xref: /linux/drivers/char/random.c (revision 714ca27e9bf4608fcb1f627cd5599441f448771e)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #ifdef CONFIG_VDSO_GETRANDOM
60 #include <vdso/getrandom.h>
61 #include <vdso/datapage.h>
62 #include <vdso/vsyscall.h>
63 #endif
64 #include <asm/archrandom.h>
65 #include <asm/processor.h>
66 #include <asm/irq.h>
67 #include <asm/irq_regs.h>
68 #include <asm/io.h>
69 
70 /*********************************************************************
71  *
72  * Initialization and readiness waiting.
73  *
74  * Much of the RNG infrastructure is devoted to various dependencies
75  * being able to wait until the RNG has collected enough entropy and
76  * is ready for safe consumption.
77  *
78  *********************************************************************/
79 
80 /*
81  * crng_init is protected by base_crng->lock, and only increases
82  * its value (from empty->early->ready).
83  */
84 static enum {
85 	CRNG_EMPTY = 0, /* Little to no entropy collected */
86 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
87 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
88 } crng_init __read_mostly = CRNG_EMPTY;
89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91 /* Various types of waiters for crng_init->CRNG_READY transition. */
92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
93 static struct fasync_struct *fasync;
94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
95 
96 /* Control how we warn userspace. */
97 static struct ratelimit_state urandom_warning =
98 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
99 static int ratelimit_disable __read_mostly =
100 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
103 
104 /*
105  * Returns whether or not the input pool has been seeded and thus guaranteed
106  * to supply cryptographically secure random numbers. This applies to: the
107  * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108  * u16,u32,u64,long} family of functions.
109  *
110  * Returns: true if the input pool has been seeded.
111  *          false if the input pool has not been seeded.
112  */
113 bool rng_is_initialized(void)
114 {
115 	return crng_ready();
116 }
117 EXPORT_SYMBOL(rng_is_initialized);
118 
119 static void __cold crng_set_ready(struct work_struct *work)
120 {
121 	static_branch_enable(&crng_is_ready);
122 }
123 
124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125 static void try_to_generate_entropy(void);
126 
127 /*
128  * Wait for the input pool to be seeded and thus guaranteed to supply
129  * cryptographically secure random numbers. This applies to: the /dev/urandom
130  * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131  * long} family of functions. Using any of these functions without first
132  * calling this function forfeits the guarantee of security.
133  *
134  * Returns: 0 if the input pool has been seeded.
135  *          -ERESTARTSYS if the function was interrupted by a signal.
136  */
137 int wait_for_random_bytes(void)
138 {
139 	while (!crng_ready()) {
140 		int ret;
141 
142 		try_to_generate_entropy();
143 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
144 		if (ret)
145 			return ret > 0 ? 0 : ret;
146 	}
147 	return 0;
148 }
149 EXPORT_SYMBOL(wait_for_random_bytes);
150 
151 /*
152  * Add a callback function that will be invoked when the crng is initialised,
153  * or immediately if it already has been. Only use this is you are absolutely
154  * sure it is required. Most users should instead be able to test
155  * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
156  */
157 int __cold execute_with_initialized_rng(struct notifier_block *nb)
158 {
159 	unsigned long flags;
160 	int ret = 0;
161 
162 	spin_lock_irqsave(&random_ready_notifier.lock, flags);
163 	if (crng_ready())
164 		nb->notifier_call(nb, 0, NULL);
165 	else
166 		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
167 	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
168 	return ret;
169 }
170 
171 #define warn_unseeded_randomness() \
172 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174 				__func__, (void *)_RET_IP_, crng_init)
175 
176 
177 /*********************************************************************
178  *
179  * Fast key erasure RNG, the "crng".
180  *
181  * These functions expand entropy from the entropy extractor into
182  * long streams for external consumption using the "fast key erasure"
183  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
184  *
185  * There are a few exported interfaces for use by other drivers:
186  *
187  *	void get_random_bytes(void *buf, size_t len)
188  *	u8 get_random_u8()
189  *	u16 get_random_u16()
190  *	u32 get_random_u32()
191  *	u32 get_random_u32_below(u32 ceil)
192  *	u32 get_random_u32_above(u32 floor)
193  *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194  *	u64 get_random_u64()
195  *	unsigned long get_random_long()
196  *
197  * These interfaces will return the requested number of random bytes
198  * into the given buffer or as a return value. This is equivalent to
199  * a read from /dev/urandom. The u8, u16, u32, u64, long family of
200  * functions may be higher performance for one-off random integers,
201  * because they do a bit of buffering and do not invoke reseeding
202  * until the buffer is emptied.
203  *
204  *********************************************************************/
205 
206 enum {
207 	CRNG_RESEED_START_INTERVAL = HZ,
208 	CRNG_RESEED_INTERVAL = 60 * HZ
209 };
210 
211 static struct {
212 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
213 	unsigned long generation;
214 	spinlock_t lock;
215 } base_crng = {
216 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
217 };
218 
219 struct crng {
220 	u8 key[CHACHA_KEY_SIZE];
221 	unsigned long generation;
222 	local_lock_t lock;
223 };
224 
225 static DEFINE_PER_CPU(struct crng, crngs) = {
226 	.generation = ULONG_MAX,
227 	.lock = INIT_LOCAL_LOCK(crngs.lock),
228 };
229 
230 /*
231  * Return the interval until the next reseeding, which is normally
232  * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233  * proportional to the uptime.
234  */
235 static unsigned int crng_reseed_interval(void)
236 {
237 	static bool early_boot = true;
238 
239 	if (unlikely(READ_ONCE(early_boot))) {
240 		time64_t uptime = ktime_get_seconds();
241 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
242 			WRITE_ONCE(early_boot, false);
243 		else
244 			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
245 				     (unsigned int)uptime / 2 * HZ);
246 	}
247 	return CRNG_RESEED_INTERVAL;
248 }
249 
250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251 static void extract_entropy(void *buf, size_t len);
252 
253 /* This extracts a new crng key from the input pool. */
254 static void crng_reseed(struct work_struct *work)
255 {
256 	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
257 	unsigned long flags;
258 	unsigned long next_gen;
259 	u8 key[CHACHA_KEY_SIZE];
260 
261 	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262 	if (likely(system_unbound_wq))
263 		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
264 
265 	extract_entropy(key, sizeof(key));
266 
267 	/*
268 	 * We copy the new key into the base_crng, overwriting the old one,
269 	 * and update the generation counter. We avoid hitting ULONG_MAX,
270 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
271 	 * forces new CPUs that come online to always initialize.
272 	 */
273 	spin_lock_irqsave(&base_crng.lock, flags);
274 	memcpy(base_crng.key, key, sizeof(base_crng.key));
275 	next_gen = base_crng.generation + 1;
276 	if (next_gen == ULONG_MAX)
277 		++next_gen;
278 	WRITE_ONCE(base_crng.generation, next_gen);
279 #ifdef CONFIG_VDSO_GETRANDOM
280 	/* base_crng.generation's invalid value is ULONG_MAX, while
281 	 * vdso_k_rng_data->generation's invalid value is 0, so add one to the
282 	 * former to arrive at the latter. Use smp_store_release so that this
283 	 * is ordered with the write above to base_crng.generation. Pairs with
284 	 * the smp_rmb() before the syscall in the vDSO code.
285 	 *
286 	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287 	 * operations are not supported on those architectures. This is safe
288 	 * because base_crng.generation is a 32-bit value. On big-endian
289 	 * architectures it will be stored in the upper 32 bits, but that's okay
290 	 * because the vDSO side only checks whether the value changed, without
291 	 * actually using or interpreting the value.
292 	 */
293 	smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1);
294 #endif
295 	if (!static_branch_likely(&crng_is_ready))
296 		crng_init = CRNG_READY;
297 	spin_unlock_irqrestore(&base_crng.lock, flags);
298 	memzero_explicit(key, sizeof(key));
299 }
300 
301 /*
302  * This generates a ChaCha block using the provided key, and then
303  * immediately overwrites that key with half the block. It returns
304  * the resultant ChaCha state to the user, along with the second
305  * half of the block containing 32 bytes of random data that may
306  * be used; random_data_len may not be greater than 32.
307  *
308  * The returned ChaCha state contains within it a copy of the old
309  * key value, at index 4, so the state should always be zeroed out
310  * immediately after using in order to maintain forward secrecy.
311  * If the state cannot be erased in a timely manner, then it is
312  * safer to set the random_data parameter to &chacha_state->x[4]
313  * so that this function overwrites it before returning.
314  */
315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
316 				  struct chacha_state *chacha_state,
317 				  u8 *random_data, size_t random_data_len)
318 {
319 	u8 first_block[CHACHA_BLOCK_SIZE];
320 
321 	BUG_ON(random_data_len > 32);
322 
323 	chacha_init_consts(chacha_state);
324 	memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE);
325 	memset(&chacha_state->x[12], 0, sizeof(u32) * 4);
326 	chacha20_block(chacha_state, first_block);
327 
328 	memcpy(key, first_block, CHACHA_KEY_SIZE);
329 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
330 	memzero_explicit(first_block, sizeof(first_block));
331 }
332 
333 /*
334  * This function returns a ChaCha state that you may use for generating
335  * random data. It also returns up to 32 bytes on its own of random data
336  * that may be used; random_data_len may not be greater than 32.
337  */
338 static void crng_make_state(struct chacha_state *chacha_state,
339 			    u8 *random_data, size_t random_data_len)
340 {
341 	unsigned long flags;
342 	struct crng *crng;
343 
344 	BUG_ON(random_data_len > 32);
345 
346 	/*
347 	 * For the fast path, we check whether we're ready, unlocked first, and
348 	 * then re-check once locked later. In the case where we're really not
349 	 * ready, we do fast key erasure with the base_crng directly, extracting
350 	 * when crng_init is CRNG_EMPTY.
351 	 */
352 	if (!crng_ready()) {
353 		bool ready;
354 
355 		spin_lock_irqsave(&base_crng.lock, flags);
356 		ready = crng_ready();
357 		if (!ready) {
358 			if (crng_init == CRNG_EMPTY)
359 				extract_entropy(base_crng.key, sizeof(base_crng.key));
360 			crng_fast_key_erasure(base_crng.key, chacha_state,
361 					      random_data, random_data_len);
362 		}
363 		spin_unlock_irqrestore(&base_crng.lock, flags);
364 		if (!ready)
365 			return;
366 	}
367 
368 	local_lock_irqsave(&crngs.lock, flags);
369 	crng = raw_cpu_ptr(&crngs);
370 
371 	/*
372 	 * If our per-cpu crng is older than the base_crng, then it means
373 	 * somebody reseeded the base_crng. In that case, we do fast key
374 	 * erasure on the base_crng, and use its output as the new key
375 	 * for our per-cpu crng. This brings us up to date with base_crng.
376 	 */
377 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
378 		spin_lock(&base_crng.lock);
379 		crng_fast_key_erasure(base_crng.key, chacha_state,
380 				      crng->key, sizeof(crng->key));
381 		crng->generation = base_crng.generation;
382 		spin_unlock(&base_crng.lock);
383 	}
384 
385 	/*
386 	 * Finally, when we've made it this far, our per-cpu crng has an up
387 	 * to date key, and we can do fast key erasure with it to produce
388 	 * some random data and a ChaCha state for the caller. All other
389 	 * branches of this function are "unlikely", so most of the time we
390 	 * should wind up here immediately.
391 	 */
392 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
393 	local_unlock_irqrestore(&crngs.lock, flags);
394 }
395 
396 static void _get_random_bytes(void *buf, size_t len)
397 {
398 	struct chacha_state chacha_state;
399 	u8 tmp[CHACHA_BLOCK_SIZE];
400 	size_t first_block_len;
401 
402 	if (!len)
403 		return;
404 
405 	first_block_len = min_t(size_t, 32, len);
406 	crng_make_state(&chacha_state, buf, first_block_len);
407 	len -= first_block_len;
408 	buf += first_block_len;
409 
410 	while (len) {
411 		if (len < CHACHA_BLOCK_SIZE) {
412 			chacha20_block(&chacha_state, tmp);
413 			memcpy(buf, tmp, len);
414 			memzero_explicit(tmp, sizeof(tmp));
415 			break;
416 		}
417 
418 		chacha20_block(&chacha_state, buf);
419 		if (unlikely(chacha_state.x[12] == 0))
420 			++chacha_state.x[13];
421 		len -= CHACHA_BLOCK_SIZE;
422 		buf += CHACHA_BLOCK_SIZE;
423 	}
424 
425 	chacha_zeroize_state(&chacha_state);
426 }
427 
428 /*
429  * This returns random bytes in arbitrary quantities. The quality of the
430  * random bytes is good as /dev/urandom. In order to ensure that the
431  * randomness provided by this function is okay, the function
432  * wait_for_random_bytes() should be called and return 0 at least once
433  * at any point prior.
434  */
435 void get_random_bytes(void *buf, size_t len)
436 {
437 	warn_unseeded_randomness();
438 	_get_random_bytes(buf, len);
439 }
440 EXPORT_SYMBOL(get_random_bytes);
441 
442 static ssize_t get_random_bytes_user(struct iov_iter *iter)
443 {
444 	struct chacha_state chacha_state;
445 	u8 block[CHACHA_BLOCK_SIZE];
446 	size_t ret = 0, copied;
447 
448 	if (unlikely(!iov_iter_count(iter)))
449 		return 0;
450 
451 	/*
452 	 * Immediately overwrite the ChaCha key at index 4 with random
453 	 * bytes, in case userspace causes copy_to_iter() below to sleep
454 	 * forever, so that we still retain forward secrecy in that case.
455 	 */
456 	crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4],
457 			CHACHA_KEY_SIZE);
458 	/*
459 	 * However, if we're doing a read of len <= 32, we don't need to
460 	 * use chacha_state after, so we can simply return those bytes to
461 	 * the user directly.
462 	 */
463 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
464 		ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter);
465 		goto out_zero_chacha;
466 	}
467 
468 	for (;;) {
469 		chacha20_block(&chacha_state, block);
470 		if (unlikely(chacha_state.x[12] == 0))
471 			++chacha_state.x[13];
472 
473 		copied = copy_to_iter(block, sizeof(block), iter);
474 		ret += copied;
475 		if (!iov_iter_count(iter) || copied != sizeof(block))
476 			break;
477 
478 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
479 		if (ret % PAGE_SIZE == 0) {
480 			if (signal_pending(current))
481 				break;
482 			cond_resched();
483 		}
484 	}
485 
486 	memzero_explicit(block, sizeof(block));
487 out_zero_chacha:
488 	chacha_zeroize_state(&chacha_state);
489 	return ret ? ret : -EFAULT;
490 }
491 
492 /*
493  * Batched entropy returns random integers. The quality of the random
494  * number is good as /dev/urandom. In order to ensure that the randomness
495  * provided by this function is okay, the function wait_for_random_bytes()
496  * should be called and return 0 at least once at any point prior.
497  */
498 
499 #define DEFINE_BATCHED_ENTROPY(type)						\
500 struct batch_ ##type {								\
501 	/*									\
502 	 * We make this 1.5x a ChaCha block, so that we get the			\
503 	 * remaining 32 bytes from fast key erasure, plus one full		\
504 	 * block from the detached ChaCha state. We can increase		\
505 	 * the size of this later if needed so long as we keep the		\
506 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
507 	 */									\
508 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
509 	local_lock_t lock;							\
510 	unsigned long generation;						\
511 	unsigned int position;							\
512 };										\
513 										\
514 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
515 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
516 	.position = UINT_MAX							\
517 };										\
518 										\
519 type get_random_ ##type(void)							\
520 {										\
521 	type ret;								\
522 	unsigned long flags;							\
523 	struct batch_ ##type *batch;						\
524 	unsigned long next_gen;							\
525 										\
526 	warn_unseeded_randomness();						\
527 										\
528 	if  (!crng_ready()) {							\
529 		_get_random_bytes(&ret, sizeof(ret));				\
530 		return ret;							\
531 	}									\
532 										\
533 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
534 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
535 										\
536 	next_gen = READ_ONCE(base_crng.generation);				\
537 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
538 	    next_gen != batch->generation) {					\
539 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
540 		batch->position = 0;						\
541 		batch->generation = next_gen;					\
542 	}									\
543 										\
544 	ret = batch->entropy[batch->position];					\
545 	batch->entropy[batch->position] = 0;					\
546 	++batch->position;							\
547 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
548 	return ret;								\
549 }										\
550 EXPORT_SYMBOL(get_random_ ##type);
551 
552 DEFINE_BATCHED_ENTROPY(u8)
553 DEFINE_BATCHED_ENTROPY(u16)
554 DEFINE_BATCHED_ENTROPY(u32)
555 DEFINE_BATCHED_ENTROPY(u64)
556 
557 u32 __get_random_u32_below(u32 ceil)
558 {
559 	/*
560 	 * This is the slow path for variable ceil. It is still fast, most of
561 	 * the time, by doing traditional reciprocal multiplication and
562 	 * opportunistically comparing the lower half to ceil itself, before
563 	 * falling back to computing a larger bound, and then rejecting samples
564 	 * whose lower half would indicate a range indivisible by ceil. The use
565 	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
566 	 * in 32-bits.
567 	 */
568 	u32 rand = get_random_u32();
569 	u64 mult;
570 
571 	/*
572 	 * This function is technically undefined for ceil == 0, and in fact
573 	 * for the non-underscored constant version in the header, we build bug
574 	 * on that. But for the non-constant case, it's convenient to have that
575 	 * evaluate to being a straight call to get_random_u32(), so that
576 	 * get_random_u32_inclusive() can work over its whole range without
577 	 * undefined behavior.
578 	 */
579 	if (unlikely(!ceil))
580 		return rand;
581 
582 	mult = (u64)ceil * rand;
583 	if (unlikely((u32)mult < ceil)) {
584 		u32 bound = -ceil % ceil;
585 		while (unlikely((u32)mult < bound))
586 			mult = (u64)ceil * get_random_u32();
587 	}
588 	return mult >> 32;
589 }
590 EXPORT_SYMBOL(__get_random_u32_below);
591 
592 #ifdef CONFIG_SMP
593 /*
594  * This function is called when the CPU is coming up, with entry
595  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
596  */
597 int __cold random_prepare_cpu(unsigned int cpu)
598 {
599 	/*
600 	 * When the cpu comes back online, immediately invalidate both
601 	 * the per-cpu crng and all batches, so that we serve fresh
602 	 * randomness.
603 	 */
604 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
605 	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
606 	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
607 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
608 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
609 	return 0;
610 }
611 #endif
612 
613 
614 /**********************************************************************
615  *
616  * Entropy accumulation and extraction routines.
617  *
618  * Callers may add entropy via:
619  *
620  *     static void mix_pool_bytes(const void *buf, size_t len)
621  *
622  * After which, if added entropy should be credited:
623  *
624  *     static void credit_init_bits(size_t bits)
625  *
626  * Finally, extract entropy via:
627  *
628  *     static void extract_entropy(void *buf, size_t len)
629  *
630  **********************************************************************/
631 
632 enum {
633 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
634 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
635 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
636 };
637 
638 static struct {
639 	struct blake2s_state hash;
640 	spinlock_t lock;
641 	unsigned int init_bits;
642 } input_pool = {
643 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
644 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
645 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
646 	.hash.outlen = BLAKE2S_HASH_SIZE,
647 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
648 };
649 
650 static void _mix_pool_bytes(const void *buf, size_t len)
651 {
652 	blake2s_update(&input_pool.hash, buf, len);
653 }
654 
655 /*
656  * This function adds bytes into the input pool. It does not
657  * update the initialization bit counter; the caller should call
658  * credit_init_bits if this is appropriate.
659  */
660 static void mix_pool_bytes(const void *buf, size_t len)
661 {
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&input_pool.lock, flags);
665 	_mix_pool_bytes(buf, len);
666 	spin_unlock_irqrestore(&input_pool.lock, flags);
667 }
668 
669 /*
670  * This is an HKDF-like construction for using the hashed collected entropy
671  * as a PRF key, that's then expanded block-by-block.
672  */
673 static void extract_entropy(void *buf, size_t len)
674 {
675 	unsigned long flags;
676 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
677 	struct {
678 		unsigned long rdseed[32 / sizeof(long)];
679 		size_t counter;
680 	} block;
681 	size_t i, longs;
682 
683 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
684 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
685 		if (longs) {
686 			i += longs;
687 			continue;
688 		}
689 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
690 		if (longs) {
691 			i += longs;
692 			continue;
693 		}
694 		block.rdseed[i++] = random_get_entropy();
695 	}
696 
697 	spin_lock_irqsave(&input_pool.lock, flags);
698 
699 	/* seed = HASHPRF(last_key, entropy_input) */
700 	blake2s_final(&input_pool.hash, seed);
701 
702 	/* next_key = HASHPRF(seed, RDSEED || 0) */
703 	block.counter = 0;
704 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
705 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
706 
707 	spin_unlock_irqrestore(&input_pool.lock, flags);
708 	memzero_explicit(next_key, sizeof(next_key));
709 
710 	while (len) {
711 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
712 		/* output = HASHPRF(seed, RDSEED || ++counter) */
713 		++block.counter;
714 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
715 		len -= i;
716 		buf += i;
717 	}
718 
719 	memzero_explicit(seed, sizeof(seed));
720 	memzero_explicit(&block, sizeof(block));
721 }
722 
723 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
724 
725 static void __cold _credit_init_bits(size_t bits)
726 {
727 	static DECLARE_WORK(set_ready, crng_set_ready);
728 	unsigned int new, orig, add;
729 	unsigned long flags;
730 
731 	if (!bits)
732 		return;
733 
734 	add = min_t(size_t, bits, POOL_BITS);
735 
736 	orig = READ_ONCE(input_pool.init_bits);
737 	do {
738 		new = min_t(unsigned int, POOL_BITS, orig + add);
739 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
740 
741 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
742 		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
743 		if (static_key_initialized && system_unbound_wq)
744 			queue_work(system_unbound_wq, &set_ready);
745 		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
746 #ifdef CONFIG_VDSO_GETRANDOM
747 		WRITE_ONCE(vdso_k_rng_data->is_ready, true);
748 #endif
749 		wake_up_interruptible(&crng_init_wait);
750 		kill_fasync(&fasync, SIGIO, POLL_IN);
751 		pr_notice("crng init done\n");
752 		if (urandom_warning.missed)
753 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
754 				  urandom_warning.missed);
755 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
756 		spin_lock_irqsave(&base_crng.lock, flags);
757 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
758 		if (crng_init == CRNG_EMPTY) {
759 			extract_entropy(base_crng.key, sizeof(base_crng.key));
760 			crng_init = CRNG_EARLY;
761 		}
762 		spin_unlock_irqrestore(&base_crng.lock, flags);
763 	}
764 }
765 
766 
767 /**********************************************************************
768  *
769  * Entropy collection routines.
770  *
771  * The following exported functions are used for pushing entropy into
772  * the above entropy accumulation routines:
773  *
774  *	void add_device_randomness(const void *buf, size_t len);
775  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
776  *	void add_bootloader_randomness(const void *buf, size_t len);
777  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
778  *	void add_interrupt_randomness(int irq);
779  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
780  *	void add_disk_randomness(struct gendisk *disk);
781  *
782  * add_device_randomness() adds data to the input pool that
783  * is likely to differ between two devices (or possibly even per boot).
784  * This would be things like MAC addresses or serial numbers, or the
785  * read-out of the RTC. This does *not* credit any actual entropy to
786  * the pool, but it initializes the pool to different values for devices
787  * that might otherwise be identical and have very little entropy
788  * available to them (particularly common in the embedded world).
789  *
790  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
791  * entropy as specified by the caller. If the entropy pool is full it will
792  * block until more entropy is needed.
793  *
794  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
795  * and device tree, and credits its input depending on whether or not the
796  * command line option 'random.trust_bootloader'.
797  *
798  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
799  * representing the current instance of a VM to the pool, without crediting,
800  * and then force-reseeds the crng so that it takes effect immediately.
801  *
802  * add_interrupt_randomness() uses the interrupt timing as random
803  * inputs to the entropy pool. Using the cycle counters and the irq source
804  * as inputs, it feeds the input pool roughly once a second or after 64
805  * interrupts, crediting 1 bit of entropy for whichever comes first.
806  *
807  * add_input_randomness() uses the input layer interrupt timing, as well
808  * as the event type information from the hardware.
809  *
810  * add_disk_randomness() uses what amounts to the seek time of block
811  * layer request events, on a per-disk_devt basis, as input to the
812  * entropy pool. Note that high-speed solid state drives with very low
813  * seek times do not make for good sources of entropy, as their seek
814  * times are usually fairly consistent.
815  *
816  * The last two routines try to estimate how many bits of entropy
817  * to credit. They do this by keeping track of the first and second
818  * order deltas of the event timings.
819  *
820  **********************************************************************/
821 
822 static bool trust_cpu __initdata = true;
823 static bool trust_bootloader __initdata = true;
824 static int __init parse_trust_cpu(char *arg)
825 {
826 	return kstrtobool(arg, &trust_cpu);
827 }
828 static int __init parse_trust_bootloader(char *arg)
829 {
830 	return kstrtobool(arg, &trust_bootloader);
831 }
832 early_param("random.trust_cpu", parse_trust_cpu);
833 early_param("random.trust_bootloader", parse_trust_bootloader);
834 
835 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
836 {
837 	unsigned long flags, entropy = random_get_entropy();
838 
839 	/*
840 	 * Encode a representation of how long the system has been suspended,
841 	 * in a way that is distinct from prior system suspends.
842 	 */
843 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
844 
845 	spin_lock_irqsave(&input_pool.lock, flags);
846 	_mix_pool_bytes(&action, sizeof(action));
847 	_mix_pool_bytes(stamps, sizeof(stamps));
848 	_mix_pool_bytes(&entropy, sizeof(entropy));
849 	spin_unlock_irqrestore(&input_pool.lock, flags);
850 
851 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
852 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
853 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
854 		crng_reseed(NULL);
855 		pr_notice("crng reseeded on system resumption\n");
856 	}
857 	return 0;
858 }
859 
860 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
861 
862 /*
863  * This is called extremely early, before time keeping functionality is
864  * available, but arch randomness is. Interrupts are not yet enabled.
865  */
866 void __init random_init_early(const char *command_line)
867 {
868 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
869 	size_t i, longs, arch_bits;
870 
871 #if defined(LATENT_ENTROPY_PLUGIN)
872 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
873 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
874 #endif
875 
876 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
877 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
878 		if (longs) {
879 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
880 			i += longs;
881 			continue;
882 		}
883 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
884 		if (longs) {
885 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
886 			i += longs;
887 			continue;
888 		}
889 		arch_bits -= sizeof(*entropy) * 8;
890 		++i;
891 	}
892 
893 	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
894 	_mix_pool_bytes(command_line, strlen(command_line));
895 
896 	/* Reseed if already seeded by earlier phases. */
897 	if (crng_ready())
898 		crng_reseed(NULL);
899 	else if (trust_cpu)
900 		_credit_init_bits(arch_bits);
901 }
902 
903 /*
904  * This is called a little bit after the prior function, and now there is
905  * access to timestamps counters. Interrupts are not yet enabled.
906  */
907 void __init random_init(void)
908 {
909 	unsigned long entropy = random_get_entropy();
910 	ktime_t now = ktime_get_real();
911 
912 	_mix_pool_bytes(&now, sizeof(now));
913 	_mix_pool_bytes(&entropy, sizeof(entropy));
914 	add_latent_entropy();
915 
916 	/*
917 	 * If we were initialized by the cpu or bootloader before jump labels
918 	 * or workqueues are initialized, then we should enable the static
919 	 * branch here, where it's guaranteed that these have been initialized.
920 	 */
921 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
922 		crng_set_ready(NULL);
923 
924 	/* Reseed if already seeded by earlier phases. */
925 	if (crng_ready())
926 		crng_reseed(NULL);
927 
928 	WARN_ON(register_pm_notifier(&pm_notifier));
929 
930 	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
931 		       "entropy collection will consequently suffer.");
932 }
933 
934 /*
935  * Add device- or boot-specific data to the input pool to help
936  * initialize it.
937  *
938  * None of this adds any entropy; it is meant to avoid the problem of
939  * the entropy pool having similar initial state across largely
940  * identical devices.
941  */
942 void add_device_randomness(const void *buf, size_t len)
943 {
944 	unsigned long entropy = random_get_entropy();
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&input_pool.lock, flags);
948 	_mix_pool_bytes(&entropy, sizeof(entropy));
949 	_mix_pool_bytes(buf, len);
950 	spin_unlock_irqrestore(&input_pool.lock, flags);
951 }
952 EXPORT_SYMBOL(add_device_randomness);
953 
954 /*
955  * Interface for in-kernel drivers of true hardware RNGs. Those devices
956  * may produce endless random bits, so this function will sleep for
957  * some amount of time after, if the sleep_after parameter is true.
958  */
959 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
960 {
961 	mix_pool_bytes(buf, len);
962 	credit_init_bits(entropy);
963 
964 	/*
965 	 * Throttle writing to once every reseed interval, unless we're not yet
966 	 * initialized or no entropy is credited.
967 	 */
968 	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
969 		schedule_timeout_interruptible(crng_reseed_interval());
970 }
971 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
972 
973 /*
974  * Handle random seed passed by bootloader, and credit it depending
975  * on the command line option 'random.trust_bootloader'.
976  */
977 void __init add_bootloader_randomness(const void *buf, size_t len)
978 {
979 	mix_pool_bytes(buf, len);
980 	if (trust_bootloader)
981 		credit_init_bits(len * 8);
982 }
983 
984 #if IS_ENABLED(CONFIG_VMGENID)
985 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
986 
987 /*
988  * Handle a new unique VM ID, which is unique, not secret, so we
989  * don't credit it, but we do immediately force a reseed after so
990  * that it's used by the crng posthaste.
991  */
992 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
993 {
994 	add_device_randomness(unique_vm_id, len);
995 	if (crng_ready()) {
996 		crng_reseed(NULL);
997 		pr_notice("crng reseeded due to virtual machine fork\n");
998 	}
999 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1000 }
1001 #if IS_MODULE(CONFIG_VMGENID)
1002 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1003 #endif
1004 
1005 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1006 {
1007 	return blocking_notifier_chain_register(&vmfork_chain, nb);
1008 }
1009 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1010 
1011 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1012 {
1013 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1014 }
1015 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1016 #endif
1017 
1018 struct fast_pool {
1019 	unsigned long pool[4];
1020 	unsigned long last;
1021 	unsigned int count;
1022 	struct timer_list mix;
1023 };
1024 
1025 static void mix_interrupt_randomness(struct timer_list *work);
1026 
1027 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1028 #ifdef CONFIG_64BIT
1029 #define FASTMIX_PERM SIPHASH_PERMUTATION
1030 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1031 #else
1032 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1033 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1034 #endif
1035 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1036 };
1037 
1038 /*
1039  * This is [Half]SipHash-1-x, starting from an empty key. Because
1040  * the key is fixed, it assumes that its inputs are non-malicious,
1041  * and therefore this has no security on its own. s represents the
1042  * four-word SipHash state, while v represents a two-word input.
1043  */
1044 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1045 {
1046 	s[3] ^= v1;
1047 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1048 	s[0] ^= v1;
1049 	s[3] ^= v2;
1050 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1051 	s[0] ^= v2;
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 /*
1056  * This function is called when the CPU has just come online, with
1057  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1058  */
1059 int __cold random_online_cpu(unsigned int cpu)
1060 {
1061 	/*
1062 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1063 	 * randomness() may schedule mix_interrupt_randomness(), and
1064 	 * set the MIX_INFLIGHT flag. However, because the worker can
1065 	 * be scheduled on a different CPU during this period, that
1066 	 * flag will never be cleared. For that reason, we zero out
1067 	 * the flag here, which runs just after workqueues are onlined
1068 	 * for the CPU again. This also has the effect of setting the
1069 	 * irq randomness count to zero so that new accumulated irqs
1070 	 * are fresh.
1071 	 */
1072 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1073 	return 0;
1074 }
1075 #endif
1076 
1077 static void mix_interrupt_randomness(struct timer_list *work)
1078 {
1079 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1080 	/*
1081 	 * The size of the copied stack pool is explicitly 2 longs so that we
1082 	 * only ever ingest half of the siphash output each time, retaining
1083 	 * the other half as the next "key" that carries over. The entropy is
1084 	 * supposed to be sufficiently dispersed between bits so on average
1085 	 * we don't wind up "losing" some.
1086 	 */
1087 	unsigned long pool[2];
1088 	unsigned int count;
1089 
1090 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1091 	local_irq_disable();
1092 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1093 		local_irq_enable();
1094 		return;
1095 	}
1096 
1097 	/*
1098 	 * Copy the pool to the stack so that the mixer always has a
1099 	 * consistent view, before we reenable irqs again.
1100 	 */
1101 	memcpy(pool, fast_pool->pool, sizeof(pool));
1102 	count = fast_pool->count;
1103 	fast_pool->count = 0;
1104 	fast_pool->last = jiffies;
1105 	local_irq_enable();
1106 
1107 	mix_pool_bytes(pool, sizeof(pool));
1108 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1109 
1110 	memzero_explicit(pool, sizeof(pool));
1111 }
1112 
1113 void add_interrupt_randomness(int irq)
1114 {
1115 	enum { MIX_INFLIGHT = 1U << 31 };
1116 	unsigned long entropy = random_get_entropy();
1117 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1118 	struct pt_regs *regs = get_irq_regs();
1119 	unsigned int new_count;
1120 
1121 	fast_mix(fast_pool->pool, entropy,
1122 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1123 	new_count = ++fast_pool->count;
1124 
1125 	if (new_count & MIX_INFLIGHT)
1126 		return;
1127 
1128 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1129 		return;
1130 
1131 	fast_pool->count |= MIX_INFLIGHT;
1132 	if (!timer_pending(&fast_pool->mix)) {
1133 		fast_pool->mix.expires = jiffies;
1134 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1135 	}
1136 }
1137 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1138 
1139 /* There is one of these per entropy source */
1140 struct timer_rand_state {
1141 	unsigned long last_time;
1142 	long last_delta, last_delta2;
1143 };
1144 
1145 /*
1146  * This function adds entropy to the entropy "pool" by using timing
1147  * delays. It uses the timer_rand_state structure to make an estimate
1148  * of how many bits of entropy this call has added to the pool. The
1149  * value "num" is also added to the pool; it should somehow describe
1150  * the type of event that just happened.
1151  */
1152 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1153 {
1154 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1155 	long delta, delta2, delta3;
1156 	unsigned int bits;
1157 
1158 	/*
1159 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1160 	 * sometime after, so mix into the fast pool.
1161 	 */
1162 	if (in_hardirq()) {
1163 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1164 	} else {
1165 		spin_lock_irqsave(&input_pool.lock, flags);
1166 		_mix_pool_bytes(&entropy, sizeof(entropy));
1167 		_mix_pool_bytes(&num, sizeof(num));
1168 		spin_unlock_irqrestore(&input_pool.lock, flags);
1169 	}
1170 
1171 	if (crng_ready())
1172 		return;
1173 
1174 	/*
1175 	 * Calculate number of bits of randomness we probably added.
1176 	 * We take into account the first, second and third-order deltas
1177 	 * in order to make our estimate.
1178 	 */
1179 	delta = now - READ_ONCE(state->last_time);
1180 	WRITE_ONCE(state->last_time, now);
1181 
1182 	delta2 = delta - READ_ONCE(state->last_delta);
1183 	WRITE_ONCE(state->last_delta, delta);
1184 
1185 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1186 	WRITE_ONCE(state->last_delta2, delta2);
1187 
1188 	if (delta < 0)
1189 		delta = -delta;
1190 	if (delta2 < 0)
1191 		delta2 = -delta2;
1192 	if (delta3 < 0)
1193 		delta3 = -delta3;
1194 	if (delta > delta2)
1195 		delta = delta2;
1196 	if (delta > delta3)
1197 		delta = delta3;
1198 
1199 	/*
1200 	 * delta is now minimum absolute delta. Round down by 1 bit
1201 	 * on general principles, and limit entropy estimate to 11 bits.
1202 	 */
1203 	bits = min(fls(delta >> 1), 11);
1204 
1205 	/*
1206 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1207 	 * will run after this, which uses a different crediting scheme of 1 bit
1208 	 * per every 64 interrupts. In order to let that function do accounting
1209 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1210 	 * and then subtract one to account for the extra one added.
1211 	 */
1212 	if (in_hardirq())
1213 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1214 	else
1215 		_credit_init_bits(bits);
1216 }
1217 
1218 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1219 {
1220 	static unsigned char last_value;
1221 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1222 
1223 	/* Ignore autorepeat and the like. */
1224 	if (value == last_value)
1225 		return;
1226 
1227 	last_value = value;
1228 	add_timer_randomness(&input_timer_state,
1229 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1230 }
1231 EXPORT_SYMBOL_GPL(add_input_randomness);
1232 
1233 #ifdef CONFIG_BLOCK
1234 void add_disk_randomness(struct gendisk *disk)
1235 {
1236 	if (!disk || !disk->random)
1237 		return;
1238 	/* First major is 1, so we get >= 0x200 here. */
1239 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1240 }
1241 EXPORT_SYMBOL_GPL(add_disk_randomness);
1242 
1243 void __cold rand_initialize_disk(struct gendisk *disk)
1244 {
1245 	struct timer_rand_state *state;
1246 
1247 	/*
1248 	 * If kzalloc returns null, we just won't use that entropy
1249 	 * source.
1250 	 */
1251 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1252 	if (state) {
1253 		state->last_time = INITIAL_JIFFIES;
1254 		disk->random = state;
1255 	}
1256 }
1257 #endif
1258 
1259 struct entropy_timer_state {
1260 	unsigned long entropy;
1261 	struct timer_list timer;
1262 	atomic_t samples;
1263 	unsigned int samples_per_bit;
1264 };
1265 
1266 /*
1267  * Each time the timer fires, we expect that we got an unpredictable jump in
1268  * the cycle counter. Even if the timer is running on another CPU, the timer
1269  * activity will be touching the stack of the CPU that is generating entropy.
1270  *
1271  * Note that we don't re-arm the timer in the timer itself - we are happy to be
1272  * scheduled away, since that just makes the load more complex, but we do not
1273  * want the timer to keep ticking unless the entropy loop is running.
1274  *
1275  * So the re-arming always happens in the entropy loop itself.
1276  */
1277 static void __cold entropy_timer(struct timer_list *timer)
1278 {
1279 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1280 	unsigned long entropy = random_get_entropy();
1281 
1282 	mix_pool_bytes(&entropy, sizeof(entropy));
1283 	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1284 		credit_init_bits(1);
1285 }
1286 
1287 /*
1288  * If we have an actual cycle counter, see if we can generate enough entropy
1289  * with timing noise.
1290  */
1291 static void __cold try_to_generate_entropy(void)
1292 {
1293 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1294 	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1295 	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1296 	unsigned int i, num_different = 0;
1297 	unsigned long last = random_get_entropy();
1298 	int cpu = -1;
1299 
1300 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1301 		stack->entropy = random_get_entropy();
1302 		if (stack->entropy != last)
1303 			++num_different;
1304 		last = stack->entropy;
1305 	}
1306 	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1307 	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1308 		return;
1309 
1310 	atomic_set(&stack->samples, 0);
1311 	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1312 	while (!crng_ready() && !signal_pending(current)) {
1313 		/*
1314 		 * Check !timer_pending() and then ensure that any previous callback has finished
1315 		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1316 		 */
1317 		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1318 			struct cpumask timer_cpus;
1319 			unsigned int num_cpus;
1320 
1321 			/*
1322 			 * Preemption must be disabled here, both to read the current CPU number
1323 			 * and to avoid scheduling a timer on a dead CPU.
1324 			 */
1325 			preempt_disable();
1326 
1327 			/* Only schedule callbacks on timer CPUs that are online. */
1328 			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1329 			num_cpus = cpumask_weight(&timer_cpus);
1330 			/* In very bizarre case of misconfiguration, fallback to all online. */
1331 			if (unlikely(num_cpus == 0)) {
1332 				timer_cpus = *cpu_online_mask;
1333 				num_cpus = cpumask_weight(&timer_cpus);
1334 			}
1335 
1336 			/* Basic CPU round-robin, which avoids the current CPU. */
1337 			do {
1338 				cpu = cpumask_next(cpu, &timer_cpus);
1339 				if (cpu >= nr_cpu_ids)
1340 					cpu = cpumask_first(&timer_cpus);
1341 			} while (cpu == smp_processor_id() && num_cpus > 1);
1342 
1343 			/* Expiring the timer at `jiffies` means it's the next tick. */
1344 			stack->timer.expires = jiffies;
1345 
1346 			add_timer_on(&stack->timer, cpu);
1347 
1348 			preempt_enable();
1349 		}
1350 		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1351 		schedule();
1352 		stack->entropy = random_get_entropy();
1353 	}
1354 	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1355 
1356 	timer_delete_sync(&stack->timer);
1357 	destroy_timer_on_stack(&stack->timer);
1358 }
1359 
1360 
1361 /**********************************************************************
1362  *
1363  * Userspace reader/writer interfaces.
1364  *
1365  * getrandom(2) is the primary modern interface into the RNG and should
1366  * be used in preference to anything else.
1367  *
1368  * Reading from /dev/random has the same functionality as calling
1369  * getrandom(2) with flags=0. In earlier versions, however, it had
1370  * vastly different semantics and should therefore be avoided, to
1371  * prevent backwards compatibility issues.
1372  *
1373  * Reading from /dev/urandom has the same functionality as calling
1374  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1375  * waiting for the RNG to be ready, it should not be used.
1376  *
1377  * Writing to either /dev/random or /dev/urandom adds entropy to
1378  * the input pool but does not credit it.
1379  *
1380  * Polling on /dev/random indicates when the RNG is initialized, on
1381  * the read side, and when it wants new entropy, on the write side.
1382  *
1383  * Both /dev/random and /dev/urandom have the same set of ioctls for
1384  * adding entropy, getting the entropy count, zeroing the count, and
1385  * reseeding the crng.
1386  *
1387  **********************************************************************/
1388 
1389 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1390 {
1391 	struct iov_iter iter;
1392 	int ret;
1393 
1394 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1395 		return -EINVAL;
1396 
1397 	/*
1398 	 * Requesting insecure and blocking randomness at the same time makes
1399 	 * no sense.
1400 	 */
1401 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1402 		return -EINVAL;
1403 
1404 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1405 		if (flags & GRND_NONBLOCK)
1406 			return -EAGAIN;
1407 		ret = wait_for_random_bytes();
1408 		if (unlikely(ret))
1409 			return ret;
1410 	}
1411 
1412 	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1413 	if (unlikely(ret))
1414 		return ret;
1415 	return get_random_bytes_user(&iter);
1416 }
1417 
1418 static __poll_t random_poll(struct file *file, poll_table *wait)
1419 {
1420 	poll_wait(file, &crng_init_wait, wait);
1421 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1422 }
1423 
1424 static ssize_t write_pool_user(struct iov_iter *iter)
1425 {
1426 	u8 block[BLAKE2S_BLOCK_SIZE];
1427 	ssize_t ret = 0;
1428 	size_t copied;
1429 
1430 	if (unlikely(!iov_iter_count(iter)))
1431 		return 0;
1432 
1433 	for (;;) {
1434 		copied = copy_from_iter(block, sizeof(block), iter);
1435 		ret += copied;
1436 		mix_pool_bytes(block, copied);
1437 		if (!iov_iter_count(iter) || copied != sizeof(block))
1438 			break;
1439 
1440 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1441 		if (ret % PAGE_SIZE == 0) {
1442 			if (signal_pending(current))
1443 				break;
1444 			cond_resched();
1445 		}
1446 	}
1447 
1448 	memzero_explicit(block, sizeof(block));
1449 	return ret ? ret : -EFAULT;
1450 }
1451 
1452 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1453 {
1454 	return write_pool_user(iter);
1455 }
1456 
1457 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1458 {
1459 	static int maxwarn = 10;
1460 
1461 	/*
1462 	 * Opportunistically attempt to initialize the RNG on platforms that
1463 	 * have fast cycle counters, but don't (for now) require it to succeed.
1464 	 */
1465 	if (!crng_ready())
1466 		try_to_generate_entropy();
1467 
1468 	if (!crng_ready()) {
1469 		if (!ratelimit_disable && maxwarn <= 0)
1470 			++urandom_warning.missed;
1471 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1472 			--maxwarn;
1473 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1474 				  current->comm, iov_iter_count(iter));
1475 		}
1476 	}
1477 
1478 	return get_random_bytes_user(iter);
1479 }
1480 
1481 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1482 {
1483 	int ret;
1484 
1485 	if (!crng_ready() &&
1486 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1487 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1488 		return -EAGAIN;
1489 
1490 	ret = wait_for_random_bytes();
1491 	if (ret != 0)
1492 		return ret;
1493 	return get_random_bytes_user(iter);
1494 }
1495 
1496 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1497 {
1498 	int __user *p = (int __user *)arg;
1499 	int ent_count;
1500 
1501 	switch (cmd) {
1502 	case RNDGETENTCNT:
1503 		/* Inherently racy, no point locking. */
1504 		if (put_user(input_pool.init_bits, p))
1505 			return -EFAULT;
1506 		return 0;
1507 	case RNDADDTOENTCNT:
1508 		if (!capable(CAP_SYS_ADMIN))
1509 			return -EPERM;
1510 		if (get_user(ent_count, p))
1511 			return -EFAULT;
1512 		if (ent_count < 0)
1513 			return -EINVAL;
1514 		credit_init_bits(ent_count);
1515 		return 0;
1516 	case RNDADDENTROPY: {
1517 		struct iov_iter iter;
1518 		ssize_t ret;
1519 		int len;
1520 
1521 		if (!capable(CAP_SYS_ADMIN))
1522 			return -EPERM;
1523 		if (get_user(ent_count, p++))
1524 			return -EFAULT;
1525 		if (ent_count < 0)
1526 			return -EINVAL;
1527 		if (get_user(len, p++))
1528 			return -EFAULT;
1529 		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1530 		if (unlikely(ret))
1531 			return ret;
1532 		ret = write_pool_user(&iter);
1533 		if (unlikely(ret < 0))
1534 			return ret;
1535 		/* Since we're crediting, enforce that it was all written into the pool. */
1536 		if (unlikely(ret != len))
1537 			return -EFAULT;
1538 		credit_init_bits(ent_count);
1539 		return 0;
1540 	}
1541 	case RNDZAPENTCNT:
1542 	case RNDCLEARPOOL:
1543 		/* No longer has any effect. */
1544 		if (!capable(CAP_SYS_ADMIN))
1545 			return -EPERM;
1546 		return 0;
1547 	case RNDRESEEDCRNG:
1548 		if (!capable(CAP_SYS_ADMIN))
1549 			return -EPERM;
1550 		if (!crng_ready())
1551 			return -ENODATA;
1552 		crng_reseed(NULL);
1553 		return 0;
1554 	default:
1555 		return -EINVAL;
1556 	}
1557 }
1558 
1559 static int random_fasync(int fd, struct file *filp, int on)
1560 {
1561 	return fasync_helper(fd, filp, on, &fasync);
1562 }
1563 
1564 const struct file_operations random_fops = {
1565 	.read_iter = random_read_iter,
1566 	.write_iter = random_write_iter,
1567 	.poll = random_poll,
1568 	.unlocked_ioctl = random_ioctl,
1569 	.compat_ioctl = compat_ptr_ioctl,
1570 	.fasync = random_fasync,
1571 	.llseek = noop_llseek,
1572 	.splice_read = copy_splice_read,
1573 	.splice_write = iter_file_splice_write,
1574 };
1575 
1576 const struct file_operations urandom_fops = {
1577 	.read_iter = urandom_read_iter,
1578 	.write_iter = random_write_iter,
1579 	.unlocked_ioctl = random_ioctl,
1580 	.compat_ioctl = compat_ptr_ioctl,
1581 	.fasync = random_fasync,
1582 	.llseek = noop_llseek,
1583 	.splice_read = copy_splice_read,
1584 	.splice_write = iter_file_splice_write,
1585 };
1586 
1587 
1588 /********************************************************************
1589  *
1590  * Sysctl interface.
1591  *
1592  * These are partly unused legacy knobs with dummy values to not break
1593  * userspace and partly still useful things. They are usually accessible
1594  * in /proc/sys/kernel/random/ and are as follows:
1595  *
1596  * - boot_id - a UUID representing the current boot.
1597  *
1598  * - uuid - a random UUID, different each time the file is read.
1599  *
1600  * - poolsize - the number of bits of entropy that the input pool can
1601  *   hold, tied to the POOL_BITS constant.
1602  *
1603  * - entropy_avail - the number of bits of entropy currently in the
1604  *   input pool. Always <= poolsize.
1605  *
1606  * - write_wakeup_threshold - the amount of entropy in the input pool
1607  *   below which write polls to /dev/random will unblock, requesting
1608  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1609  *   to avoid breaking old userspaces, but writing to it does not
1610  *   change any behavior of the RNG.
1611  *
1612  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1613  *   It is writable to avoid breaking old userspaces, but writing
1614  *   to it does not change any behavior of the RNG.
1615  *
1616  ********************************************************************/
1617 
1618 #ifdef CONFIG_SYSCTL
1619 
1620 #include <linux/sysctl.h>
1621 
1622 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1623 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1624 static int sysctl_poolsize = POOL_BITS;
1625 static u8 sysctl_bootid[UUID_SIZE];
1626 
1627 /*
1628  * This function is used to return both the bootid UUID, and random
1629  * UUID. The difference is in whether table->data is NULL; if it is,
1630  * then a new UUID is generated and returned to the user.
1631  */
1632 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1633 			size_t *lenp, loff_t *ppos)
1634 {
1635 	u8 tmp_uuid[UUID_SIZE], *uuid;
1636 	char uuid_string[UUID_STRING_LEN + 1];
1637 	struct ctl_table fake_table = {
1638 		.data = uuid_string,
1639 		.maxlen = UUID_STRING_LEN
1640 	};
1641 
1642 	if (write)
1643 		return -EPERM;
1644 
1645 	uuid = table->data;
1646 	if (!uuid) {
1647 		uuid = tmp_uuid;
1648 		generate_random_uuid(uuid);
1649 	} else {
1650 		static DEFINE_SPINLOCK(bootid_spinlock);
1651 
1652 		spin_lock(&bootid_spinlock);
1653 		if (!uuid[8])
1654 			generate_random_uuid(uuid);
1655 		spin_unlock(&bootid_spinlock);
1656 	}
1657 
1658 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1659 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1660 }
1661 
1662 /* The same as proc_dointvec, but writes don't change anything. */
1663 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1664 			    size_t *lenp, loff_t *ppos)
1665 {
1666 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1667 }
1668 
1669 static const struct ctl_table random_table[] = {
1670 	{
1671 		.procname	= "poolsize",
1672 		.data		= &sysctl_poolsize,
1673 		.maxlen		= sizeof(int),
1674 		.mode		= 0444,
1675 		.proc_handler	= proc_dointvec,
1676 	},
1677 	{
1678 		.procname	= "entropy_avail",
1679 		.data		= &input_pool.init_bits,
1680 		.maxlen		= sizeof(int),
1681 		.mode		= 0444,
1682 		.proc_handler	= proc_dointvec,
1683 	},
1684 	{
1685 		.procname	= "write_wakeup_threshold",
1686 		.data		= &sysctl_random_write_wakeup_bits,
1687 		.maxlen		= sizeof(int),
1688 		.mode		= 0644,
1689 		.proc_handler	= proc_do_rointvec,
1690 	},
1691 	{
1692 		.procname	= "urandom_min_reseed_secs",
1693 		.data		= &sysctl_random_min_urandom_seed,
1694 		.maxlen		= sizeof(int),
1695 		.mode		= 0644,
1696 		.proc_handler	= proc_do_rointvec,
1697 	},
1698 	{
1699 		.procname	= "boot_id",
1700 		.data		= &sysctl_bootid,
1701 		.mode		= 0444,
1702 		.proc_handler	= proc_do_uuid,
1703 	},
1704 	{
1705 		.procname	= "uuid",
1706 		.mode		= 0444,
1707 		.proc_handler	= proc_do_uuid,
1708 	},
1709 };
1710 
1711 /*
1712  * random_init() is called before sysctl_init(),
1713  * so we cannot call register_sysctl_init() in random_init()
1714  */
1715 static int __init random_sysctls_init(void)
1716 {
1717 	register_sysctl_init("kernel/random", random_table);
1718 	return 0;
1719 }
1720 device_initcall(random_sysctls_init);
1721 #endif
1722