seed = HASHPRF(last_key, entropy_input) */ 659 blake2s_final(&input_pool.hash, seed); 660 661 /* next_key = HASHPRF(seed, RDSEED || 0) */ 662 block.counter = 0; 663 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 664 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 665 666 spin_unlock_irqrestore(&input_pool.lock, flags); 667 memzero_explicit(next_key, sizeof(next_key)); 668 669 while (len) { 670 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 671 /* output = HASHPRF(seed, RDSEED || ++counter) */ 672 ++block.counter; 673 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 674 len -= i; 675 buf += i; 676 } 677 678 memzero_explicit(seed, sizeof(seed)); 679 memzero_explicit(&block, sizeof(block)); 680 } 681 682 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 683 684 static void __cold _credit_init_bits(size_t bits) 685 { 686 static struct execute_work set_ready; 687 unsigned int new, orig, add; 688 unsigned long flags; 689 690 if (!bits) 691 return; 692 693 add = min_t(size_t, bits, POOL_BITS); 694 695 orig = READ_ONCE(input_pool.init_bits); 696 do { 697 new = min_t(unsigned int, POOL_BITS, orig + add); 698 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 699 700 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 701 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 702 if (static_key_initialized) 703 execute_in_process_context(crng_set_ready, &set_ready); 704 wake_up_interruptible(&crng_init_wait); 705 kill_fasync(&fasync, SIGIO, POLL_IN); 706 pr_notice("crng init done\n"); 707 if (urandom_warning.missed) 708 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 709 urandom_warning.missed); 710 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 711 spin_lock_irqsave(&base_crng.lock, flags); 712 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 713 if (crng_init == CRNG_EMPTY) { 714 extract_entropy(base_crng.key, sizeof(base_crng.key)); 715 crng_init = CRNG_EARLY; 716 } 717 spin_unlock_irqrestore(&base_crng.lock, flags); 718 } 719 } 720 721 722 /********************************************************************** 723 * 724 * Entropy collection routines. 725 * 726 * The following exported functions are used for pushing entropy into 727 * the above entropy accumulation routines: 728 * 729 * void add_device_randomness(const void *buf, size_t len); 730 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); 731 * void add_bootloader_randomness(const void *buf, size_t len); 732 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 733 * void add_interrupt_randomness(int irq); 734 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 735 * void add_disk_randomness(struct gendisk *disk); 736 * 737 * add_device_randomness() adds data to the input pool that 738 * is likely to differ between two devices (or possibly even per boot). 739 * This would be things like MAC addresses or serial numbers, or the 740 * read-out of the RTC. This does *not* credit any actual entropy to 741 * the pool, but it initializes the pool to different values for devices 742 * that might otherwise be identical and have very little entropy 743 * available to them (particularly common in the embedded world). 744 * 745 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 746 * entropy as specified by the caller. If the entropy pool is full it will 747 * block until more entropy is needed. 748 * 749 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 750 * and device tree, and credits its input depending on whether or not the 751 * command line option 'random.trust_bootloader'. 752 * 753 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 754 * representing the current instance of a VM to the pool, without crediting, 755 * and then force-reseeds the crng so that it takes effect immediately. 756 * 757 * add_interrupt_randomness() uses the interrupt timing as random 758 * inputs to the entropy pool. Using the cycle counters and the irq source 759 * as inputs, it feeds the input pool roughly once a second or after 64 760 * interrupts, crediting 1 bit of entropy for whichever comes first. 761 * 762 * add_input_randomness() uses the input layer interrupt timing, as well 763 * as the event type information from the hardware. 764 * 765 * add_disk_randomness() uses what amounts to the seek time of block 766 * layer request events, on a per-disk_devt basis, as input to the 767 * entropy pool. Note that high-speed solid state drives with very low 768 * seek times do not make for good sources of entropy, as their seek 769 * times are usually fairly consistent. 770 * 771 * The last two routines try to estimate how many bits of entropy 772 * to credit. They do this by keeping track of the first and second 773 * order deltas of the event timings. 774 * 775 **********************************************************************/ 776 777 static bool trust_cpu __initdata = true; 778 static bool trust_bootloader __initdata = true; 779 static int __init parse_trust_cpu(char *arg) 780 { 781 return kstrtobool(arg, &trust_cpu); 782 } 783 static int __init parse_trust_bootloader(char *arg) 784 { 785 return kstrtobool(arg, &trust_bootloader); 786 } 787 early_param("random.trust_cpu", parse_trust_cpu); 788 early_param("random.trust_bootloader", parse_trust_bootloader); 789 790 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 791 { 792 unsigned long flags, entropy = random_get_entropy(); 793 794 /* 795 * Encode a representation of how long the system has been suspended, 796 * in a way that is distinct from prior system suspends. 797 */ 798 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 799 800 spin_lock_irqsave(&input_pool.lock, flags); 801 _mix_pool_bytes(&action, sizeof(action)); 802 _mix_pool_bytes(stamps, sizeof(stamps)); 803 _mix_pool_bytes(&entropy, sizeof(entropy)); 804 spin_unlock_irqrestore(&input_pool.lock, flags); 805 806 if (crng_ready() && (action == PM_RESTORE_PREPARE || 807 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 808 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 809 crng_reseed(); 810 pr_notice("crng reseeded on system resumption\n"); 811 } 812 return 0; 813 } 814 815 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 816 817 /* 818 * This is called extremely early, before time keeping functionality is 819 * available, but arch randomness is. Interrupts are not yet enabled. 820 */ 821 void __init random_init_early(const char *command_line) 822 { 823 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 824 size_t i, longs, arch_bits; 825 826 #if defined(LATENT_ENTROPY_PLUGIN) 827 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 828 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 829 #endif 830 831 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 832 longs = arch_get_random_seed_longs_early(entropy, ARRAY_SIZE(entropy) - i); 833 if (longs) { 834 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 835 i += longs; 836 continue; 837 } 838 longs = arch_get_random_longs_early(entropy, ARRAY_SIZE(entropy) - i); 839 if (longs) { 840 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 841 i += longs; 842 continue; 843 } 844 arch_bits -= sizeof(*entropy) * 8; 845 ++i; 846 } 847 848 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 849 _mix_pool_bytes(command_line, strlen(command_line)); 850 851 /* Reseed if already seeded by earlier phases. */ 852 if (crng_ready()) 853 crng_reseed(); 854 else if (trust_cpu) 855 _credit_init_bits(arch_bits); 856 } 857 858 /* 859 * This is called a little bit after the prior function, and now there is 860 * access to timestamps counters. Interrupts are not yet enabled. 861 */ 862 void __init random_init(void) 863 { 864 unsigned long entropy = random_get_entropy(); 865 ktime_t now = ktime_get_real(); 866 867 _mix_pool_bytes(&now, sizeof(now)); 868 _mix_pool_bytes(&entropy, sizeof(entropy)); 869 add_latent_entropy(); 870 871 /* 872 * If we were initialized by the cpu or bootloader before jump labels 873 * are initialized, then we should enable the static branch here, where 874 * it's guaranteed that jump labels have been initialized. 875 */ 876 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 877 crng_set_ready(NULL); 878 879 /* Reseed if already seeded by earlier phases. */ 880 if (crng_ready()) 881 crng_reseed(); 882 883 WARN_ON(register_pm_notifier(&pm_notifier)); 884 885 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 886 "entropy collection will consequently suffer."); 887 } 888 889 /* 890 * Add device- or boot-specific data to the input pool to help 891 * initialize it. 892 * 893 * None of this adds any entropy; it is meant to avoid the problem of 894 * the entropy pool having similar initial state across largely 895 * identical devices. 896 */ 897 void add_device_randomness(const void *buf, size_t len) 898 { 899 unsigned long entropy = random_get_entropy(); 900 unsigned long flags; 901 902 spin_lock_irqsave(&input_pool.lock, flags); 903 _mix_pool_bytes(&entropy, sizeof(entropy)); 904 _mix_pool_bytes(buf, len); 905 spin_unlock_irqrestore(&input_pool.lock, flags); 906 } 907 EXPORT_SYMBOL(add_device_randomness); 908 909 /* 910 * Interface for in-kernel drivers of true hardware RNGs. 911 * Those devices may produce endless random bits and will be throttled 912 * when our pool is full. 913 */ 914 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) 915 { 916 mix_pool_bytes(buf, len); 917 credit_init_bits(entropy); 918 919 /* 920 * Throttle writing to once every reseed interval, unless we're not yet 921 * initialized or no entropy is credited. 922 */ 923 if (!kthread_should_stop() && (crng_ready() || !entropy)) 924 schedule_timeout_interruptible(crng_reseed_interval()); 925 } 926 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 927 928 /* 929 * Handle random seed passed by bootloader, and credit it depending 930 * on the command line option 'random.trust_bootloader'. 931 */ 932 void __init add_bootloader_randomness(const void *buf, size_t len) 933 { 934 mix_pool_bytes(buf, len); 935 if (trust_bootloader) 936 credit_init_bits(len * 8); 937 } 938 939 #if IS_ENABLED(CONFIG_VMGENID) 940 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 941 942 /* 943 * Handle a new unique VM ID, which is unique, not secret, so we 944 * don't credit it, but we do immediately force a reseed after so 945 * that it's used by the crng posthaste. 946 */ 947 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 948 { 949 add_device_randomness(unique_vm_id, len); 950 if (crng_ready()) { 951 crng_reseed(); 952 pr_notice("crng reseeded due to virtual machine fork\n"); 953 } 954 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 955 } 956 #if IS_MODULE(CONFIG_VMGENID) 957 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 958 #endif 959 960 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 961 { 962 return blocking_notifier_chain_register(&vmfork_chain, nb); 963 } 964 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 965 966 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 967 { 968 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 969 } 970 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 971 #endif 972 973 struct fast_pool { 974 unsigned long pool[4]; 975 unsigned long last; 976 unsigned int count; 977 struct timer_list mix; 978 }; 979 980 static void mix_interrupt_randomness(struct timer_list *work); 981 982 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 983 #ifdef CONFIG_64BIT 984 #define FASTMIX_PERM SIPHASH_PERMUTATION 985 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 986 #else 987 #define FASTMIX_PERM HSIPHASH_PERMUTATION 988 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 989 #endif 990 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 991 }; 992 993 /* 994 * This is [Half]SipHash-1-x, starting from an empty key. Because 995 * the key is fixed, it assumes that its inputs are non-malicious, 996 * and therefore this has no security on its own. s represents the 997 * four-word SipHash state, while v represents a two-word input. 998 */ 999 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1000 { 1001 s[3] ^= v1; 1002 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1003 s[0] ^= v1; 1004 s[3] ^= v2; 1005 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1006 s[0] ^= v2; 1007 } 1008 1009 #ifdef CONFIG_SMP 1010 /* 1011 * This function is called when the CPU has just come online, with 1012 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1013 */ 1014 int __cold random_online_cpu(unsigned int cpu) 1015 { 1016 /* 1017 * During CPU shutdown and before CPU onlining, add_interrupt_ 1018 * randomness() may schedule mix_interrupt_randomness(), and 1019 * set the MIX_INFLIGHT flag. However, because the worker can 1020 * be scheduled on a different CPU during this period, that 1021 * flag will never be cleared. For that reason, we zero out 1022 * the flag here, which runs just after workqueues are onlined 1023 * for the CPU again. This also has the effect of setting the 1024 * irq randomness count to zero so that new accumulated irqs 1025 * are fresh. 1026 */ 1027 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1028 return 0; 1029 } 1030 #endif 1031 1032 static void mix_interrupt_randomness(struct timer_list *work) 1033 { 1034 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1035 /* 1036 * The size of the copied stack pool is explicitly 2 longs so that we 1037 * only ever ingest half of the siphash output each time, retaining 1038 * the other half as the next "key" that carries over. The entropy is 1039 * supposed to be sufficiently dispersed between bits so on average 1040 * we don't wind up "losing" some. 1041 */ 1042 unsigned long pool[2]; 1043 unsigned int count; 1044 1045 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1046 local_irq_disable(); 1047 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1048 local_irq_enable(); 1049 return; 1050 } 1051 1052 /* 1053 * Copy the pool to the stack so that the mixer always has a 1054 * consistent view, before we reenable irqs again. 1055 */ 1056 memcpy(pool, fast_pool->pool, sizeof(pool)); 1057 count = fast_pool->count; 1058 fast_pool->count = 0; 1059 fast_pool->last = jiffies; 1060 local_irq_enable(); 1061 1062 mix_pool_bytes(pool, sizeof(pool)); 1063 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1064 1065 memzero_explicit(pool, sizeof(pool)); 1066 } 1067 1068 void add_interrupt_randomness(int irq) 1069 { 1070 enum { MIX_INFLIGHT = 1U << 31 }; 1071 unsigned long entropy = random_get_entropy(); 1072 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1073 struct pt_regs *regs = get_irq_regs(); 1074 unsigned int new_count; 1075 1076 fast_mix(fast_pool->pool, entropy, 1077 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1078 new_count = ++fast_pool->count; 1079 1080 if (new_count & MIX_INFLIGHT) 1081 return; 1082 1083 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1084 return; 1085 1086 fast_pool->count |= MIX_INFLIGHT; 1087 if (!timer_pending(&fast_pool->mix)) { 1088 fast_pool->mix.expires = jiffies; 1089 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1093 1094 /* There is one of these per entropy source */ 1095 struct timer_rand_state { 1096 unsigned long last_time; 1097 long last_delta, last_delta2; 1098 }; 1099 1100 /* 1101 * This function adds entropy to the entropy "pool" by using timing 1102 * delays. It uses the timer_rand_state structure to make an estimate 1103 * of how many bits of entropy this call has added to the pool. The 1104 * value "num" is also added to the pool; it should somehow describe 1105 * the type of event that just happened. 1106 */ 1107 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1108 { 1109 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1110 long delta, delta2, delta3; 1111 unsigned int bits; 1112 1113 /* 1114 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1115 * sometime after, so mix into the fast pool. 1116 */ 1117 if (in_hardirq()) { 1118 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1119 } else { 1120 spin_lock_irqsave(&input_pool.lock, flags); 1121 _mix_pool_bytes(&entropy, sizeof(entropy)); 1122 _mix_pool_bytes(&num, sizeof(num)); 1123 spin_unlock_irqrestore(&input_pool.lock, flags); 1124 } 1125 1126 if (crng_ready()) 1127 return; 1128 1129 /* 1130 * Calculate number of bits of randomness we probably added. 1131 * We take into account the first, second and third-order deltas 1132 * in order to make our estimate. 1133 */ 1134 delta = now - READ_ONCE(state->last_time); 1135 WRITE_ONCE(state->last_time, now); 1136 1137 delta2 = delta - READ_ONCE(state->last_delta); 1138 WRITE_ONCE(state->last_delta, delta); 1139 1140 delta3 = delta2 - READ_ONCE(state->last_delta2); 1141 WRITE_ONCE(state->last_delta2, delta2); 1142 1143 if (delta < 0) 1144 delta = -delta; 1145 if (delta2 < 0) 1146 delta2 = -delta2; 1147 if (delta3 < 0) 1148 delta3 = -delta3; 1149 if (delta > delta2) 1150 delta = delta2; 1151 if (delta > delta3) 1152 delta = delta3; 1153 1154 /* 1155 * delta is now minimum absolute delta. Round down by 1 bit 1156 * on general principles, and limit entropy estimate to 11 bits. 1157 */ 1158 bits = min(fls(delta >> 1), 11); 1159 1160 /* 1161 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1162 * will run after this, which uses a different crediting scheme of 1 bit 1163 * per every 64 interrupts. In order to let that function do accounting 1164 * close to the one in this function, we credit a full 64/64 bit per bit, 1165 * and then subtract one to account for the extra one added. 1166 */ 1167 if (in_hardirq()) 1168 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1169 else 1170 _credit_init_bits(bits); 1171 } 1172 1173 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1174 { 1175 static unsigned char last_value; 1176 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1177 1178 /* Ignore autorepeat and the like. */ 1179 if (value == last_value) 1180 return; 1181 1182 last_value = value; 1183 add_timer_randomness(&input_timer_state, 1184 (type << 4) ^ code ^ (code >> 4) ^ value); 1185 } 1186 EXPORT_SYMBOL_GPL(add_input_randomness); 1187 1188 #ifdef CONFIG_BLOCK 1189 void add_disk_randomness(struct gendisk *disk) 1190 { 1191 if (!disk || !disk->random) 1192 return; 1193 /* First major is 1, so we get >= 0x200 here. */ 1194 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1195 } 1196 EXPORT_SYMBOL_GPL(add_disk_randomness); 1197 1198 void __cold rand_initialize_disk(struct gendisk *disk) 1199 { 1200 struct timer_rand_state *state; 1201 1202 /* 1203 * If kzalloc returns null, we just won't use that entropy 1204 * source. 1205 */ 1206 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1207 if (state) { 1208 state->last_time = INITIAL_JIFFIES; 1209 disk->random = state; 1210 } 1211 } 1212 #endif 1213 1214 struct entropy_timer_state { 1215 unsigned long entropy; 1216 struct timer_list timer; 1217 unsigned int samples, samples_per_bit; 1218 }; 1219 1220 /* 1221 * Each time the timer fires, we expect that we got an unpredictable 1222 * jump in the cycle counter. Even if the timer is running on another 1223 * CPU, the timer activity will be touching the stack of the CPU that is 1224 * generating entropy.. 1225 * 1226 * Note that we don't re-arm the timer in the timer itself - we are 1227 * happy to be scheduled away, since that just makes the load more 1228 * complex, but we do not want the timer to keep ticking unless the 1229 * entropy loop is running. 1230 * 1231 * So the re-arming always happens in the entropy loop itself. 1232 */ 1233 static void __cold entropy_timer(struct timer_list *timer) 1234 { 1235 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1236 1237 if (++state->samples == state->samples_per_bit) { 1238 credit_init_bits(1); 1239 state->samples = 0; 1240 } 1241 } 1242 1243 /* 1244 * If we have an actual cycle counter, see if we can 1245 * generate enough entropy with timing noise 1246 */ 1247 static void __cold try_to_generate_entropy(void) 1248 { 1249 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1250 struct entropy_timer_state stack; 1251 unsigned int i, num_different = 0; 1252 unsigned long last = random_get_entropy(); 1253 1254 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1255 stack.entropy = random_get_entropy(); 1256 if (stack.entropy != last) 1257 ++num_different; 1258 last = stack.entropy; 1259 } 1260 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1261 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT) 1262 return; 1263 1264 stack.samples = 0; 1265 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1266 while (!crng_ready() && !signal_pending(current)) { 1267 if (!timer_pending(&stack.timer)) 1268 mod_timer(&stack.timer, jiffies); 1269 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1270 schedule(); 1271 stack.entropy = random_get_entropy(); 1272 } 1273 1274 del_timer_sync(&stack.timer); 1275 destroy_timer_on_stack(&stack.timer); 1276 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1277 } 1278 1279 1280 /********************************************************************** 1281 * 1282 * Userspace reader/writer interfaces. 1283 * 1284 * getrandom(2) is the primary modern interface into the RNG and should 1285 * be used in preference to anything else. 1286 * 1287 * Reading from /dev/random has the same functionality as calling 1288 * getrandom(2) with flags=0. In earlier versions, however, it had 1289 * vastly different semantics and should therefore be avoided, to 1290 * prevent backwards compatibility issues. 1291 * 1292 * Reading from /dev/urandom has the same functionality as calling 1293 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1294 * waiting for the RNG to be ready, it should not be used. 1295 * 1296 * Writing to either /dev/random or /dev/urandom adds entropy to 1297 * the input pool but does not credit it. 1298 * 1299 * Polling on /dev/random indicates when the RNG is initialized, on 1300 * the read side, and when it wants new entropy, on the write side. 1301 * 1302 * Both /dev/random and /dev/urandom have the same set of ioctls for 1303 * adding entropy, getting the entropy count, zeroing the count, and 1304 * reseeding the crng. 1305 * 1306 **********************************************************************/ 1307 1308 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1309 { 1310 struct iov_iter iter; 1311 struct iovec iov; 1312 int ret; 1313 1314 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1315 return -EINVAL; 1316 1317 /* 1318 * Requesting insecure and blocking randomness at the same time makes 1319 * no sense. 1320 */ 1321 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1322 return -EINVAL; 1323 1324 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1325 if (flags & GRND_NONBLOCK) 1326 return -EAGAIN; 1327 ret = wait_for_random_bytes(); 1328 if (unlikely(ret)) 1329 return ret; 1330 } 1331 1332 ret = import_single_range(READ, ubuf, len, &iov, &iter); 1333 if (unlikely(ret)) 1334 return ret; 1335 return get_random_bytes_user(&iter); 1336 } 1337 1338 static __poll_t random_poll(struct file *file, poll_table *wait) 1339 { 1340 poll_wait(file, &crng_init_wait, wait); 1341 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1342 } 1343 1344 static ssize_t write_pool_user(struct iov_iter *iter) 1345 { 1346 u8 block[BLAKE2S_BLOCK_SIZE]; 1347 ssize_t ret = 0; 1348 size_t copied; 1349 1350 if (unlikely(!iov_iter_count(iter))) 1351 return 0; 1352 1353 for (;;) { 1354 copied = copy_from_iter(block, sizeof(block), iter); 1355 ret += copied; 1356 mix_pool_bytes(block, copied); 1357 if (!iov_iter_count(iter) || copied != sizeof(block)) 1358 break; 1359 1360 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1361 if (ret % PAGE_SIZE == 0) { 1362 if (signal_pending(current)) 1363 break; 1364 cond_resched(); 1365 } 1366 } 1367 1368 memzero_explicit(block, sizeof(block)); 1369 return ret ? ret : -EFAULT; 1370 } 1371 1372 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1373 { 1374 return write_pool_user(iter); 1375 } 1376 1377 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1378 { 1379 static int maxwarn = 10; 1380 1381 /* 1382 * Opportunistically attempt to initialize the RNG on platforms that 1383 * have fast cycle counters, but don't (for now) require it to succeed. 1384 */ 1385 if (!crng_ready()) 1386 try_to_generate_entropy(); 1387 1388 if (!crng_ready()) { 1389 if (!ratelimit_disable && maxwarn <= 0) 1390 ++urandom_warning.missed; 1391 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1392 --maxwarn; 1393 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1394 current->comm, iov_iter_count(iter)); 1395 } 1396 } 1397 1398 return get_random_bytes_user(iter); 1399 } 1400 1401 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1402 { 1403 int ret; 1404 1405 if (!crng_ready() && 1406 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1407 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1408 return -EAGAIN; 1409 1410 ret = wait_for_random_bytes(); 1411 if (ret != 0) 1412 return ret; 1413 return get_random_bytes_user(iter); 1414 } 1415 1416 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1417 { 1418 int __user *p = (int __user *)arg; 1419 int ent_count; 1420 1421 switch (cmd) { 1422 case RNDGETENTCNT: 1423 /* Inherently racy, no point locking. */ 1424 if (put_user(input_pool.init_bits, p)) 1425 return -EFAULT; 1426 return 0; 1427 case RNDADDTOENTCNT: 1428 if (!capable(CAP_SYS_ADMIN)) 1429 return -EPERM; 1430 if (get_user(ent_count, p)) 1431 return -EFAULT; 1432 if (ent_count < 0) 1433 return -EINVAL; 1434 credit_init_bits(ent_count); 1435 return 0; 1436 case RNDADDENTROPY: { 1437 struct iov_iter iter; 1438 struct iovec iov; 1439 ssize_t ret; 1440 int len; 1441 1442 if (!capable(CAP_SYS_ADMIN)) 1443 return -EPERM; 1444 if (get_user(ent_count, p++)) 1445 return -EFAULT; 1446 if (ent_count < 0) 1447 return -EINVAL; 1448 if (get_user(len, p++)) 1449 return -EFAULT; 1450 ret = import_single_range(WRITE, p, len, &iov, &iter); 1451 if (unlikely(ret)) 1452 return ret; 1453 ret = write_pool_user(&iter); 1454 if (unlikely(ret < 0)) 1455 return ret; 1456 /* Since we're crediting, enforce that it was all written into the pool. */ 1457 if (unlikely(ret != len)) 1458 return -EFAULT; 1459 credit_init_bits(ent_count); 1460 return 0; 1461 } 1462 case RNDZAPENTCNT: 1463 case RNDCLEARPOOL: 1464 /* No longer has any effect. */ 1465 if (!capable(CAP_SYS_ADMIN)) 1466 return -EPERM; 1467 return 0; 1468 case RNDRESEEDCRNG: 1469 if (!capable(CAP_SYS_ADMIN)) 1470 return -EPERM; 1471 if (!crng_ready()) 1472 return -ENODATA; 1473 crng_reseed(); 1474 return 0; 1475 default: 1476 return -EINVAL; 1477 } 1478 } 1479 1480 static int random_fasync(int fd, struct file *filp, int on) 1481 { 1482 return fasync_helper(fd, filp, on, &fasync); 1483 } 1484 1485 const struct file_operations random_fops = { 1486 .read_iter = random_read_iter, 1487 .write_iter = random_write_iter, 1488 .poll = random_poll, 1489 .unlocked_ioctl = random_ioctl, 1490 .compat_ioctl = compat_ptr_ioctl, 1491 .fasync = random_fasync, 1492 .llseek = noop_llseek, 1493 .splice_read = generic_file_splice_read, 1494 .splice_write = iter_file_splice_write, 1495 }; 1496 1497 const struct file_operations urandom_fops = { 1498 .read_iter = urandom_read_iter, 1499 .write_iter = random_write_iter, 1500 .unlocked_ioctl = random_ioctl, 1501 .compat_ioctl = compat_ptr_ioctl, 1502 .fasync = random_fasync, 1503 .llseek = noop_llseek, 1504 .splice_read = generic_file_splice_read, 1505 .splice_write = iter_file_splice_write, 1506 }; 1507 1508 1509 /******************************************************************** 1510 * 1511 * Sysctl interface. 1512 * 1513 * These are partly unused legacy knobs with dummy values to not break 1514 * userspace and partly still useful things. They are usually accessible 1515 * in /proc/sys/kernel/random/ and are as follows: 1516 * 1517 * - boot_id - a UUID representing the current boot. 1518 * 1519 * - uuid - a random UUID, different each time the file is read. 1520 * 1521 * - poolsize - the number of bits of entropy that the input pool can 1522 * hold, tied to the POOL_BITS constant. 1523 * 1524 * - entropy_avail - the number of bits of entropy currently in the 1525 * input pool. Always <= poolsize. 1526 * 1527 * - write_wakeup_threshold - the amount of entropy in the input pool 1528 * below which write polls to /dev/random will unblock, requesting 1529 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1530 * to avoid breaking old userspaces, but writing to it does not 1531 * change any behavior of the RNG. 1532 * 1533 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1534 * It is writable to avoid breaking old userspaces, but writing 1535 * to it does not change any behavior of the RNG. 1536 * 1537 ********************************************************************/ 1538 1539 #ifdef CONFIG_SYSCTL 1540 1541 #include <linux/sysctl.h> 1542 1543 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1544 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1545 static int sysctl_poolsize = POOL_BITS; 1546 static u8 sysctl_bootid[UUID_SIZE]; 1547 1548 /* 1549 * This function is used to return both the bootid UUID, and random 1550 * UUID. The difference is in whether table->data is NULL; if it is, 1551 * then a new UUID is generated and returned to the user. 1552 */ 1553 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1554 size_t *lenp, loff_t *ppos) 1555 { 1556 u8 tmp_uuid[UUID_SIZE], *uuid; 1557 char uuid_string[UUID_STRING_LEN + 1]; 1558 struct ctl_table fake_table = { 1559 .data = uuid_string, 1560 .maxlen = UUID_STRING_LEN 1561 }; 1562 1563 if (write) 1564 return -EPERM; 1565 1566 uuid = table->data; 1567 if (!uuid) { 1568 uuid = tmp_uuid; 1569 generate_random_uuid(uuid); 1570 } else { 1571 static DEFINE_SPINLOCK(bootid_spinlock); 1572 1573 spin_lock(&bootid_spinlock); 1574 if (!uuid[8]) 1575 generate_random_uuid(uuid); 1576 spin_unlock(&bootid_spinlock); 1577 } 1578 1579 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1580 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1581 } 1582 1583 /* The same as proc_dointvec, but writes don't change anything. */ 1584 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1585 size_t *lenp, loff_t *ppos) 1586 { 1587 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1588 } 1589 1590 static struct ctl_table random_table[] = { 1591 { 1592 .procname = "poolsize", 1593 .data = &sysctl_poolsize, 1594 .maxlen = sizeof(int), 1595 .mode = 0444, 1596 .proc_handler = proc_dointvec, 1597 }, 1598 { 1599 .procname = "entropy_avail", 1600 .data = &input_pool.init_bits, 1601 .maxlen = sizeof(int), 1602 .mode = 0444, 1603 .proc_handler = proc_dointvec, 1604 }, 1605 { 1606 .procname = "write_wakeup_threshold", 1607 .data = &sysctl_random_write_wakeup_bits, 1608 .maxlen = sizeof(int), 1609 .mode = 0644, 1610 .proc_handler = proc_do_rointvec, 1611 }, 1612 { 1613 .procname = "urandom_min_reseed_secs", 1614 .data = &sysctl_random_min_urandom_seed, 1615 .maxlen = sizeof(int), 1616 .mode = 0644, 1617 .proc_handler = proc_do_rointvec, 1618 }, 1619 { 1620 .procname = "boot_id", 1621 .data = &sysctl_bootid, 1622 .mode = 0444, 1623 .proc_handler = proc_do_uuid, 1624 }, 1625 { 1626 .procname = "uuid", 1627 .mode = 0444, 1628 .proc_handler = proc_do_uuid, 1629 }, 1630 { } 1631 }; 1632 1633 /* 1634 * random_init() is called before sysctl_init(), 1635 * so we cannot call register_sysctl_init() in random_init() 1636 */ 1637 static int __init random_sysctls_init(void) 1638 { 1639 register_sysctl_init("kernel/random", random_table); 1640 return 0; 1641 } 1642 device_initcall(random_sysctls_init); 1643 #endif 1644