1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <linux/sched/isolation.h> 57 #include <crypto/chacha.h> 58 #include <crypto/blake2s.h> 59 #ifdef CONFIG_VDSO_GETRANDOM 60 #include <vdso/getrandom.h> 61 #include <vdso/datapage.h> 62 #include <vdso/vsyscall.h> 63 #endif 64 #include <asm/archrandom.h> 65 #include <asm/processor.h> 66 #include <asm/irq.h> 67 #include <asm/irq_regs.h> 68 #include <asm/io.h> 69 70 /********************************************************************* 71 * 72 * Initialization and readiness waiting. 73 * 74 * Much of the RNG infrastructure is devoted to various dependencies 75 * being able to wait until the RNG has collected enough entropy and 76 * is ready for safe consumption. 77 * 78 *********************************************************************/ 79 80 /* 81 * crng_init is protected by base_crng->lock, and only increases 82 * its value (from empty->early->ready). 83 */ 84 static enum { 85 CRNG_EMPTY = 0, /* Little to no entropy collected */ 86 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 87 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 88 } crng_init __read_mostly = CRNG_EMPTY; 89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 91 /* Various types of waiters for crng_init->CRNG_READY transition. */ 92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 93 static struct fasync_struct *fasync; 94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 95 96 /* Control how we warn userspace. */ 97 static struct ratelimit_state urandom_warning = 98 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 99 static int ratelimit_disable __read_mostly = 100 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 103 104 /* 105 * Returns whether or not the input pool has been seeded and thus guaranteed 106 * to supply cryptographically secure random numbers. This applies to: the 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 108 * u16,u32,u64,long} family of functions. 109 * 110 * Returns: true if the input pool has been seeded. 111 * false if the input pool has not been seeded. 112 */ 113 bool rng_is_initialized(void) 114 { 115 return crng_ready(); 116 } 117 EXPORT_SYMBOL(rng_is_initialized); 118 119 static void __cold crng_set_ready(struct work_struct *work) 120 { 121 static_branch_enable(&crng_is_ready); 122 } 123 124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 125 static void try_to_generate_entropy(void); 126 127 /* 128 * Wait for the input pool to be seeded and thus guaranteed to supply 129 * cryptographically secure random numbers. This applies to: the /dev/urandom 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 131 * long} family of functions. Using any of these functions without first 132 * calling this function forfeits the guarantee of security. 133 * 134 * Returns: 0 if the input pool has been seeded. 135 * -ERESTARTSYS if the function was interrupted by a signal. 136 */ 137 int wait_for_random_bytes(void) 138 { 139 while (!crng_ready()) { 140 int ret; 141 142 try_to_generate_entropy(); 143 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 144 if (ret) 145 return ret > 0 ? 0 : ret; 146 } 147 return 0; 148 } 149 EXPORT_SYMBOL(wait_for_random_bytes); 150 151 /* 152 * Add a callback function that will be invoked when the crng is initialised, 153 * or immediately if it already has been. Only use this is you are absolutely 154 * sure it is required. Most users should instead be able to test 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 156 */ 157 int __cold execute_with_initialized_rng(struct notifier_block *nb) 158 { 159 unsigned long flags; 160 int ret = 0; 161 162 spin_lock_irqsave(&random_ready_notifier.lock, flags); 163 if (crng_ready()) 164 nb->notifier_call(nb, 0, NULL); 165 else 166 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 167 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 168 return ret; 169 } 170 171 #define warn_unseeded_randomness() \ 172 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 173 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 174 __func__, (void *)_RET_IP_, crng_init) 175 176 177 /********************************************************************* 178 * 179 * Fast key erasure RNG, the "crng". 180 * 181 * These functions expand entropy from the entropy extractor into 182 * long streams for external consumption using the "fast key erasure" 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 184 * 185 * There are a few exported interfaces for use by other drivers: 186 * 187 * void get_random_bytes(void *buf, size_t len) 188 * u8 get_random_u8() 189 * u16 get_random_u16() 190 * u32 get_random_u32() 191 * u32 get_random_u32_below(u32 ceil) 192 * u32 get_random_u32_above(u32 floor) 193 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 194 * u64 get_random_u64() 195 * unsigned long get_random_long() 196 * 197 * These interfaces will return the requested number of random bytes 198 * into the given buffer or as a return value. This is equivalent to 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 200 * functions may be higher performance for one-off random integers, 201 * because they do a bit of buffering and do not invoke reseeding 202 * until the buffer is emptied. 203 * 204 *********************************************************************/ 205 206 enum { 207 CRNG_RESEED_START_INTERVAL = HZ, 208 CRNG_RESEED_INTERVAL = 60 * HZ 209 }; 210 211 static struct { 212 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 213 unsigned long generation; 214 spinlock_t lock; 215 } base_crng = { 216 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 217 }; 218 219 struct crng { 220 u8 key[CHACHA_KEY_SIZE]; 221 unsigned long generation; 222 local_lock_t lock; 223 }; 224 225 static DEFINE_PER_CPU(struct crng, crngs) = { 226 .generation = ULONG_MAX, 227 .lock = INIT_LOCAL_LOCK(crngs.lock), 228 }; 229 230 /* 231 * Return the interval until the next reseeding, which is normally 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 233 * proportional to the uptime. 234 */ 235 static unsigned int crng_reseed_interval(void) 236 { 237 static bool early_boot = true; 238 239 if (unlikely(READ_ONCE(early_boot))) { 240 time64_t uptime = ktime_get_seconds(); 241 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 242 WRITE_ONCE(early_boot, false); 243 else 244 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 245 (unsigned int)uptime / 2 * HZ); 246 } 247 return CRNG_RESEED_INTERVAL; 248 } 249 250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 251 static void extract_entropy(void *buf, size_t len); 252 253 /* This extracts a new crng key from the input pool. */ 254 static void crng_reseed(struct work_struct *work) 255 { 256 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 257 unsigned long flags; 258 unsigned long next_gen; 259 u8 key[CHACHA_KEY_SIZE]; 260 261 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 262 if (likely(system_unbound_wq)) 263 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 264 265 extract_entropy(key, sizeof(key)); 266 267 /* 268 * We copy the new key into the base_crng, overwriting the old one, 269 * and update the generation counter. We avoid hitting ULONG_MAX, 270 * because the per-cpu crngs are initialized to ULONG_MAX, so this 271 * forces new CPUs that come online to always initialize. 272 */ 273 spin_lock_irqsave(&base_crng.lock, flags); 274 memcpy(base_crng.key, key, sizeof(base_crng.key)); 275 next_gen = base_crng.generation + 1; 276 if (next_gen == ULONG_MAX) 277 ++next_gen; 278 WRITE_ONCE(base_crng.generation, next_gen); 279 #ifdef CONFIG_VDSO_GETRANDOM 280 /* base_crng.generation's invalid value is ULONG_MAX, while 281 * vdso_k_rng_data->generation's invalid value is 0, so add one to the 282 * former to arrive at the latter. Use smp_store_release so that this 283 * is ordered with the write above to base_crng.generation. Pairs with 284 * the smp_rmb() before the syscall in the vDSO code. 285 * 286 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit 287 * operations are not supported on those architectures. This is safe 288 * because base_crng.generation is a 32-bit value. On big-endian 289 * architectures it will be stored in the upper 32 bits, but that's okay 290 * because the vDSO side only checks whether the value changed, without 291 * actually using or interpreting the value. 292 */ 293 smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1); 294 #endif 295 if (!static_branch_likely(&crng_is_ready)) 296 crng_init = CRNG_READY; 297 spin_unlock_irqrestore(&base_crng.lock, flags); 298 memzero_explicit(key, sizeof(key)); 299 } 300 301 /* 302 * This generates a ChaCha block using the provided key, and then 303 * immediately overwrites that key with half the block. It returns 304 * the resultant ChaCha state to the user, along with the second 305 * half of the block containing 32 bytes of random data that may 306 * be used; random_data_len may not be greater than 32. 307 * 308 * The returned ChaCha state contains within it a copy of the old 309 * key value, at index 4, so the state should always be zeroed out 310 * immediately after using in order to maintain forward secrecy. 311 * If the state cannot be erased in a timely manner, then it is 312 * safer to set the random_data parameter to &chacha_state->x[4] 313 * so that this function overwrites it before returning. 314 */ 315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 316 struct chacha_state *chacha_state, 317 u8 *random_data, size_t random_data_len) 318 { 319 u8 first_block[CHACHA_BLOCK_SIZE]; 320 321 BUG_ON(random_data_len > 32); 322 323 chacha_init_consts(chacha_state); 324 memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE); 325 memset(&chacha_state->x[12], 0, sizeof(u32) * 4); 326 chacha20_block(chacha_state, first_block); 327 328 memcpy(key, first_block, CHACHA_KEY_SIZE); 329 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 330 memzero_explicit(first_block, sizeof(first_block)); 331 } 332 333 /* 334 * This function returns a ChaCha state that you may use for generating 335 * random data. It also returns up to 32 bytes on its own of random data 336 * that may be used; random_data_len may not be greater than 32. 337 */ 338 static void crng_make_state(struct chacha_state *chacha_state, 339 u8 *random_data, size_t random_data_len) 340 { 341 unsigned long flags; 342 struct crng *crng; 343 344 BUG_ON(random_data_len > 32); 345 346 /* 347 * For the fast path, we check whether we're ready, unlocked first, and 348 * then re-check once locked later. In the case where we're really not 349 * ready, we do fast key erasure with the base_crng directly, extracting 350 * when crng_init is CRNG_EMPTY. 351 */ 352 if (!crng_ready()) { 353 bool ready; 354 355 spin_lock_irqsave(&base_crng.lock, flags); 356 ready = crng_ready(); 357 if (!ready) { 358 if (crng_init == CRNG_EMPTY) 359 extract_entropy(base_crng.key, sizeof(base_crng.key)); 360 crng_fast_key_erasure(base_crng.key, chacha_state, 361 random_data, random_data_len); 362 } 363 spin_unlock_irqrestore(&base_crng.lock, flags); 364 if (!ready) 365 return; 366 } 367 368 local_lock_irqsave(&crngs.lock, flags); 369 crng = raw_cpu_ptr(&crngs); 370 371 /* 372 * If our per-cpu crng is older than the base_crng, then it means 373 * somebody reseeded the base_crng. In that case, we do fast key 374 * erasure on the base_crng, and use its output as the new key 375 * for our per-cpu crng. This brings us up to date with base_crng. 376 */ 377 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 378 spin_lock(&base_crng.lock); 379 crng_fast_key_erasure(base_crng.key, chacha_state, 380 crng->key, sizeof(crng->key)); 381 crng->generation = base_crng.generation; 382 spin_unlock(&base_crng.lock); 383 } 384 385 /* 386 * Finally, when we've made it this far, our per-cpu crng has an up 387 * to date key, and we can do fast key erasure with it to produce 388 * some random data and a ChaCha state for the caller. All other 389 * branches of this function are "unlikely", so most of the time we 390 * should wind up here immediately. 391 */ 392 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 393 local_unlock_irqrestore(&crngs.lock, flags); 394 } 395 396 static void _get_random_bytes(void *buf, size_t len) 397 { 398 struct chacha_state chacha_state; 399 u8 tmp[CHACHA_BLOCK_SIZE]; 400 size_t first_block_len; 401 402 if (!len) 403 return; 404 405 first_block_len = min_t(size_t, 32, len); 406 crng_make_state(&chacha_state, buf, first_block_len); 407 len -= first_block_len; 408 buf += first_block_len; 409 410 while (len) { 411 if (len < CHACHA_BLOCK_SIZE) { 412 chacha20_block(&chacha_state, tmp); 413 memcpy(buf, tmp, len); 414 memzero_explicit(tmp, sizeof(tmp)); 415 break; 416 } 417 418 chacha20_block(&chacha_state, buf); 419 if (unlikely(chacha_state.x[12] == 0)) 420 ++chacha_state.x[13]; 421 len -= CHACHA_BLOCK_SIZE; 422 buf += CHACHA_BLOCK_SIZE; 423 } 424 425 chacha_zeroize_state(&chacha_state); 426 } 427 428 /* 429 * This returns random bytes in arbitrary quantities. The quality of the 430 * random bytes is good as /dev/urandom. In order to ensure that the 431 * randomness provided by this function is okay, the function 432 * wait_for_random_bytes() should be called and return 0 at least once 433 * at any point prior. 434 */ 435 void get_random_bytes(void *buf, size_t len) 436 { 437 warn_unseeded_randomness(); 438 _get_random_bytes(buf, len); 439 } 440 EXPORT_SYMBOL(get_random_bytes); 441 442 static ssize_t get_random_bytes_user(struct iov_iter *iter) 443 { 444 struct chacha_state chacha_state; 445 u8 block[CHACHA_BLOCK_SIZE]; 446 size_t ret = 0, copied; 447 448 if (unlikely(!iov_iter_count(iter))) 449 return 0; 450 451 /* 452 * Immediately overwrite the ChaCha key at index 4 with random 453 * bytes, in case userspace causes copy_to_iter() below to sleep 454 * forever, so that we still retain forward secrecy in that case. 455 */ 456 crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4], 457 CHACHA_KEY_SIZE); 458 /* 459 * However, if we're doing a read of len <= 32, we don't need to 460 * use chacha_state after, so we can simply return those bytes to 461 * the user directly. 462 */ 463 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 464 ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter); 465 goto out_zero_chacha; 466 } 467 468 for (;;) { 469 chacha20_block(&chacha_state, block); 470 if (unlikely(chacha_state.x[12] == 0)) 471 ++chacha_state.x[13]; 472 473 copied = copy_to_iter(block, sizeof(block), iter); 474 ret += copied; 475 if (!iov_iter_count(iter) || copied != sizeof(block)) 476 break; 477 478 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 479 if (ret % PAGE_SIZE == 0) { 480 if (signal_pending(current)) 481 break; 482 cond_resched(); 483 } 484 } 485 486 memzero_explicit(block, sizeof(block)); 487 out_zero_chacha: 488 chacha_zeroize_state(&chacha_state); 489 return ret ? ret : -EFAULT; 490 } 491 492 /* 493 * Batched entropy returns random integers. The quality of the random 494 * number is good as /dev/urandom. In order to ensure that the randomness 495 * provided by this function is okay, the function wait_for_random_bytes() 496 * should be called and return 0 at least once at any point prior. 497 */ 498 499 #define DEFINE_BATCHED_ENTROPY(type) \ 500 struct batch_ ##type { \ 501 /* \ 502 * We make this 1.5x a ChaCha block, so that we get the \ 503 * remaining 32 bytes from fast key erasure, plus one full \ 504 * block from the detached ChaCha state. We can increase \ 505 * the size of this later if needed so long as we keep the \ 506 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 507 */ \ 508 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 509 local_lock_t lock; \ 510 unsigned long generation; \ 511 unsigned int position; \ 512 }; \ 513 \ 514 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 515 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 516 .position = UINT_MAX \ 517 }; \ 518 \ 519 type get_random_ ##type(void) \ 520 { \ 521 type ret; \ 522 unsigned long flags; \ 523 struct batch_ ##type *batch; \ 524 unsigned long next_gen; \ 525 \ 526 warn_unseeded_randomness(); \ 527 \ 528 if (!crng_ready()) { \ 529 _get_random_bytes(&ret, sizeof(ret)); \ 530 return ret; \ 531 } \ 532 \ 533 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 534 batch = raw_cpu_ptr(&batched_entropy_##type); \ 535 \ 536 next_gen = READ_ONCE(base_crng.generation); \ 537 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 538 next_gen != batch->generation) { \ 539 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 540 batch->position = 0; \ 541 batch->generation = next_gen; \ 542 } \ 543 \ 544 ret = batch->entropy[batch->position]; \ 545 batch->entropy[batch->position] = 0; \ 546 ++batch->position; \ 547 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 548 return ret; \ 549 } \ 550 EXPORT_SYMBOL(get_random_ ##type); 551 552 DEFINE_BATCHED_ENTROPY(u8) 553 DEFINE_BATCHED_ENTROPY(u16) 554 DEFINE_BATCHED_ENTROPY(u32) 555 DEFINE_BATCHED_ENTROPY(u64) 556 557 u32 __get_random_u32_below(u32 ceil) 558 { 559 /* 560 * This is the slow path for variable ceil. It is still fast, most of 561 * the time, by doing traditional reciprocal multiplication and 562 * opportunistically comparing the lower half to ceil itself, before 563 * falling back to computing a larger bound, and then rejecting samples 564 * whose lower half would indicate a range indivisible by ceil. The use 565 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 566 * in 32-bits. 567 */ 568 u32 rand = get_random_u32(); 569 u64 mult; 570 571 /* 572 * This function is technically undefined for ceil == 0, and in fact 573 * for the non-underscored constant version in the header, we build bug 574 * on that. But for the non-constant case, it's convenient to have that 575 * evaluate to being a straight call to get_random_u32(), so that 576 * get_random_u32_inclusive() can work over its whole range without 577 * undefined behavior. 578 */ 579 if (unlikely(!ceil)) 580 return rand; 581 582 mult = (u64)ceil * rand; 583 if (unlikely((u32)mult < ceil)) { 584 u32 bound = -ceil % ceil; 585 while (unlikely((u32)mult < bound)) 586 mult = (u64)ceil * get_random_u32(); 587 } 588 return mult >> 32; 589 } 590 EXPORT_SYMBOL(__get_random_u32_below); 591 592 #ifdef CONFIG_SMP 593 /* 594 * This function is called when the CPU is coming up, with entry 595 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 596 */ 597 int __cold random_prepare_cpu(unsigned int cpu) 598 { 599 /* 600 * When the cpu comes back online, immediately invalidate both 601 * the per-cpu crng and all batches, so that we serve fresh 602 * randomness. 603 */ 604 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 605 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 606 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 607 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 608 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 609 return 0; 610 } 611 #endif 612 613 614 /********************************************************************** 615 * 616 * Entropy accumulation and extraction routines. 617 * 618 * Callers may add entropy via: 619 * 620 * static void mix_pool_bytes(const void *buf, size_t len) 621 * 622 * After which, if added entropy should be credited: 623 * 624 * static void credit_init_bits(size_t bits) 625 * 626 * Finally, extract entropy via: 627 * 628 * static void extract_entropy(void *buf, size_t len) 629 * 630 **********************************************************************/ 631 632 enum { 633 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 634 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 635 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 636 }; 637 638 static struct { 639 struct blake2s_state hash; 640 spinlock_t lock; 641 unsigned int init_bits; 642 } input_pool = { 643 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 644 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 645 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 646 .hash.outlen = BLAKE2S_HASH_SIZE, 647 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 648 }; 649 650 static void _mix_pool_bytes(const void *buf, size_t len) 651 { 652 blake2s_update(&input_pool.hash, buf, len); 653 } 654 655 /* 656 * This function adds bytes into the input pool. It does not 657 * update the initialization bit counter; the caller should call 658 * credit_init_bits if this is appropriate. 659 */ 660 static void mix_pool_bytes(const void *buf, size_t len) 661 { 662 unsigned long flags; 663 664 spin_lock_irqsave(&input_pool.lock, flags); 665 _mix_pool_bytes(buf, len); 666 spin_unlock_irqrestore(&input_pool.lock, flags); 667 } 668 669 /* 670 * This is an HKDF-like construction for using the hashed collected entropy 671 * as a PRF key, that's then expanded block-by-block. 672 */ 673 static void extract_entropy(void *buf, size_t len) 674 { 675 unsigned long flags; 676 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 677 struct { 678 unsigned long rdseed[32 / sizeof(long)]; 679 size_t counter; 680 } block; 681 size_t i, longs; 682 683 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 684 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 685 if (longs) { 686 i += longs; 687 continue; 688 } 689 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 690 if (longs) { 691 i += longs; 692 continue; 693 } 694 block.rdseed[i++] = random_get_entropy(); 695 } 696 697 spin_lock_irqsave(&input_pool.lock, flags); 698 699 /* seed = HASHPRF(last_key, entropy_input) */ 700 blake2s_final(&input_pool.hash, seed); 701 702 /* next_key = HASHPRF(seed, RDSEED || 0) */ 703 block.counter = 0; 704 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 705 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 706 707 spin_unlock_irqrestore(&input_pool.lock, flags); 708 memzero_explicit(next_key, sizeof(next_key)); 709 710 while (len) { 711 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 712 /* output = HASHPRF(seed, RDSEED || ++counter) */ 713 ++block.counter; 714 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 715 len -= i; 716 buf += i; 717 } 718 719 memzero_explicit(seed, sizeof(seed)); 720 memzero_explicit(&block, sizeof(block)); 721 } 722 723 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 724 725 static void __cold _credit_init_bits(size_t bits) 726 { 727 static DECLARE_WORK(set_ready, crng_set_ready); 728 unsigned int new, orig, add; 729 unsigned long flags; 730 731 if (!bits) 732 return; 733 734 add = min_t(size_t, bits, POOL_BITS); 735 736 orig = READ_ONCE(input_pool.init_bits); 737 do { 738 new = min_t(unsigned int, POOL_BITS, orig + add); 739 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 740 741 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 742 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 743 if (static_key_initialized && system_unbound_wq) 744 queue_work(system_unbound_wq, &set_ready); 745 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 746 #ifdef CONFIG_VDSO_GETRANDOM 747 WRITE_ONCE(vdso_k_rng_data->is_ready, true); 748 #endif 749 wake_up_interruptible(&crng_init_wait); 750 kill_fasync(&fasync, SIGIO, POLL_IN); 751 pr_notice("crng init done\n"); 752 if (urandom_warning.missed) 753 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 754 urandom_warning.missed); 755 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 756 spin_lock_irqsave(&base_crng.lock, flags); 757 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 758 if (crng_init == CRNG_EMPTY) { 759 extract_entropy(base_crng.key, sizeof(base_crng.key)); 760 crng_init = CRNG_EARLY; 761 } 762 spin_unlock_irqrestore(&base_crng.lock, flags); 763 } 764 } 765 766 767 /********************************************************************** 768 * 769 * Entropy collection routines. 770 * 771 * The following exported functions are used for pushing entropy into 772 * the above entropy accumulation routines: 773 * 774 * void add_device_randomness(const void *buf, size_t len); 775 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 776 * void add_bootloader_randomness(const void *buf, size_t len); 777 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 778 * void add_interrupt_randomness(int irq); 779 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 780 * void add_disk_randomness(struct gendisk *disk); 781 * 782 * add_device_randomness() adds data to the input pool that 783 * is likely to differ between two devices (or possibly even per boot). 784 * This would be things like MAC addresses or serial numbers, or the 785 * read-out of the RTC. This does *not* credit any actual entropy to 786 * the pool, but it initializes the pool to different values for devices 787 * that might otherwise be identical and have very little entropy 788 * available to them (particularly common in the embedded world). 789 * 790 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 791 * entropy as specified by the caller. If the entropy pool is full it will 792 * block until more entropy is needed. 793 * 794 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 795 * and device tree, and credits its input depending on whether or not the 796 * command line option 'random.trust_bootloader'. 797 * 798 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 799 * representing the current instance of a VM to the pool, without crediting, 800 * and then force-reseeds the crng so that it takes effect immediately. 801 * 802 * add_interrupt_randomness() uses the interrupt timing as random 803 * inputs to the entropy pool. Using the cycle counters and the irq source 804 * as inputs, it feeds the input pool roughly once a second or after 64 805 * interrupts, crediting 1 bit of entropy for whichever comes first. 806 * 807 * add_input_randomness() uses the input layer interrupt timing, as well 808 * as the event type information from the hardware. 809 * 810 * add_disk_randomness() uses what amounts to the seek time of block 811 * layer request events, on a per-disk_devt basis, as input to the 812 * entropy pool. Note that high-speed solid state drives with very low 813 * seek times do not make for good sources of entropy, as their seek 814 * times are usually fairly consistent. 815 * 816 * The last two routines try to estimate how many bits of entropy 817 * to credit. They do this by keeping track of the first and second 818 * order deltas of the event timings. 819 * 820 **********************************************************************/ 821 822 static bool trust_cpu __initdata = true; 823 static bool trust_bootloader __initdata = true; 824 static int __init parse_trust_cpu(char *arg) 825 { 826 return kstrtobool(arg, &trust_cpu); 827 } 828 static int __init parse_trust_bootloader(char *arg) 829 { 830 return kstrtobool(arg, &trust_bootloader); 831 } 832 early_param("random.trust_cpu", parse_trust_cpu); 833 early_param("random.trust_bootloader", parse_trust_bootloader); 834 835 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 836 { 837 unsigned long flags, entropy = random_get_entropy(); 838 839 /* 840 * Encode a representation of how long the system has been suspended, 841 * in a way that is distinct from prior system suspends. 842 */ 843 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 844 845 spin_lock_irqsave(&input_pool.lock, flags); 846 _mix_pool_bytes(&action, sizeof(action)); 847 _mix_pool_bytes(stamps, sizeof(stamps)); 848 _mix_pool_bytes(&entropy, sizeof(entropy)); 849 spin_unlock_irqrestore(&input_pool.lock, flags); 850 851 if (crng_ready() && (action == PM_RESTORE_PREPARE || 852 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 853 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 854 crng_reseed(NULL); 855 pr_notice("crng reseeded on system resumption\n"); 856 } 857 return 0; 858 } 859 860 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 861 862 /* 863 * This is called extremely early, before time keeping functionality is 864 * available, but arch randomness is. Interrupts are not yet enabled. 865 */ 866 void __init random_init_early(const char *command_line) 867 { 868 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 869 size_t i, longs, arch_bits; 870 871 #if defined(LATENT_ENTROPY_PLUGIN) 872 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 873 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 874 #endif 875 876 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 877 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 878 if (longs) { 879 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 880 i += longs; 881 continue; 882 } 883 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 884 if (longs) { 885 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 886 i += longs; 887 continue; 888 } 889 arch_bits -= sizeof(*entropy) * 8; 890 ++i; 891 } 892 893 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 894 _mix_pool_bytes(command_line, strlen(command_line)); 895 896 /* Reseed if already seeded by earlier phases. */ 897 if (crng_ready()) 898 crng_reseed(NULL); 899 else if (trust_cpu) 900 _credit_init_bits(arch_bits); 901 } 902 903 /* 904 * This is called a little bit after the prior function, and now there is 905 * access to timestamps counters. Interrupts are not yet enabled. 906 */ 907 void __init random_init(void) 908 { 909 unsigned long entropy = random_get_entropy(); 910 ktime_t now = ktime_get_real(); 911 912 _mix_pool_bytes(&now, sizeof(now)); 913 _mix_pool_bytes(&entropy, sizeof(entropy)); 914 add_latent_entropy(); 915 916 /* 917 * If we were initialized by the cpu or bootloader before jump labels 918 * or workqueues are initialized, then we should enable the static 919 * branch here, where it's guaranteed that these have been initialized. 920 */ 921 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 922 crng_set_ready(NULL); 923 924 /* Reseed if already seeded by earlier phases. */ 925 if (crng_ready()) 926 crng_reseed(NULL); 927 928 WARN_ON(register_pm_notifier(&pm_notifier)); 929 930 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 931 "entropy collection will consequently suffer."); 932 } 933 934 /* 935 * Add device- or boot-specific data to the input pool to help 936 * initialize it. 937 * 938 * None of this adds any entropy; it is meant to avoid the problem of 939 * the entropy pool having similar initial state across largely 940 * identical devices. 941 */ 942 void add_device_randomness(const void *buf, size_t len) 943 { 944 unsigned long entropy = random_get_entropy(); 945 unsigned long flags; 946 947 spin_lock_irqsave(&input_pool.lock, flags); 948 _mix_pool_bytes(&entropy, sizeof(entropy)); 949 _mix_pool_bytes(buf, len); 950 spin_unlock_irqrestore(&input_pool.lock, flags); 951 } 952 EXPORT_SYMBOL(add_device_randomness); 953 954 /* 955 * Interface for in-kernel drivers of true hardware RNGs. Those devices 956 * may produce endless random bits, so this function will sleep for 957 * some amount of time after, if the sleep_after parameter is true. 958 */ 959 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 960 { 961 mix_pool_bytes(buf, len); 962 credit_init_bits(entropy); 963 964 /* 965 * Throttle writing to once every reseed interval, unless we're not yet 966 * initialized or no entropy is credited. 967 */ 968 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 969 schedule_timeout_interruptible(crng_reseed_interval()); 970 } 971 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 972 973 /* 974 * Handle random seed passed by bootloader, and credit it depending 975 * on the command line option 'random.trust_bootloader'. 976 */ 977 void __init add_bootloader_randomness(const void *buf, size_t len) 978 { 979 mix_pool_bytes(buf, len); 980 if (trust_bootloader) 981 credit_init_bits(len * 8); 982 } 983 984 #if IS_ENABLED(CONFIG_VMGENID) 985 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 986 987 /* 988 * Handle a new unique VM ID, which is unique, not secret, so we 989 * don't credit it, but we do immediately force a reseed after so 990 * that it's used by the crng posthaste. 991 */ 992 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 993 { 994 add_device_randomness(unique_vm_id, len); 995 if (crng_ready()) { 996 crng_reseed(NULL); 997 pr_notice("crng reseeded due to virtual machine fork\n"); 998 } 999 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 1000 } 1001 #if IS_MODULE(CONFIG_VMGENID) 1002 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 1003 #endif 1004 1005 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 1006 { 1007 return blocking_notifier_chain_register(&vmfork_chain, nb); 1008 } 1009 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1010 1011 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 1012 { 1013 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1014 } 1015 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1016 #endif 1017 1018 struct fast_pool { 1019 unsigned long pool[4]; 1020 unsigned long last; 1021 unsigned int count; 1022 struct timer_list mix; 1023 }; 1024 1025 static void mix_interrupt_randomness(struct timer_list *work); 1026 1027 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1028 #ifdef CONFIG_64BIT 1029 #define FASTMIX_PERM SIPHASH_PERMUTATION 1030 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1031 #else 1032 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1033 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1034 #endif 1035 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1036 }; 1037 1038 /* 1039 * This is [Half]SipHash-1-x, starting from an empty key. Because 1040 * the key is fixed, it assumes that its inputs are non-malicious, 1041 * and therefore this has no security on its own. s represents the 1042 * four-word SipHash state, while v represents a two-word input. 1043 */ 1044 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1045 { 1046 s[3] ^= v1; 1047 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1048 s[0] ^= v1; 1049 s[3] ^= v2; 1050 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1051 s[0] ^= v2; 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 /* 1056 * This function is called when the CPU has just come online, with 1057 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1058 */ 1059 int __cold random_online_cpu(unsigned int cpu) 1060 { 1061 /* 1062 * During CPU shutdown and before CPU onlining, add_interrupt_ 1063 * randomness() may schedule mix_interrupt_randomness(), and 1064 * set the MIX_INFLIGHT flag. However, because the worker can 1065 * be scheduled on a different CPU during this period, that 1066 * flag will never be cleared. For that reason, we zero out 1067 * the flag here, which runs just after workqueues are onlined 1068 * for the CPU again. This also has the effect of setting the 1069 * irq randomness count to zero so that new accumulated irqs 1070 * are fresh. 1071 */ 1072 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1073 return 0; 1074 } 1075 #endif 1076 1077 static void mix_interrupt_randomness(struct timer_list *work) 1078 { 1079 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1080 /* 1081 * The size of the copied stack pool is explicitly 2 longs so that we 1082 * only ever ingest half of the siphash output each time, retaining 1083 * the other half as the next "key" that carries over. The entropy is 1084 * supposed to be sufficiently dispersed between bits so on average 1085 * we don't wind up "losing" some. 1086 */ 1087 unsigned long pool[2]; 1088 unsigned int count; 1089 1090 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1091 local_irq_disable(); 1092 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1093 local_irq_enable(); 1094 return; 1095 } 1096 1097 /* 1098 * Copy the pool to the stack so that the mixer always has a 1099 * consistent view, before we reenable irqs again. 1100 */ 1101 memcpy(pool, fast_pool->pool, sizeof(pool)); 1102 count = fast_pool->count; 1103 fast_pool->count = 0; 1104 fast_pool->last = jiffies; 1105 local_irq_enable(); 1106 1107 mix_pool_bytes(pool, sizeof(pool)); 1108 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1109 1110 memzero_explicit(pool, sizeof(pool)); 1111 } 1112 1113 void add_interrupt_randomness(int irq) 1114 { 1115 enum { MIX_INFLIGHT = 1U << 31 }; 1116 unsigned long entropy = random_get_entropy(); 1117 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1118 struct pt_regs *regs = get_irq_regs(); 1119 unsigned int new_count; 1120 1121 fast_mix(fast_pool->pool, entropy, 1122 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1123 new_count = ++fast_pool->count; 1124 1125 if (new_count & MIX_INFLIGHT) 1126 return; 1127 1128 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1129 return; 1130 1131 fast_pool->count |= MIX_INFLIGHT; 1132 if (!timer_pending(&fast_pool->mix)) { 1133 fast_pool->mix.expires = jiffies; 1134 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1135 } 1136 } 1137 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1138 1139 /* There is one of these per entropy source */ 1140 struct timer_rand_state { 1141 unsigned long last_time; 1142 long last_delta, last_delta2; 1143 }; 1144 1145 /* 1146 * This function adds entropy to the entropy "pool" by using timing 1147 * delays. It uses the timer_rand_state structure to make an estimate 1148 * of how many bits of entropy this call has added to the pool. The 1149 * value "num" is also added to the pool; it should somehow describe 1150 * the type of event that just happened. 1151 */ 1152 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1153 { 1154 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1155 long delta, delta2, delta3; 1156 unsigned int bits; 1157 1158 /* 1159 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1160 * sometime after, so mix into the fast pool. 1161 */ 1162 if (in_hardirq()) { 1163 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1164 } else { 1165 spin_lock_irqsave(&input_pool.lock, flags); 1166 _mix_pool_bytes(&entropy, sizeof(entropy)); 1167 _mix_pool_bytes(&num, sizeof(num)); 1168 spin_unlock_irqrestore(&input_pool.lock, flags); 1169 } 1170 1171 if (crng_ready()) 1172 return; 1173 1174 /* 1175 * Calculate number of bits of randomness we probably added. 1176 * We take into account the first, second and third-order deltas 1177 * in order to make our estimate. 1178 */ 1179 delta = now - READ_ONCE(state->last_time); 1180 WRITE_ONCE(state->last_time, now); 1181 1182 delta2 = delta - READ_ONCE(state->last_delta); 1183 WRITE_ONCE(state->last_delta, delta); 1184 1185 delta3 = delta2 - READ_ONCE(state->last_delta2); 1186 WRITE_ONCE(state->last_delta2, delta2); 1187 1188 if (delta < 0) 1189 delta = -delta; 1190 if (delta2 < 0) 1191 delta2 = -delta2; 1192 if (delta3 < 0) 1193 delta3 = -delta3; 1194 if (delta > delta2) 1195 delta = delta2; 1196 if (delta > delta3) 1197 delta = delta3; 1198 1199 /* 1200 * delta is now minimum absolute delta. Round down by 1 bit 1201 * on general principles, and limit entropy estimate to 11 bits. 1202 */ 1203 bits = min(fls(delta >> 1), 11); 1204 1205 /* 1206 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1207 * will run after this, which uses a different crediting scheme of 1 bit 1208 * per every 64 interrupts. In order to let that function do accounting 1209 * close to the one in this function, we credit a full 64/64 bit per bit, 1210 * and then subtract one to account for the extra one added. 1211 */ 1212 if (in_hardirq()) 1213 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1214 else 1215 _credit_init_bits(bits); 1216 } 1217 1218 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1219 { 1220 static unsigned char last_value; 1221 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1222 1223 /* Ignore autorepeat and the like. */ 1224 if (value == last_value) 1225 return; 1226 1227 last_value = value; 1228 add_timer_randomness(&input_timer_state, 1229 (type << 4) ^ code ^ (code >> 4) ^ value); 1230 } 1231 EXPORT_SYMBOL_GPL(add_input_randomness); 1232 1233 #ifdef CONFIG_BLOCK 1234 void add_disk_randomness(struct gendisk *disk) 1235 { 1236 if (!disk || !disk->random) 1237 return; 1238 /* First major is 1, so we get >= 0x200 here. */ 1239 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1240 } 1241 EXPORT_SYMBOL_GPL(add_disk_randomness); 1242 1243 void __cold rand_initialize_disk(struct gendisk *disk) 1244 { 1245 struct timer_rand_state *state; 1246 1247 /* 1248 * If kzalloc returns null, we just won't use that entropy 1249 * source. 1250 */ 1251 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1252 if (state) { 1253 state->last_time = INITIAL_JIFFIES; 1254 disk->random = state; 1255 } 1256 } 1257 #endif 1258 1259 struct entropy_timer_state { 1260 unsigned long entropy; 1261 struct timer_list timer; 1262 atomic_t samples; 1263 unsigned int samples_per_bit; 1264 }; 1265 1266 /* 1267 * Each time the timer fires, we expect that we got an unpredictable jump in 1268 * the cycle counter. Even if the timer is running on another CPU, the timer 1269 * activity will be touching the stack of the CPU that is generating entropy. 1270 * 1271 * Note that we don't re-arm the timer in the timer itself - we are happy to be 1272 * scheduled away, since that just makes the load more complex, but we do not 1273 * want the timer to keep ticking unless the entropy loop is running. 1274 * 1275 * So the re-arming always happens in the entropy loop itself. 1276 */ 1277 static void __cold entropy_timer(struct timer_list *timer) 1278 { 1279 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1280 unsigned long entropy = random_get_entropy(); 1281 1282 mix_pool_bytes(&entropy, sizeof(entropy)); 1283 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) 1284 credit_init_bits(1); 1285 } 1286 1287 /* 1288 * If we have an actual cycle counter, see if we can generate enough entropy 1289 * with timing noise. 1290 */ 1291 static void __cold try_to_generate_entropy(void) 1292 { 1293 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1294 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; 1295 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); 1296 unsigned int i, num_different = 0; 1297 unsigned long last = random_get_entropy(); 1298 int cpu = -1; 1299 1300 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1301 stack->entropy = random_get_entropy(); 1302 if (stack->entropy != last) 1303 ++num_different; 1304 last = stack->entropy; 1305 } 1306 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1307 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) 1308 return; 1309 1310 atomic_set(&stack->samples, 0); 1311 timer_setup_on_stack(&stack->timer, entropy_timer, 0); 1312 while (!crng_ready() && !signal_pending(current)) { 1313 /* 1314 * Check !timer_pending() and then ensure that any previous callback has finished 1315 * executing by checking try_to_del_timer_sync(), before queueing the next one. 1316 */ 1317 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) { 1318 struct cpumask timer_cpus; 1319 unsigned int num_cpus; 1320 1321 /* 1322 * Preemption must be disabled here, both to read the current CPU number 1323 * and to avoid scheduling a timer on a dead CPU. 1324 */ 1325 preempt_disable(); 1326 1327 /* Only schedule callbacks on timer CPUs that are online. */ 1328 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); 1329 num_cpus = cpumask_weight(&timer_cpus); 1330 /* In very bizarre case of misconfiguration, fallback to all online. */ 1331 if (unlikely(num_cpus == 0)) { 1332 timer_cpus = *cpu_online_mask; 1333 num_cpus = cpumask_weight(&timer_cpus); 1334 } 1335 1336 /* Basic CPU round-robin, which avoids the current CPU. */ 1337 do { 1338 cpu = cpumask_next(cpu, &timer_cpus); 1339 if (cpu >= nr_cpu_ids) 1340 cpu = cpumask_first(&timer_cpus); 1341 } while (cpu == smp_processor_id() && num_cpus > 1); 1342 1343 /* Expiring the timer at `jiffies` means it's the next tick. */ 1344 stack->timer.expires = jiffies; 1345 1346 add_timer_on(&stack->timer, cpu); 1347 1348 preempt_enable(); 1349 } 1350 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1351 schedule(); 1352 stack->entropy = random_get_entropy(); 1353 } 1354 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1355 1356 timer_delete_sync(&stack->timer); 1357 destroy_timer_on_stack(&stack->timer); 1358 } 1359 1360 1361 /********************************************************************** 1362 * 1363 * Userspace reader/writer interfaces. 1364 * 1365 * getrandom(2) is the primary modern interface into the RNG and should 1366 * be used in preference to anything else. 1367 * 1368 * Reading from /dev/random has the same functionality as calling 1369 * getrandom(2) with flags=0. In earlier versions, however, it had 1370 * vastly different semantics and should therefore be avoided, to 1371 * prevent backwards compatibility issues. 1372 * 1373 * Reading from /dev/urandom has the same functionality as calling 1374 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1375 * waiting for the RNG to be ready, it should not be used. 1376 * 1377 * Writing to either /dev/random or /dev/urandom adds entropy to 1378 * the input pool but does not credit it. 1379 * 1380 * Polling on /dev/random indicates when the RNG is initialized, on 1381 * the read side, and when it wants new entropy, on the write side. 1382 * 1383 * Both /dev/random and /dev/urandom have the same set of ioctls for 1384 * adding entropy, getting the entropy count, zeroing the count, and 1385 * reseeding the crng. 1386 * 1387 **********************************************************************/ 1388 1389 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1390 { 1391 struct iov_iter iter; 1392 int ret; 1393 1394 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1395 return -EINVAL; 1396 1397 /* 1398 * Requesting insecure and blocking randomness at the same time makes 1399 * no sense. 1400 */ 1401 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1402 return -EINVAL; 1403 1404 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1405 if (flags & GRND_NONBLOCK) 1406 return -EAGAIN; 1407 ret = wait_for_random_bytes(); 1408 if (unlikely(ret)) 1409 return ret; 1410 } 1411 1412 ret = import_ubuf(ITER_DEST, ubuf, len, &iter); 1413 if (unlikely(ret)) 1414 return ret; 1415 return get_random_bytes_user(&iter); 1416 } 1417 1418 static __poll_t random_poll(struct file *file, poll_table *wait) 1419 { 1420 poll_wait(file, &crng_init_wait, wait); 1421 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1422 } 1423 1424 static ssize_t write_pool_user(struct iov_iter *iter) 1425 { 1426 u8 block[BLAKE2S_BLOCK_SIZE]; 1427 ssize_t ret = 0; 1428 size_t copied; 1429 1430 if (unlikely(!iov_iter_count(iter))) 1431 return 0; 1432 1433 for (;;) { 1434 copied = copy_from_iter(block, sizeof(block), iter); 1435 ret += copied; 1436 mix_pool_bytes(block, copied); 1437 if (!iov_iter_count(iter) || copied != sizeof(block)) 1438 break; 1439 1440 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1441 if (ret % PAGE_SIZE == 0) { 1442 if (signal_pending(current)) 1443 break; 1444 cond_resched(); 1445 } 1446 } 1447 1448 memzero_explicit(block, sizeof(block)); 1449 return ret ? ret : -EFAULT; 1450 } 1451 1452 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1453 { 1454 return write_pool_user(iter); 1455 } 1456 1457 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1458 { 1459 static int maxwarn = 10; 1460 1461 /* 1462 * Opportunistically attempt to initialize the RNG on platforms that 1463 * have fast cycle counters, but don't (for now) require it to succeed. 1464 */ 1465 if (!crng_ready()) 1466 try_to_generate_entropy(); 1467 1468 if (!crng_ready()) { 1469 if (!ratelimit_disable && maxwarn <= 0) 1470 ++urandom_warning.missed; 1471 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1472 --maxwarn; 1473 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1474 current->comm, iov_iter_count(iter)); 1475 } 1476 } 1477 1478 return get_random_bytes_user(iter); 1479 } 1480 1481 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1482 { 1483 int ret; 1484 1485 if (!crng_ready() && 1486 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1487 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1488 return -EAGAIN; 1489 1490 ret = wait_for_random_bytes(); 1491 if (ret != 0) 1492 return ret; 1493 return get_random_bytes_user(iter); 1494 } 1495 1496 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1497 { 1498 int __user *p = (int __user *)arg; 1499 int ent_count; 1500 1501 switch (cmd) { 1502 case RNDGETENTCNT: 1503 /* Inherently racy, no point locking. */ 1504 if (put_user(input_pool.init_bits, p)) 1505 return -EFAULT; 1506 return 0; 1507 case RNDADDTOENTCNT: 1508 if (!capable(CAP_SYS_ADMIN)) 1509 return -EPERM; 1510 if (get_user(ent_count, p)) 1511 return -EFAULT; 1512 if (ent_count < 0) 1513 return -EINVAL; 1514 credit_init_bits(ent_count); 1515 return 0; 1516 case RNDADDENTROPY: { 1517 struct iov_iter iter; 1518 ssize_t ret; 1519 int len; 1520 1521 if (!capable(CAP_SYS_ADMIN)) 1522 return -EPERM; 1523 if (get_user(ent_count, p++)) 1524 return -EFAULT; 1525 if (ent_count < 0) 1526 return -EINVAL; 1527 if (get_user(len, p++)) 1528 return -EFAULT; 1529 ret = import_ubuf(ITER_SOURCE, p, len, &iter); 1530 if (unlikely(ret)) 1531 return ret; 1532 ret = write_pool_user(&iter); 1533 if (unlikely(ret < 0)) 1534 return ret; 1535 /* Since we're crediting, enforce that it was all written into the pool. */ 1536 if (unlikely(ret != len)) 1537 return -EFAULT; 1538 credit_init_bits(ent_count); 1539 return 0; 1540 } 1541 case RNDZAPENTCNT: 1542 case RNDCLEARPOOL: 1543 /* No longer has any effect. */ 1544 if (!capable(CAP_SYS_ADMIN)) 1545 return -EPERM; 1546 return 0; 1547 case RNDRESEEDCRNG: 1548 if (!capable(CAP_SYS_ADMIN)) 1549 return -EPERM; 1550 if (!crng_ready()) 1551 return -ENODATA; 1552 crng_reseed(NULL); 1553 return 0; 1554 default: 1555 return -EINVAL; 1556 } 1557 } 1558 1559 static int random_fasync(int fd, struct file *filp, int on) 1560 { 1561 return fasync_helper(fd, filp, on, &fasync); 1562 } 1563 1564 const struct file_operations random_fops = { 1565 .read_iter = random_read_iter, 1566 .write_iter = random_write_iter, 1567 .poll = random_poll, 1568 .unlocked_ioctl = random_ioctl, 1569 .compat_ioctl = compat_ptr_ioctl, 1570 .fasync = random_fasync, 1571 .llseek = noop_llseek, 1572 .splice_read = copy_splice_read, 1573 .splice_write = iter_file_splice_write, 1574 }; 1575 1576 const struct file_operations urandom_fops = { 1577 .read_iter = urandom_read_iter, 1578 .write_iter = random_write_iter, 1579 .unlocked_ioctl = random_ioctl, 1580 .compat_ioctl = compat_ptr_ioctl, 1581 .fasync = random_fasync, 1582 .llseek = noop_llseek, 1583 .splice_read = copy_splice_read, 1584 .splice_write = iter_file_splice_write, 1585 }; 1586 1587 1588 /******************************************************************** 1589 * 1590 * Sysctl interface. 1591 * 1592 * These are partly unused legacy knobs with dummy values to not break 1593 * userspace and partly still useful things. They are usually accessible 1594 * in /proc/sys/kernel/random/ and are as follows: 1595 * 1596 * - boot_id - a UUID representing the current boot. 1597 * 1598 * - uuid - a random UUID, different each time the file is read. 1599 * 1600 * - poolsize - the number of bits of entropy that the input pool can 1601 * hold, tied to the POOL_BITS constant. 1602 * 1603 * - entropy_avail - the number of bits of entropy currently in the 1604 * input pool. Always <= poolsize. 1605 * 1606 * - write_wakeup_threshold - the amount of entropy in the input pool 1607 * below which write polls to /dev/random will unblock, requesting 1608 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1609 * to avoid breaking old userspaces, but writing to it does not 1610 * change any behavior of the RNG. 1611 * 1612 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1613 * It is writable to avoid breaking old userspaces, but writing 1614 * to it does not change any behavior of the RNG. 1615 * 1616 ********************************************************************/ 1617 1618 #ifdef CONFIG_SYSCTL 1619 1620 #include <linux/sysctl.h> 1621 1622 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1623 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1624 static int sysctl_poolsize = POOL_BITS; 1625 static u8 sysctl_bootid[UUID_SIZE]; 1626 1627 /* 1628 * This function is used to return both the bootid UUID, and random 1629 * UUID. The difference is in whether table->data is NULL; if it is, 1630 * then a new UUID is generated and returned to the user. 1631 */ 1632 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, 1633 size_t *lenp, loff_t *ppos) 1634 { 1635 u8 tmp_uuid[UUID_SIZE], *uuid; 1636 char uuid_string[UUID_STRING_LEN + 1]; 1637 struct ctl_table fake_table = { 1638 .data = uuid_string, 1639 .maxlen = UUID_STRING_LEN 1640 }; 1641 1642 if (write) 1643 return -EPERM; 1644 1645 uuid = table->data; 1646 if (!uuid) { 1647 uuid = tmp_uuid; 1648 generate_random_uuid(uuid); 1649 } else { 1650 static DEFINE_SPINLOCK(bootid_spinlock); 1651 1652 spin_lock(&bootid_spinlock); 1653 if (!uuid[8]) 1654 generate_random_uuid(uuid); 1655 spin_unlock(&bootid_spinlock); 1656 } 1657 1658 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1659 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1660 } 1661 1662 /* The same as proc_dointvec, but writes don't change anything. */ 1663 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, 1664 size_t *lenp, loff_t *ppos) 1665 { 1666 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1667 } 1668 1669 static const struct ctl_table random_table[] = { 1670 { 1671 .procname = "poolsize", 1672 .data = &sysctl_poolsize, 1673 .maxlen = sizeof(int), 1674 .mode = 0444, 1675 .proc_handler = proc_dointvec, 1676 }, 1677 { 1678 .procname = "entropy_avail", 1679 .data = &input_pool.init_bits, 1680 .maxlen = sizeof(int), 1681 .mode = 0444, 1682 .proc_handler = proc_dointvec, 1683 }, 1684 { 1685 .procname = "write_wakeup_threshold", 1686 .data = &sysctl_random_write_wakeup_bits, 1687 .maxlen = sizeof(int), 1688 .mode = 0644, 1689 .proc_handler = proc_do_rointvec, 1690 }, 1691 { 1692 .procname = "urandom_min_reseed_secs", 1693 .data = &sysctl_random_min_urandom_seed, 1694 .maxlen = sizeof(int), 1695 .mode = 0644, 1696 .proc_handler = proc_do_rointvec, 1697 }, 1698 { 1699 .procname = "boot_id", 1700 .data = &sysctl_bootid, 1701 .mode = 0444, 1702 .proc_handler = proc_do_uuid, 1703 }, 1704 { 1705 .procname = "uuid", 1706 .mode = 0444, 1707 .proc_handler = proc_do_uuid, 1708 }, 1709 }; 1710 1711 /* 1712 * random_init() is called before sysctl_init(), 1713 * so we cannot call register_sysctl_init() in random_init() 1714 */ 1715 static int __init random_sysctls_init(void) 1716 { 1717 register_sysctl_init("kernel/random", random_table); 1718 return 0; 1719 } 1720 device_initcall(random_sysctls_init); 1721 #endif 1722