xref: /linux/drivers/char/random.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 
244 #include <asm/processor.h>
245 #include <asm/uaccess.h>
246 #include <asm/irq.h>
247 #include <asm/io.h>
248 
249 /*
250  * Configuration information
251  */
252 #define INPUT_POOL_WORDS 128
253 #define OUTPUT_POOL_WORDS 32
254 #define SEC_XFER_SIZE 512
255 
256 /*
257  * The minimum number of bits of entropy before we wake up a read on
258  * /dev/random.  Should be enough to do a significant reseed.
259  */
260 static int random_read_wakeup_thresh = 64;
261 
262 /*
263  * If the entropy count falls under this number of bits, then we
264  * should wake up processes which are selecting or polling on write
265  * access to /dev/random.
266  */
267 static int random_write_wakeup_thresh = 128;
268 
269 /*
270  * When the input pool goes over trickle_thresh, start dropping most
271  * samples to avoid wasting CPU time and reduce lock contention.
272  */
273 
274 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
275 
276 static DEFINE_PER_CPU(int, trickle_count);
277 
278 /*
279  * A pool of size .poolwords is stirred with a primitive polynomial
280  * of degree .poolwords over GF(2).  The taps for various sizes are
281  * defined below.  They are chosen to be evenly spaced (minimum RMS
282  * distance from evenly spaced; the numbers in the comments are a
283  * scaled squared error sum) except for the last tap, which is 1 to
284  * get the twisting happening as fast as possible.
285  */
286 static struct poolinfo {
287 	int poolwords;
288 	int tap1, tap2, tap3, tap4, tap5;
289 } poolinfo_table[] = {
290 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
291 	{ 128,	103,	76,	51,	25,	1 },
292 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
293 	{ 32,	26,	20,	14,	7,	1 },
294 #if 0
295 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
296 	{ 2048,	1638,	1231,	819,	411,	1 },
297 
298 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
299 	{ 1024,	817,	615,	412,	204,	1 },
300 
301 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
302 	{ 1024,	819,	616,	410,	207,	2 },
303 
304 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
305 	{ 512,	411,	308,	208,	104,	1 },
306 
307 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
308 	{ 512,	409,	307,	206,	102,	2 },
309 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
310 	{ 512,	409,	309,	205,	103,	2 },
311 
312 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
313 	{ 256,	205,	155,	101,	52,	1 },
314 
315 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
316 	{ 128,	103,	78,	51,	27,	2 },
317 
318 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
319 	{ 64,	52,	39,	26,	14,	1 },
320 #endif
321 };
322 
323 #define POOLBITS	poolwords*32
324 #define POOLBYTES	poolwords*4
325 
326 /*
327  * For the purposes of better mixing, we use the CRC-32 polynomial as
328  * well to make a twisted Generalized Feedback Shift Reigster
329  *
330  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
331  * Transactions on Modeling and Computer Simulation 2(3):179-194.
332  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
333  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
334  *
335  * Thanks to Colin Plumb for suggesting this.
336  *
337  * We have not analyzed the resultant polynomial to prove it primitive;
338  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
339  * of a random large-degree polynomial over GF(2) are more than large enough
340  * that periodicity is not a concern.
341  *
342  * The input hash is much less sensitive than the output hash.  All
343  * that we want of it is that it be a good non-cryptographic hash;
344  * i.e. it not produce collisions when fed "random" data of the sort
345  * we expect to see.  As long as the pool state differs for different
346  * inputs, we have preserved the input entropy and done a good job.
347  * The fact that an intelligent attacker can construct inputs that
348  * will produce controlled alterations to the pool's state is not
349  * important because we don't consider such inputs to contribute any
350  * randomness.  The only property we need with respect to them is that
351  * the attacker can't increase his/her knowledge of the pool's state.
352  * Since all additions are reversible (knowing the final state and the
353  * input, you can reconstruct the initial state), if an attacker has
354  * any uncertainty about the initial state, he/she can only shuffle
355  * that uncertainty about, but never cause any collisions (which would
356  * decrease the uncertainty).
357  *
358  * The chosen system lets the state of the pool be (essentially) the input
359  * modulo the generator polymnomial.  Now, for random primitive polynomials,
360  * this is a universal class of hash functions, meaning that the chance
361  * of a collision is limited by the attacker's knowledge of the generator
362  * polynomail, so if it is chosen at random, an attacker can never force
363  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
364  * ###--> it is unknown to the processes generating the input entropy. <-###
365  * Because of this important property, this is a good, collision-resistant
366  * hash; hash collisions will occur no more often than chance.
367  */
368 
369 /*
370  * Static global variables
371  */
372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
374 static struct fasync_struct *fasync;
375 
376 #if 0
377 static int debug;
378 module_param(debug, bool, 0644);
379 #define DEBUG_ENT(fmt, arg...) do { \
380 	if (debug) \
381 		printk(KERN_DEBUG "random %04d %04d %04d: " \
382 		fmt,\
383 		input_pool.entropy_count,\
384 		blocking_pool.entropy_count,\
385 		nonblocking_pool.entropy_count,\
386 		## arg); } while (0)
387 #else
388 #define DEBUG_ENT(fmt, arg...) do {} while (0)
389 #endif
390 
391 /**********************************************************************
392  *
393  * OS independent entropy store.   Here are the functions which handle
394  * storing entropy in an entropy pool.
395  *
396  **********************************************************************/
397 
398 struct entropy_store;
399 struct entropy_store {
400 	/* read-only data: */
401 	struct poolinfo *poolinfo;
402 	__u32 *pool;
403 	const char *name;
404 	int limit;
405 	struct entropy_store *pull;
406 
407 	/* read-write data: */
408 	spinlock_t lock;
409 	unsigned add_ptr;
410 	int entropy_count;
411 	int input_rotate;
412 };
413 
414 static __u32 input_pool_data[INPUT_POOL_WORDS];
415 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
416 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
417 
418 static struct entropy_store input_pool = {
419 	.poolinfo = &poolinfo_table[0],
420 	.name = "input",
421 	.limit = 1,
422 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
423 	.pool = input_pool_data
424 };
425 
426 static struct entropy_store blocking_pool = {
427 	.poolinfo = &poolinfo_table[1],
428 	.name = "blocking",
429 	.limit = 1,
430 	.pull = &input_pool,
431 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
432 	.pool = blocking_pool_data
433 };
434 
435 static struct entropy_store nonblocking_pool = {
436 	.poolinfo = &poolinfo_table[1],
437 	.name = "nonblocking",
438 	.pull = &input_pool,
439 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
440 	.pool = nonblocking_pool_data
441 };
442 
443 /*
444  * This function adds bytes into the entropy "pool".  It does not
445  * update the entropy estimate.  The caller should call
446  * credit_entropy_bits if this is appropriate.
447  *
448  * The pool is stirred with a primitive polynomial of the appropriate
449  * degree, and then twisted.  We twist by three bits at a time because
450  * it's cheap to do so and helps slightly in the expected case where
451  * the entropy is concentrated in the low-order bits.
452  */
453 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
454 				   int nbytes, __u8 out[64])
455 {
456 	static __u32 const twist_table[8] = {
457 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
458 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
459 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
460 	int input_rotate;
461 	int wordmask = r->poolinfo->poolwords - 1;
462 	const char *bytes = in;
463 	__u32 w;
464 	unsigned long flags;
465 
466 	/* Taps are constant, so we can load them without holding r->lock.  */
467 	tap1 = r->poolinfo->tap1;
468 	tap2 = r->poolinfo->tap2;
469 	tap3 = r->poolinfo->tap3;
470 	tap4 = r->poolinfo->tap4;
471 	tap5 = r->poolinfo->tap5;
472 
473 	spin_lock_irqsave(&r->lock, flags);
474 	input_rotate = r->input_rotate;
475 	i = r->add_ptr;
476 
477 	/* mix one byte at a time to simplify size handling and churn faster */
478 	while (nbytes--) {
479 		w = rol32(*bytes++, input_rotate & 31);
480 		i = (i - 1) & wordmask;
481 
482 		/* XOR in the various taps */
483 		w ^= r->pool[i];
484 		w ^= r->pool[(i + tap1) & wordmask];
485 		w ^= r->pool[(i + tap2) & wordmask];
486 		w ^= r->pool[(i + tap3) & wordmask];
487 		w ^= r->pool[(i + tap4) & wordmask];
488 		w ^= r->pool[(i + tap5) & wordmask];
489 
490 		/* Mix the result back in with a twist */
491 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
492 
493 		/*
494 		 * Normally, we add 7 bits of rotation to the pool.
495 		 * At the beginning of the pool, add an extra 7 bits
496 		 * rotation, so that successive passes spread the
497 		 * input bits across the pool evenly.
498 		 */
499 		input_rotate += i ? 7 : 14;
500 	}
501 
502 	r->input_rotate = input_rotate;
503 	r->add_ptr = i;
504 
505 	if (out)
506 		for (j = 0; j < 16; j++)
507 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
508 
509 	spin_unlock_irqrestore(&r->lock, flags);
510 }
511 
512 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
513 {
514        mix_pool_bytes_extract(r, in, bytes, NULL);
515 }
516 
517 /*
518  * Credit (or debit) the entropy store with n bits of entropy
519  */
520 static void credit_entropy_bits(struct entropy_store *r, int nbits)
521 {
522 	unsigned long flags;
523 	int entropy_count;
524 
525 	if (!nbits)
526 		return;
527 
528 	spin_lock_irqsave(&r->lock, flags);
529 
530 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
531 	entropy_count = r->entropy_count;
532 	entropy_count += nbits;
533 	if (entropy_count < 0) {
534 		DEBUG_ENT("negative entropy/overflow\n");
535 		entropy_count = 0;
536 	} else if (entropy_count > r->poolinfo->POOLBITS)
537 		entropy_count = r->poolinfo->POOLBITS;
538 	r->entropy_count = entropy_count;
539 
540 	/* should we wake readers? */
541 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
542 		wake_up_interruptible(&random_read_wait);
543 		kill_fasync(&fasync, SIGIO, POLL_IN);
544 	}
545 	spin_unlock_irqrestore(&r->lock, flags);
546 }
547 
548 /*********************************************************************
549  *
550  * Entropy input management
551  *
552  *********************************************************************/
553 
554 /* There is one of these per entropy source */
555 struct timer_rand_state {
556 	cycles_t last_time;
557 	long last_delta, last_delta2;
558 	unsigned dont_count_entropy:1;
559 };
560 
561 #ifndef CONFIG_SPARSE_IRQ
562 
563 static struct timer_rand_state *irq_timer_state[NR_IRQS];
564 
565 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
566 {
567 	return irq_timer_state[irq];
568 }
569 
570 static void set_timer_rand_state(unsigned int irq,
571 				 struct timer_rand_state *state)
572 {
573 	irq_timer_state[irq] = state;
574 }
575 
576 #else
577 
578 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
579 {
580 	struct irq_desc *desc;
581 
582 	desc = irq_to_desc(irq);
583 
584 	return desc->timer_rand_state;
585 }
586 
587 static void set_timer_rand_state(unsigned int irq,
588 				 struct timer_rand_state *state)
589 {
590 	struct irq_desc *desc;
591 
592 	desc = irq_to_desc(irq);
593 
594 	desc->timer_rand_state = state;
595 }
596 #endif
597 
598 static struct timer_rand_state input_timer_state;
599 
600 /*
601  * This function adds entropy to the entropy "pool" by using timing
602  * delays.  It uses the timer_rand_state structure to make an estimate
603  * of how many bits of entropy this call has added to the pool.
604  *
605  * The number "num" is also added to the pool - it should somehow describe
606  * the type of event which just happened.  This is currently 0-255 for
607  * keyboard scan codes, and 256 upwards for interrupts.
608  *
609  */
610 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
611 {
612 	struct {
613 		cycles_t cycles;
614 		long jiffies;
615 		unsigned num;
616 	} sample;
617 	long delta, delta2, delta3;
618 
619 	preempt_disable();
620 	/* if over the trickle threshold, use only 1 in 4096 samples */
621 	if (input_pool.entropy_count > trickle_thresh &&
622 	    (__get_cpu_var(trickle_count)++ & 0xfff))
623 		goto out;
624 
625 	sample.jiffies = jiffies;
626 	sample.cycles = get_cycles();
627 	sample.num = num;
628 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
629 
630 	/*
631 	 * Calculate number of bits of randomness we probably added.
632 	 * We take into account the first, second and third-order deltas
633 	 * in order to make our estimate.
634 	 */
635 
636 	if (!state->dont_count_entropy) {
637 		delta = sample.jiffies - state->last_time;
638 		state->last_time = sample.jiffies;
639 
640 		delta2 = delta - state->last_delta;
641 		state->last_delta = delta;
642 
643 		delta3 = delta2 - state->last_delta2;
644 		state->last_delta2 = delta2;
645 
646 		if (delta < 0)
647 			delta = -delta;
648 		if (delta2 < 0)
649 			delta2 = -delta2;
650 		if (delta3 < 0)
651 			delta3 = -delta3;
652 		if (delta > delta2)
653 			delta = delta2;
654 		if (delta > delta3)
655 			delta = delta3;
656 
657 		/*
658 		 * delta is now minimum absolute delta.
659 		 * Round down by 1 bit on general principles,
660 		 * and limit entropy entimate to 12 bits.
661 		 */
662 		credit_entropy_bits(&input_pool,
663 				    min_t(int, fls(delta>>1), 11));
664 	}
665 out:
666 	preempt_enable();
667 }
668 
669 void add_input_randomness(unsigned int type, unsigned int code,
670 				 unsigned int value)
671 {
672 	static unsigned char last_value;
673 
674 	/* ignore autorepeat and the like */
675 	if (value == last_value)
676 		return;
677 
678 	DEBUG_ENT("input event\n");
679 	last_value = value;
680 	add_timer_randomness(&input_timer_state,
681 			     (type << 4) ^ code ^ (code >> 4) ^ value);
682 }
683 EXPORT_SYMBOL_GPL(add_input_randomness);
684 
685 void add_interrupt_randomness(int irq)
686 {
687 	struct timer_rand_state *state;
688 
689 	state = get_timer_rand_state(irq);
690 
691 	if (state == NULL)
692 		return;
693 
694 	DEBUG_ENT("irq event %d\n", irq);
695 	add_timer_randomness(state, 0x100 + irq);
696 }
697 
698 #ifdef CONFIG_BLOCK
699 void add_disk_randomness(struct gendisk *disk)
700 {
701 	if (!disk || !disk->random)
702 		return;
703 	/* first major is 1, so we get >= 0x200 here */
704 	DEBUG_ENT("disk event %d:%d\n",
705 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
706 
707 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
708 }
709 #endif
710 
711 #define EXTRACT_SIZE 10
712 
713 /*********************************************************************
714  *
715  * Entropy extraction routines
716  *
717  *********************************************************************/
718 
719 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
720 			       size_t nbytes, int min, int rsvd);
721 
722 /*
723  * This utility inline function is responsible for transfering entropy
724  * from the primary pool to the secondary extraction pool. We make
725  * sure we pull enough for a 'catastrophic reseed'.
726  */
727 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
728 {
729 	__u32 tmp[OUTPUT_POOL_WORDS];
730 
731 	if (r->pull && r->entropy_count < nbytes * 8 &&
732 	    r->entropy_count < r->poolinfo->POOLBITS) {
733 		/* If we're limited, always leave two wakeup worth's BITS */
734 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
735 		int bytes = nbytes;
736 
737 		/* pull at least as many as BYTES as wakeup BITS */
738 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
739 		/* but never more than the buffer size */
740 		bytes = min_t(int, bytes, sizeof(tmp));
741 
742 		DEBUG_ENT("going to reseed %s with %d bits "
743 			  "(%d of %d requested)\n",
744 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
745 
746 		bytes = extract_entropy(r->pull, tmp, bytes,
747 					random_read_wakeup_thresh / 8, rsvd);
748 		mix_pool_bytes(r, tmp, bytes);
749 		credit_entropy_bits(r, bytes*8);
750 	}
751 }
752 
753 /*
754  * These functions extracts randomness from the "entropy pool", and
755  * returns it in a buffer.
756  *
757  * The min parameter specifies the minimum amount we can pull before
758  * failing to avoid races that defeat catastrophic reseeding while the
759  * reserved parameter indicates how much entropy we must leave in the
760  * pool after each pull to avoid starving other readers.
761  *
762  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
763  */
764 
765 static size_t account(struct entropy_store *r, size_t nbytes, int min,
766 		      int reserved)
767 {
768 	unsigned long flags;
769 
770 	/* Hold lock while accounting */
771 	spin_lock_irqsave(&r->lock, flags);
772 
773 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
774 	DEBUG_ENT("trying to extract %d bits from %s\n",
775 		  nbytes * 8, r->name);
776 
777 	/* Can we pull enough? */
778 	if (r->entropy_count / 8 < min + reserved) {
779 		nbytes = 0;
780 	} else {
781 		/* If limited, never pull more than available */
782 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
783 			nbytes = r->entropy_count/8 - reserved;
784 
785 		if (r->entropy_count / 8 >= nbytes + reserved)
786 			r->entropy_count -= nbytes*8;
787 		else
788 			r->entropy_count = reserved;
789 
790 		if (r->entropy_count < random_write_wakeup_thresh) {
791 			wake_up_interruptible(&random_write_wait);
792 			kill_fasync(&fasync, SIGIO, POLL_OUT);
793 		}
794 	}
795 
796 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
797 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
798 
799 	spin_unlock_irqrestore(&r->lock, flags);
800 
801 	return nbytes;
802 }
803 
804 static void extract_buf(struct entropy_store *r, __u8 *out)
805 {
806 	int i;
807 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
808 	__u8 extract[64];
809 
810 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
811 	sha_init(hash);
812 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
813 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
814 
815 	/*
816 	 * We mix the hash back into the pool to prevent backtracking
817 	 * attacks (where the attacker knows the state of the pool
818 	 * plus the current outputs, and attempts to find previous
819 	 * ouputs), unless the hash function can be inverted. By
820 	 * mixing at least a SHA1 worth of hash data back, we make
821 	 * brute-forcing the feedback as hard as brute-forcing the
822 	 * hash.
823 	 */
824 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
825 
826 	/*
827 	 * To avoid duplicates, we atomically extract a portion of the
828 	 * pool while mixing, and hash one final time.
829 	 */
830 	sha_transform(hash, extract, workspace);
831 	memset(extract, 0, sizeof(extract));
832 	memset(workspace, 0, sizeof(workspace));
833 
834 	/*
835 	 * In case the hash function has some recognizable output
836 	 * pattern, we fold it in half. Thus, we always feed back
837 	 * twice as much data as we output.
838 	 */
839 	hash[0] ^= hash[3];
840 	hash[1] ^= hash[4];
841 	hash[2] ^= rol32(hash[2], 16);
842 	memcpy(out, hash, EXTRACT_SIZE);
843 	memset(hash, 0, sizeof(hash));
844 }
845 
846 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
847 			       size_t nbytes, int min, int reserved)
848 {
849 	ssize_t ret = 0, i;
850 	__u8 tmp[EXTRACT_SIZE];
851 
852 	xfer_secondary_pool(r, nbytes);
853 	nbytes = account(r, nbytes, min, reserved);
854 
855 	while (nbytes) {
856 		extract_buf(r, tmp);
857 		i = min_t(int, nbytes, EXTRACT_SIZE);
858 		memcpy(buf, tmp, i);
859 		nbytes -= i;
860 		buf += i;
861 		ret += i;
862 	}
863 
864 	/* Wipe data just returned from memory */
865 	memset(tmp, 0, sizeof(tmp));
866 
867 	return ret;
868 }
869 
870 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
871 				    size_t nbytes)
872 {
873 	ssize_t ret = 0, i;
874 	__u8 tmp[EXTRACT_SIZE];
875 
876 	xfer_secondary_pool(r, nbytes);
877 	nbytes = account(r, nbytes, 0, 0);
878 
879 	while (nbytes) {
880 		if (need_resched()) {
881 			if (signal_pending(current)) {
882 				if (ret == 0)
883 					ret = -ERESTARTSYS;
884 				break;
885 			}
886 			schedule();
887 		}
888 
889 		extract_buf(r, tmp);
890 		i = min_t(int, nbytes, EXTRACT_SIZE);
891 		if (copy_to_user(buf, tmp, i)) {
892 			ret = -EFAULT;
893 			break;
894 		}
895 
896 		nbytes -= i;
897 		buf += i;
898 		ret += i;
899 	}
900 
901 	/* Wipe data just returned from memory */
902 	memset(tmp, 0, sizeof(tmp));
903 
904 	return ret;
905 }
906 
907 /*
908  * This function is the exported kernel interface.  It returns some
909  * number of good random numbers, suitable for seeding TCP sequence
910  * numbers, etc.
911  */
912 void get_random_bytes(void *buf, int nbytes)
913 {
914 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
915 }
916 EXPORT_SYMBOL(get_random_bytes);
917 
918 /*
919  * init_std_data - initialize pool with system data
920  *
921  * @r: pool to initialize
922  *
923  * This function clears the pool's entropy count and mixes some system
924  * data into the pool to prepare it for use. The pool is not cleared
925  * as that can only decrease the entropy in the pool.
926  */
927 static void init_std_data(struct entropy_store *r)
928 {
929 	ktime_t now;
930 	unsigned long flags;
931 
932 	spin_lock_irqsave(&r->lock, flags);
933 	r->entropy_count = 0;
934 	spin_unlock_irqrestore(&r->lock, flags);
935 
936 	now = ktime_get_real();
937 	mix_pool_bytes(r, &now, sizeof(now));
938 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
939 }
940 
941 static int rand_initialize(void)
942 {
943 	init_std_data(&input_pool);
944 	init_std_data(&blocking_pool);
945 	init_std_data(&nonblocking_pool);
946 	return 0;
947 }
948 module_init(rand_initialize);
949 
950 void rand_initialize_irq(int irq)
951 {
952 	struct timer_rand_state *state;
953 
954 	state = get_timer_rand_state(irq);
955 
956 	if (state)
957 		return;
958 
959 	/*
960 	 * If kzalloc returns null, we just won't use that entropy
961 	 * source.
962 	 */
963 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
964 	if (state)
965 		set_timer_rand_state(irq, state);
966 }
967 
968 #ifdef CONFIG_BLOCK
969 void rand_initialize_disk(struct gendisk *disk)
970 {
971 	struct timer_rand_state *state;
972 
973 	/*
974 	 * If kzalloc returns null, we just won't use that entropy
975 	 * source.
976 	 */
977 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
978 	if (state)
979 		disk->random = state;
980 }
981 #endif
982 
983 static ssize_t
984 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
985 {
986 	ssize_t n, retval = 0, count = 0;
987 
988 	if (nbytes == 0)
989 		return 0;
990 
991 	while (nbytes > 0) {
992 		n = nbytes;
993 		if (n > SEC_XFER_SIZE)
994 			n = SEC_XFER_SIZE;
995 
996 		DEBUG_ENT("reading %d bits\n", n*8);
997 
998 		n = extract_entropy_user(&blocking_pool, buf, n);
999 
1000 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1001 			  n*8, (nbytes-n)*8);
1002 
1003 		if (n == 0) {
1004 			if (file->f_flags & O_NONBLOCK) {
1005 				retval = -EAGAIN;
1006 				break;
1007 			}
1008 
1009 			DEBUG_ENT("sleeping?\n");
1010 
1011 			wait_event_interruptible(random_read_wait,
1012 				input_pool.entropy_count >=
1013 						 random_read_wakeup_thresh);
1014 
1015 			DEBUG_ENT("awake\n");
1016 
1017 			if (signal_pending(current)) {
1018 				retval = -ERESTARTSYS;
1019 				break;
1020 			}
1021 
1022 			continue;
1023 		}
1024 
1025 		if (n < 0) {
1026 			retval = n;
1027 			break;
1028 		}
1029 		count += n;
1030 		buf += n;
1031 		nbytes -= n;
1032 		break;		/* This break makes the device work */
1033 				/* like a named pipe */
1034 	}
1035 
1036 	/*
1037 	 * If we gave the user some bytes, update the access time.
1038 	 */
1039 	if (count)
1040 		file_accessed(file);
1041 
1042 	return (count ? count : retval);
1043 }
1044 
1045 static ssize_t
1046 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1047 {
1048 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1049 }
1050 
1051 static unsigned int
1052 random_poll(struct file *file, poll_table * wait)
1053 {
1054 	unsigned int mask;
1055 
1056 	poll_wait(file, &random_read_wait, wait);
1057 	poll_wait(file, &random_write_wait, wait);
1058 	mask = 0;
1059 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1060 		mask |= POLLIN | POLLRDNORM;
1061 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1062 		mask |= POLLOUT | POLLWRNORM;
1063 	return mask;
1064 }
1065 
1066 static int
1067 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1068 {
1069 	size_t bytes;
1070 	__u32 buf[16];
1071 	const char __user *p = buffer;
1072 
1073 	while (count > 0) {
1074 		bytes = min(count, sizeof(buf));
1075 		if (copy_from_user(&buf, p, bytes))
1076 			return -EFAULT;
1077 
1078 		count -= bytes;
1079 		p += bytes;
1080 
1081 		mix_pool_bytes(r, buf, bytes);
1082 		cond_resched();
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static ssize_t random_write(struct file *file, const char __user *buffer,
1089 			    size_t count, loff_t *ppos)
1090 {
1091 	size_t ret;
1092 	struct inode *inode = file->f_path.dentry->d_inode;
1093 
1094 	ret = write_pool(&blocking_pool, buffer, count);
1095 	if (ret)
1096 		return ret;
1097 	ret = write_pool(&nonblocking_pool, buffer, count);
1098 	if (ret)
1099 		return ret;
1100 
1101 	inode->i_mtime = current_fs_time(inode->i_sb);
1102 	mark_inode_dirty(inode);
1103 	return (ssize_t)count;
1104 }
1105 
1106 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1107 {
1108 	int size, ent_count;
1109 	int __user *p = (int __user *)arg;
1110 	int retval;
1111 
1112 	switch (cmd) {
1113 	case RNDGETENTCNT:
1114 		/* inherently racy, no point locking */
1115 		if (put_user(input_pool.entropy_count, p))
1116 			return -EFAULT;
1117 		return 0;
1118 	case RNDADDTOENTCNT:
1119 		if (!capable(CAP_SYS_ADMIN))
1120 			return -EPERM;
1121 		if (get_user(ent_count, p))
1122 			return -EFAULT;
1123 		credit_entropy_bits(&input_pool, ent_count);
1124 		return 0;
1125 	case RNDADDENTROPY:
1126 		if (!capable(CAP_SYS_ADMIN))
1127 			return -EPERM;
1128 		if (get_user(ent_count, p++))
1129 			return -EFAULT;
1130 		if (ent_count < 0)
1131 			return -EINVAL;
1132 		if (get_user(size, p++))
1133 			return -EFAULT;
1134 		retval = write_pool(&input_pool, (const char __user *)p,
1135 				    size);
1136 		if (retval < 0)
1137 			return retval;
1138 		credit_entropy_bits(&input_pool, ent_count);
1139 		return 0;
1140 	case RNDZAPENTCNT:
1141 	case RNDCLEARPOOL:
1142 		/* Clear the entropy pool counters. */
1143 		if (!capable(CAP_SYS_ADMIN))
1144 			return -EPERM;
1145 		rand_initialize();
1146 		return 0;
1147 	default:
1148 		return -EINVAL;
1149 	}
1150 }
1151 
1152 static int random_fasync(int fd, struct file *filp, int on)
1153 {
1154 	return fasync_helper(fd, filp, on, &fasync);
1155 }
1156 
1157 const struct file_operations random_fops = {
1158 	.read  = random_read,
1159 	.write = random_write,
1160 	.poll  = random_poll,
1161 	.unlocked_ioctl = random_ioctl,
1162 	.fasync = random_fasync,
1163 };
1164 
1165 const struct file_operations urandom_fops = {
1166 	.read  = urandom_read,
1167 	.write = random_write,
1168 	.unlocked_ioctl = random_ioctl,
1169 	.fasync = random_fasync,
1170 };
1171 
1172 /***************************************************************
1173  * Random UUID interface
1174  *
1175  * Used here for a Boot ID, but can be useful for other kernel
1176  * drivers.
1177  ***************************************************************/
1178 
1179 /*
1180  * Generate random UUID
1181  */
1182 void generate_random_uuid(unsigned char uuid_out[16])
1183 {
1184 	get_random_bytes(uuid_out, 16);
1185 	/* Set UUID version to 4 --- truely random generation */
1186 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1187 	/* Set the UUID variant to DCE */
1188 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1189 }
1190 EXPORT_SYMBOL(generate_random_uuid);
1191 
1192 /********************************************************************
1193  *
1194  * Sysctl interface
1195  *
1196  ********************************************************************/
1197 
1198 #ifdef CONFIG_SYSCTL
1199 
1200 #include <linux/sysctl.h>
1201 
1202 static int min_read_thresh = 8, min_write_thresh;
1203 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1204 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1205 static char sysctl_bootid[16];
1206 
1207 /*
1208  * These functions is used to return both the bootid UUID, and random
1209  * UUID.  The difference is in whether table->data is NULL; if it is,
1210  * then a new UUID is generated and returned to the user.
1211  *
1212  * If the user accesses this via the proc interface, it will be returned
1213  * as an ASCII string in the standard UUID format.  If accesses via the
1214  * sysctl system call, it is returned as 16 bytes of binary data.
1215  */
1216 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1217 			void __user *buffer, size_t *lenp, loff_t *ppos)
1218 {
1219 	ctl_table fake_table;
1220 	unsigned char buf[64], tmp_uuid[16], *uuid;
1221 
1222 	uuid = table->data;
1223 	if (!uuid) {
1224 		uuid = tmp_uuid;
1225 		uuid[8] = 0;
1226 	}
1227 	if (uuid[8] == 0)
1228 		generate_random_uuid(uuid);
1229 
1230 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1231 		"%02x%02x%02x%02x%02x%02x",
1232 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1233 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1234 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1235 		uuid[12], uuid[13], uuid[14], uuid[15]);
1236 	fake_table.data = buf;
1237 	fake_table.maxlen = sizeof(buf);
1238 
1239 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1240 }
1241 
1242 static int uuid_strategy(ctl_table *table,
1243 			 void __user *oldval, size_t __user *oldlenp,
1244 			 void __user *newval, size_t newlen)
1245 {
1246 	unsigned char tmp_uuid[16], *uuid;
1247 	unsigned int len;
1248 
1249 	if (!oldval || !oldlenp)
1250 		return 1;
1251 
1252 	uuid = table->data;
1253 	if (!uuid) {
1254 		uuid = tmp_uuid;
1255 		uuid[8] = 0;
1256 	}
1257 	if (uuid[8] == 0)
1258 		generate_random_uuid(uuid);
1259 
1260 	if (get_user(len, oldlenp))
1261 		return -EFAULT;
1262 	if (len) {
1263 		if (len > 16)
1264 			len = 16;
1265 		if (copy_to_user(oldval, uuid, len) ||
1266 		    put_user(len, oldlenp))
1267 			return -EFAULT;
1268 	}
1269 	return 1;
1270 }
1271 
1272 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1273 ctl_table random_table[] = {
1274 	{
1275 		.ctl_name 	= RANDOM_POOLSIZE,
1276 		.procname	= "poolsize",
1277 		.data		= &sysctl_poolsize,
1278 		.maxlen		= sizeof(int),
1279 		.mode		= 0444,
1280 		.proc_handler	= &proc_dointvec,
1281 	},
1282 	{
1283 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1284 		.procname	= "entropy_avail",
1285 		.maxlen		= sizeof(int),
1286 		.mode		= 0444,
1287 		.proc_handler	= &proc_dointvec,
1288 		.data		= &input_pool.entropy_count,
1289 	},
1290 	{
1291 		.ctl_name	= RANDOM_READ_THRESH,
1292 		.procname	= "read_wakeup_threshold",
1293 		.data		= &random_read_wakeup_thresh,
1294 		.maxlen		= sizeof(int),
1295 		.mode		= 0644,
1296 		.proc_handler	= &proc_dointvec_minmax,
1297 		.strategy	= &sysctl_intvec,
1298 		.extra1		= &min_read_thresh,
1299 		.extra2		= &max_read_thresh,
1300 	},
1301 	{
1302 		.ctl_name	= RANDOM_WRITE_THRESH,
1303 		.procname	= "write_wakeup_threshold",
1304 		.data		= &random_write_wakeup_thresh,
1305 		.maxlen		= sizeof(int),
1306 		.mode		= 0644,
1307 		.proc_handler	= &proc_dointvec_minmax,
1308 		.strategy	= &sysctl_intvec,
1309 		.extra1		= &min_write_thresh,
1310 		.extra2		= &max_write_thresh,
1311 	},
1312 	{
1313 		.ctl_name	= RANDOM_BOOT_ID,
1314 		.procname	= "boot_id",
1315 		.data		= &sysctl_bootid,
1316 		.maxlen		= 16,
1317 		.mode		= 0444,
1318 		.proc_handler	= &proc_do_uuid,
1319 		.strategy	= &uuid_strategy,
1320 	},
1321 	{
1322 		.ctl_name	= RANDOM_UUID,
1323 		.procname	= "uuid",
1324 		.maxlen		= 16,
1325 		.mode		= 0444,
1326 		.proc_handler	= &proc_do_uuid,
1327 		.strategy	= &uuid_strategy,
1328 	},
1329 	{ .ctl_name = 0 }
1330 };
1331 #endif 	/* CONFIG_SYSCTL */
1332 
1333 /********************************************************************
1334  *
1335  * Random funtions for networking
1336  *
1337  ********************************************************************/
1338 
1339 /*
1340  * TCP initial sequence number picking.  This uses the random number
1341  * generator to pick an initial secret value.  This value is hashed
1342  * along with the TCP endpoint information to provide a unique
1343  * starting point for each pair of TCP endpoints.  This defeats
1344  * attacks which rely on guessing the initial TCP sequence number.
1345  * This algorithm was suggested by Steve Bellovin.
1346  *
1347  * Using a very strong hash was taking an appreciable amount of the total
1348  * TCP connection establishment time, so this is a weaker hash,
1349  * compensated for by changing the secret periodically.
1350  */
1351 
1352 /* F, G and H are basic MD4 functions: selection, majority, parity */
1353 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1354 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1355 #define H(x, y, z) ((x) ^ (y) ^ (z))
1356 
1357 /*
1358  * The generic round function.  The application is so specific that
1359  * we don't bother protecting all the arguments with parens, as is generally
1360  * good macro practice, in favor of extra legibility.
1361  * Rotation is separate from addition to prevent recomputation
1362  */
1363 #define ROUND(f, a, b, c, d, x, s)	\
1364 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1365 #define K1 0
1366 #define K2 013240474631UL
1367 #define K3 015666365641UL
1368 
1369 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1370 
1371 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1372 {
1373 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1374 
1375 	/* Round 1 */
1376 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1377 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1378 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1379 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1380 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1381 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1382 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1383 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1384 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1385 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1386 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1387 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1388 
1389 	/* Round 2 */
1390 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1391 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1392 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1393 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1394 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1395 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1396 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1397 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1398 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1399 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1400 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1401 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1402 
1403 	/* Round 3 */
1404 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1405 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1406 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1407 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1408 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1409 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1410 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1411 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1412 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1413 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1414 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1415 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1416 
1417 	return buf[1] + b; /* "most hashed" word */
1418 	/* Alternative: return sum of all words? */
1419 }
1420 #endif
1421 
1422 #undef ROUND
1423 #undef F
1424 #undef G
1425 #undef H
1426 #undef K1
1427 #undef K2
1428 #undef K3
1429 
1430 /* This should not be decreased so low that ISNs wrap too fast. */
1431 #define REKEY_INTERVAL (300 * HZ)
1432 /*
1433  * Bit layout of the tcp sequence numbers (before adding current time):
1434  * bit 24-31: increased after every key exchange
1435  * bit 0-23: hash(source,dest)
1436  *
1437  * The implementation is similar to the algorithm described
1438  * in the Appendix of RFC 1185, except that
1439  * - it uses a 1 MHz clock instead of a 250 kHz clock
1440  * - it performs a rekey every 5 minutes, which is equivalent
1441  * 	to a (source,dest) tulple dependent forward jump of the
1442  * 	clock by 0..2^(HASH_BITS+1)
1443  *
1444  * Thus the average ISN wraparound time is 68 minutes instead of
1445  * 4.55 hours.
1446  *
1447  * SMP cleanup and lock avoidance with poor man's RCU.
1448  * 			Manfred Spraul <manfred@colorfullife.com>
1449  *
1450  */
1451 #define COUNT_BITS 8
1452 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1453 #define HASH_BITS 24
1454 #define HASH_MASK ((1 << HASH_BITS) - 1)
1455 
1456 static struct keydata {
1457 	__u32 count; /* already shifted to the final position */
1458 	__u32 secret[12];
1459 } ____cacheline_aligned ip_keydata[2];
1460 
1461 static unsigned int ip_cnt;
1462 
1463 static void rekey_seq_generator(struct work_struct *work);
1464 
1465 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1466 
1467 /*
1468  * Lock avoidance:
1469  * The ISN generation runs lockless - it's just a hash over random data.
1470  * State changes happen every 5 minutes when the random key is replaced.
1471  * Synchronization is performed by having two copies of the hash function
1472  * state and rekey_seq_generator always updates the inactive copy.
1473  * The copy is then activated by updating ip_cnt.
1474  * The implementation breaks down if someone blocks the thread
1475  * that processes SYN requests for more than 5 minutes. Should never
1476  * happen, and even if that happens only a not perfectly compliant
1477  * ISN is generated, nothing fatal.
1478  */
1479 static void rekey_seq_generator(struct work_struct *work)
1480 {
1481 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1482 
1483 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1484 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1485 	smp_wmb();
1486 	ip_cnt++;
1487 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1488 }
1489 
1490 static inline struct keydata *get_keyptr(void)
1491 {
1492 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1493 
1494 	smp_rmb();
1495 
1496 	return keyptr;
1497 }
1498 
1499 static __init int seqgen_init(void)
1500 {
1501 	rekey_seq_generator(NULL);
1502 	return 0;
1503 }
1504 late_initcall(seqgen_init);
1505 
1506 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1507 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1508 				   __be16 sport, __be16 dport)
1509 {
1510 	__u32 seq;
1511 	__u32 hash[12];
1512 	struct keydata *keyptr = get_keyptr();
1513 
1514 	/* The procedure is the same as for IPv4, but addresses are longer.
1515 	 * Thus we must use twothirdsMD4Transform.
1516 	 */
1517 
1518 	memcpy(hash, saddr, 16);
1519 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1520 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1521 
1522 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1523 	seq += keyptr->count;
1524 
1525 	seq += ktime_to_ns(ktime_get_real());
1526 
1527 	return seq;
1528 }
1529 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1530 #endif
1531 
1532 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1533  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1534  */
1535 __u32 secure_ip_id(__be32 daddr)
1536 {
1537 	struct keydata *keyptr;
1538 	__u32 hash[4];
1539 
1540 	keyptr = get_keyptr();
1541 
1542 	/*
1543 	 *  Pick a unique starting offset for each IP destination.
1544 	 *  The dest ip address is placed in the starting vector,
1545 	 *  which is then hashed with random data.
1546 	 */
1547 	hash[0] = (__force __u32)daddr;
1548 	hash[1] = keyptr->secret[9];
1549 	hash[2] = keyptr->secret[10];
1550 	hash[3] = keyptr->secret[11];
1551 
1552 	return half_md4_transform(hash, keyptr->secret);
1553 }
1554 
1555 #ifdef CONFIG_INET
1556 
1557 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1558 				 __be16 sport, __be16 dport)
1559 {
1560 	__u32 seq;
1561 	__u32 hash[4];
1562 	struct keydata *keyptr = get_keyptr();
1563 
1564 	/*
1565 	 *  Pick a unique starting offset for each TCP connection endpoints
1566 	 *  (saddr, daddr, sport, dport).
1567 	 *  Note that the words are placed into the starting vector, which is
1568 	 *  then mixed with a partial MD4 over random data.
1569 	 */
1570 	hash[0] = (__force u32)saddr;
1571 	hash[1] = (__force u32)daddr;
1572 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1573 	hash[3] = keyptr->secret[11];
1574 
1575 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1576 	seq += keyptr->count;
1577 	/*
1578 	 *	As close as possible to RFC 793, which
1579 	 *	suggests using a 250 kHz clock.
1580 	 *	Further reading shows this assumes 2 Mb/s networks.
1581 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1582 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1583 	 *	we also need to limit the resolution so that the u32 seq
1584 	 *	overlaps less than one time per MSL (2 minutes).
1585 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1586 	 */
1587 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1588 
1589 	return seq;
1590 }
1591 
1592 /* Generate secure starting point for ephemeral IPV4 transport port search */
1593 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1594 {
1595 	struct keydata *keyptr = get_keyptr();
1596 	u32 hash[4];
1597 
1598 	/*
1599 	 *  Pick a unique starting offset for each ephemeral port search
1600 	 *  (saddr, daddr, dport) and 48bits of random data.
1601 	 */
1602 	hash[0] = (__force u32)saddr;
1603 	hash[1] = (__force u32)daddr;
1604 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1605 	hash[3] = keyptr->secret[11];
1606 
1607 	return half_md4_transform(hash, keyptr->secret);
1608 }
1609 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1610 
1611 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1612 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1613 			       __be16 dport)
1614 {
1615 	struct keydata *keyptr = get_keyptr();
1616 	u32 hash[12];
1617 
1618 	memcpy(hash, saddr, 16);
1619 	hash[4] = (__force u32)dport;
1620 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1621 
1622 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1623 }
1624 #endif
1625 
1626 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1627 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1628  * bit's 32-47 increase every key exchange
1629  *       0-31  hash(source, dest)
1630  */
1631 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1632 				__be16 sport, __be16 dport)
1633 {
1634 	u64 seq;
1635 	__u32 hash[4];
1636 	struct keydata *keyptr = get_keyptr();
1637 
1638 	hash[0] = (__force u32)saddr;
1639 	hash[1] = (__force u32)daddr;
1640 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1641 	hash[3] = keyptr->secret[11];
1642 
1643 	seq = half_md4_transform(hash, keyptr->secret);
1644 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1645 
1646 	seq += ktime_to_ns(ktime_get_real());
1647 	seq &= (1ull << 48) - 1;
1648 
1649 	return seq;
1650 }
1651 EXPORT_SYMBOL(secure_dccp_sequence_number);
1652 #endif
1653 
1654 #endif /* CONFIG_INET */
1655 
1656 
1657 /*
1658  * Get a random word for internal kernel use only. Similar to urandom but
1659  * with the goal of minimal entropy pool depletion. As a result, the random
1660  * value is not cryptographically secure but for several uses the cost of
1661  * depleting entropy is too high
1662  */
1663 unsigned int get_random_int(void)
1664 {
1665 	/*
1666 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1667 	 * every second, from the entropy pool (and thus creates a limited
1668 	 * drain on it), and uses halfMD4Transform within the second. We
1669 	 * also mix it with jiffies and the PID:
1670 	 */
1671 	return secure_ip_id((__force __be32)(current->pid + jiffies));
1672 }
1673 
1674 /*
1675  * randomize_range() returns a start address such that
1676  *
1677  *    [...... <range> .....]
1678  *  start                  end
1679  *
1680  * a <range> with size "len" starting at the return value is inside in the
1681  * area defined by [start, end], but is otherwise randomized.
1682  */
1683 unsigned long
1684 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1685 {
1686 	unsigned long range = end - len - start;
1687 
1688 	if (end <= start + len)
1689 		return 0;
1690 	return PAGE_ALIGN(get_random_int() % range + start);
1691 }
1692