xref: /linux/drivers/char/random.c (revision 6d5edd15c982b4e3768919776422ba8f01388be3)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #include <asm/processor.h>
60 #include <asm/irq.h>
61 #include <asm/irq_regs.h>
62 #include <asm/io.h>
63 
64 /*********************************************************************
65  *
66  * Initialization and readiness waiting.
67  *
68  * Much of the RNG infrastructure is devoted to various dependencies
69  * being able to wait until the RNG has collected enough entropy and
70  * is ready for safe consumption.
71  *
72  *********************************************************************/
73 
74 /*
75  * crng_init is protected by base_crng->lock, and only increases
76  * its value (from empty->early->ready).
77  */
78 static enum {
79 	CRNG_EMPTY = 0, /* Little to no entropy collected */
80 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
81 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
82 } crng_init __read_mostly = CRNG_EMPTY;
83 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
84 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
85 /* Various types of waiters for crng_init->CRNG_READY transition. */
86 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
87 static struct fasync_struct *fasync;
88 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
89 
90 /* Control how we warn userspace. */
91 static struct ratelimit_state urandom_warning =
92 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
93 static int ratelimit_disable __read_mostly =
94 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
95 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
96 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
97 
98 /*
99  * Returns whether or not the input pool has been seeded and thus guaranteed
100  * to supply cryptographically secure random numbers. This applies to: the
101  * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
102  * u16,u32,u64,long} family of functions.
103  *
104  * Returns: true if the input pool has been seeded.
105  *          false if the input pool has not been seeded.
106  */
107 bool rng_is_initialized(void)
108 {
109 	return crng_ready();
110 }
111 EXPORT_SYMBOL(rng_is_initialized);
112 
113 static void __cold crng_set_ready(struct work_struct *work)
114 {
115 	static_branch_enable(&crng_is_ready);
116 }
117 
118 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
119 static void try_to_generate_entropy(void);
120 
121 /*
122  * Wait for the input pool to be seeded and thus guaranteed to supply
123  * cryptographically secure random numbers. This applies to: the /dev/urandom
124  * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
125  * long} family of functions. Using any of these functions without first
126  * calling this function forfeits the guarantee of security.
127  *
128  * Returns: 0 if the input pool has been seeded.
129  *          -ERESTARTSYS if the function was interrupted by a signal.
130  */
131 int wait_for_random_bytes(void)
132 {
133 	while (!crng_ready()) {
134 		int ret;
135 
136 		try_to_generate_entropy();
137 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
138 		if (ret)
139 			return ret > 0 ? 0 : ret;
140 	}
141 	return 0;
142 }
143 EXPORT_SYMBOL(wait_for_random_bytes);
144 
145 /*
146  * Add a callback function that will be invoked when the crng is initialised,
147  * or immediately if it already has been. Only use this is you are absolutely
148  * sure it is required. Most users should instead be able to test
149  * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
150  */
151 int __cold execute_with_initialized_rng(struct notifier_block *nb)
152 {
153 	unsigned long flags;
154 	int ret = 0;
155 
156 	spin_lock_irqsave(&random_ready_notifier.lock, flags);
157 	if (crng_ready())
158 		nb->notifier_call(nb, 0, NULL);
159 	else
160 		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
161 	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
162 	return ret;
163 }
164 
165 #define warn_unseeded_randomness() \
166 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
167 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
168 				__func__, (void *)_RET_IP_, crng_init)
169 
170 
171 /*********************************************************************
172  *
173  * Fast key erasure RNG, the "crng".
174  *
175  * These functions expand entropy from the entropy extractor into
176  * long streams for external consumption using the "fast key erasure"
177  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
178  *
179  * There are a few exported interfaces for use by other drivers:
180  *
181  *	void get_random_bytes(void *buf, size_t len)
182  *	u8 get_random_u8()
183  *	u16 get_random_u16()
184  *	u32 get_random_u32()
185  *	u32 get_random_u32_below(u32 ceil)
186  *	u32 get_random_u32_above(u32 floor)
187  *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
188  *	u64 get_random_u64()
189  *	unsigned long get_random_long()
190  *
191  * These interfaces will return the requested number of random bytes
192  * into the given buffer or as a return value. This is equivalent to
193  * a read from /dev/urandom. The u8, u16, u32, u64, long family of
194  * functions may be higher performance for one-off random integers,
195  * because they do a bit of buffering and do not invoke reseeding
196  * until the buffer is emptied.
197  *
198  *********************************************************************/
199 
200 enum {
201 	CRNG_RESEED_START_INTERVAL = HZ,
202 	CRNG_RESEED_INTERVAL = 60 * HZ
203 };
204 
205 static struct {
206 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
207 	unsigned long generation;
208 	spinlock_t lock;
209 } base_crng = {
210 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
211 };
212 
213 struct crng {
214 	u8 key[CHACHA_KEY_SIZE];
215 	unsigned long generation;
216 	local_lock_t lock;
217 };
218 
219 static DEFINE_PER_CPU(struct crng, crngs) = {
220 	.generation = ULONG_MAX,
221 	.lock = INIT_LOCAL_LOCK(crngs.lock),
222 };
223 
224 /*
225  * Return the interval until the next reseeding, which is normally
226  * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
227  * proportional to the uptime.
228  */
229 static unsigned int crng_reseed_interval(void)
230 {
231 	static bool early_boot = true;
232 
233 	if (unlikely(READ_ONCE(early_boot))) {
234 		time64_t uptime = ktime_get_seconds();
235 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
236 			WRITE_ONCE(early_boot, false);
237 		else
238 			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
239 				     (unsigned int)uptime / 2 * HZ);
240 	}
241 	return CRNG_RESEED_INTERVAL;
242 }
243 
244 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
245 static void extract_entropy(void *buf, size_t len);
246 
247 /* This extracts a new crng key from the input pool. */
248 static void crng_reseed(struct work_struct *work)
249 {
250 	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
251 	unsigned long flags;
252 	unsigned long next_gen;
253 	u8 key[CHACHA_KEY_SIZE];
254 
255 	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
256 	if (likely(system_unbound_wq))
257 		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
258 
259 	extract_entropy(key, sizeof(key));
260 
261 	/*
262 	 * We copy the new key into the base_crng, overwriting the old one,
263 	 * and update the generation counter. We avoid hitting ULONG_MAX,
264 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
265 	 * forces new CPUs that come online to always initialize.
266 	 */
267 	spin_lock_irqsave(&base_crng.lock, flags);
268 	memcpy(base_crng.key, key, sizeof(base_crng.key));
269 	next_gen = base_crng.generation + 1;
270 	if (next_gen == ULONG_MAX)
271 		++next_gen;
272 	WRITE_ONCE(base_crng.generation, next_gen);
273 	if (!static_branch_likely(&crng_is_ready))
274 		crng_init = CRNG_READY;
275 	spin_unlock_irqrestore(&base_crng.lock, flags);
276 	memzero_explicit(key, sizeof(key));
277 }
278 
279 /*
280  * This generates a ChaCha block using the provided key, and then
281  * immediately overwrites that key with half the block. It returns
282  * the resultant ChaCha state to the user, along with the second
283  * half of the block containing 32 bytes of random data that may
284  * be used; random_data_len may not be greater than 32.
285  *
286  * The returned ChaCha state contains within it a copy of the old
287  * key value, at index 4, so the state should always be zeroed out
288  * immediately after using in order to maintain forward secrecy.
289  * If the state cannot be erased in a timely manner, then it is
290  * safer to set the random_data parameter to &chacha_state[4] so
291  * that this function overwrites it before returning.
292  */
293 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
294 				  u32 chacha_state[CHACHA_STATE_WORDS],
295 				  u8 *random_data, size_t random_data_len)
296 {
297 	u8 first_block[CHACHA_BLOCK_SIZE];
298 
299 	BUG_ON(random_data_len > 32);
300 
301 	chacha_init_consts(chacha_state);
302 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
303 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
304 	chacha20_block(chacha_state, first_block);
305 
306 	memcpy(key, first_block, CHACHA_KEY_SIZE);
307 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
308 	memzero_explicit(first_block, sizeof(first_block));
309 }
310 
311 /*
312  * This function returns a ChaCha state that you may use for generating
313  * random data. It also returns up to 32 bytes on its own of random data
314  * that may be used; random_data_len may not be greater than 32.
315  */
316 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
317 			    u8 *random_data, size_t random_data_len)
318 {
319 	unsigned long flags;
320 	struct crng *crng;
321 
322 	BUG_ON(random_data_len > 32);
323 
324 	/*
325 	 * For the fast path, we check whether we're ready, unlocked first, and
326 	 * then re-check once locked later. In the case where we're really not
327 	 * ready, we do fast key erasure with the base_crng directly, extracting
328 	 * when crng_init is CRNG_EMPTY.
329 	 */
330 	if (!crng_ready()) {
331 		bool ready;
332 
333 		spin_lock_irqsave(&base_crng.lock, flags);
334 		ready = crng_ready();
335 		if (!ready) {
336 			if (crng_init == CRNG_EMPTY)
337 				extract_entropy(base_crng.key, sizeof(base_crng.key));
338 			crng_fast_key_erasure(base_crng.key, chacha_state,
339 					      random_data, random_data_len);
340 		}
341 		spin_unlock_irqrestore(&base_crng.lock, flags);
342 		if (!ready)
343 			return;
344 	}
345 
346 	local_lock_irqsave(&crngs.lock, flags);
347 	crng = raw_cpu_ptr(&crngs);
348 
349 	/*
350 	 * If our per-cpu crng is older than the base_crng, then it means
351 	 * somebody reseeded the base_crng. In that case, we do fast key
352 	 * erasure on the base_crng, and use its output as the new key
353 	 * for our per-cpu crng. This brings us up to date with base_crng.
354 	 */
355 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
356 		spin_lock(&base_crng.lock);
357 		crng_fast_key_erasure(base_crng.key, chacha_state,
358 				      crng->key, sizeof(crng->key));
359 		crng->generation = base_crng.generation;
360 		spin_unlock(&base_crng.lock);
361 	}
362 
363 	/*
364 	 * Finally, when we've made it this far, our per-cpu crng has an up
365 	 * to date key, and we can do fast key erasure with it to produce
366 	 * some random data and a ChaCha state for the caller. All other
367 	 * branches of this function are "unlikely", so most of the time we
368 	 * should wind up here immediately.
369 	 */
370 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
371 	local_unlock_irqrestore(&crngs.lock, flags);
372 }
373 
374 static void _get_random_bytes(void *buf, size_t len)
375 {
376 	u32 chacha_state[CHACHA_STATE_WORDS];
377 	u8 tmp[CHACHA_BLOCK_SIZE];
378 	size_t first_block_len;
379 
380 	if (!len)
381 		return;
382 
383 	first_block_len = min_t(size_t, 32, len);
384 	crng_make_state(chacha_state, buf, first_block_len);
385 	len -= first_block_len;
386 	buf += first_block_len;
387 
388 	while (len) {
389 		if (len < CHACHA_BLOCK_SIZE) {
390 			chacha20_block(chacha_state, tmp);
391 			memcpy(buf, tmp, len);
392 			memzero_explicit(tmp, sizeof(tmp));
393 			break;
394 		}
395 
396 		chacha20_block(chacha_state, buf);
397 		if (unlikely(chacha_state[12] == 0))
398 			++chacha_state[13];
399 		len -= CHACHA_BLOCK_SIZE;
400 		buf += CHACHA_BLOCK_SIZE;
401 	}
402 
403 	memzero_explicit(chacha_state, sizeof(chacha_state));
404 }
405 
406 /*
407  * This returns random bytes in arbitrary quantities. The quality of the
408  * random bytes is good as /dev/urandom. In order to ensure that the
409  * randomness provided by this function is okay, the function
410  * wait_for_random_bytes() should be called and return 0 at least once
411  * at any point prior.
412  */
413 void get_random_bytes(void *buf, size_t len)
414 {
415 	warn_unseeded_randomness();
416 	_get_random_bytes(buf, len);
417 }
418 EXPORT_SYMBOL(get_random_bytes);
419 
420 static ssize_t get_random_bytes_user(struct iov_iter *iter)
421 {
422 	u32 chacha_state[CHACHA_STATE_WORDS];
423 	u8 block[CHACHA_BLOCK_SIZE];
424 	size_t ret = 0, copied;
425 
426 	if (unlikely(!iov_iter_count(iter)))
427 		return 0;
428 
429 	/*
430 	 * Immediately overwrite the ChaCha key at index 4 with random
431 	 * bytes, in case userspace causes copy_to_iter() below to sleep
432 	 * forever, so that we still retain forward secrecy in that case.
433 	 */
434 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
435 	/*
436 	 * However, if we're doing a read of len <= 32, we don't need to
437 	 * use chacha_state after, so we can simply return those bytes to
438 	 * the user directly.
439 	 */
440 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
441 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
442 		goto out_zero_chacha;
443 	}
444 
445 	for (;;) {
446 		chacha20_block(chacha_state, block);
447 		if (unlikely(chacha_state[12] == 0))
448 			++chacha_state[13];
449 
450 		copied = copy_to_iter(block, sizeof(block), iter);
451 		ret += copied;
452 		if (!iov_iter_count(iter) || copied != sizeof(block))
453 			break;
454 
455 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
456 		if (ret % PAGE_SIZE == 0) {
457 			if (signal_pending(current))
458 				break;
459 			cond_resched();
460 		}
461 	}
462 
463 	memzero_explicit(block, sizeof(block));
464 out_zero_chacha:
465 	memzero_explicit(chacha_state, sizeof(chacha_state));
466 	return ret ? ret : -EFAULT;
467 }
468 
469 /*
470  * Batched entropy returns random integers. The quality of the random
471  * number is good as /dev/urandom. In order to ensure that the randomness
472  * provided by this function is okay, the function wait_for_random_bytes()
473  * should be called and return 0 at least once at any point prior.
474  */
475 
476 #define DEFINE_BATCHED_ENTROPY(type)						\
477 struct batch_ ##type {								\
478 	/*									\
479 	 * We make this 1.5x a ChaCha block, so that we get the			\
480 	 * remaining 32 bytes from fast key erasure, plus one full		\
481 	 * block from the detached ChaCha state. We can increase		\
482 	 * the size of this later if needed so long as we keep the		\
483 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
484 	 */									\
485 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
486 	local_lock_t lock;							\
487 	unsigned long generation;						\
488 	unsigned int position;							\
489 };										\
490 										\
491 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
492 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
493 	.position = UINT_MAX							\
494 };										\
495 										\
496 type get_random_ ##type(void)							\
497 {										\
498 	type ret;								\
499 	unsigned long flags;							\
500 	struct batch_ ##type *batch;						\
501 	unsigned long next_gen;							\
502 										\
503 	warn_unseeded_randomness();						\
504 										\
505 	if  (!crng_ready()) {							\
506 		_get_random_bytes(&ret, sizeof(ret));				\
507 		return ret;							\
508 	}									\
509 										\
510 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
511 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
512 										\
513 	next_gen = READ_ONCE(base_crng.generation);				\
514 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
515 	    next_gen != batch->generation) {					\
516 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
517 		batch->position = 0;						\
518 		batch->generation = next_gen;					\
519 	}									\
520 										\
521 	ret = batch->entropy[batch->position];					\
522 	batch->entropy[batch->position] = 0;					\
523 	++batch->position;							\
524 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
525 	return ret;								\
526 }										\
527 EXPORT_SYMBOL(get_random_ ##type);
528 
529 DEFINE_BATCHED_ENTROPY(u8)
530 DEFINE_BATCHED_ENTROPY(u16)
531 DEFINE_BATCHED_ENTROPY(u32)
532 DEFINE_BATCHED_ENTROPY(u64)
533 
534 u32 __get_random_u32_below(u32 ceil)
535 {
536 	/*
537 	 * This is the slow path for variable ceil. It is still fast, most of
538 	 * the time, by doing traditional reciprocal multiplication and
539 	 * opportunistically comparing the lower half to ceil itself, before
540 	 * falling back to computing a larger bound, and then rejecting samples
541 	 * whose lower half would indicate a range indivisible by ceil. The use
542 	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
543 	 * in 32-bits.
544 	 */
545 	u32 rand = get_random_u32();
546 	u64 mult;
547 
548 	/*
549 	 * This function is technically undefined for ceil == 0, and in fact
550 	 * for the non-underscored constant version in the header, we build bug
551 	 * on that. But for the non-constant case, it's convenient to have that
552 	 * evaluate to being a straight call to get_random_u32(), so that
553 	 * get_random_u32_inclusive() can work over its whole range without
554 	 * undefined behavior.
555 	 */
556 	if (unlikely(!ceil))
557 		return rand;
558 
559 	mult = (u64)ceil * rand;
560 	if (unlikely((u32)mult < ceil)) {
561 		u32 bound = -ceil % ceil;
562 		while (unlikely((u32)mult < bound))
563 			mult = (u64)ceil * get_random_u32();
564 	}
565 	return mult >> 32;
566 }
567 EXPORT_SYMBOL(__get_random_u32_below);
568 
569 #ifdef CONFIG_SMP
570 /*
571  * This function is called when the CPU is coming up, with entry
572  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
573  */
574 int __cold random_prepare_cpu(unsigned int cpu)
575 {
576 	/*
577 	 * When the cpu comes back online, immediately invalidate both
578 	 * the per-cpu crng and all batches, so that we serve fresh
579 	 * randomness.
580 	 */
581 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
582 	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
583 	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
584 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
585 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
586 	return 0;
587 }
588 #endif
589 
590 
591 /**********************************************************************
592  *
593  * Entropy accumulation and extraction routines.
594  *
595  * Callers may add entropy via:
596  *
597  *     static void mix_pool_bytes(const void *buf, size_t len)
598  *
599  * After which, if added entropy should be credited:
600  *
601  *     static void credit_init_bits(size_t bits)
602  *
603  * Finally, extract entropy via:
604  *
605  *     static void extract_entropy(void *buf, size_t len)
606  *
607  **********************************************************************/
608 
609 enum {
610 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
611 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
612 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
613 };
614 
615 static struct {
616 	struct blake2s_state hash;
617 	spinlock_t lock;
618 	unsigned int init_bits;
619 } input_pool = {
620 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
621 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
622 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
623 	.hash.outlen = BLAKE2S_HASH_SIZE,
624 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
625 };
626 
627 static void _mix_pool_bytes(const void *buf, size_t len)
628 {
629 	blake2s_update(&input_pool.hash, buf, len);
630 }
631 
632 /*
633  * This function adds bytes into the input pool. It does not
634  * update the initialization bit counter; the caller should call
635  * credit_init_bits if this is appropriate.
636  */
637 static void mix_pool_bytes(const void *buf, size_t len)
638 {
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&input_pool.lock, flags);
642 	_mix_pool_bytes(buf, len);
643 	spin_unlock_irqrestore(&input_pool.lock, flags);
644 }
645 
646 /*
647  * This is an HKDF-like construction for using the hashed collected entropy
648  * as a PRF key, that's then expanded block-by-block.
649  */
650 static void extract_entropy(void *buf, size_t len)
651 {
652 	unsigned long flags;
653 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
654 	struct {
655 		unsigned long rdseed[32 / sizeof(long)];
656 		size_t counter;
657 	} block;
658 	size_t i, longs;
659 
660 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
661 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
662 		if (longs) {
663 			i += longs;
664 			continue;
665 		}
666 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
667 		if (longs) {
668 			i += longs;
669 			continue;
670 		}
671 		block.rdseed[i++] = random_get_entropy();
672 	}
673 
674 	spin_lock_irqsave(&input_pool.lock, flags);
675 
676 	/* seed = HASHPRF(last_key, entropy_input) */
677 	blake2s_final(&input_pool.hash, seed);
678 
679 	/* next_key = HASHPRF(seed, RDSEED || 0) */
680 	block.counter = 0;
681 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
682 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
683 
684 	spin_unlock_irqrestore(&input_pool.lock, flags);
685 	memzero_explicit(next_key, sizeof(next_key));
686 
687 	while (len) {
688 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
689 		/* output = HASHPRF(seed, RDSEED || ++counter) */
690 		++block.counter;
691 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
692 		len -= i;
693 		buf += i;
694 	}
695 
696 	memzero_explicit(seed, sizeof(seed));
697 	memzero_explicit(&block, sizeof(block));
698 }
699 
700 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
701 
702 static void __cold _credit_init_bits(size_t bits)
703 {
704 	static struct execute_work set_ready;
705 	unsigned int new, orig, add;
706 	unsigned long flags;
707 
708 	if (!bits)
709 		return;
710 
711 	add = min_t(size_t, bits, POOL_BITS);
712 
713 	orig = READ_ONCE(input_pool.init_bits);
714 	do {
715 		new = min_t(unsigned int, POOL_BITS, orig + add);
716 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
717 
718 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
719 		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
720 		if (static_key_initialized)
721 			execute_in_process_context(crng_set_ready, &set_ready);
722 		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
723 		wake_up_interruptible(&crng_init_wait);
724 		kill_fasync(&fasync, SIGIO, POLL_IN);
725 		pr_notice("crng init done\n");
726 		if (urandom_warning.missed)
727 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
728 				  urandom_warning.missed);
729 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
730 		spin_lock_irqsave(&base_crng.lock, flags);
731 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
732 		if (crng_init == CRNG_EMPTY) {
733 			extract_entropy(base_crng.key, sizeof(base_crng.key));
734 			crng_init = CRNG_EARLY;
735 		}
736 		spin_unlock_irqrestore(&base_crng.lock, flags);
737 	}
738 }
739 
740 
741 /**********************************************************************
742  *
743  * Entropy collection routines.
744  *
745  * The following exported functions are used for pushing entropy into
746  * the above entropy accumulation routines:
747  *
748  *	void add_device_randomness(const void *buf, size_t len);
749  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
750  *	void add_bootloader_randomness(const void *buf, size_t len);
751  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
752  *	void add_interrupt_randomness(int irq);
753  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
754  *	void add_disk_randomness(struct gendisk *disk);
755  *
756  * add_device_randomness() adds data to the input pool that
757  * is likely to differ between two devices (or possibly even per boot).
758  * This would be things like MAC addresses or serial numbers, or the
759  * read-out of the RTC. This does *not* credit any actual entropy to
760  * the pool, but it initializes the pool to different values for devices
761  * that might otherwise be identical and have very little entropy
762  * available to them (particularly common in the embedded world).
763  *
764  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
765  * entropy as specified by the caller. If the entropy pool is full it will
766  * block until more entropy is needed.
767  *
768  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
769  * and device tree, and credits its input depending on whether or not the
770  * command line option 'random.trust_bootloader'.
771  *
772  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
773  * representing the current instance of a VM to the pool, without crediting,
774  * and then force-reseeds the crng so that it takes effect immediately.
775  *
776  * add_interrupt_randomness() uses the interrupt timing as random
777  * inputs to the entropy pool. Using the cycle counters and the irq source
778  * as inputs, it feeds the input pool roughly once a second or after 64
779  * interrupts, crediting 1 bit of entropy for whichever comes first.
780  *
781  * add_input_randomness() uses the input layer interrupt timing, as well
782  * as the event type information from the hardware.
783  *
784  * add_disk_randomness() uses what amounts to the seek time of block
785  * layer request events, on a per-disk_devt basis, as input to the
786  * entropy pool. Note that high-speed solid state drives with very low
787  * seek times do not make for good sources of entropy, as their seek
788  * times are usually fairly consistent.
789  *
790  * The last two routines try to estimate how many bits of entropy
791  * to credit. They do this by keeping track of the first and second
792  * order deltas of the event timings.
793  *
794  **********************************************************************/
795 
796 static bool trust_cpu __initdata = true;
797 static bool trust_bootloader __initdata = true;
798 static int __init parse_trust_cpu(char *arg)
799 {
800 	return kstrtobool(arg, &trust_cpu);
801 }
802 static int __init parse_trust_bootloader(char *arg)
803 {
804 	return kstrtobool(arg, &trust_bootloader);
805 }
806 early_param("random.trust_cpu", parse_trust_cpu);
807 early_param("random.trust_bootloader", parse_trust_bootloader);
808 
809 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
810 {
811 	unsigned long flags, entropy = random_get_entropy();
812 
813 	/*
814 	 * Encode a representation of how long the system has been suspended,
815 	 * in a way that is distinct from prior system suspends.
816 	 */
817 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
818 
819 	spin_lock_irqsave(&input_pool.lock, flags);
820 	_mix_pool_bytes(&action, sizeof(action));
821 	_mix_pool_bytes(stamps, sizeof(stamps));
822 	_mix_pool_bytes(&entropy, sizeof(entropy));
823 	spin_unlock_irqrestore(&input_pool.lock, flags);
824 
825 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
826 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
827 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
828 		crng_reseed(NULL);
829 		pr_notice("crng reseeded on system resumption\n");
830 	}
831 	return 0;
832 }
833 
834 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
835 
836 /*
837  * This is called extremely early, before time keeping functionality is
838  * available, but arch randomness is. Interrupts are not yet enabled.
839  */
840 void __init random_init_early(const char *command_line)
841 {
842 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
843 	size_t i, longs, arch_bits;
844 
845 #if defined(LATENT_ENTROPY_PLUGIN)
846 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
847 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
848 #endif
849 
850 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
851 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
852 		if (longs) {
853 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
854 			i += longs;
855 			continue;
856 		}
857 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
858 		if (longs) {
859 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
860 			i += longs;
861 			continue;
862 		}
863 		arch_bits -= sizeof(*entropy) * 8;
864 		++i;
865 	}
866 
867 	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
868 	_mix_pool_bytes(command_line, strlen(command_line));
869 
870 	/* Reseed if already seeded by earlier phases. */
871 	if (crng_ready())
872 		crng_reseed(NULL);
873 	else if (trust_cpu)
874 		_credit_init_bits(arch_bits);
875 }
876 
877 /*
878  * This is called a little bit after the prior function, and now there is
879  * access to timestamps counters. Interrupts are not yet enabled.
880  */
881 void __init random_init(void)
882 {
883 	unsigned long entropy = random_get_entropy();
884 	ktime_t now = ktime_get_real();
885 
886 	_mix_pool_bytes(&now, sizeof(now));
887 	_mix_pool_bytes(&entropy, sizeof(entropy));
888 	add_latent_entropy();
889 
890 	/*
891 	 * If we were initialized by the cpu or bootloader before jump labels
892 	 * are initialized, then we should enable the static branch here, where
893 	 * it's guaranteed that jump labels have been initialized.
894 	 */
895 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
896 		crng_set_ready(NULL);
897 
898 	/* Reseed if already seeded by earlier phases. */
899 	if (crng_ready())
900 		crng_reseed(NULL);
901 
902 	WARN_ON(register_pm_notifier(&pm_notifier));
903 
904 	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
905 		       "entropy collection will consequently suffer.");
906 }
907 
908 /*
909  * Add device- or boot-specific data to the input pool to help
910  * initialize it.
911  *
912  * None of this adds any entropy; it is meant to avoid the problem of
913  * the entropy pool having similar initial state across largely
914  * identical devices.
915  */
916 void add_device_randomness(const void *buf, size_t len)
917 {
918 	unsigned long entropy = random_get_entropy();
919 	unsigned long flags;
920 
921 	spin_lock_irqsave(&input_pool.lock, flags);
922 	_mix_pool_bytes(&entropy, sizeof(entropy));
923 	_mix_pool_bytes(buf, len);
924 	spin_unlock_irqrestore(&input_pool.lock, flags);
925 }
926 EXPORT_SYMBOL(add_device_randomness);
927 
928 /*
929  * Interface for in-kernel drivers of true hardware RNGs. Those devices
930  * may produce endless random bits, so this function will sleep for
931  * some amount of time after, if the sleep_after parameter is true.
932  */
933 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
934 {
935 	mix_pool_bytes(buf, len);
936 	credit_init_bits(entropy);
937 
938 	/*
939 	 * Throttle writing to once every reseed interval, unless we're not yet
940 	 * initialized or no entropy is credited.
941 	 */
942 	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
943 		schedule_timeout_interruptible(crng_reseed_interval());
944 }
945 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
946 
947 /*
948  * Handle random seed passed by bootloader, and credit it depending
949  * on the command line option 'random.trust_bootloader'.
950  */
951 void __init add_bootloader_randomness(const void *buf, size_t len)
952 {
953 	mix_pool_bytes(buf, len);
954 	if (trust_bootloader)
955 		credit_init_bits(len * 8);
956 }
957 
958 #if IS_ENABLED(CONFIG_VMGENID)
959 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
960 
961 /*
962  * Handle a new unique VM ID, which is unique, not secret, so we
963  * don't credit it, but we do immediately force a reseed after so
964  * that it's used by the crng posthaste.
965  */
966 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
967 {
968 	add_device_randomness(unique_vm_id, len);
969 	if (crng_ready()) {
970 		crng_reseed(NULL);
971 		pr_notice("crng reseeded due to virtual machine fork\n");
972 	}
973 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
974 }
975 #if IS_MODULE(CONFIG_VMGENID)
976 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
977 #endif
978 
979 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
980 {
981 	return blocking_notifier_chain_register(&vmfork_chain, nb);
982 }
983 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
984 
985 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
986 {
987 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
988 }
989 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
990 #endif
991 
992 struct fast_pool {
993 	unsigned long pool[4];
994 	unsigned long last;
995 	unsigned int count;
996 	struct timer_list mix;
997 };
998 
999 static void mix_interrupt_randomness(struct timer_list *work);
1000 
1001 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1002 #ifdef CONFIG_64BIT
1003 #define FASTMIX_PERM SIPHASH_PERMUTATION
1004 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1005 #else
1006 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1007 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1008 #endif
1009 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1010 };
1011 
1012 /*
1013  * This is [Half]SipHash-1-x, starting from an empty key. Because
1014  * the key is fixed, it assumes that its inputs are non-malicious,
1015  * and therefore this has no security on its own. s represents the
1016  * four-word SipHash state, while v represents a two-word input.
1017  */
1018 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1019 {
1020 	s[3] ^= v1;
1021 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1022 	s[0] ^= v1;
1023 	s[3] ^= v2;
1024 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1025 	s[0] ^= v2;
1026 }
1027 
1028 #ifdef CONFIG_SMP
1029 /*
1030  * This function is called when the CPU has just come online, with
1031  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1032  */
1033 int __cold random_online_cpu(unsigned int cpu)
1034 {
1035 	/*
1036 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1037 	 * randomness() may schedule mix_interrupt_randomness(), and
1038 	 * set the MIX_INFLIGHT flag. However, because the worker can
1039 	 * be scheduled on a different CPU during this period, that
1040 	 * flag will never be cleared. For that reason, we zero out
1041 	 * the flag here, which runs just after workqueues are onlined
1042 	 * for the CPU again. This also has the effect of setting the
1043 	 * irq randomness count to zero so that new accumulated irqs
1044 	 * are fresh.
1045 	 */
1046 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1047 	return 0;
1048 }
1049 #endif
1050 
1051 static void mix_interrupt_randomness(struct timer_list *work)
1052 {
1053 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1054 	/*
1055 	 * The size of the copied stack pool is explicitly 2 longs so that we
1056 	 * only ever ingest half of the siphash output each time, retaining
1057 	 * the other half as the next "key" that carries over. The entropy is
1058 	 * supposed to be sufficiently dispersed between bits so on average
1059 	 * we don't wind up "losing" some.
1060 	 */
1061 	unsigned long pool[2];
1062 	unsigned int count;
1063 
1064 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1065 	local_irq_disable();
1066 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1067 		local_irq_enable();
1068 		return;
1069 	}
1070 
1071 	/*
1072 	 * Copy the pool to the stack so that the mixer always has a
1073 	 * consistent view, before we reenable irqs again.
1074 	 */
1075 	memcpy(pool, fast_pool->pool, sizeof(pool));
1076 	count = fast_pool->count;
1077 	fast_pool->count = 0;
1078 	fast_pool->last = jiffies;
1079 	local_irq_enable();
1080 
1081 	mix_pool_bytes(pool, sizeof(pool));
1082 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1083 
1084 	memzero_explicit(pool, sizeof(pool));
1085 }
1086 
1087 void add_interrupt_randomness(int irq)
1088 {
1089 	enum { MIX_INFLIGHT = 1U << 31 };
1090 	unsigned long entropy = random_get_entropy();
1091 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1092 	struct pt_regs *regs = get_irq_regs();
1093 	unsigned int new_count;
1094 
1095 	fast_mix(fast_pool->pool, entropy,
1096 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1097 	new_count = ++fast_pool->count;
1098 
1099 	if (new_count & MIX_INFLIGHT)
1100 		return;
1101 
1102 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1103 		return;
1104 
1105 	fast_pool->count |= MIX_INFLIGHT;
1106 	if (!timer_pending(&fast_pool->mix)) {
1107 		fast_pool->mix.expires = jiffies;
1108 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1109 	}
1110 }
1111 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1112 
1113 /* There is one of these per entropy source */
1114 struct timer_rand_state {
1115 	unsigned long last_time;
1116 	long last_delta, last_delta2;
1117 };
1118 
1119 /*
1120  * This function adds entropy to the entropy "pool" by using timing
1121  * delays. It uses the timer_rand_state structure to make an estimate
1122  * of how many bits of entropy this call has added to the pool. The
1123  * value "num" is also added to the pool; it should somehow describe
1124  * the type of event that just happened.
1125  */
1126 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1127 {
1128 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1129 	long delta, delta2, delta3;
1130 	unsigned int bits;
1131 
1132 	/*
1133 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1134 	 * sometime after, so mix into the fast pool.
1135 	 */
1136 	if (in_hardirq()) {
1137 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1138 	} else {
1139 		spin_lock_irqsave(&input_pool.lock, flags);
1140 		_mix_pool_bytes(&entropy, sizeof(entropy));
1141 		_mix_pool_bytes(&num, sizeof(num));
1142 		spin_unlock_irqrestore(&input_pool.lock, flags);
1143 	}
1144 
1145 	if (crng_ready())
1146 		return;
1147 
1148 	/*
1149 	 * Calculate number of bits of randomness we probably added.
1150 	 * We take into account the first, second and third-order deltas
1151 	 * in order to make our estimate.
1152 	 */
1153 	delta = now - READ_ONCE(state->last_time);
1154 	WRITE_ONCE(state->last_time, now);
1155 
1156 	delta2 = delta - READ_ONCE(state->last_delta);
1157 	WRITE_ONCE(state->last_delta, delta);
1158 
1159 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1160 	WRITE_ONCE(state->last_delta2, delta2);
1161 
1162 	if (delta < 0)
1163 		delta = -delta;
1164 	if (delta2 < 0)
1165 		delta2 = -delta2;
1166 	if (delta3 < 0)
1167 		delta3 = -delta3;
1168 	if (delta > delta2)
1169 		delta = delta2;
1170 	if (delta > delta3)
1171 		delta = delta3;
1172 
1173 	/*
1174 	 * delta is now minimum absolute delta. Round down by 1 bit
1175 	 * on general principles, and limit entropy estimate to 11 bits.
1176 	 */
1177 	bits = min(fls(delta >> 1), 11);
1178 
1179 	/*
1180 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1181 	 * will run after this, which uses a different crediting scheme of 1 bit
1182 	 * per every 64 interrupts. In order to let that function do accounting
1183 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1184 	 * and then subtract one to account for the extra one added.
1185 	 */
1186 	if (in_hardirq())
1187 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1188 	else
1189 		_credit_init_bits(bits);
1190 }
1191 
1192 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1193 {
1194 	static unsigned char last_value;
1195 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1196 
1197 	/* Ignore autorepeat and the like. */
1198 	if (value == last_value)
1199 		return;
1200 
1201 	last_value = value;
1202 	add_timer_randomness(&input_timer_state,
1203 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1204 }
1205 EXPORT_SYMBOL_GPL(add_input_randomness);
1206 
1207 #ifdef CONFIG_BLOCK
1208 void add_disk_randomness(struct gendisk *disk)
1209 {
1210 	if (!disk || !disk->random)
1211 		return;
1212 	/* First major is 1, so we get >= 0x200 here. */
1213 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1214 }
1215 EXPORT_SYMBOL_GPL(add_disk_randomness);
1216 
1217 void __cold rand_initialize_disk(struct gendisk *disk)
1218 {
1219 	struct timer_rand_state *state;
1220 
1221 	/*
1222 	 * If kzalloc returns null, we just won't use that entropy
1223 	 * source.
1224 	 */
1225 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1226 	if (state) {
1227 		state->last_time = INITIAL_JIFFIES;
1228 		disk->random = state;
1229 	}
1230 }
1231 #endif
1232 
1233 struct entropy_timer_state {
1234 	unsigned long entropy;
1235 	struct timer_list timer;
1236 	atomic_t samples;
1237 	unsigned int samples_per_bit;
1238 };
1239 
1240 /*
1241  * Each time the timer fires, we expect that we got an unpredictable jump in
1242  * the cycle counter. Even if the timer is running on another CPU, the timer
1243  * activity will be touching the stack of the CPU that is generating entropy.
1244  *
1245  * Note that we don't re-arm the timer in the timer itself - we are happy to be
1246  * scheduled away, since that just makes the load more complex, but we do not
1247  * want the timer to keep ticking unless the entropy loop is running.
1248  *
1249  * So the re-arming always happens in the entropy loop itself.
1250  */
1251 static void __cold entropy_timer(struct timer_list *timer)
1252 {
1253 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1254 	unsigned long entropy = random_get_entropy();
1255 
1256 	mix_pool_bytes(&entropy, sizeof(entropy));
1257 	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1258 		credit_init_bits(1);
1259 }
1260 
1261 /*
1262  * If we have an actual cycle counter, see if we can generate enough entropy
1263  * with timing noise.
1264  */
1265 static void __cold try_to_generate_entropy(void)
1266 {
1267 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1268 	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1269 	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1270 	unsigned int i, num_different = 0;
1271 	unsigned long last = random_get_entropy();
1272 	int cpu = -1;
1273 
1274 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1275 		stack->entropy = random_get_entropy();
1276 		if (stack->entropy != last)
1277 			++num_different;
1278 		last = stack->entropy;
1279 	}
1280 	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1281 	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1282 		return;
1283 
1284 	atomic_set(&stack->samples, 0);
1285 	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1286 	while (!crng_ready() && !signal_pending(current)) {
1287 		/*
1288 		 * Check !timer_pending() and then ensure that any previous callback has finished
1289 		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1290 		 */
1291 		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1292 			struct cpumask timer_cpus;
1293 			unsigned int num_cpus;
1294 
1295 			/*
1296 			 * Preemption must be disabled here, both to read the current CPU number
1297 			 * and to avoid scheduling a timer on a dead CPU.
1298 			 */
1299 			preempt_disable();
1300 
1301 			/* Only schedule callbacks on timer CPUs that are online. */
1302 			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1303 			num_cpus = cpumask_weight(&timer_cpus);
1304 			/* In very bizarre case of misconfiguration, fallback to all online. */
1305 			if (unlikely(num_cpus == 0)) {
1306 				timer_cpus = *cpu_online_mask;
1307 				num_cpus = cpumask_weight(&timer_cpus);
1308 			}
1309 
1310 			/* Basic CPU round-robin, which avoids the current CPU. */
1311 			do {
1312 				cpu = cpumask_next(cpu, &timer_cpus);
1313 				if (cpu == nr_cpumask_bits)
1314 					cpu = cpumask_first(&timer_cpus);
1315 			} while (cpu == smp_processor_id() && num_cpus > 1);
1316 
1317 			/* Expiring the timer at `jiffies` means it's the next tick. */
1318 			stack->timer.expires = jiffies;
1319 
1320 			add_timer_on(&stack->timer, cpu);
1321 
1322 			preempt_enable();
1323 		}
1324 		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1325 		schedule();
1326 		stack->entropy = random_get_entropy();
1327 	}
1328 	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1329 
1330 	del_timer_sync(&stack->timer);
1331 	destroy_timer_on_stack(&stack->timer);
1332 }
1333 
1334 
1335 /**********************************************************************
1336  *
1337  * Userspace reader/writer interfaces.
1338  *
1339  * getrandom(2) is the primary modern interface into the RNG and should
1340  * be used in preference to anything else.
1341  *
1342  * Reading from /dev/random has the same functionality as calling
1343  * getrandom(2) with flags=0. In earlier versions, however, it had
1344  * vastly different semantics and should therefore be avoided, to
1345  * prevent backwards compatibility issues.
1346  *
1347  * Reading from /dev/urandom has the same functionality as calling
1348  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1349  * waiting for the RNG to be ready, it should not be used.
1350  *
1351  * Writing to either /dev/random or /dev/urandom adds entropy to
1352  * the input pool but does not credit it.
1353  *
1354  * Polling on /dev/random indicates when the RNG is initialized, on
1355  * the read side, and when it wants new entropy, on the write side.
1356  *
1357  * Both /dev/random and /dev/urandom have the same set of ioctls for
1358  * adding entropy, getting the entropy count, zeroing the count, and
1359  * reseeding the crng.
1360  *
1361  **********************************************************************/
1362 
1363 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1364 {
1365 	struct iov_iter iter;
1366 	struct iovec iov;
1367 	int ret;
1368 
1369 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1370 		return -EINVAL;
1371 
1372 	/*
1373 	 * Requesting insecure and blocking randomness at the same time makes
1374 	 * no sense.
1375 	 */
1376 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1377 		return -EINVAL;
1378 
1379 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1380 		if (flags & GRND_NONBLOCK)
1381 			return -EAGAIN;
1382 		ret = wait_for_random_bytes();
1383 		if (unlikely(ret))
1384 			return ret;
1385 	}
1386 
1387 	ret = import_single_range(ITER_DEST, ubuf, len, &iov, &iter);
1388 	if (unlikely(ret))
1389 		return ret;
1390 	return get_random_bytes_user(&iter);
1391 }
1392 
1393 static __poll_t random_poll(struct file *file, poll_table *wait)
1394 {
1395 	poll_wait(file, &crng_init_wait, wait);
1396 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1397 }
1398 
1399 static ssize_t write_pool_user(struct iov_iter *iter)
1400 {
1401 	u8 block[BLAKE2S_BLOCK_SIZE];
1402 	ssize_t ret = 0;
1403 	size_t copied;
1404 
1405 	if (unlikely(!iov_iter_count(iter)))
1406 		return 0;
1407 
1408 	for (;;) {
1409 		copied = copy_from_iter(block, sizeof(block), iter);
1410 		ret += copied;
1411 		mix_pool_bytes(block, copied);
1412 		if (!iov_iter_count(iter) || copied != sizeof(block))
1413 			break;
1414 
1415 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1416 		if (ret % PAGE_SIZE == 0) {
1417 			if (signal_pending(current))
1418 				break;
1419 			cond_resched();
1420 		}
1421 	}
1422 
1423 	memzero_explicit(block, sizeof(block));
1424 	return ret ? ret : -EFAULT;
1425 }
1426 
1427 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1428 {
1429 	return write_pool_user(iter);
1430 }
1431 
1432 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1433 {
1434 	static int maxwarn = 10;
1435 
1436 	/*
1437 	 * Opportunistically attempt to initialize the RNG on platforms that
1438 	 * have fast cycle counters, but don't (for now) require it to succeed.
1439 	 */
1440 	if (!crng_ready())
1441 		try_to_generate_entropy();
1442 
1443 	if (!crng_ready()) {
1444 		if (!ratelimit_disable && maxwarn <= 0)
1445 			++urandom_warning.missed;
1446 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1447 			--maxwarn;
1448 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1449 				  current->comm, iov_iter_count(iter));
1450 		}
1451 	}
1452 
1453 	return get_random_bytes_user(iter);
1454 }
1455 
1456 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1457 {
1458 	int ret;
1459 
1460 	if (!crng_ready() &&
1461 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1462 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1463 		return -EAGAIN;
1464 
1465 	ret = wait_for_random_bytes();
1466 	if (ret != 0)
1467 		return ret;
1468 	return get_random_bytes_user(iter);
1469 }
1470 
1471 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1472 {
1473 	int __user *p = (int __user *)arg;
1474 	int ent_count;
1475 
1476 	switch (cmd) {
1477 	case RNDGETENTCNT:
1478 		/* Inherently racy, no point locking. */
1479 		if (put_user(input_pool.init_bits, p))
1480 			return -EFAULT;
1481 		return 0;
1482 	case RNDADDTOENTCNT:
1483 		if (!capable(CAP_SYS_ADMIN))
1484 			return -EPERM;
1485 		if (get_user(ent_count, p))
1486 			return -EFAULT;
1487 		if (ent_count < 0)
1488 			return -EINVAL;
1489 		credit_init_bits(ent_count);
1490 		return 0;
1491 	case RNDADDENTROPY: {
1492 		struct iov_iter iter;
1493 		struct iovec iov;
1494 		ssize_t ret;
1495 		int len;
1496 
1497 		if (!capable(CAP_SYS_ADMIN))
1498 			return -EPERM;
1499 		if (get_user(ent_count, p++))
1500 			return -EFAULT;
1501 		if (ent_count < 0)
1502 			return -EINVAL;
1503 		if (get_user(len, p++))
1504 			return -EFAULT;
1505 		ret = import_single_range(ITER_SOURCE, p, len, &iov, &iter);
1506 		if (unlikely(ret))
1507 			return ret;
1508 		ret = write_pool_user(&iter);
1509 		if (unlikely(ret < 0))
1510 			return ret;
1511 		/* Since we're crediting, enforce that it was all written into the pool. */
1512 		if (unlikely(ret != len))
1513 			return -EFAULT;
1514 		credit_init_bits(ent_count);
1515 		return 0;
1516 	}
1517 	case RNDZAPENTCNT:
1518 	case RNDCLEARPOOL:
1519 		/* No longer has any effect. */
1520 		if (!capable(CAP_SYS_ADMIN))
1521 			return -EPERM;
1522 		return 0;
1523 	case RNDRESEEDCRNG:
1524 		if (!capable(CAP_SYS_ADMIN))
1525 			return -EPERM;
1526 		if (!crng_ready())
1527 			return -ENODATA;
1528 		crng_reseed(NULL);
1529 		return 0;
1530 	default:
1531 		return -EINVAL;
1532 	}
1533 }
1534 
1535 static int random_fasync(int fd, struct file *filp, int on)
1536 {
1537 	return fasync_helper(fd, filp, on, &fasync);
1538 }
1539 
1540 const struct file_operations random_fops = {
1541 	.read_iter = random_read_iter,
1542 	.write_iter = random_write_iter,
1543 	.poll = random_poll,
1544 	.unlocked_ioctl = random_ioctl,
1545 	.compat_ioctl = compat_ptr_ioctl,
1546 	.fasync = random_fasync,
1547 	.llseek = noop_llseek,
1548 	.splice_read = generic_file_splice_read,
1549 	.splice_write = iter_file_splice_write,
1550 };
1551 
1552 const struct file_operations urandom_fops = {
1553 	.read_iter = urandom_read_iter,
1554 	.write_iter = random_write_iter,
1555 	.unlocked_ioctl = random_ioctl,
1556 	.compat_ioctl = compat_ptr_ioctl,
1557 	.fasync = random_fasync,
1558 	.llseek = noop_llseek,
1559 	.splice_read = generic_file_splice_read,
1560 	.splice_write = iter_file_splice_write,
1561 };
1562 
1563 
1564 /********************************************************************
1565  *
1566  * Sysctl interface.
1567  *
1568  * These are partly unused legacy knobs with dummy values to not break
1569  * userspace and partly still useful things. They are usually accessible
1570  * in /proc/sys/kernel/random/ and are as follows:
1571  *
1572  * - boot_id - a UUID representing the current boot.
1573  *
1574  * - uuid - a random UUID, different each time the file is read.
1575  *
1576  * - poolsize - the number of bits of entropy that the input pool can
1577  *   hold, tied to the POOL_BITS constant.
1578  *
1579  * - entropy_avail - the number of bits of entropy currently in the
1580  *   input pool. Always <= poolsize.
1581  *
1582  * - write_wakeup_threshold - the amount of entropy in the input pool
1583  *   below which write polls to /dev/random will unblock, requesting
1584  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1585  *   to avoid breaking old userspaces, but writing to it does not
1586  *   change any behavior of the RNG.
1587  *
1588  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1589  *   It is writable to avoid breaking old userspaces, but writing
1590  *   to it does not change any behavior of the RNG.
1591  *
1592  ********************************************************************/
1593 
1594 #ifdef CONFIG_SYSCTL
1595 
1596 #include <linux/sysctl.h>
1597 
1598 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1599 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1600 static int sysctl_poolsize = POOL_BITS;
1601 static u8 sysctl_bootid[UUID_SIZE];
1602 
1603 /*
1604  * This function is used to return both the bootid UUID, and random
1605  * UUID. The difference is in whether table->data is NULL; if it is,
1606  * then a new UUID is generated and returned to the user.
1607  */
1608 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1609 			size_t *lenp, loff_t *ppos)
1610 {
1611 	u8 tmp_uuid[UUID_SIZE], *uuid;
1612 	char uuid_string[UUID_STRING_LEN + 1];
1613 	struct ctl_table fake_table = {
1614 		.data = uuid_string,
1615 		.maxlen = UUID_STRING_LEN
1616 	};
1617 
1618 	if (write)
1619 		return -EPERM;
1620 
1621 	uuid = table->data;
1622 	if (!uuid) {
1623 		uuid = tmp_uuid;
1624 		generate_random_uuid(uuid);
1625 	} else {
1626 		static DEFINE_SPINLOCK(bootid_spinlock);
1627 
1628 		spin_lock(&bootid_spinlock);
1629 		if (!uuid[8])
1630 			generate_random_uuid(uuid);
1631 		spin_unlock(&bootid_spinlock);
1632 	}
1633 
1634 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1635 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1636 }
1637 
1638 /* The same as proc_dointvec, but writes don't change anything. */
1639 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1640 			    size_t *lenp, loff_t *ppos)
1641 {
1642 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1643 }
1644 
1645 static struct ctl_table random_table[] = {
1646 	{
1647 		.procname	= "poolsize",
1648 		.data		= &sysctl_poolsize,
1649 		.maxlen		= sizeof(int),
1650 		.mode		= 0444,
1651 		.proc_handler	= proc_dointvec,
1652 	},
1653 	{
1654 		.procname	= "entropy_avail",
1655 		.data		= &input_pool.init_bits,
1656 		.maxlen		= sizeof(int),
1657 		.mode		= 0444,
1658 		.proc_handler	= proc_dointvec,
1659 	},
1660 	{
1661 		.procname	= "write_wakeup_threshold",
1662 		.data		= &sysctl_random_write_wakeup_bits,
1663 		.maxlen		= sizeof(int),
1664 		.mode		= 0644,
1665 		.proc_handler	= proc_do_rointvec,
1666 	},
1667 	{
1668 		.procname	= "urandom_min_reseed_secs",
1669 		.data		= &sysctl_random_min_urandom_seed,
1670 		.maxlen		= sizeof(int),
1671 		.mode		= 0644,
1672 		.proc_handler	= proc_do_rointvec,
1673 	},
1674 	{
1675 		.procname	= "boot_id",
1676 		.data		= &sysctl_bootid,
1677 		.mode		= 0444,
1678 		.proc_handler	= proc_do_uuid,
1679 	},
1680 	{
1681 		.procname	= "uuid",
1682 		.mode		= 0444,
1683 		.proc_handler	= proc_do_uuid,
1684 	},
1685 	{ }
1686 };
1687 
1688 /*
1689  * random_init() is called before sysctl_init(),
1690  * so we cannot call register_sysctl_init() in random_init()
1691  */
1692 static int __init random_sysctls_init(void)
1693 {
1694 	register_sysctl_init("kernel/random", random_table);
1695 	return 0;
1696 }
1697 device_initcall(random_sysctls_init);
1698 #endif
1699