1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init is protected by base_crng->lock, and only increases 75 * its value (from empty->early->ready). 76 */ 77 static enum { 78 CRNG_EMPTY = 0, /* Little to no entropy collected */ 79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 81 } crng_init __read_mostly = CRNG_EMPTY; 82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 84 /* Various types of waiters for crng_init->CRNG_READY transition. */ 85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 86 static struct fasync_struct *fasync; 87 88 /* Control how we warn userspace. */ 89 static struct ratelimit_state urandom_warning = 90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 91 static int ratelimit_disable __read_mostly = 92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 95 96 /* 97 * Returns whether or not the input pool has been seeded and thus guaranteed 98 * to supply cryptographically secure random numbers. This applies to: the 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 100 * u16,u32,u64,int,long} family of functions. 101 * 102 * Returns: true if the input pool has been seeded. 103 * false if the input pool has not been seeded. 104 */ 105 bool rng_is_initialized(void) 106 { 107 return crng_ready(); 108 } 109 EXPORT_SYMBOL(rng_is_initialized); 110 111 static void __cold crng_set_ready(struct work_struct *work) 112 { 113 static_branch_enable(&crng_is_ready); 114 } 115 116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 117 static void try_to_generate_entropy(void); 118 119 /* 120 * Wait for the input pool to be seeded and thus guaranteed to supply 121 * cryptographically secure random numbers. This applies to: the /dev/urandom 122 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 123 * int,long} family of functions. Using any of these functions without first 124 * calling this function forfeits the guarantee of security. 125 * 126 * Returns: 0 if the input pool has been seeded. 127 * -ERESTARTSYS if the function was interrupted by a signal. 128 */ 129 int wait_for_random_bytes(void) 130 { 131 while (!crng_ready()) { 132 int ret; 133 134 try_to_generate_entropy(); 135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 136 if (ret) 137 return ret > 0 ? 0 : ret; 138 } 139 return 0; 140 } 141 EXPORT_SYMBOL(wait_for_random_bytes); 142 143 #define warn_unseeded_randomness() \ 144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 146 __func__, (void *)_RET_IP_, crng_init) 147 148 149 /********************************************************************* 150 * 151 * Fast key erasure RNG, the "crng". 152 * 153 * These functions expand entropy from the entropy extractor into 154 * long streams for external consumption using the "fast key erasure" 155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 156 * 157 * There are a few exported interfaces for use by other drivers: 158 * 159 * void get_random_bytes(void *buf, size_t len) 160 * u8 get_random_u8() 161 * u16 get_random_u16() 162 * u32 get_random_u32() 163 * u64 get_random_u64() 164 * unsigned int get_random_int() 165 * unsigned long get_random_long() 166 * 167 * These interfaces will return the requested number of random bytes 168 * into the given buffer or as a return value. This is equivalent to 169 * a read from /dev/urandom. The u8, u16, u32, u64, int, and long 170 * family of functions may be higher performance for one-off random 171 * integers, because they do a bit of buffering and do not invoke 172 * reseeding until the buffer is emptied. 173 * 174 *********************************************************************/ 175 176 enum { 177 CRNG_RESEED_START_INTERVAL = HZ, 178 CRNG_RESEED_INTERVAL = 60 * HZ 179 }; 180 181 static struct { 182 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 183 unsigned long birth; 184 unsigned long generation; 185 spinlock_t lock; 186 } base_crng = { 187 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 188 }; 189 190 struct crng { 191 u8 key[CHACHA_KEY_SIZE]; 192 unsigned long generation; 193 local_lock_t lock; 194 }; 195 196 static DEFINE_PER_CPU(struct crng, crngs) = { 197 .generation = ULONG_MAX, 198 .lock = INIT_LOCAL_LOCK(crngs.lock), 199 }; 200 201 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 202 static void extract_entropy(void *buf, size_t len); 203 204 /* This extracts a new crng key from the input pool. */ 205 static void crng_reseed(void) 206 { 207 unsigned long flags; 208 unsigned long next_gen; 209 u8 key[CHACHA_KEY_SIZE]; 210 211 extract_entropy(key, sizeof(key)); 212 213 /* 214 * We copy the new key into the base_crng, overwriting the old one, 215 * and update the generation counter. We avoid hitting ULONG_MAX, 216 * because the per-cpu crngs are initialized to ULONG_MAX, so this 217 * forces new CPUs that come online to always initialize. 218 */ 219 spin_lock_irqsave(&base_crng.lock, flags); 220 memcpy(base_crng.key, key, sizeof(base_crng.key)); 221 next_gen = base_crng.generation + 1; 222 if (next_gen == ULONG_MAX) 223 ++next_gen; 224 WRITE_ONCE(base_crng.generation, next_gen); 225 WRITE_ONCE(base_crng.birth, jiffies); 226 if (!static_branch_likely(&crng_is_ready)) 227 crng_init = CRNG_READY; 228 spin_unlock_irqrestore(&base_crng.lock, flags); 229 memzero_explicit(key, sizeof(key)); 230 } 231 232 /* 233 * This generates a ChaCha block using the provided key, and then 234 * immediately overwrites that key with half the block. It returns 235 * the resultant ChaCha state to the user, along with the second 236 * half of the block containing 32 bytes of random data that may 237 * be used; random_data_len may not be greater than 32. 238 * 239 * The returned ChaCha state contains within it a copy of the old 240 * key value, at index 4, so the state should always be zeroed out 241 * immediately after using in order to maintain forward secrecy. 242 * If the state cannot be erased in a timely manner, then it is 243 * safer to set the random_data parameter to &chacha_state[4] so 244 * that this function overwrites it before returning. 245 */ 246 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 247 u32 chacha_state[CHACHA_STATE_WORDS], 248 u8 *random_data, size_t random_data_len) 249 { 250 u8 first_block[CHACHA_BLOCK_SIZE]; 251 252 BUG_ON(random_data_len > 32); 253 254 chacha_init_consts(chacha_state); 255 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 256 memset(&chacha_state[12], 0, sizeof(u32) * 4); 257 chacha20_block(chacha_state, first_block); 258 259 memcpy(key, first_block, CHACHA_KEY_SIZE); 260 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 261 memzero_explicit(first_block, sizeof(first_block)); 262 } 263 264 /* 265 * Return the interval until the next reseeding, which is normally 266 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 267 * proportional to the uptime. 268 */ 269 static unsigned int crng_reseed_interval(void) 270 { 271 static bool early_boot = true; 272 273 if (unlikely(READ_ONCE(early_boot))) { 274 time64_t uptime = ktime_get_seconds(); 275 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 276 WRITE_ONCE(early_boot, false); 277 else 278 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 279 (unsigned int)uptime / 2 * HZ); 280 } 281 return CRNG_RESEED_INTERVAL; 282 } 283 284 /* 285 * This function returns a ChaCha state that you may use for generating 286 * random data. It also returns up to 32 bytes on its own of random data 287 * that may be used; random_data_len may not be greater than 32. 288 */ 289 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 290 u8 *random_data, size_t random_data_len) 291 { 292 unsigned long flags; 293 struct crng *crng; 294 295 BUG_ON(random_data_len > 32); 296 297 /* 298 * For the fast path, we check whether we're ready, unlocked first, and 299 * then re-check once locked later. In the case where we're really not 300 * ready, we do fast key erasure with the base_crng directly, extracting 301 * when crng_init is CRNG_EMPTY. 302 */ 303 if (!crng_ready()) { 304 bool ready; 305 306 spin_lock_irqsave(&base_crng.lock, flags); 307 ready = crng_ready(); 308 if (!ready) { 309 if (crng_init == CRNG_EMPTY) 310 extract_entropy(base_crng.key, sizeof(base_crng.key)); 311 crng_fast_key_erasure(base_crng.key, chacha_state, 312 random_data, random_data_len); 313 } 314 spin_unlock_irqrestore(&base_crng.lock, flags); 315 if (!ready) 316 return; 317 } 318 319 /* 320 * If the base_crng is old enough, we reseed, which in turn bumps the 321 * generation counter that we check below. 322 */ 323 if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval()))) 324 crng_reseed(); 325 326 local_lock_irqsave(&crngs.lock, flags); 327 crng = raw_cpu_ptr(&crngs); 328 329 /* 330 * If our per-cpu crng is older than the base_crng, then it means 331 * somebody reseeded the base_crng. In that case, we do fast key 332 * erasure on the base_crng, and use its output as the new key 333 * for our per-cpu crng. This brings us up to date with base_crng. 334 */ 335 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 336 spin_lock(&base_crng.lock); 337 crng_fast_key_erasure(base_crng.key, chacha_state, 338 crng->key, sizeof(crng->key)); 339 crng->generation = base_crng.generation; 340 spin_unlock(&base_crng.lock); 341 } 342 343 /* 344 * Finally, when we've made it this far, our per-cpu crng has an up 345 * to date key, and we can do fast key erasure with it to produce 346 * some random data and a ChaCha state for the caller. All other 347 * branches of this function are "unlikely", so most of the time we 348 * should wind up here immediately. 349 */ 350 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 351 local_unlock_irqrestore(&crngs.lock, flags); 352 } 353 354 static void _get_random_bytes(void *buf, size_t len) 355 { 356 u32 chacha_state[CHACHA_STATE_WORDS]; 357 u8 tmp[CHACHA_BLOCK_SIZE]; 358 size_t first_block_len; 359 360 if (!len) 361 return; 362 363 first_block_len = min_t(size_t, 32, len); 364 crng_make_state(chacha_state, buf, first_block_len); 365 len -= first_block_len; 366 buf += first_block_len; 367 368 while (len) { 369 if (len < CHACHA_BLOCK_SIZE) { 370 chacha20_block(chacha_state, tmp); 371 memcpy(buf, tmp, len); 372 memzero_explicit(tmp, sizeof(tmp)); 373 break; 374 } 375 376 chacha20_block(chacha_state, buf); 377 if (unlikely(chacha_state[12] == 0)) 378 ++chacha_state[13]; 379 len -= CHACHA_BLOCK_SIZE; 380 buf += CHACHA_BLOCK_SIZE; 381 } 382 383 memzero_explicit(chacha_state, sizeof(chacha_state)); 384 } 385 386 /* 387 * This function is the exported kernel interface. It returns some number of 388 * good random numbers, suitable for key generation, seeding TCP sequence 389 * numbers, etc. In order to ensure that the randomness returned by this 390 * function is okay, the function wait_for_random_bytes() should be called and 391 * return 0 at least once at any point prior. 392 */ 393 void get_random_bytes(void *buf, size_t len) 394 { 395 warn_unseeded_randomness(); 396 _get_random_bytes(buf, len); 397 } 398 EXPORT_SYMBOL(get_random_bytes); 399 400 static ssize_t get_random_bytes_user(struct iov_iter *iter) 401 { 402 u32 chacha_state[CHACHA_STATE_WORDS]; 403 u8 block[CHACHA_BLOCK_SIZE]; 404 size_t ret = 0, copied; 405 406 if (unlikely(!iov_iter_count(iter))) 407 return 0; 408 409 /* 410 * Immediately overwrite the ChaCha key at index 4 with random 411 * bytes, in case userspace causes copy_to_iter() below to sleep 412 * forever, so that we still retain forward secrecy in that case. 413 */ 414 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 415 /* 416 * However, if we're doing a read of len <= 32, we don't need to 417 * use chacha_state after, so we can simply return those bytes to 418 * the user directly. 419 */ 420 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 421 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 422 goto out_zero_chacha; 423 } 424 425 for (;;) { 426 chacha20_block(chacha_state, block); 427 if (unlikely(chacha_state[12] == 0)) 428 ++chacha_state[13]; 429 430 copied = copy_to_iter(block, sizeof(block), iter); 431 ret += copied; 432 if (!iov_iter_count(iter) || copied != sizeof(block)) 433 break; 434 435 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 436 if (ret % PAGE_SIZE == 0) { 437 if (signal_pending(current)) 438 break; 439 cond_resched(); 440 } 441 } 442 443 memzero_explicit(block, sizeof(block)); 444 out_zero_chacha: 445 memzero_explicit(chacha_state, sizeof(chacha_state)); 446 return ret ? ret : -EFAULT; 447 } 448 449 /* 450 * Batched entropy returns random integers. The quality of the random 451 * number is good as /dev/urandom. In order to ensure that the randomness 452 * provided by this function is okay, the function wait_for_random_bytes() 453 * should be called and return 0 at least once at any point prior. 454 */ 455 456 #define DEFINE_BATCHED_ENTROPY(type) \ 457 struct batch_ ##type { \ 458 /* \ 459 * We make this 1.5x a ChaCha block, so that we get the \ 460 * remaining 32 bytes from fast key erasure, plus one full \ 461 * block from the detached ChaCha state. We can increase \ 462 * the size of this later if needed so long as we keep the \ 463 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 464 */ \ 465 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 466 local_lock_t lock; \ 467 unsigned long generation; \ 468 unsigned int position; \ 469 }; \ 470 \ 471 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 472 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 473 .position = UINT_MAX \ 474 }; \ 475 \ 476 type get_random_ ##type(void) \ 477 { \ 478 type ret; \ 479 unsigned long flags; \ 480 struct batch_ ##type *batch; \ 481 unsigned long next_gen; \ 482 \ 483 warn_unseeded_randomness(); \ 484 \ 485 if (!crng_ready()) { \ 486 _get_random_bytes(&ret, sizeof(ret)); \ 487 return ret; \ 488 } \ 489 \ 490 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 491 batch = raw_cpu_ptr(&batched_entropy_##type); \ 492 \ 493 next_gen = READ_ONCE(base_crng.generation); \ 494 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 495 next_gen != batch->generation) { \ 496 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 497 batch->position = 0; \ 498 batch->generation = next_gen; \ 499 } \ 500 \ 501 ret = batch->entropy[batch->position]; \ 502 batch->entropy[batch->position] = 0; \ 503 ++batch->position; \ 504 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 505 return ret; \ 506 } \ 507 EXPORT_SYMBOL(get_random_ ##type); 508 509 DEFINE_BATCHED_ENTROPY(u8) 510 DEFINE_BATCHED_ENTROPY(u16) 511 DEFINE_BATCHED_ENTROPY(u32) 512 DEFINE_BATCHED_ENTROPY(u64) 513 514 #ifdef CONFIG_SMP 515 /* 516 * This function is called when the CPU is coming up, with entry 517 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 518 */ 519 int __cold random_prepare_cpu(unsigned int cpu) 520 { 521 /* 522 * When the cpu comes back online, immediately invalidate both 523 * the per-cpu crng and all batches, so that we serve fresh 524 * randomness. 525 */ 526 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 527 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 528 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 529 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 530 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 531 return 0; 532 } 533 #endif 534 535 536 /********************************************************************** 537 * 538 * Entropy accumulation and extraction routines. 539 * 540 * Callers may add entropy via: 541 * 542 * static void mix_pool_bytes(const void *buf, size_t len) 543 * 544 * After which, if added entropy should be credited: 545 * 546 * static void credit_init_bits(size_t bits) 547 * 548 * Finally, extract entropy via: 549 * 550 * static void extract_entropy(void *buf, size_t len) 551 * 552 **********************************************************************/ 553 554 enum { 555 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 556 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 557 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 558 }; 559 560 static struct { 561 struct blake2s_state hash; 562 spinlock_t lock; 563 unsigned int init_bits; 564 } input_pool = { 565 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 566 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 567 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 568 .hash.outlen = BLAKE2S_HASH_SIZE, 569 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 570 }; 571 572 static void _mix_pool_bytes(const void *buf, size_t len) 573 { 574 blake2s_update(&input_pool.hash, buf, len); 575 } 576 577 /* 578 * This function adds bytes into the input pool. It does not 579 * update the initialization bit counter; the caller should call 580 * credit_init_bits if this is appropriate. 581 */ 582 static void mix_pool_bytes(const void *buf, size_t len) 583 { 584 unsigned long flags; 585 586 spin_lock_irqsave(&input_pool.lock, flags); 587 _mix_pool_bytes(buf, len); 588 spin_unlock_irqrestore(&input_pool.lock, flags); 589 } 590 591 /* 592 * This is an HKDF-like construction for using the hashed collected entropy 593 * as a PRF key, that's then expanded block-by-block. 594 */ 595 static void extract_entropy(void *buf, size_t len) 596 { 597 unsigned long flags; 598 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 599 struct { 600 unsigned long rdseed[32 / sizeof(long)]; 601 size_t counter; 602 } block; 603 size_t i, longs; 604 605 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 606 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 607 if (longs) { 608 i += longs; 609 continue; 610 } 611 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 612 if (longs) { 613 i += longs; 614 continue; 615 } 616 block.rdseed[i++] = random_get_entropy(); 617 } 618 619 spin_lock_irqsave(&input_pool.lock, flags); 620 621 /* seed = HASHPRF(last_key, entropy_input) */ 622 blake2s_final(&input_pool.hash, seed); 623 624 /* next_key = HASHPRF(seed, RDSEED || 0) */ 625 block.counter = 0; 626 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 627 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 628 629 spin_unlock_irqrestore(&input_pool.lock, flags); 630 memzero_explicit(next_key, sizeof(next_key)); 631 632 while (len) { 633 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 634 /* output = HASHPRF(seed, RDSEED || ++counter) */ 635 ++block.counter; 636 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 637 len -= i; 638 buf += i; 639 } 640 641 memzero_explicit(seed, sizeof(seed)); 642 memzero_explicit(&block, sizeof(block)); 643 } 644 645 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 646 647 static void __cold _credit_init_bits(size_t bits) 648 { 649 static struct execute_work set_ready; 650 unsigned int new, orig, add; 651 unsigned long flags; 652 653 if (!bits) 654 return; 655 656 add = min_t(size_t, bits, POOL_BITS); 657 658 orig = READ_ONCE(input_pool.init_bits); 659 do { 660 new = min_t(unsigned int, POOL_BITS, orig + add); 661 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 662 663 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 664 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 665 if (static_key_initialized) 666 execute_in_process_context(crng_set_ready, &set_ready); 667 wake_up_interruptible(&crng_init_wait); 668 kill_fasync(&fasync, SIGIO, POLL_IN); 669 pr_notice("crng init done\n"); 670 if (urandom_warning.missed) 671 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 672 urandom_warning.missed); 673 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 674 spin_lock_irqsave(&base_crng.lock, flags); 675 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 676 if (crng_init == CRNG_EMPTY) { 677 extract_entropy(base_crng.key, sizeof(base_crng.key)); 678 crng_init = CRNG_EARLY; 679 } 680 spin_unlock_irqrestore(&base_crng.lock, flags); 681 } 682 } 683 684 685 /********************************************************************** 686 * 687 * Entropy collection routines. 688 * 689 * The following exported functions are used for pushing entropy into 690 * the above entropy accumulation routines: 691 * 692 * void add_device_randomness(const void *buf, size_t len); 693 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); 694 * void add_bootloader_randomness(const void *buf, size_t len); 695 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 696 * void add_interrupt_randomness(int irq); 697 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 698 * void add_disk_randomness(struct gendisk *disk); 699 * 700 * add_device_randomness() adds data to the input pool that 701 * is likely to differ between two devices (or possibly even per boot). 702 * This would be things like MAC addresses or serial numbers, or the 703 * read-out of the RTC. This does *not* credit any actual entropy to 704 * the pool, but it initializes the pool to different values for devices 705 * that might otherwise be identical and have very little entropy 706 * available to them (particularly common in the embedded world). 707 * 708 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 709 * entropy as specified by the caller. If the entropy pool is full it will 710 * block until more entropy is needed. 711 * 712 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 713 * and device tree, and credits its input depending on whether or not the 714 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 715 * 716 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 717 * representing the current instance of a VM to the pool, without crediting, 718 * and then force-reseeds the crng so that it takes effect immediately. 719 * 720 * add_interrupt_randomness() uses the interrupt timing as random 721 * inputs to the entropy pool. Using the cycle counters and the irq source 722 * as inputs, it feeds the input pool roughly once a second or after 64 723 * interrupts, crediting 1 bit of entropy for whichever comes first. 724 * 725 * add_input_randomness() uses the input layer interrupt timing, as well 726 * as the event type information from the hardware. 727 * 728 * add_disk_randomness() uses what amounts to the seek time of block 729 * layer request events, on a per-disk_devt basis, as input to the 730 * entropy pool. Note that high-speed solid state drives with very low 731 * seek times do not make for good sources of entropy, as their seek 732 * times are usually fairly consistent. 733 * 734 * The last two routines try to estimate how many bits of entropy 735 * to credit. They do this by keeping track of the first and second 736 * order deltas of the event timings. 737 * 738 **********************************************************************/ 739 740 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 741 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); 742 static int __init parse_trust_cpu(char *arg) 743 { 744 return kstrtobool(arg, &trust_cpu); 745 } 746 static int __init parse_trust_bootloader(char *arg) 747 { 748 return kstrtobool(arg, &trust_bootloader); 749 } 750 early_param("random.trust_cpu", parse_trust_cpu); 751 early_param("random.trust_bootloader", parse_trust_bootloader); 752 753 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 754 { 755 unsigned long flags, entropy = random_get_entropy(); 756 757 /* 758 * Encode a representation of how long the system has been suspended, 759 * in a way that is distinct from prior system suspends. 760 */ 761 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 762 763 spin_lock_irqsave(&input_pool.lock, flags); 764 _mix_pool_bytes(&action, sizeof(action)); 765 _mix_pool_bytes(stamps, sizeof(stamps)); 766 _mix_pool_bytes(&entropy, sizeof(entropy)); 767 spin_unlock_irqrestore(&input_pool.lock, flags); 768 769 if (crng_ready() && (action == PM_RESTORE_PREPARE || 770 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 771 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 772 crng_reseed(); 773 pr_notice("crng reseeded on system resumption\n"); 774 } 775 return 0; 776 } 777 778 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 779 780 /* 781 * This is called extremely early, before time keeping functionality is 782 * available, but arch randomness is. Interrupts are not yet enabled. 783 */ 784 void __init random_init_early(const char *command_line) 785 { 786 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 787 size_t i, longs, arch_bits; 788 789 #if defined(LATENT_ENTROPY_PLUGIN) 790 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 791 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 792 #endif 793 794 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 795 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 796 if (longs) { 797 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 798 i += longs; 799 continue; 800 } 801 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 802 if (longs) { 803 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 804 i += longs; 805 continue; 806 } 807 arch_bits -= sizeof(*entropy) * 8; 808 ++i; 809 } 810 811 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 812 _mix_pool_bytes(command_line, strlen(command_line)); 813 814 /* Reseed if already seeded by earlier phases. */ 815 if (crng_ready()) 816 crng_reseed(); 817 else if (trust_cpu) 818 _credit_init_bits(arch_bits); 819 } 820 821 /* 822 * This is called a little bit after the prior function, and now there is 823 * access to timestamps counters. Interrupts are not yet enabled. 824 */ 825 void __init random_init(void) 826 { 827 unsigned long entropy = random_get_entropy(); 828 ktime_t now = ktime_get_real(); 829 830 _mix_pool_bytes(&now, sizeof(now)); 831 _mix_pool_bytes(&entropy, sizeof(entropy)); 832 add_latent_entropy(); 833 834 /* 835 * If we were initialized by the cpu or bootloader before jump labels 836 * are initialized, then we should enable the static branch here, where 837 * it's guaranteed that jump labels have been initialized. 838 */ 839 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 840 crng_set_ready(NULL); 841 842 /* Reseed if already seeded by earlier phases. */ 843 if (crng_ready()) 844 crng_reseed(); 845 846 WARN_ON(register_pm_notifier(&pm_notifier)); 847 848 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 849 "entropy collection will consequently suffer."); 850 } 851 852 /* 853 * Add device- or boot-specific data to the input pool to help 854 * initialize it. 855 * 856 * None of this adds any entropy; it is meant to avoid the problem of 857 * the entropy pool having similar initial state across largely 858 * identical devices. 859 */ 860 void add_device_randomness(const void *buf, size_t len) 861 { 862 unsigned long entropy = random_get_entropy(); 863 unsigned long flags; 864 865 spin_lock_irqsave(&input_pool.lock, flags); 866 _mix_pool_bytes(&entropy, sizeof(entropy)); 867 _mix_pool_bytes(buf, len); 868 spin_unlock_irqrestore(&input_pool.lock, flags); 869 } 870 EXPORT_SYMBOL(add_device_randomness); 871 872 /* 873 * Interface for in-kernel drivers of true hardware RNGs. 874 * Those devices may produce endless random bits and will be throttled 875 * when our pool is full. 876 */ 877 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) 878 { 879 mix_pool_bytes(buf, len); 880 credit_init_bits(entropy); 881 882 /* 883 * Throttle writing to once every reseed interval, unless we're not yet 884 * initialized or no entropy is credited. 885 */ 886 if (!kthread_should_stop() && (crng_ready() || !entropy)) 887 schedule_timeout_interruptible(crng_reseed_interval()); 888 } 889 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 890 891 /* 892 * Handle random seed passed by bootloader, and credit it if 893 * CONFIG_RANDOM_TRUST_BOOTLOADER is set. 894 */ 895 void __init add_bootloader_randomness(const void *buf, size_t len) 896 { 897 mix_pool_bytes(buf, len); 898 if (trust_bootloader) 899 credit_init_bits(len * 8); 900 } 901 902 #if IS_ENABLED(CONFIG_VMGENID) 903 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 904 905 /* 906 * Handle a new unique VM ID, which is unique, not secret, so we 907 * don't credit it, but we do immediately force a reseed after so 908 * that it's used by the crng posthaste. 909 */ 910 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 911 { 912 add_device_randomness(unique_vm_id, len); 913 if (crng_ready()) { 914 crng_reseed(); 915 pr_notice("crng reseeded due to virtual machine fork\n"); 916 } 917 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 918 } 919 #if IS_MODULE(CONFIG_VMGENID) 920 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 921 #endif 922 923 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 924 { 925 return blocking_notifier_chain_register(&vmfork_chain, nb); 926 } 927 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 928 929 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 930 { 931 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 932 } 933 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 934 #endif 935 936 struct fast_pool { 937 unsigned long pool[4]; 938 unsigned long last; 939 unsigned int count; 940 struct timer_list mix; 941 }; 942 943 static void mix_interrupt_randomness(struct timer_list *work); 944 945 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 946 #ifdef CONFIG_64BIT 947 #define FASTMIX_PERM SIPHASH_PERMUTATION 948 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 949 #else 950 #define FASTMIX_PERM HSIPHASH_PERMUTATION 951 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 952 #endif 953 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 954 }; 955 956 /* 957 * This is [Half]SipHash-1-x, starting from an empty key. Because 958 * the key is fixed, it assumes that its inputs are non-malicious, 959 * and therefore this has no security on its own. s represents the 960 * four-word SipHash state, while v represents a two-word input. 961 */ 962 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 963 { 964 s[3] ^= v1; 965 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 966 s[0] ^= v1; 967 s[3] ^= v2; 968 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 969 s[0] ^= v2; 970 } 971 972 #ifdef CONFIG_SMP 973 /* 974 * This function is called when the CPU has just come online, with 975 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 976 */ 977 int __cold random_online_cpu(unsigned int cpu) 978 { 979 /* 980 * During CPU shutdown and before CPU onlining, add_interrupt_ 981 * randomness() may schedule mix_interrupt_randomness(), and 982 * set the MIX_INFLIGHT flag. However, because the worker can 983 * be scheduled on a different CPU during this period, that 984 * flag will never be cleared. For that reason, we zero out 985 * the flag here, which runs just after workqueues are onlined 986 * for the CPU again. This also has the effect of setting the 987 * irq randomness count to zero so that new accumulated irqs 988 * are fresh. 989 */ 990 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 991 return 0; 992 } 993 #endif 994 995 static void mix_interrupt_randomness(struct timer_list *work) 996 { 997 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 998 /* 999 * The size of the copied stack pool is explicitly 2 longs so that we 1000 * only ever ingest half of the siphash output each time, retaining 1001 * the other half as the next "key" that carries over. The entropy is 1002 * supposed to be sufficiently dispersed between bits so on average 1003 * we don't wind up "losing" some. 1004 */ 1005 unsigned long pool[2]; 1006 unsigned int count; 1007 1008 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1009 local_irq_disable(); 1010 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1011 local_irq_enable(); 1012 return; 1013 } 1014 1015 /* 1016 * Copy the pool to the stack so that the mixer always has a 1017 * consistent view, before we reenable irqs again. 1018 */ 1019 memcpy(pool, fast_pool->pool, sizeof(pool)); 1020 count = fast_pool->count; 1021 fast_pool->count = 0; 1022 fast_pool->last = jiffies; 1023 local_irq_enable(); 1024 1025 mix_pool_bytes(pool, sizeof(pool)); 1026 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1027 1028 memzero_explicit(pool, sizeof(pool)); 1029 } 1030 1031 void add_interrupt_randomness(int irq) 1032 { 1033 enum { MIX_INFLIGHT = 1U << 31 }; 1034 unsigned long entropy = random_get_entropy(); 1035 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1036 struct pt_regs *regs = get_irq_regs(); 1037 unsigned int new_count; 1038 1039 fast_mix(fast_pool->pool, entropy, 1040 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1041 new_count = ++fast_pool->count; 1042 1043 if (new_count & MIX_INFLIGHT) 1044 return; 1045 1046 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1047 return; 1048 1049 fast_pool->count |= MIX_INFLIGHT; 1050 if (!timer_pending(&fast_pool->mix)) { 1051 fast_pool->mix.expires = jiffies; 1052 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1053 } 1054 } 1055 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1056 1057 /* There is one of these per entropy source */ 1058 struct timer_rand_state { 1059 unsigned long last_time; 1060 long last_delta, last_delta2; 1061 }; 1062 1063 /* 1064 * This function adds entropy to the entropy "pool" by using timing 1065 * delays. It uses the timer_rand_state structure to make an estimate 1066 * of how many bits of entropy this call has added to the pool. The 1067 * value "num" is also added to the pool; it should somehow describe 1068 * the type of event that just happened. 1069 */ 1070 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1071 { 1072 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1073 long delta, delta2, delta3; 1074 unsigned int bits; 1075 1076 /* 1077 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1078 * sometime after, so mix into the fast pool. 1079 */ 1080 if (in_hardirq()) { 1081 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1082 } else { 1083 spin_lock_irqsave(&input_pool.lock, flags); 1084 _mix_pool_bytes(&entropy, sizeof(entropy)); 1085 _mix_pool_bytes(&num, sizeof(num)); 1086 spin_unlock_irqrestore(&input_pool.lock, flags); 1087 } 1088 1089 if (crng_ready()) 1090 return; 1091 1092 /* 1093 * Calculate number of bits of randomness we probably added. 1094 * We take into account the first, second and third-order deltas 1095 * in order to make our estimate. 1096 */ 1097 delta = now - READ_ONCE(state->last_time); 1098 WRITE_ONCE(state->last_time, now); 1099 1100 delta2 = delta - READ_ONCE(state->last_delta); 1101 WRITE_ONCE(state->last_delta, delta); 1102 1103 delta3 = delta2 - READ_ONCE(state->last_delta2); 1104 WRITE_ONCE(state->last_delta2, delta2); 1105 1106 if (delta < 0) 1107 delta = -delta; 1108 if (delta2 < 0) 1109 delta2 = -delta2; 1110 if (delta3 < 0) 1111 delta3 = -delta3; 1112 if (delta > delta2) 1113 delta = delta2; 1114 if (delta > delta3) 1115 delta = delta3; 1116 1117 /* 1118 * delta is now minimum absolute delta. Round down by 1 bit 1119 * on general principles, and limit entropy estimate to 11 bits. 1120 */ 1121 bits = min(fls(delta >> 1), 11); 1122 1123 /* 1124 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1125 * will run after this, which uses a different crediting scheme of 1 bit 1126 * per every 64 interrupts. In order to let that function do accounting 1127 * close to the one in this function, we credit a full 64/64 bit per bit, 1128 * and then subtract one to account for the extra one added. 1129 */ 1130 if (in_hardirq()) 1131 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1132 else 1133 _credit_init_bits(bits); 1134 } 1135 1136 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1137 { 1138 static unsigned char last_value; 1139 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1140 1141 /* Ignore autorepeat and the like. */ 1142 if (value == last_value) 1143 return; 1144 1145 last_value = value; 1146 add_timer_randomness(&input_timer_state, 1147 (type << 4) ^ code ^ (code >> 4) ^ value); 1148 } 1149 EXPORT_SYMBOL_GPL(add_input_randomness); 1150 1151 #ifdef CONFIG_BLOCK 1152 void add_disk_randomness(struct gendisk *disk) 1153 { 1154 if (!disk || !disk->random) 1155 return; 1156 /* First major is 1, so we get >= 0x200 here. */ 1157 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1158 } 1159 EXPORT_SYMBOL_GPL(add_disk_randomness); 1160 1161 void __cold rand_initialize_disk(struct gendisk *disk) 1162 { 1163 struct timer_rand_state *state; 1164 1165 /* 1166 * If kzalloc returns null, we just won't use that entropy 1167 * source. 1168 */ 1169 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1170 if (state) { 1171 state->last_time = INITIAL_JIFFIES; 1172 disk->random = state; 1173 } 1174 } 1175 #endif 1176 1177 struct entropy_timer_state { 1178 unsigned long entropy; 1179 struct timer_list timer; 1180 unsigned int samples, samples_per_bit; 1181 }; 1182 1183 /* 1184 * Each time the timer fires, we expect that we got an unpredictable 1185 * jump in the cycle counter. Even if the timer is running on another 1186 * CPU, the timer activity will be touching the stack of the CPU that is 1187 * generating entropy.. 1188 * 1189 * Note that we don't re-arm the timer in the timer itself - we are 1190 * happy to be scheduled away, since that just makes the load more 1191 * complex, but we do not want the timer to keep ticking unless the 1192 * entropy loop is running. 1193 * 1194 * So the re-arming always happens in the entropy loop itself. 1195 */ 1196 static void __cold entropy_timer(struct timer_list *timer) 1197 { 1198 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1199 1200 if (++state->samples == state->samples_per_bit) { 1201 credit_init_bits(1); 1202 state->samples = 0; 1203 } 1204 } 1205 1206 /* 1207 * If we have an actual cycle counter, see if we can 1208 * generate enough entropy with timing noise 1209 */ 1210 static void __cold try_to_generate_entropy(void) 1211 { 1212 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1213 struct entropy_timer_state stack; 1214 unsigned int i, num_different = 0; 1215 unsigned long last = random_get_entropy(); 1216 1217 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1218 stack.entropy = random_get_entropy(); 1219 if (stack.entropy != last) 1220 ++num_different; 1221 last = stack.entropy; 1222 } 1223 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1224 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT) 1225 return; 1226 1227 stack.samples = 0; 1228 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1229 while (!crng_ready() && !signal_pending(current)) { 1230 if (!timer_pending(&stack.timer)) 1231 mod_timer(&stack.timer, jiffies); 1232 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1233 schedule(); 1234 stack.entropy = random_get_entropy(); 1235 } 1236 1237 del_timer_sync(&stack.timer); 1238 destroy_timer_on_stack(&stack.timer); 1239 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1240 } 1241 1242 1243 /********************************************************************** 1244 * 1245 * Userspace reader/writer interfaces. 1246 * 1247 * getrandom(2) is the primary modern interface into the RNG and should 1248 * be used in preference to anything else. 1249 * 1250 * Reading from /dev/random has the same functionality as calling 1251 * getrandom(2) with flags=0. In earlier versions, however, it had 1252 * vastly different semantics and should therefore be avoided, to 1253 * prevent backwards compatibility issues. 1254 * 1255 * Reading from /dev/urandom has the same functionality as calling 1256 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1257 * waiting for the RNG to be ready, it should not be used. 1258 * 1259 * Writing to either /dev/random or /dev/urandom adds entropy to 1260 * the input pool but does not credit it. 1261 * 1262 * Polling on /dev/random indicates when the RNG is initialized, on 1263 * the read side, and when it wants new entropy, on the write side. 1264 * 1265 * Both /dev/random and /dev/urandom have the same set of ioctls for 1266 * adding entropy, getting the entropy count, zeroing the count, and 1267 * reseeding the crng. 1268 * 1269 **********************************************************************/ 1270 1271 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1272 { 1273 struct iov_iter iter; 1274 struct iovec iov; 1275 int ret; 1276 1277 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1278 return -EINVAL; 1279 1280 /* 1281 * Requesting insecure and blocking randomness at the same time makes 1282 * no sense. 1283 */ 1284 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1285 return -EINVAL; 1286 1287 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1288 if (flags & GRND_NONBLOCK) 1289 return -EAGAIN; 1290 ret = wait_for_random_bytes(); 1291 if (unlikely(ret)) 1292 return ret; 1293 } 1294 1295 ret = import_single_range(READ, ubuf, len, &iov, &iter); 1296 if (unlikely(ret)) 1297 return ret; 1298 return get_random_bytes_user(&iter); 1299 } 1300 1301 static __poll_t random_poll(struct file *file, poll_table *wait) 1302 { 1303 poll_wait(file, &crng_init_wait, wait); 1304 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1305 } 1306 1307 static ssize_t write_pool_user(struct iov_iter *iter) 1308 { 1309 u8 block[BLAKE2S_BLOCK_SIZE]; 1310 ssize_t ret = 0; 1311 size_t copied; 1312 1313 if (unlikely(!iov_iter_count(iter))) 1314 return 0; 1315 1316 for (;;) { 1317 copied = copy_from_iter(block, sizeof(block), iter); 1318 ret += copied; 1319 mix_pool_bytes(block, copied); 1320 if (!iov_iter_count(iter) || copied != sizeof(block)) 1321 break; 1322 1323 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1324 if (ret % PAGE_SIZE == 0) { 1325 if (signal_pending(current)) 1326 break; 1327 cond_resched(); 1328 } 1329 } 1330 1331 memzero_explicit(block, sizeof(block)); 1332 return ret ? ret : -EFAULT; 1333 } 1334 1335 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1336 { 1337 return write_pool_user(iter); 1338 } 1339 1340 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1341 { 1342 static int maxwarn = 10; 1343 1344 /* 1345 * Opportunistically attempt to initialize the RNG on platforms that 1346 * have fast cycle counters, but don't (for now) require it to succeed. 1347 */ 1348 if (!crng_ready()) 1349 try_to_generate_entropy(); 1350 1351 if (!crng_ready()) { 1352 if (!ratelimit_disable && maxwarn <= 0) 1353 ++urandom_warning.missed; 1354 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1355 --maxwarn; 1356 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1357 current->comm, iov_iter_count(iter)); 1358 } 1359 } 1360 1361 return get_random_bytes_user(iter); 1362 } 1363 1364 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1365 { 1366 int ret; 1367 1368 if (!crng_ready() && 1369 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1370 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1371 return -EAGAIN; 1372 1373 ret = wait_for_random_bytes(); 1374 if (ret != 0) 1375 return ret; 1376 return get_random_bytes_user(iter); 1377 } 1378 1379 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1380 { 1381 int __user *p = (int __user *)arg; 1382 int ent_count; 1383 1384 switch (cmd) { 1385 case RNDGETENTCNT: 1386 /* Inherently racy, no point locking. */ 1387 if (put_user(input_pool.init_bits, p)) 1388 return -EFAULT; 1389 return 0; 1390 case RNDADDTOENTCNT: 1391 if (!capable(CAP_SYS_ADMIN)) 1392 return -EPERM; 1393 if (get_user(ent_count, p)) 1394 return -EFAULT; 1395 if (ent_count < 0) 1396 return -EINVAL; 1397 credit_init_bits(ent_count); 1398 return 0; 1399 case RNDADDENTROPY: { 1400 struct iov_iter iter; 1401 struct iovec iov; 1402 ssize_t ret; 1403 int len; 1404 1405 if (!capable(CAP_SYS_ADMIN)) 1406 return -EPERM; 1407 if (get_user(ent_count, p++)) 1408 return -EFAULT; 1409 if (ent_count < 0) 1410 return -EINVAL; 1411 if (get_user(len, p++)) 1412 return -EFAULT; 1413 ret = import_single_range(WRITE, p, len, &iov, &iter); 1414 if (unlikely(ret)) 1415 return ret; 1416 ret = write_pool_user(&iter); 1417 if (unlikely(ret < 0)) 1418 return ret; 1419 /* Since we're crediting, enforce that it was all written into the pool. */ 1420 if (unlikely(ret != len)) 1421 return -EFAULT; 1422 credit_init_bits(ent_count); 1423 return 0; 1424 } 1425 case RNDZAPENTCNT: 1426 case RNDCLEARPOOL: 1427 /* No longer has any effect. */ 1428 if (!capable(CAP_SYS_ADMIN)) 1429 return -EPERM; 1430 return 0; 1431 case RNDRESEEDCRNG: 1432 if (!capable(CAP_SYS_ADMIN)) 1433 return -EPERM; 1434 if (!crng_ready()) 1435 return -ENODATA; 1436 crng_reseed(); 1437 return 0; 1438 default: 1439 return -EINVAL; 1440 } 1441 } 1442 1443 static int random_fasync(int fd, struct file *filp, int on) 1444 { 1445 return fasync_helper(fd, filp, on, &fasync); 1446 } 1447 1448 const struct file_operations random_fops = { 1449 .read_iter = random_read_iter, 1450 .write_iter = random_write_iter, 1451 .poll = random_poll, 1452 .unlocked_ioctl = random_ioctl, 1453 .compat_ioctl = compat_ptr_ioctl, 1454 .fasync = random_fasync, 1455 .llseek = noop_llseek, 1456 .splice_read = generic_file_splice_read, 1457 .splice_write = iter_file_splice_write, 1458 }; 1459 1460 const struct file_operations urandom_fops = { 1461 .read_iter = urandom_read_iter, 1462 .write_iter = random_write_iter, 1463 .unlocked_ioctl = random_ioctl, 1464 .compat_ioctl = compat_ptr_ioctl, 1465 .fasync = random_fasync, 1466 .llseek = noop_llseek, 1467 .splice_read = generic_file_splice_read, 1468 .splice_write = iter_file_splice_write, 1469 }; 1470 1471 1472 /******************************************************************** 1473 * 1474 * Sysctl interface. 1475 * 1476 * These are partly unused legacy knobs with dummy values to not break 1477 * userspace and partly still useful things. They are usually accessible 1478 * in /proc/sys/kernel/random/ and are as follows: 1479 * 1480 * - boot_id - a UUID representing the current boot. 1481 * 1482 * - uuid - a random UUID, different each time the file is read. 1483 * 1484 * - poolsize - the number of bits of entropy that the input pool can 1485 * hold, tied to the POOL_BITS constant. 1486 * 1487 * - entropy_avail - the number of bits of entropy currently in the 1488 * input pool. Always <= poolsize. 1489 * 1490 * - write_wakeup_threshold - the amount of entropy in the input pool 1491 * below which write polls to /dev/random will unblock, requesting 1492 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1493 * to avoid breaking old userspaces, but writing to it does not 1494 * change any behavior of the RNG. 1495 * 1496 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1497 * It is writable to avoid breaking old userspaces, but writing 1498 * to it does not change any behavior of the RNG. 1499 * 1500 ********************************************************************/ 1501 1502 #ifdef CONFIG_SYSCTL 1503 1504 #include <linux/sysctl.h> 1505 1506 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1507 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1508 static int sysctl_poolsize = POOL_BITS; 1509 static u8 sysctl_bootid[UUID_SIZE]; 1510 1511 /* 1512 * This function is used to return both the bootid UUID, and random 1513 * UUID. The difference is in whether table->data is NULL; if it is, 1514 * then a new UUID is generated and returned to the user. 1515 */ 1516 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1517 size_t *lenp, loff_t *ppos) 1518 { 1519 u8 tmp_uuid[UUID_SIZE], *uuid; 1520 char uuid_string[UUID_STRING_LEN + 1]; 1521 struct ctl_table fake_table = { 1522 .data = uuid_string, 1523 .maxlen = UUID_STRING_LEN 1524 }; 1525 1526 if (write) 1527 return -EPERM; 1528 1529 uuid = table->data; 1530 if (!uuid) { 1531 uuid = tmp_uuid; 1532 generate_random_uuid(uuid); 1533 } else { 1534 static DEFINE_SPINLOCK(bootid_spinlock); 1535 1536 spin_lock(&bootid_spinlock); 1537 if (!uuid[8]) 1538 generate_random_uuid(uuid); 1539 spin_unlock(&bootid_spinlock); 1540 } 1541 1542 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1543 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1544 } 1545 1546 /* The same as proc_dointvec, but writes don't change anything. */ 1547 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1548 size_t *lenp, loff_t *ppos) 1549 { 1550 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1551 } 1552 1553 static struct ctl_table random_table[] = { 1554 { 1555 .procname = "poolsize", 1556 .data = &sysctl_poolsize, 1557 .maxlen = sizeof(int), 1558 .mode = 0444, 1559 .proc_handler = proc_dointvec, 1560 }, 1561 { 1562 .procname = "entropy_avail", 1563 .data = &input_pool.init_bits, 1564 .maxlen = sizeof(int), 1565 .mode = 0444, 1566 .proc_handler = proc_dointvec, 1567 }, 1568 { 1569 .procname = "write_wakeup_threshold", 1570 .data = &sysctl_random_write_wakeup_bits, 1571 .maxlen = sizeof(int), 1572 .mode = 0644, 1573 .proc_handler = proc_do_rointvec, 1574 }, 1575 { 1576 .procname = "urandom_min_reseed_secs", 1577 .data = &sysctl_random_min_urandom_seed, 1578 .maxlen = sizeof(int), 1579 .mode = 0644, 1580 .proc_handler = proc_do_rointvec, 1581 }, 1582 { 1583 .procname = "boot_id", 1584 .data = &sysctl_bootid, 1585 .mode = 0444, 1586 .proc_handler = proc_do_uuid, 1587 }, 1588 { 1589 .procname = "uuid", 1590 .mode = 0444, 1591 .proc_handler = proc_do_uuid, 1592 }, 1593 { } 1594 }; 1595 1596 /* 1597 * random_init() is called before sysctl_init(), 1598 * so we cannot call register_sysctl_init() in random_init() 1599 */ 1600 static int __init random_sysctls_init(void) 1601 { 1602 register_sysctl_init("kernel/random", random_table); 1603 return 0; 1604 } 1605 device_initcall(random_sysctls_init); 1606 #endif 1607