1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/mm.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 244 #include <asm/processor.h> 245 #include <asm/uaccess.h> 246 #include <asm/irq.h> 247 #include <asm/io.h> 248 249 /* 250 * Configuration information 251 */ 252 #define INPUT_POOL_WORDS 128 253 #define OUTPUT_POOL_WORDS 32 254 #define SEC_XFER_SIZE 512 255 256 /* 257 * The minimum number of bits of entropy before we wake up a read on 258 * /dev/random. Should be enough to do a significant reseed. 259 */ 260 static int random_read_wakeup_thresh = 64; 261 262 /* 263 * If the entropy count falls under this number of bits, then we 264 * should wake up processes which are selecting or polling on write 265 * access to /dev/random. 266 */ 267 static int random_write_wakeup_thresh = 128; 268 269 /* 270 * When the input pool goes over trickle_thresh, start dropping most 271 * samples to avoid wasting CPU time and reduce lock contention. 272 */ 273 274 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 275 276 static DEFINE_PER_CPU(int, trickle_count); 277 278 /* 279 * A pool of size .poolwords is stirred with a primitive polynomial 280 * of degree .poolwords over GF(2). The taps for various sizes are 281 * defined below. They are chosen to be evenly spaced (minimum RMS 282 * distance from evenly spaced; the numbers in the comments are a 283 * scaled squared error sum) except for the last tap, which is 1 to 284 * get the twisting happening as fast as possible. 285 */ 286 static struct poolinfo { 287 int poolwords; 288 int tap1, tap2, tap3, tap4, tap5; 289 } poolinfo_table[] = { 290 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 291 { 128, 103, 76, 51, 25, 1 }, 292 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 293 { 32, 26, 20, 14, 7, 1 }, 294 #if 0 295 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 296 { 2048, 1638, 1231, 819, 411, 1 }, 297 298 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 299 { 1024, 817, 615, 412, 204, 1 }, 300 301 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 302 { 1024, 819, 616, 410, 207, 2 }, 303 304 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 305 { 512, 411, 308, 208, 104, 1 }, 306 307 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 308 { 512, 409, 307, 206, 102, 2 }, 309 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 310 { 512, 409, 309, 205, 103, 2 }, 311 312 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 313 { 256, 205, 155, 101, 52, 1 }, 314 315 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 316 { 128, 103, 78, 51, 27, 2 }, 317 318 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 319 { 64, 52, 39, 26, 14, 1 }, 320 #endif 321 }; 322 323 #define POOLBITS poolwords*32 324 #define POOLBYTES poolwords*4 325 326 /* 327 * For the purposes of better mixing, we use the CRC-32 polynomial as 328 * well to make a twisted Generalized Feedback Shift Reigster 329 * 330 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 331 * Transactions on Modeling and Computer Simulation 2(3):179-194. 332 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 333 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 334 * 335 * Thanks to Colin Plumb for suggesting this. 336 * 337 * We have not analyzed the resultant polynomial to prove it primitive; 338 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 339 * of a random large-degree polynomial over GF(2) are more than large enough 340 * that periodicity is not a concern. 341 * 342 * The input hash is much less sensitive than the output hash. All 343 * that we want of it is that it be a good non-cryptographic hash; 344 * i.e. it not produce collisions when fed "random" data of the sort 345 * we expect to see. As long as the pool state differs for different 346 * inputs, we have preserved the input entropy and done a good job. 347 * The fact that an intelligent attacker can construct inputs that 348 * will produce controlled alterations to the pool's state is not 349 * important because we don't consider such inputs to contribute any 350 * randomness. The only property we need with respect to them is that 351 * the attacker can't increase his/her knowledge of the pool's state. 352 * Since all additions are reversible (knowing the final state and the 353 * input, you can reconstruct the initial state), if an attacker has 354 * any uncertainty about the initial state, he/she can only shuffle 355 * that uncertainty about, but never cause any collisions (which would 356 * decrease the uncertainty). 357 * 358 * The chosen system lets the state of the pool be (essentially) the input 359 * modulo the generator polymnomial. Now, for random primitive polynomials, 360 * this is a universal class of hash functions, meaning that the chance 361 * of a collision is limited by the attacker's knowledge of the generator 362 * polynomail, so if it is chosen at random, an attacker can never force 363 * a collision. Here, we use a fixed polynomial, but we *can* assume that 364 * ###--> it is unknown to the processes generating the input entropy. <-### 365 * Because of this important property, this is a good, collision-resistant 366 * hash; hash collisions will occur no more often than chance. 367 */ 368 369 /* 370 * Static global variables 371 */ 372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 374 static struct fasync_struct *fasync; 375 376 #if 0 377 static int debug; 378 module_param(debug, bool, 0644); 379 #define DEBUG_ENT(fmt, arg...) do { \ 380 if (debug) \ 381 printk(KERN_DEBUG "random %04d %04d %04d: " \ 382 fmt,\ 383 input_pool.entropy_count,\ 384 blocking_pool.entropy_count,\ 385 nonblocking_pool.entropy_count,\ 386 ## arg); } while (0) 387 #else 388 #define DEBUG_ENT(fmt, arg...) do {} while (0) 389 #endif 390 391 /********************************************************************** 392 * 393 * OS independent entropy store. Here are the functions which handle 394 * storing entropy in an entropy pool. 395 * 396 **********************************************************************/ 397 398 struct entropy_store; 399 struct entropy_store { 400 /* read-only data: */ 401 struct poolinfo *poolinfo; 402 __u32 *pool; 403 const char *name; 404 int limit; 405 struct entropy_store *pull; 406 407 /* read-write data: */ 408 spinlock_t lock; 409 unsigned add_ptr; 410 int entropy_count; 411 int input_rotate; 412 }; 413 414 static __u32 input_pool_data[INPUT_POOL_WORDS]; 415 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 416 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 417 418 static struct entropy_store input_pool = { 419 .poolinfo = &poolinfo_table[0], 420 .name = "input", 421 .limit = 1, 422 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 423 .pool = input_pool_data 424 }; 425 426 static struct entropy_store blocking_pool = { 427 .poolinfo = &poolinfo_table[1], 428 .name = "blocking", 429 .limit = 1, 430 .pull = &input_pool, 431 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 432 .pool = blocking_pool_data 433 }; 434 435 static struct entropy_store nonblocking_pool = { 436 .poolinfo = &poolinfo_table[1], 437 .name = "nonblocking", 438 .pull = &input_pool, 439 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 440 .pool = nonblocking_pool_data 441 }; 442 443 /* 444 * This function adds bytes into the entropy "pool". It does not 445 * update the entropy estimate. The caller should call 446 * credit_entropy_bits if this is appropriate. 447 * 448 * The pool is stirred with a primitive polynomial of the appropriate 449 * degree, and then twisted. We twist by three bits at a time because 450 * it's cheap to do so and helps slightly in the expected case where 451 * the entropy is concentrated in the low-order bits. 452 */ 453 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 454 int nbytes, __u8 out[64]) 455 { 456 static __u32 const twist_table[8] = { 457 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 458 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 459 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 460 int input_rotate; 461 int wordmask = r->poolinfo->poolwords - 1; 462 const char *bytes = in; 463 __u32 w; 464 unsigned long flags; 465 466 /* Taps are constant, so we can load them without holding r->lock. */ 467 tap1 = r->poolinfo->tap1; 468 tap2 = r->poolinfo->tap2; 469 tap3 = r->poolinfo->tap3; 470 tap4 = r->poolinfo->tap4; 471 tap5 = r->poolinfo->tap5; 472 473 spin_lock_irqsave(&r->lock, flags); 474 input_rotate = r->input_rotate; 475 i = r->add_ptr; 476 477 /* mix one byte at a time to simplify size handling and churn faster */ 478 while (nbytes--) { 479 w = rol32(*bytes++, input_rotate & 31); 480 i = (i - 1) & wordmask; 481 482 /* XOR in the various taps */ 483 w ^= r->pool[i]; 484 w ^= r->pool[(i + tap1) & wordmask]; 485 w ^= r->pool[(i + tap2) & wordmask]; 486 w ^= r->pool[(i + tap3) & wordmask]; 487 w ^= r->pool[(i + tap4) & wordmask]; 488 w ^= r->pool[(i + tap5) & wordmask]; 489 490 /* Mix the result back in with a twist */ 491 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 492 493 /* 494 * Normally, we add 7 bits of rotation to the pool. 495 * At the beginning of the pool, add an extra 7 bits 496 * rotation, so that successive passes spread the 497 * input bits across the pool evenly. 498 */ 499 input_rotate += i ? 7 : 14; 500 } 501 502 r->input_rotate = input_rotate; 503 r->add_ptr = i; 504 505 if (out) 506 for (j = 0; j < 16; j++) 507 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 508 509 spin_unlock_irqrestore(&r->lock, flags); 510 } 511 512 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 513 { 514 mix_pool_bytes_extract(r, in, bytes, NULL); 515 } 516 517 /* 518 * Credit (or debit) the entropy store with n bits of entropy 519 */ 520 static void credit_entropy_bits(struct entropy_store *r, int nbits) 521 { 522 unsigned long flags; 523 int entropy_count; 524 525 if (!nbits) 526 return; 527 528 spin_lock_irqsave(&r->lock, flags); 529 530 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 531 entropy_count = r->entropy_count; 532 entropy_count += nbits; 533 if (entropy_count < 0) { 534 DEBUG_ENT("negative entropy/overflow\n"); 535 entropy_count = 0; 536 } else if (entropy_count > r->poolinfo->POOLBITS) 537 entropy_count = r->poolinfo->POOLBITS; 538 r->entropy_count = entropy_count; 539 540 /* should we wake readers? */ 541 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 542 wake_up_interruptible(&random_read_wait); 543 kill_fasync(&fasync, SIGIO, POLL_IN); 544 } 545 spin_unlock_irqrestore(&r->lock, flags); 546 } 547 548 /********************************************************************* 549 * 550 * Entropy input management 551 * 552 *********************************************************************/ 553 554 /* There is one of these per entropy source */ 555 struct timer_rand_state { 556 cycles_t last_time; 557 long last_delta, last_delta2; 558 unsigned dont_count_entropy:1; 559 }; 560 561 #ifndef CONFIG_SPARSE_IRQ 562 563 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 564 565 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 566 { 567 return irq_timer_state[irq]; 568 } 569 570 static void set_timer_rand_state(unsigned int irq, 571 struct timer_rand_state *state) 572 { 573 irq_timer_state[irq] = state; 574 } 575 576 #else 577 578 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 579 { 580 struct irq_desc *desc; 581 582 desc = irq_to_desc(irq); 583 584 return desc->timer_rand_state; 585 } 586 587 static void set_timer_rand_state(unsigned int irq, 588 struct timer_rand_state *state) 589 { 590 struct irq_desc *desc; 591 592 desc = irq_to_desc(irq); 593 594 desc->timer_rand_state = state; 595 } 596 #endif 597 598 static struct timer_rand_state input_timer_state; 599 600 /* 601 * This function adds entropy to the entropy "pool" by using timing 602 * delays. It uses the timer_rand_state structure to make an estimate 603 * of how many bits of entropy this call has added to the pool. 604 * 605 * The number "num" is also added to the pool - it should somehow describe 606 * the type of event which just happened. This is currently 0-255 for 607 * keyboard scan codes, and 256 upwards for interrupts. 608 * 609 */ 610 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 611 { 612 struct { 613 cycles_t cycles; 614 long jiffies; 615 unsigned num; 616 } sample; 617 long delta, delta2, delta3; 618 619 preempt_disable(); 620 /* if over the trickle threshold, use only 1 in 4096 samples */ 621 if (input_pool.entropy_count > trickle_thresh && 622 (__get_cpu_var(trickle_count)++ & 0xfff)) 623 goto out; 624 625 sample.jiffies = jiffies; 626 sample.cycles = get_cycles(); 627 sample.num = num; 628 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 629 630 /* 631 * Calculate number of bits of randomness we probably added. 632 * We take into account the first, second and third-order deltas 633 * in order to make our estimate. 634 */ 635 636 if (!state->dont_count_entropy) { 637 delta = sample.jiffies - state->last_time; 638 state->last_time = sample.jiffies; 639 640 delta2 = delta - state->last_delta; 641 state->last_delta = delta; 642 643 delta3 = delta2 - state->last_delta2; 644 state->last_delta2 = delta2; 645 646 if (delta < 0) 647 delta = -delta; 648 if (delta2 < 0) 649 delta2 = -delta2; 650 if (delta3 < 0) 651 delta3 = -delta3; 652 if (delta > delta2) 653 delta = delta2; 654 if (delta > delta3) 655 delta = delta3; 656 657 /* 658 * delta is now minimum absolute delta. 659 * Round down by 1 bit on general principles, 660 * and limit entropy entimate to 12 bits. 661 */ 662 credit_entropy_bits(&input_pool, 663 min_t(int, fls(delta>>1), 11)); 664 } 665 out: 666 preempt_enable(); 667 } 668 669 void add_input_randomness(unsigned int type, unsigned int code, 670 unsigned int value) 671 { 672 static unsigned char last_value; 673 674 /* ignore autorepeat and the like */ 675 if (value == last_value) 676 return; 677 678 DEBUG_ENT("input event\n"); 679 last_value = value; 680 add_timer_randomness(&input_timer_state, 681 (type << 4) ^ code ^ (code >> 4) ^ value); 682 } 683 EXPORT_SYMBOL_GPL(add_input_randomness); 684 685 void add_interrupt_randomness(int irq) 686 { 687 struct timer_rand_state *state; 688 689 state = get_timer_rand_state(irq); 690 691 if (state == NULL) 692 return; 693 694 DEBUG_ENT("irq event %d\n", irq); 695 add_timer_randomness(state, 0x100 + irq); 696 } 697 698 #ifdef CONFIG_BLOCK 699 void add_disk_randomness(struct gendisk *disk) 700 { 701 if (!disk || !disk->random) 702 return; 703 /* first major is 1, so we get >= 0x200 here */ 704 DEBUG_ENT("disk event %d:%d\n", 705 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 706 707 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 708 } 709 #endif 710 711 #define EXTRACT_SIZE 10 712 713 /********************************************************************* 714 * 715 * Entropy extraction routines 716 * 717 *********************************************************************/ 718 719 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 720 size_t nbytes, int min, int rsvd); 721 722 /* 723 * This utility inline function is responsible for transfering entropy 724 * from the primary pool to the secondary extraction pool. We make 725 * sure we pull enough for a 'catastrophic reseed'. 726 */ 727 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 728 { 729 __u32 tmp[OUTPUT_POOL_WORDS]; 730 731 if (r->pull && r->entropy_count < nbytes * 8 && 732 r->entropy_count < r->poolinfo->POOLBITS) { 733 /* If we're limited, always leave two wakeup worth's BITS */ 734 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 735 int bytes = nbytes; 736 737 /* pull at least as many as BYTES as wakeup BITS */ 738 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 739 /* but never more than the buffer size */ 740 bytes = min_t(int, bytes, sizeof(tmp)); 741 742 DEBUG_ENT("going to reseed %s with %d bits " 743 "(%d of %d requested)\n", 744 r->name, bytes * 8, nbytes * 8, r->entropy_count); 745 746 bytes = extract_entropy(r->pull, tmp, bytes, 747 random_read_wakeup_thresh / 8, rsvd); 748 mix_pool_bytes(r, tmp, bytes); 749 credit_entropy_bits(r, bytes*8); 750 } 751 } 752 753 /* 754 * These functions extracts randomness from the "entropy pool", and 755 * returns it in a buffer. 756 * 757 * The min parameter specifies the minimum amount we can pull before 758 * failing to avoid races that defeat catastrophic reseeding while the 759 * reserved parameter indicates how much entropy we must leave in the 760 * pool after each pull to avoid starving other readers. 761 * 762 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 763 */ 764 765 static size_t account(struct entropy_store *r, size_t nbytes, int min, 766 int reserved) 767 { 768 unsigned long flags; 769 770 /* Hold lock while accounting */ 771 spin_lock_irqsave(&r->lock, flags); 772 773 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 774 DEBUG_ENT("trying to extract %d bits from %s\n", 775 nbytes * 8, r->name); 776 777 /* Can we pull enough? */ 778 if (r->entropy_count / 8 < min + reserved) { 779 nbytes = 0; 780 } else { 781 /* If limited, never pull more than available */ 782 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 783 nbytes = r->entropy_count/8 - reserved; 784 785 if (r->entropy_count / 8 >= nbytes + reserved) 786 r->entropy_count -= nbytes*8; 787 else 788 r->entropy_count = reserved; 789 790 if (r->entropy_count < random_write_wakeup_thresh) { 791 wake_up_interruptible(&random_write_wait); 792 kill_fasync(&fasync, SIGIO, POLL_OUT); 793 } 794 } 795 796 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 797 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 798 799 spin_unlock_irqrestore(&r->lock, flags); 800 801 return nbytes; 802 } 803 804 static void extract_buf(struct entropy_store *r, __u8 *out) 805 { 806 int i; 807 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 808 __u8 extract[64]; 809 810 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 811 sha_init(hash); 812 for (i = 0; i < r->poolinfo->poolwords; i += 16) 813 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 814 815 /* 816 * We mix the hash back into the pool to prevent backtracking 817 * attacks (where the attacker knows the state of the pool 818 * plus the current outputs, and attempts to find previous 819 * ouputs), unless the hash function can be inverted. By 820 * mixing at least a SHA1 worth of hash data back, we make 821 * brute-forcing the feedback as hard as brute-forcing the 822 * hash. 823 */ 824 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 825 826 /* 827 * To avoid duplicates, we atomically extract a portion of the 828 * pool while mixing, and hash one final time. 829 */ 830 sha_transform(hash, extract, workspace); 831 memset(extract, 0, sizeof(extract)); 832 memset(workspace, 0, sizeof(workspace)); 833 834 /* 835 * In case the hash function has some recognizable output 836 * pattern, we fold it in half. Thus, we always feed back 837 * twice as much data as we output. 838 */ 839 hash[0] ^= hash[3]; 840 hash[1] ^= hash[4]; 841 hash[2] ^= rol32(hash[2], 16); 842 memcpy(out, hash, EXTRACT_SIZE); 843 memset(hash, 0, sizeof(hash)); 844 } 845 846 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 847 size_t nbytes, int min, int reserved) 848 { 849 ssize_t ret = 0, i; 850 __u8 tmp[EXTRACT_SIZE]; 851 852 xfer_secondary_pool(r, nbytes); 853 nbytes = account(r, nbytes, min, reserved); 854 855 while (nbytes) { 856 extract_buf(r, tmp); 857 i = min_t(int, nbytes, EXTRACT_SIZE); 858 memcpy(buf, tmp, i); 859 nbytes -= i; 860 buf += i; 861 ret += i; 862 } 863 864 /* Wipe data just returned from memory */ 865 memset(tmp, 0, sizeof(tmp)); 866 867 return ret; 868 } 869 870 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 871 size_t nbytes) 872 { 873 ssize_t ret = 0, i; 874 __u8 tmp[EXTRACT_SIZE]; 875 876 xfer_secondary_pool(r, nbytes); 877 nbytes = account(r, nbytes, 0, 0); 878 879 while (nbytes) { 880 if (need_resched()) { 881 if (signal_pending(current)) { 882 if (ret == 0) 883 ret = -ERESTARTSYS; 884 break; 885 } 886 schedule(); 887 } 888 889 extract_buf(r, tmp); 890 i = min_t(int, nbytes, EXTRACT_SIZE); 891 if (copy_to_user(buf, tmp, i)) { 892 ret = -EFAULT; 893 break; 894 } 895 896 nbytes -= i; 897 buf += i; 898 ret += i; 899 } 900 901 /* Wipe data just returned from memory */ 902 memset(tmp, 0, sizeof(tmp)); 903 904 return ret; 905 } 906 907 /* 908 * This function is the exported kernel interface. It returns some 909 * number of good random numbers, suitable for seeding TCP sequence 910 * numbers, etc. 911 */ 912 void get_random_bytes(void *buf, int nbytes) 913 { 914 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 915 } 916 EXPORT_SYMBOL(get_random_bytes); 917 918 /* 919 * init_std_data - initialize pool with system data 920 * 921 * @r: pool to initialize 922 * 923 * This function clears the pool's entropy count and mixes some system 924 * data into the pool to prepare it for use. The pool is not cleared 925 * as that can only decrease the entropy in the pool. 926 */ 927 static void init_std_data(struct entropy_store *r) 928 { 929 ktime_t now; 930 unsigned long flags; 931 932 spin_lock_irqsave(&r->lock, flags); 933 r->entropy_count = 0; 934 spin_unlock_irqrestore(&r->lock, flags); 935 936 now = ktime_get_real(); 937 mix_pool_bytes(r, &now, sizeof(now)); 938 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 939 } 940 941 static int rand_initialize(void) 942 { 943 init_std_data(&input_pool); 944 init_std_data(&blocking_pool); 945 init_std_data(&nonblocking_pool); 946 return 0; 947 } 948 module_init(rand_initialize); 949 950 void rand_initialize_irq(int irq) 951 { 952 struct timer_rand_state *state; 953 954 state = get_timer_rand_state(irq); 955 956 if (state) 957 return; 958 959 /* 960 * If kzalloc returns null, we just won't use that entropy 961 * source. 962 */ 963 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 964 if (state) 965 set_timer_rand_state(irq, state); 966 } 967 968 #ifdef CONFIG_BLOCK 969 void rand_initialize_disk(struct gendisk *disk) 970 { 971 struct timer_rand_state *state; 972 973 /* 974 * If kzalloc returns null, we just won't use that entropy 975 * source. 976 */ 977 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 978 if (state) 979 disk->random = state; 980 } 981 #endif 982 983 static ssize_t 984 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 985 { 986 ssize_t n, retval = 0, count = 0; 987 988 if (nbytes == 0) 989 return 0; 990 991 while (nbytes > 0) { 992 n = nbytes; 993 if (n > SEC_XFER_SIZE) 994 n = SEC_XFER_SIZE; 995 996 DEBUG_ENT("reading %d bits\n", n*8); 997 998 n = extract_entropy_user(&blocking_pool, buf, n); 999 1000 DEBUG_ENT("read got %d bits (%d still needed)\n", 1001 n*8, (nbytes-n)*8); 1002 1003 if (n == 0) { 1004 if (file->f_flags & O_NONBLOCK) { 1005 retval = -EAGAIN; 1006 break; 1007 } 1008 1009 DEBUG_ENT("sleeping?\n"); 1010 1011 wait_event_interruptible(random_read_wait, 1012 input_pool.entropy_count >= 1013 random_read_wakeup_thresh); 1014 1015 DEBUG_ENT("awake\n"); 1016 1017 if (signal_pending(current)) { 1018 retval = -ERESTARTSYS; 1019 break; 1020 } 1021 1022 continue; 1023 } 1024 1025 if (n < 0) { 1026 retval = n; 1027 break; 1028 } 1029 count += n; 1030 buf += n; 1031 nbytes -= n; 1032 break; /* This break makes the device work */ 1033 /* like a named pipe */ 1034 } 1035 1036 /* 1037 * If we gave the user some bytes, update the access time. 1038 */ 1039 if (count) 1040 file_accessed(file); 1041 1042 return (count ? count : retval); 1043 } 1044 1045 static ssize_t 1046 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1047 { 1048 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1049 } 1050 1051 static unsigned int 1052 random_poll(struct file *file, poll_table * wait) 1053 { 1054 unsigned int mask; 1055 1056 poll_wait(file, &random_read_wait, wait); 1057 poll_wait(file, &random_write_wait, wait); 1058 mask = 0; 1059 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1060 mask |= POLLIN | POLLRDNORM; 1061 if (input_pool.entropy_count < random_write_wakeup_thresh) 1062 mask |= POLLOUT | POLLWRNORM; 1063 return mask; 1064 } 1065 1066 static int 1067 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1068 { 1069 size_t bytes; 1070 __u32 buf[16]; 1071 const char __user *p = buffer; 1072 1073 while (count > 0) { 1074 bytes = min(count, sizeof(buf)); 1075 if (copy_from_user(&buf, p, bytes)) 1076 return -EFAULT; 1077 1078 count -= bytes; 1079 p += bytes; 1080 1081 mix_pool_bytes(r, buf, bytes); 1082 cond_resched(); 1083 } 1084 1085 return 0; 1086 } 1087 1088 static ssize_t random_write(struct file *file, const char __user *buffer, 1089 size_t count, loff_t *ppos) 1090 { 1091 size_t ret; 1092 struct inode *inode = file->f_path.dentry->d_inode; 1093 1094 ret = write_pool(&blocking_pool, buffer, count); 1095 if (ret) 1096 return ret; 1097 ret = write_pool(&nonblocking_pool, buffer, count); 1098 if (ret) 1099 return ret; 1100 1101 inode->i_mtime = current_fs_time(inode->i_sb); 1102 mark_inode_dirty(inode); 1103 return (ssize_t)count; 1104 } 1105 1106 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1107 { 1108 int size, ent_count; 1109 int __user *p = (int __user *)arg; 1110 int retval; 1111 1112 switch (cmd) { 1113 case RNDGETENTCNT: 1114 /* inherently racy, no point locking */ 1115 if (put_user(input_pool.entropy_count, p)) 1116 return -EFAULT; 1117 return 0; 1118 case RNDADDTOENTCNT: 1119 if (!capable(CAP_SYS_ADMIN)) 1120 return -EPERM; 1121 if (get_user(ent_count, p)) 1122 return -EFAULT; 1123 credit_entropy_bits(&input_pool, ent_count); 1124 return 0; 1125 case RNDADDENTROPY: 1126 if (!capable(CAP_SYS_ADMIN)) 1127 return -EPERM; 1128 if (get_user(ent_count, p++)) 1129 return -EFAULT; 1130 if (ent_count < 0) 1131 return -EINVAL; 1132 if (get_user(size, p++)) 1133 return -EFAULT; 1134 retval = write_pool(&input_pool, (const char __user *)p, 1135 size); 1136 if (retval < 0) 1137 return retval; 1138 credit_entropy_bits(&input_pool, ent_count); 1139 return 0; 1140 case RNDZAPENTCNT: 1141 case RNDCLEARPOOL: 1142 /* Clear the entropy pool counters. */ 1143 if (!capable(CAP_SYS_ADMIN)) 1144 return -EPERM; 1145 rand_initialize(); 1146 return 0; 1147 default: 1148 return -EINVAL; 1149 } 1150 } 1151 1152 static int random_fasync(int fd, struct file *filp, int on) 1153 { 1154 return fasync_helper(fd, filp, on, &fasync); 1155 } 1156 1157 const struct file_operations random_fops = { 1158 .read = random_read, 1159 .write = random_write, 1160 .poll = random_poll, 1161 .unlocked_ioctl = random_ioctl, 1162 .fasync = random_fasync, 1163 }; 1164 1165 const struct file_operations urandom_fops = { 1166 .read = urandom_read, 1167 .write = random_write, 1168 .unlocked_ioctl = random_ioctl, 1169 .fasync = random_fasync, 1170 }; 1171 1172 /*************************************************************** 1173 * Random UUID interface 1174 * 1175 * Used here for a Boot ID, but can be useful for other kernel 1176 * drivers. 1177 ***************************************************************/ 1178 1179 /* 1180 * Generate random UUID 1181 */ 1182 void generate_random_uuid(unsigned char uuid_out[16]) 1183 { 1184 get_random_bytes(uuid_out, 16); 1185 /* Set UUID version to 4 --- truely random generation */ 1186 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1187 /* Set the UUID variant to DCE */ 1188 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1189 } 1190 EXPORT_SYMBOL(generate_random_uuid); 1191 1192 /******************************************************************** 1193 * 1194 * Sysctl interface 1195 * 1196 ********************************************************************/ 1197 1198 #ifdef CONFIG_SYSCTL 1199 1200 #include <linux/sysctl.h> 1201 1202 static int min_read_thresh = 8, min_write_thresh; 1203 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1204 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1205 static char sysctl_bootid[16]; 1206 1207 /* 1208 * These functions is used to return both the bootid UUID, and random 1209 * UUID. The difference is in whether table->data is NULL; if it is, 1210 * then a new UUID is generated and returned to the user. 1211 * 1212 * If the user accesses this via the proc interface, it will be returned 1213 * as an ASCII string in the standard UUID format. If accesses via the 1214 * sysctl system call, it is returned as 16 bytes of binary data. 1215 */ 1216 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1217 void __user *buffer, size_t *lenp, loff_t *ppos) 1218 { 1219 ctl_table fake_table; 1220 unsigned char buf[64], tmp_uuid[16], *uuid; 1221 1222 uuid = table->data; 1223 if (!uuid) { 1224 uuid = tmp_uuid; 1225 uuid[8] = 0; 1226 } 1227 if (uuid[8] == 0) 1228 generate_random_uuid(uuid); 1229 1230 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1231 "%02x%02x%02x%02x%02x%02x", 1232 uuid[0], uuid[1], uuid[2], uuid[3], 1233 uuid[4], uuid[5], uuid[6], uuid[7], 1234 uuid[8], uuid[9], uuid[10], uuid[11], 1235 uuid[12], uuid[13], uuid[14], uuid[15]); 1236 fake_table.data = buf; 1237 fake_table.maxlen = sizeof(buf); 1238 1239 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1240 } 1241 1242 static int uuid_strategy(ctl_table *table, 1243 void __user *oldval, size_t __user *oldlenp, 1244 void __user *newval, size_t newlen) 1245 { 1246 unsigned char tmp_uuid[16], *uuid; 1247 unsigned int len; 1248 1249 if (!oldval || !oldlenp) 1250 return 1; 1251 1252 uuid = table->data; 1253 if (!uuid) { 1254 uuid = tmp_uuid; 1255 uuid[8] = 0; 1256 } 1257 if (uuid[8] == 0) 1258 generate_random_uuid(uuid); 1259 1260 if (get_user(len, oldlenp)) 1261 return -EFAULT; 1262 if (len) { 1263 if (len > 16) 1264 len = 16; 1265 if (copy_to_user(oldval, uuid, len) || 1266 put_user(len, oldlenp)) 1267 return -EFAULT; 1268 } 1269 return 1; 1270 } 1271 1272 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1273 ctl_table random_table[] = { 1274 { 1275 .ctl_name = RANDOM_POOLSIZE, 1276 .procname = "poolsize", 1277 .data = &sysctl_poolsize, 1278 .maxlen = sizeof(int), 1279 .mode = 0444, 1280 .proc_handler = &proc_dointvec, 1281 }, 1282 { 1283 .ctl_name = RANDOM_ENTROPY_COUNT, 1284 .procname = "entropy_avail", 1285 .maxlen = sizeof(int), 1286 .mode = 0444, 1287 .proc_handler = &proc_dointvec, 1288 .data = &input_pool.entropy_count, 1289 }, 1290 { 1291 .ctl_name = RANDOM_READ_THRESH, 1292 .procname = "read_wakeup_threshold", 1293 .data = &random_read_wakeup_thresh, 1294 .maxlen = sizeof(int), 1295 .mode = 0644, 1296 .proc_handler = &proc_dointvec_minmax, 1297 .strategy = &sysctl_intvec, 1298 .extra1 = &min_read_thresh, 1299 .extra2 = &max_read_thresh, 1300 }, 1301 { 1302 .ctl_name = RANDOM_WRITE_THRESH, 1303 .procname = "write_wakeup_threshold", 1304 .data = &random_write_wakeup_thresh, 1305 .maxlen = sizeof(int), 1306 .mode = 0644, 1307 .proc_handler = &proc_dointvec_minmax, 1308 .strategy = &sysctl_intvec, 1309 .extra1 = &min_write_thresh, 1310 .extra2 = &max_write_thresh, 1311 }, 1312 { 1313 .ctl_name = RANDOM_BOOT_ID, 1314 .procname = "boot_id", 1315 .data = &sysctl_bootid, 1316 .maxlen = 16, 1317 .mode = 0444, 1318 .proc_handler = &proc_do_uuid, 1319 .strategy = &uuid_strategy, 1320 }, 1321 { 1322 .ctl_name = RANDOM_UUID, 1323 .procname = "uuid", 1324 .maxlen = 16, 1325 .mode = 0444, 1326 .proc_handler = &proc_do_uuid, 1327 .strategy = &uuid_strategy, 1328 }, 1329 { .ctl_name = 0 } 1330 }; 1331 #endif /* CONFIG_SYSCTL */ 1332 1333 /******************************************************************** 1334 * 1335 * Random funtions for networking 1336 * 1337 ********************************************************************/ 1338 1339 /* 1340 * TCP initial sequence number picking. This uses the random number 1341 * generator to pick an initial secret value. This value is hashed 1342 * along with the TCP endpoint information to provide a unique 1343 * starting point for each pair of TCP endpoints. This defeats 1344 * attacks which rely on guessing the initial TCP sequence number. 1345 * This algorithm was suggested by Steve Bellovin. 1346 * 1347 * Using a very strong hash was taking an appreciable amount of the total 1348 * TCP connection establishment time, so this is a weaker hash, 1349 * compensated for by changing the secret periodically. 1350 */ 1351 1352 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1353 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1354 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1355 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1356 1357 /* 1358 * The generic round function. The application is so specific that 1359 * we don't bother protecting all the arguments with parens, as is generally 1360 * good macro practice, in favor of extra legibility. 1361 * Rotation is separate from addition to prevent recomputation 1362 */ 1363 #define ROUND(f, a, b, c, d, x, s) \ 1364 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1365 #define K1 0 1366 #define K2 013240474631UL 1367 #define K3 015666365641UL 1368 1369 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1370 1371 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1372 { 1373 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1374 1375 /* Round 1 */ 1376 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1377 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1378 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1379 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1380 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1381 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1382 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1383 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1384 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1385 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1386 ROUND(F, c, d, a, b, in[10] + K1, 11); 1387 ROUND(F, b, c, d, a, in[11] + K1, 19); 1388 1389 /* Round 2 */ 1390 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1391 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1392 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1393 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1394 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1395 ROUND(G, d, a, b, c, in[11] + K2, 5); 1396 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1397 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1398 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1399 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1400 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1401 ROUND(G, b, c, d, a, in[10] + K2, 13); 1402 1403 /* Round 3 */ 1404 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1405 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1406 ROUND(H, c, d, a, b, in[11] + K3, 11); 1407 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1408 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1409 ROUND(H, d, a, b, c, in[10] + K3, 9); 1410 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1411 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1412 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1413 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1414 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1415 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1416 1417 return buf[1] + b; /* "most hashed" word */ 1418 /* Alternative: return sum of all words? */ 1419 } 1420 #endif 1421 1422 #undef ROUND 1423 #undef F 1424 #undef G 1425 #undef H 1426 #undef K1 1427 #undef K2 1428 #undef K3 1429 1430 /* This should not be decreased so low that ISNs wrap too fast. */ 1431 #define REKEY_INTERVAL (300 * HZ) 1432 /* 1433 * Bit layout of the tcp sequence numbers (before adding current time): 1434 * bit 24-31: increased after every key exchange 1435 * bit 0-23: hash(source,dest) 1436 * 1437 * The implementation is similar to the algorithm described 1438 * in the Appendix of RFC 1185, except that 1439 * - it uses a 1 MHz clock instead of a 250 kHz clock 1440 * - it performs a rekey every 5 minutes, which is equivalent 1441 * to a (source,dest) tulple dependent forward jump of the 1442 * clock by 0..2^(HASH_BITS+1) 1443 * 1444 * Thus the average ISN wraparound time is 68 minutes instead of 1445 * 4.55 hours. 1446 * 1447 * SMP cleanup and lock avoidance with poor man's RCU. 1448 * Manfred Spraul <manfred@colorfullife.com> 1449 * 1450 */ 1451 #define COUNT_BITS 8 1452 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1453 #define HASH_BITS 24 1454 #define HASH_MASK ((1 << HASH_BITS) - 1) 1455 1456 static struct keydata { 1457 __u32 count; /* already shifted to the final position */ 1458 __u32 secret[12]; 1459 } ____cacheline_aligned ip_keydata[2]; 1460 1461 static unsigned int ip_cnt; 1462 1463 static void rekey_seq_generator(struct work_struct *work); 1464 1465 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1466 1467 /* 1468 * Lock avoidance: 1469 * The ISN generation runs lockless - it's just a hash over random data. 1470 * State changes happen every 5 minutes when the random key is replaced. 1471 * Synchronization is performed by having two copies of the hash function 1472 * state and rekey_seq_generator always updates the inactive copy. 1473 * The copy is then activated by updating ip_cnt. 1474 * The implementation breaks down if someone blocks the thread 1475 * that processes SYN requests for more than 5 minutes. Should never 1476 * happen, and even if that happens only a not perfectly compliant 1477 * ISN is generated, nothing fatal. 1478 */ 1479 static void rekey_seq_generator(struct work_struct *work) 1480 { 1481 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1482 1483 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1484 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1485 smp_wmb(); 1486 ip_cnt++; 1487 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1488 } 1489 1490 static inline struct keydata *get_keyptr(void) 1491 { 1492 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1493 1494 smp_rmb(); 1495 1496 return keyptr; 1497 } 1498 1499 static __init int seqgen_init(void) 1500 { 1501 rekey_seq_generator(NULL); 1502 return 0; 1503 } 1504 late_initcall(seqgen_init); 1505 1506 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1507 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1508 __be16 sport, __be16 dport) 1509 { 1510 __u32 seq; 1511 __u32 hash[12]; 1512 struct keydata *keyptr = get_keyptr(); 1513 1514 /* The procedure is the same as for IPv4, but addresses are longer. 1515 * Thus we must use twothirdsMD4Transform. 1516 */ 1517 1518 memcpy(hash, saddr, 16); 1519 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1520 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1521 1522 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1523 seq += keyptr->count; 1524 1525 seq += ktime_to_ns(ktime_get_real()); 1526 1527 return seq; 1528 } 1529 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1530 #endif 1531 1532 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1533 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1534 */ 1535 __u32 secure_ip_id(__be32 daddr) 1536 { 1537 struct keydata *keyptr; 1538 __u32 hash[4]; 1539 1540 keyptr = get_keyptr(); 1541 1542 /* 1543 * Pick a unique starting offset for each IP destination. 1544 * The dest ip address is placed in the starting vector, 1545 * which is then hashed with random data. 1546 */ 1547 hash[0] = (__force __u32)daddr; 1548 hash[1] = keyptr->secret[9]; 1549 hash[2] = keyptr->secret[10]; 1550 hash[3] = keyptr->secret[11]; 1551 1552 return half_md4_transform(hash, keyptr->secret); 1553 } 1554 1555 #ifdef CONFIG_INET 1556 1557 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1558 __be16 sport, __be16 dport) 1559 { 1560 __u32 seq; 1561 __u32 hash[4]; 1562 struct keydata *keyptr = get_keyptr(); 1563 1564 /* 1565 * Pick a unique starting offset for each TCP connection endpoints 1566 * (saddr, daddr, sport, dport). 1567 * Note that the words are placed into the starting vector, which is 1568 * then mixed with a partial MD4 over random data. 1569 */ 1570 hash[0] = (__force u32)saddr; 1571 hash[1] = (__force u32)daddr; 1572 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1573 hash[3] = keyptr->secret[11]; 1574 1575 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1576 seq += keyptr->count; 1577 /* 1578 * As close as possible to RFC 793, which 1579 * suggests using a 250 kHz clock. 1580 * Further reading shows this assumes 2 Mb/s networks. 1581 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1582 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1583 * we also need to limit the resolution so that the u32 seq 1584 * overlaps less than one time per MSL (2 minutes). 1585 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1586 */ 1587 seq += ktime_to_ns(ktime_get_real()) >> 6; 1588 1589 return seq; 1590 } 1591 1592 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1593 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1594 { 1595 struct keydata *keyptr = get_keyptr(); 1596 u32 hash[4]; 1597 1598 /* 1599 * Pick a unique starting offset for each ephemeral port search 1600 * (saddr, daddr, dport) and 48bits of random data. 1601 */ 1602 hash[0] = (__force u32)saddr; 1603 hash[1] = (__force u32)daddr; 1604 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1605 hash[3] = keyptr->secret[11]; 1606 1607 return half_md4_transform(hash, keyptr->secret); 1608 } 1609 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1610 1611 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1612 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1613 __be16 dport) 1614 { 1615 struct keydata *keyptr = get_keyptr(); 1616 u32 hash[12]; 1617 1618 memcpy(hash, saddr, 16); 1619 hash[4] = (__force u32)dport; 1620 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1621 1622 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1623 } 1624 #endif 1625 1626 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1627 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1628 * bit's 32-47 increase every key exchange 1629 * 0-31 hash(source, dest) 1630 */ 1631 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1632 __be16 sport, __be16 dport) 1633 { 1634 u64 seq; 1635 __u32 hash[4]; 1636 struct keydata *keyptr = get_keyptr(); 1637 1638 hash[0] = (__force u32)saddr; 1639 hash[1] = (__force u32)daddr; 1640 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1641 hash[3] = keyptr->secret[11]; 1642 1643 seq = half_md4_transform(hash, keyptr->secret); 1644 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1645 1646 seq += ktime_to_ns(ktime_get_real()); 1647 seq &= (1ull << 48) - 1; 1648 1649 return seq; 1650 } 1651 EXPORT_SYMBOL(secure_dccp_sequence_number); 1652 #endif 1653 1654 #endif /* CONFIG_INET */ 1655 1656 1657 /* 1658 * Get a random word for internal kernel use only. Similar to urandom but 1659 * with the goal of minimal entropy pool depletion. As a result, the random 1660 * value is not cryptographically secure but for several uses the cost of 1661 * depleting entropy is too high 1662 */ 1663 unsigned int get_random_int(void) 1664 { 1665 /* 1666 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1667 * every second, from the entropy pool (and thus creates a limited 1668 * drain on it), and uses halfMD4Transform within the second. We 1669 * also mix it with jiffies and the PID: 1670 */ 1671 return secure_ip_id((__force __be32)(current->pid + jiffies)); 1672 } 1673 1674 /* 1675 * randomize_range() returns a start address such that 1676 * 1677 * [...... <range> .....] 1678 * start end 1679 * 1680 * a <range> with size "len" starting at the return value is inside in the 1681 * area defined by [start, end], but is otherwise randomized. 1682 */ 1683 unsigned long 1684 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1685 { 1686 unsigned long range = end - len - start; 1687 1688 if (end <= start + len) 1689 return 0; 1690 return PAGE_ALIGN(get_random_int() % range + start); 1691 } 1692