1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <linux/sched/isolation.h> 57 #include <crypto/chacha.h> 58 #include <crypto/blake2s.h> 59 #include <asm/processor.h> 60 #include <asm/irq.h> 61 #include <asm/irq_regs.h> 62 #include <asm/io.h> 63 64 /********************************************************************* 65 * 66 * Initialization and readiness waiting. 67 * 68 * Much of the RNG infrastructure is devoted to various dependencies 69 * being able to wait until the RNG has collected enough entropy and 70 * is ready for safe consumption. 71 * 72 *********************************************************************/ 73 74 /* 75 * crng_init is protected by base_crng->lock, and only increases 76 * its value (from empty->early->ready). 77 */ 78 static enum { 79 CRNG_EMPTY = 0, /* Little to no entropy collected */ 80 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 81 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 82 } crng_init __read_mostly = CRNG_EMPTY; 83 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 84 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 85 /* Various types of waiters for crng_init->CRNG_READY transition. */ 86 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 87 static struct fasync_struct *fasync; 88 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 89 90 /* Control how we warn userspace. */ 91 static struct ratelimit_state urandom_warning = 92 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 93 static int ratelimit_disable __read_mostly = 94 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 95 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 96 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 97 98 /* 99 * Returns whether or not the input pool has been seeded and thus guaranteed 100 * to supply cryptographically secure random numbers. This applies to: the 101 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 102 * u16,u32,u64,long} family of functions. 103 * 104 * Returns: true if the input pool has been seeded. 105 * false if the input pool has not been seeded. 106 */ 107 bool rng_is_initialized(void) 108 { 109 return crng_ready(); 110 } 111 EXPORT_SYMBOL(rng_is_initialized); 112 113 static void __cold crng_set_ready(struct work_struct *work) 114 { 115 static_branch_enable(&crng_is_ready); 116 } 117 118 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 119 static void try_to_generate_entropy(void); 120 121 /* 122 * Wait for the input pool to be seeded and thus guaranteed to supply 123 * cryptographically secure random numbers. This applies to: the /dev/urandom 124 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 125 * long} family of functions. Using any of these functions without first 126 * calling this function forfeits the guarantee of security. 127 * 128 * Returns: 0 if the input pool has been seeded. 129 * -ERESTARTSYS if the function was interrupted by a signal. 130 */ 131 int wait_for_random_bytes(void) 132 { 133 while (!crng_ready()) { 134 int ret; 135 136 try_to_generate_entropy(); 137 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 138 if (ret) 139 return ret > 0 ? 0 : ret; 140 } 141 return 0; 142 } 143 EXPORT_SYMBOL(wait_for_random_bytes); 144 145 /* 146 * Add a callback function that will be invoked when the crng is initialised, 147 * or immediately if it already has been. Only use this is you are absolutely 148 * sure it is required. Most users should instead be able to test 149 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 150 */ 151 int __cold execute_with_initialized_rng(struct notifier_block *nb) 152 { 153 unsigned long flags; 154 int ret = 0; 155 156 spin_lock_irqsave(&random_ready_notifier.lock, flags); 157 if (crng_ready()) 158 nb->notifier_call(nb, 0, NULL); 159 else 160 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 161 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 162 return ret; 163 } 164 165 #define warn_unseeded_randomness() \ 166 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 167 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 168 __func__, (void *)_RET_IP_, crng_init) 169 170 171 /********************************************************************* 172 * 173 * Fast key erasure RNG, the "crng". 174 * 175 * These functions expand entropy from the entropy extractor into 176 * long streams for external consumption using the "fast key erasure" 177 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 178 * 179 * There are a few exported interfaces for use by other drivers: 180 * 181 * void get_random_bytes(void *buf, size_t len) 182 * u8 get_random_u8() 183 * u16 get_random_u16() 184 * u32 get_random_u32() 185 * u32 get_random_u32_below(u32 ceil) 186 * u32 get_random_u32_above(u32 floor) 187 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 188 * u64 get_random_u64() 189 * unsigned long get_random_long() 190 * 191 * These interfaces will return the requested number of random bytes 192 * into the given buffer or as a return value. This is equivalent to 193 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 194 * functions may be higher performance for one-off random integers, 195 * because they do a bit of buffering and do not invoke reseeding 196 * until the buffer is emptied. 197 * 198 *********************************************************************/ 199 200 enum { 201 CRNG_RESEED_START_INTERVAL = HZ, 202 CRNG_RESEED_INTERVAL = 60 * HZ 203 }; 204 205 static struct { 206 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 207 unsigned long generation; 208 spinlock_t lock; 209 } base_crng = { 210 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 211 }; 212 213 struct crng { 214 u8 key[CHACHA_KEY_SIZE]; 215 unsigned long generation; 216 local_lock_t lock; 217 }; 218 219 static DEFINE_PER_CPU(struct crng, crngs) = { 220 .generation = ULONG_MAX, 221 .lock = INIT_LOCAL_LOCK(crngs.lock), 222 }; 223 224 /* 225 * Return the interval until the next reseeding, which is normally 226 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 227 * proportional to the uptime. 228 */ 229 static unsigned int crng_reseed_interval(void) 230 { 231 static bool early_boot = true; 232 233 if (unlikely(READ_ONCE(early_boot))) { 234 time64_t uptime = ktime_get_seconds(); 235 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 236 WRITE_ONCE(early_boot, false); 237 else 238 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 239 (unsigned int)uptime / 2 * HZ); 240 } 241 return CRNG_RESEED_INTERVAL; 242 } 243 244 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 245 static void extract_entropy(void *buf, size_t len); 246 247 /* This extracts a new crng key from the input pool. */ 248 static void crng_reseed(struct work_struct *work) 249 { 250 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 251 unsigned long flags; 252 unsigned long next_gen; 253 u8 key[CHACHA_KEY_SIZE]; 254 255 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 256 if (likely(system_unbound_wq)) 257 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 258 259 extract_entropy(key, sizeof(key)); 260 261 /* 262 * We copy the new key into the base_crng, overwriting the old one, 263 * and update the generation counter. We avoid hitting ULONG_MAX, 264 * because the per-cpu crngs are initialized to ULONG_MAX, so this 265 * forces new CPUs that come online to always initialize. 266 */ 267 spin_lock_irqsave(&base_crng.lock, flags); 268 memcpy(base_crng.key, key, sizeof(base_crng.key)); 269 next_gen = base_crng.generation + 1; 270 if (next_gen == ULONG_MAX) 271 ++next_gen; 272 WRITE_ONCE(base_crng.generation, next_gen); 273 if (!static_branch_likely(&crng_is_ready)) 274 crng_init = CRNG_READY; 275 spin_unlock_irqrestore(&base_crng.lock, flags); 276 memzero_explicit(key, sizeof(key)); 277 } 278 279 /* 280 * This generates a ChaCha block using the provided key, and then 281 * immediately overwrites that key with half the block. It returns 282 * the resultant ChaCha state to the user, along with the second 283 * half of the block containing 32 bytes of random data that may 284 * be used; random_data_len may not be greater than 32. 285 * 286 * The returned ChaCha state contains within it a copy of the old 287 * key value, at index 4, so the state should always be zeroed out 288 * immediately after using in order to maintain forward secrecy. 289 * If the state cannot be erased in a timely manner, then it is 290 * safer to set the random_data parameter to &chacha_state[4] so 291 * that this function overwrites it before returning. 292 */ 293 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 294 u32 chacha_state[CHACHA_STATE_WORDS], 295 u8 *random_data, size_t random_data_len) 296 { 297 u8 first_block[CHACHA_BLOCK_SIZE]; 298 299 BUG_ON(random_data_len > 32); 300 301 chacha_init_consts(chacha_state); 302 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 303 memset(&chacha_state[12], 0, sizeof(u32) * 4); 304 chacha20_block(chacha_state, first_block); 305 306 memcpy(key, first_block, CHACHA_KEY_SIZE); 307 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 308 memzero_explicit(first_block, sizeof(first_block)); 309 } 310 311 /* 312 * This function returns a ChaCha state that you may use for generating 313 * random data. It also returns up to 32 bytes on its own of random data 314 * that may be used; random_data_len may not be greater than 32. 315 */ 316 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 317 u8 *random_data, size_t random_data_len) 318 { 319 unsigned long flags; 320 struct crng *crng; 321 322 BUG_ON(random_data_len > 32); 323 324 /* 325 * For the fast path, we check whether we're ready, unlocked first, and 326 * then re-check once locked later. In the case where we're really not 327 * ready, we do fast key erasure with the base_crng directly, extracting 328 * when crng_init is CRNG_EMPTY. 329 */ 330 if (!crng_ready()) { 331 bool ready; 332 333 spin_lock_irqsave(&base_crng.lock, flags); 334 ready = crng_ready(); 335 if (!ready) { 336 if (crng_init == CRNG_EMPTY) 337 extract_entropy(base_crng.key, sizeof(base_crng.key)); 338 crng_fast_key_erasure(base_crng.key, chacha_state, 339 random_data, random_data_len); 340 } 341 spin_unlock_irqrestore(&base_crng.lock, flags); 342 if (!ready) 343 return; 344 } 345 346 local_lock_irqsave(&crngs.lock, flags); 347 crng = raw_cpu_ptr(&crngs); 348 349 /* 350 * If our per-cpu crng is older than the base_crng, then it means 351 * somebody reseeded the base_crng. In that case, we do fast key 352 * erasure on the base_crng, and use its output as the new key 353 * for our per-cpu crng. This brings us up to date with base_crng. 354 */ 355 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 356 spin_lock(&base_crng.lock); 357 crng_fast_key_erasure(base_crng.key, chacha_state, 358 crng->key, sizeof(crng->key)); 359 crng->generation = base_crng.generation; 360 spin_unlock(&base_crng.lock); 361 } 362 363 /* 364 * Finally, when we've made it this far, our per-cpu crng has an up 365 * to date key, and we can do fast key erasure with it to produce 366 * some random data and a ChaCha state for the caller. All other 367 * branches of this function are "unlikely", so most of the time we 368 * should wind up here immediately. 369 */ 370 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 371 local_unlock_irqrestore(&crngs.lock, flags); 372 } 373 374 static void _get_random_bytes(void *buf, size_t len) 375 { 376 u32 chacha_state[CHACHA_STATE_WORDS]; 377 u8 tmp[CHACHA_BLOCK_SIZE]; 378 size_t first_block_len; 379 380 if (!len) 381 return; 382 383 first_block_len = min_t(size_t, 32, len); 384 crng_make_state(chacha_state, buf, first_block_len); 385 len -= first_block_len; 386 buf += first_block_len; 387 388 while (len) { 389 if (len < CHACHA_BLOCK_SIZE) { 390 chacha20_block(chacha_state, tmp); 391 memcpy(buf, tmp, len); 392 memzero_explicit(tmp, sizeof(tmp)); 393 break; 394 } 395 396 chacha20_block(chacha_state, buf); 397 if (unlikely(chacha_state[12] == 0)) 398 ++chacha_state[13]; 399 len -= CHACHA_BLOCK_SIZE; 400 buf += CHACHA_BLOCK_SIZE; 401 } 402 403 memzero_explicit(chacha_state, sizeof(chacha_state)); 404 } 405 406 /* 407 * This returns random bytes in arbitrary quantities. The quality of the 408 * random bytes is good as /dev/urandom. In order to ensure that the 409 * randomness provided by this function is okay, the function 410 * wait_for_random_bytes() should be called and return 0 at least once 411 * at any point prior. 412 */ 413 void get_random_bytes(void *buf, size_t len) 414 { 415 warn_unseeded_randomness(); 416 _get_random_bytes(buf, len); 417 } 418 EXPORT_SYMBOL(get_random_bytes); 419 420 static ssize_t get_random_bytes_user(struct iov_iter *iter) 421 { 422 u32 chacha_state[CHACHA_STATE_WORDS]; 423 u8 block[CHACHA_BLOCK_SIZE]; 424 size_t ret = 0, copied; 425 426 if (unlikely(!iov_iter_count(iter))) 427 return 0; 428 429 /* 430 * Immediately overwrite the ChaCha key at index 4 with random 431 * bytes, in case userspace causes copy_to_iter() below to sleep 432 * forever, so that we still retain forward secrecy in that case. 433 */ 434 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 435 /* 436 * However, if we're doing a read of len <= 32, we don't need to 437 * use chacha_state after, so we can simply return those bytes to 438 * the user directly. 439 */ 440 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 441 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 442 goto out_zero_chacha; 443 } 444 445 for (;;) { 446 chacha20_block(chacha_state, block); 447 if (unlikely(chacha_state[12] == 0)) 448 ++chacha_state[13]; 449 450 copied = copy_to_iter(block, sizeof(block), iter); 451 ret += copied; 452 if (!iov_iter_count(iter) || copied != sizeof(block)) 453 break; 454 455 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 456 if (ret % PAGE_SIZE == 0) { 457 if (signal_pending(current)) 458 break; 459 cond_resched(); 460 } 461 } 462 463 memzero_explicit(block, sizeof(block)); 464 out_zero_chacha: 465 memzero_explicit(chacha_state, sizeof(chacha_state)); 466 return ret ? ret : -EFAULT; 467 } 468 469 /* 470 * Batched entropy returns random integers. The quality of the random 471 * number is good as /dev/urandom. In order to ensure that the randomness 472 * provided by this function is okay, the function wait_for_random_bytes() 473 * should be called and return 0 at least once at any point prior. 474 */ 475 476 #define DEFINE_BATCHED_ENTROPY(type) \ 477 struct batch_ ##type { \ 478 /* \ 479 * We make this 1.5x a ChaCha block, so that we get the \ 480 * remaining 32 bytes from fast key erasure, plus one full \ 481 * block from the detached ChaCha state. We can increase \ 482 * the size of this later if needed so long as we keep the \ 483 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 484 */ \ 485 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 486 local_lock_t lock; \ 487 unsigned long generation; \ 488 unsigned int position; \ 489 }; \ 490 \ 491 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 492 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 493 .position = UINT_MAX \ 494 }; \ 495 \ 496 type get_random_ ##type(void) \ 497 { \ 498 type ret; \ 499 unsigned long flags; \ 500 struct batch_ ##type *batch; \ 501 unsigned long next_gen; \ 502 \ 503 warn_unseeded_randomness(); \ 504 \ 505 if (!crng_ready()) { \ 506 _get_random_bytes(&ret, sizeof(ret)); \ 507 return ret; \ 508 } \ 509 \ 510 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 511 batch = raw_cpu_ptr(&batched_entropy_##type); \ 512 \ 513 next_gen = READ_ONCE(base_crng.generation); \ 514 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 515 next_gen != batch->generation) { \ 516 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 517 batch->position = 0; \ 518 batch->generation = next_gen; \ 519 } \ 520 \ 521 ret = batch->entropy[batch->position]; \ 522 batch->entropy[batch->position] = 0; \ 523 ++batch->position; \ 524 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 525 return ret; \ 526 } \ 527 EXPORT_SYMBOL(get_random_ ##type); 528 529 DEFINE_BATCHED_ENTROPY(u8) 530 DEFINE_BATCHED_ENTROPY(u16) 531 DEFINE_BATCHED_ENTROPY(u32) 532 DEFINE_BATCHED_ENTROPY(u64) 533 534 u32 __get_random_u32_below(u32 ceil) 535 { 536 /* 537 * This is the slow path for variable ceil. It is still fast, most of 538 * the time, by doing traditional reciprocal multiplication and 539 * opportunistically comparing the lower half to ceil itself, before 540 * falling back to computing a larger bound, and then rejecting samples 541 * whose lower half would indicate a range indivisible by ceil. The use 542 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 543 * in 32-bits. 544 */ 545 u32 rand = get_random_u32(); 546 u64 mult; 547 548 /* 549 * This function is technically undefined for ceil == 0, and in fact 550 * for the non-underscored constant version in the header, we build bug 551 * on that. But for the non-constant case, it's convenient to have that 552 * evaluate to being a straight call to get_random_u32(), so that 553 * get_random_u32_inclusive() can work over its whole range without 554 * undefined behavior. 555 */ 556 if (unlikely(!ceil)) 557 return rand; 558 559 mult = (u64)ceil * rand; 560 if (unlikely((u32)mult < ceil)) { 561 u32 bound = -ceil % ceil; 562 while (unlikely((u32)mult < bound)) 563 mult = (u64)ceil * get_random_u32(); 564 } 565 return mult >> 32; 566 } 567 EXPORT_SYMBOL(__get_random_u32_below); 568 569 #ifdef CONFIG_SMP 570 /* 571 * This function is called when the CPU is coming up, with entry 572 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 573 */ 574 int __cold random_prepare_cpu(unsigned int cpu) 575 { 576 /* 577 * When the cpu comes back online, immediately invalidate both 578 * the per-cpu crng and all batches, so that we serve fresh 579 * randomness. 580 */ 581 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 582 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 583 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 584 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 585 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 586 return 0; 587 } 588 #endif 589 590 591 /********************************************************************** 592 * 593 * Entropy accumulation and extraction routines. 594 * 595 * Callers may add entropy via: 596 * 597 * static void mix_pool_bytes(const void *buf, size_t len) 598 * 599 * After which, if added entropy should be credited: 600 * 601 * static void credit_init_bits(size_t bits) 602 * 603 * Finally, extract entropy via: 604 * 605 * static void extract_entropy(void *buf, size_t len) 606 * 607 **********************************************************************/ 608 609 enum { 610 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 611 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 612 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 613 }; 614 615 static struct { 616 struct blake2s_state hash; 617 spinlock_t lock; 618 unsigned int init_bits; 619 } input_pool = { 620 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 621 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 622 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 623 .hash.outlen = BLAKE2S_HASH_SIZE, 624 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 625 }; 626 627 static void _mix_pool_bytes(const void *buf, size_t len) 628 { 629 blake2s_update(&input_pool.hash, buf, len); 630 } 631 632 /* 633 * This function adds bytes into the input pool. It does not 634 * update the initialization bit counter; the caller should call 635 * credit_init_bits if this is appropriate. 636 */ 637 static void mix_pool_bytes(const void *buf, size_t len) 638 { 639 unsigned long flags; 640 641 spin_lock_irqsave(&input_pool.lock, flags); 642 _mix_pool_bytes(buf, len); 643 spin_unlock_irqrestore(&input_pool.lock, flags); 644 } 645 646 /* 647 * This is an HKDF-like construction for using the hashed collected entropy 648 * as a PRF key, that's then expanded block-by-block. 649 */ 650 static void extract_entropy(void *buf, size_t len) 651 { 652 unsigned long flags; 653 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 654 struct { 655 unsigned long rdseed[32 / sizeof(long)]; 656 size_t counter; 657 } block; 658 size_t i, longs; 659 660 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 661 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 662 if (longs) { 663 i += longs; 664 continue; 665 } 666 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 667 if (longs) { 668 i += longs; 669 continue; 670 } 671 block.rdseed[i++] = random_get_entropy(); 672 } 673 674 spin_lock_irqsave(&input_pool.lock, flags); 675 676 /* seed = HASHPRF(last_key, entropy_input) */ 677 blake2s_final(&input_pool.hash, seed); 678 679 /* next_key = HASHPRF(seed, RDSEED || 0) */ 680 block.counter = 0; 681 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 682 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 683 684 spin_unlock_irqrestore(&input_pool.lock, flags); 685 memzero_explicit(next_key, sizeof(next_key)); 686 687 while (len) { 688 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 689 /* output = HASHPRF(seed, RDSEED || ++counter) */ 690 ++block.counter; 691 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 692 len -= i; 693 buf += i; 694 } 695 696 memzero_explicit(seed, sizeof(seed)); 697 memzero_explicit(&block, sizeof(block)); 698 } 699 700 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 701 702 static void __cold _credit_init_bits(size_t bits) 703 { 704 static struct execute_work set_ready; 705 unsigned int new, orig, add; 706 unsigned long flags; 707 708 if (!bits) 709 return; 710 711 add = min_t(size_t, bits, POOL_BITS); 712 713 orig = READ_ONCE(input_pool.init_bits); 714 do { 715 new = min_t(unsigned int, POOL_BITS, orig + add); 716 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 717 718 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 719 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 720 if (static_key_initialized) 721 execute_in_process_context(crng_set_ready, &set_ready); 722 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 723 wake_up_interruptible(&crng_init_wait); 724 kill_fasync(&fasync, SIGIO, POLL_IN); 725 pr_notice("crng init done\n"); 726 if (urandom_warning.missed) 727 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 728 urandom_warning.missed); 729 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 730 spin_lock_irqsave(&base_crng.lock, flags); 731 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 732 if (crng_init == CRNG_EMPTY) { 733 extract_entropy(base_crng.key, sizeof(base_crng.key)); 734 crng_init = CRNG_EARLY; 735 } 736 spin_unlock_irqrestore(&base_crng.lock, flags); 737 } 738 } 739 740 741 /********************************************************************** 742 * 743 * Entropy collection routines. 744 * 745 * The following exported functions are used for pushing entropy into 746 * the above entropy accumulation routines: 747 * 748 * void add_device_randomness(const void *buf, size_t len); 749 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 750 * void add_bootloader_randomness(const void *buf, size_t len); 751 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 752 * void add_interrupt_randomness(int irq); 753 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 754 * void add_disk_randomness(struct gendisk *disk); 755 * 756 * add_device_randomness() adds data to the input pool that 757 * is likely to differ between two devices (or possibly even per boot). 758 * This would be things like MAC addresses or serial numbers, or the 759 * read-out of the RTC. This does *not* credit any actual entropy to 760 * the pool, but it initializes the pool to different values for devices 761 * that might otherwise be identical and have very little entropy 762 * available to them (particularly common in the embedded world). 763 * 764 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 765 * entropy as specified by the caller. If the entropy pool is full it will 766 * block until more entropy is needed. 767 * 768 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 769 * and device tree, and credits its input depending on whether or not the 770 * command line option 'random.trust_bootloader'. 771 * 772 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 773 * representing the current instance of a VM to the pool, without crediting, 774 * and then force-reseeds the crng so that it takes effect immediately. 775 * 776 * add_interrupt_randomness() uses the interrupt timing as random 777 * inputs to the entropy pool. Using the cycle counters and the irq source 778 * as inputs, it feeds the input pool roughly once a second or after 64 779 * interrupts, crediting 1 bit of entropy for whichever comes first. 780 * 781 * add_input_randomness() uses the input layer interrupt timing, as well 782 * as the event type information from the hardware. 783 * 784 * add_disk_randomness() uses what amounts to the seek time of block 785 * layer request events, on a per-disk_devt basis, as input to the 786 * entropy pool. Note that high-speed solid state drives with very low 787 * seek times do not make for good sources of entropy, as their seek 788 * times are usually fairly consistent. 789 * 790 * The last two routines try to estimate how many bits of entropy 791 * to credit. They do this by keeping track of the first and second 792 * order deltas of the event timings. 793 * 794 **********************************************************************/ 795 796 static bool trust_cpu __initdata = true; 797 static bool trust_bootloader __initdata = true; 798 static int __init parse_trust_cpu(char *arg) 799 { 800 return kstrtobool(arg, &trust_cpu); 801 } 802 static int __init parse_trust_bootloader(char *arg) 803 { 804 return kstrtobool(arg, &trust_bootloader); 805 } 806 early_param("random.trust_cpu", parse_trust_cpu); 807 early_param("random.trust_bootloader", parse_trust_bootloader); 808 809 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 810 { 811 unsigned long flags, entropy = random_get_entropy(); 812 813 /* 814 * Encode a representation of how long the system has been suspended, 815 * in a way that is distinct from prior system suspends. 816 */ 817 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 818 819 spin_lock_irqsave(&input_pool.lock, flags); 820 _mix_pool_bytes(&action, sizeof(action)); 821 _mix_pool_bytes(stamps, sizeof(stamps)); 822 _mix_pool_bytes(&entropy, sizeof(entropy)); 823 spin_unlock_irqrestore(&input_pool.lock, flags); 824 825 if (crng_ready() && (action == PM_RESTORE_PREPARE || 826 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 827 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 828 crng_reseed(NULL); 829 pr_notice("crng reseeded on system resumption\n"); 830 } 831 return 0; 832 } 833 834 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 835 836 /* 837 * This is called extremely early, before time keeping functionality is 838 * available, but arch randomness is. Interrupts are not yet enabled. 839 */ 840 void __init random_init_early(const char *command_line) 841 { 842 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 843 size_t i, longs, arch_bits; 844 845 #if defined(LATENT_ENTROPY_PLUGIN) 846 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 847 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 848 #endif 849 850 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 851 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 852 if (longs) { 853 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 854 i += longs; 855 continue; 856 } 857 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 858 if (longs) { 859 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 860 i += longs; 861 continue; 862 } 863 arch_bits -= sizeof(*entropy) * 8; 864 ++i; 865 } 866 867 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 868 _mix_pool_bytes(command_line, strlen(command_line)); 869 870 /* Reseed if already seeded by earlier phases. */ 871 if (crng_ready()) 872 crng_reseed(NULL); 873 else if (trust_cpu) 874 _credit_init_bits(arch_bits); 875 } 876 877 /* 878 * This is called a little bit after the prior function, and now there is 879 * access to timestamps counters. Interrupts are not yet enabled. 880 */ 881 void __init random_init(void) 882 { 883 unsigned long entropy = random_get_entropy(); 884 ktime_t now = ktime_get_real(); 885 886 _mix_pool_bytes(&now, sizeof(now)); 887 _mix_pool_bytes(&entropy, sizeof(entropy)); 888 add_latent_entropy(); 889 890 /* 891 * If we were initialized by the cpu or bootloader before jump labels 892 * are initialized, then we should enable the static branch here, where 893 * it's guaranteed that jump labels have been initialized. 894 */ 895 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 896 crng_set_ready(NULL); 897 898 /* Reseed if already seeded by earlier phases. */ 899 if (crng_ready()) 900 crng_reseed(NULL); 901 902 WARN_ON(register_pm_notifier(&pm_notifier)); 903 904 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 905 "entropy collection will consequently suffer."); 906 } 907 908 /* 909 * Add device- or boot-specific data to the input pool to help 910 * initialize it. 911 * 912 * None of this adds any entropy; it is meant to avoid the problem of 913 * the entropy pool having similar initial state across largely 914 * identical devices. 915 */ 916 void add_device_randomness(const void *buf, size_t len) 917 { 918 unsigned long entropy = random_get_entropy(); 919 unsigned long flags; 920 921 spin_lock_irqsave(&input_pool.lock, flags); 922 _mix_pool_bytes(&entropy, sizeof(entropy)); 923 _mix_pool_bytes(buf, len); 924 spin_unlock_irqrestore(&input_pool.lock, flags); 925 } 926 EXPORT_SYMBOL(add_device_randomness); 927 928 /* 929 * Interface for in-kernel drivers of true hardware RNGs. Those devices 930 * may produce endless random bits, so this function will sleep for 931 * some amount of time after, if the sleep_after parameter is true. 932 */ 933 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 934 { 935 mix_pool_bytes(buf, len); 936 credit_init_bits(entropy); 937 938 /* 939 * Throttle writing to once every reseed interval, unless we're not yet 940 * initialized or no entropy is credited. 941 */ 942 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 943 schedule_timeout_interruptible(crng_reseed_interval()); 944 } 945 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 946 947 /* 948 * Handle random seed passed by bootloader, and credit it depending 949 * on the command line option 'random.trust_bootloader'. 950 */ 951 void __init add_bootloader_randomness(const void *buf, size_t len) 952 { 953 mix_pool_bytes(buf, len); 954 if (trust_bootloader) 955 credit_init_bits(len * 8); 956 } 957 958 #if IS_ENABLED(CONFIG_VMGENID) 959 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 960 961 /* 962 * Handle a new unique VM ID, which is unique, not secret, so we 963 * don't credit it, but we do immediately force a reseed after so 964 * that it's used by the crng posthaste. 965 */ 966 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 967 { 968 add_device_randomness(unique_vm_id, len); 969 if (crng_ready()) { 970 crng_reseed(NULL); 971 pr_notice("crng reseeded due to virtual machine fork\n"); 972 } 973 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 974 } 975 #if IS_MODULE(CONFIG_VMGENID) 976 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 977 #endif 978 979 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 980 { 981 return blocking_notifier_chain_register(&vmfork_chain, nb); 982 } 983 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 984 985 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 986 { 987 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 988 } 989 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 990 #endif 991 992 struct fast_pool { 993 unsigned long pool[4]; 994 unsigned long last; 995 unsigned int count; 996 struct timer_list mix; 997 }; 998 999 static void mix_interrupt_randomness(struct timer_list *work); 1000 1001 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1002 #ifdef CONFIG_64BIT 1003 #define FASTMIX_PERM SIPHASH_PERMUTATION 1004 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1005 #else 1006 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1007 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1008 #endif 1009 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1010 }; 1011 1012 /* 1013 * This is [Half]SipHash-1-x, starting from an empty key. Because 1014 * the key is fixed, it assumes that its inputs are non-malicious, 1015 * and therefore this has no security on its own. s represents the 1016 * four-word SipHash state, while v represents a two-word input. 1017 */ 1018 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1019 { 1020 s[3] ^= v1; 1021 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1022 s[0] ^= v1; 1023 s[3] ^= v2; 1024 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1025 s[0] ^= v2; 1026 } 1027 1028 #ifdef CONFIG_SMP 1029 /* 1030 * This function is called when the CPU has just come online, with 1031 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1032 */ 1033 int __cold random_online_cpu(unsigned int cpu) 1034 { 1035 /* 1036 * During CPU shutdown and before CPU onlining, add_interrupt_ 1037 * randomness() may schedule mix_interrupt_randomness(), and 1038 * set the MIX_INFLIGHT flag. However, because the worker can 1039 * be scheduled on a different CPU during this period, that 1040 * flag will never be cleared. For that reason, we zero out 1041 * the flag here, which runs just after workqueues are onlined 1042 * for the CPU again. This also has the effect of setting the 1043 * irq randomness count to zero so that new accumulated irqs 1044 * are fresh. 1045 */ 1046 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1047 return 0; 1048 } 1049 #endif 1050 1051 static void mix_interrupt_randomness(struct timer_list *work) 1052 { 1053 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1054 /* 1055 * The size of the copied stack pool is explicitly 2 longs so that we 1056 * only ever ingest half of the siphash output each time, retaining 1057 * the other half as the next "key" that carries over. The entropy is 1058 * supposed to be sufficiently dispersed between bits so on average 1059 * we don't wind up "losing" some. 1060 */ 1061 unsigned long pool[2]; 1062 unsigned int count; 1063 1064 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1065 local_irq_disable(); 1066 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1067 local_irq_enable(); 1068 return; 1069 } 1070 1071 /* 1072 * Copy the pool to the stack so that the mixer always has a 1073 * consistent view, before we reenable irqs again. 1074 */ 1075 memcpy(pool, fast_pool->pool, sizeof(pool)); 1076 count = fast_pool->count; 1077 fast_pool->count = 0; 1078 fast_pool->last = jiffies; 1079 local_irq_enable(); 1080 1081 mix_pool_bytes(pool, sizeof(pool)); 1082 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1083 1084 memzero_explicit(pool, sizeof(pool)); 1085 } 1086 1087 void add_interrupt_randomness(int irq) 1088 { 1089 enum { MIX_INFLIGHT = 1U << 31 }; 1090 unsigned long entropy = random_get_entropy(); 1091 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1092 struct pt_regs *regs = get_irq_regs(); 1093 unsigned int new_count; 1094 1095 fast_mix(fast_pool->pool, entropy, 1096 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1097 new_count = ++fast_pool->count; 1098 1099 if (new_count & MIX_INFLIGHT) 1100 return; 1101 1102 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1103 return; 1104 1105 fast_pool->count |= MIX_INFLIGHT; 1106 if (!timer_pending(&fast_pool->mix)) { 1107 fast_pool->mix.expires = jiffies; 1108 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1109 } 1110 } 1111 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1112 1113 /* There is one of these per entropy source */ 1114 struct timer_rand_state { 1115 unsigned long last_time; 1116 long last_delta, last_delta2; 1117 }; 1118 1119 /* 1120 * This function adds entropy to the entropy "pool" by using timing 1121 * delays. It uses the timer_rand_state structure to make an estimate 1122 * of how many bits of entropy this call has added to the pool. The 1123 * value "num" is also added to the pool; it should somehow describe 1124 * the type of event that just happened. 1125 */ 1126 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1127 { 1128 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1129 long delta, delta2, delta3; 1130 unsigned int bits; 1131 1132 /* 1133 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1134 * sometime after, so mix into the fast pool. 1135 */ 1136 if (in_hardirq()) { 1137 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1138 } else { 1139 spin_lock_irqsave(&input_pool.lock, flags); 1140 _mix_pool_bytes(&entropy, sizeof(entropy)); 1141 _mix_pool_bytes(&num, sizeof(num)); 1142 spin_unlock_irqrestore(&input_pool.lock, flags); 1143 } 1144 1145 if (crng_ready()) 1146 return; 1147 1148 /* 1149 * Calculate number of bits of randomness we probably added. 1150 * We take into account the first, second and third-order deltas 1151 * in order to make our estimate. 1152 */ 1153 delta = now - READ_ONCE(state->last_time); 1154 WRITE_ONCE(state->last_time, now); 1155 1156 delta2 = delta - READ_ONCE(state->last_delta); 1157 WRITE_ONCE(state->last_delta, delta); 1158 1159 delta3 = delta2 - READ_ONCE(state->last_delta2); 1160 WRITE_ONCE(state->last_delta2, delta2); 1161 1162 if (delta < 0) 1163 delta = -delta; 1164 if (delta2 < 0) 1165 delta2 = -delta2; 1166 if (delta3 < 0) 1167 delta3 = -delta3; 1168 if (delta > delta2) 1169 delta = delta2; 1170 if (delta > delta3) 1171 delta = delta3; 1172 1173 /* 1174 * delta is now minimum absolute delta. Round down by 1 bit 1175 * on general principles, and limit entropy estimate to 11 bits. 1176 */ 1177 bits = min(fls(delta >> 1), 11); 1178 1179 /* 1180 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1181 * will run after this, which uses a different crediting scheme of 1 bit 1182 * per every 64 interrupts. In order to let that function do accounting 1183 * close to the one in this function, we credit a full 64/64 bit per bit, 1184 * and then subtract one to account for the extra one added. 1185 */ 1186 if (in_hardirq()) 1187 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1188 else 1189 _credit_init_bits(bits); 1190 } 1191 1192 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1193 { 1194 static unsigned char last_value; 1195 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1196 1197 /* Ignore autorepeat and the like. */ 1198 if (value == last_value) 1199 return; 1200 1201 last_value = value; 1202 add_timer_randomness(&input_timer_state, 1203 (type << 4) ^ code ^ (code >> 4) ^ value); 1204 } 1205 EXPORT_SYMBOL_GPL(add_input_randomness); 1206 1207 #ifdef CONFIG_BLOCK 1208 void add_disk_randomness(struct gendisk *disk) 1209 { 1210 if (!disk || !disk->random) 1211 return; 1212 /* First major is 1, so we get >= 0x200 here. */ 1213 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1214 } 1215 EXPORT_SYMBOL_GPL(add_disk_randomness); 1216 1217 void __cold rand_initialize_disk(struct gendisk *disk) 1218 { 1219 struct timer_rand_state *state; 1220 1221 /* 1222 * If kzalloc returns null, we just won't use that entropy 1223 * source. 1224 */ 1225 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1226 if (state) { 1227 state->last_time = INITIAL_JIFFIES; 1228 disk->random = state; 1229 } 1230 } 1231 #endif 1232 1233 struct entropy_timer_state { 1234 unsigned long entropy; 1235 struct timer_list timer; 1236 atomic_t samples; 1237 unsigned int samples_per_bit; 1238 }; 1239 1240 /* 1241 * Each time the timer fires, we expect that we got an unpredictable jump in 1242 * the cycle counter. Even if the timer is running on another CPU, the timer 1243 * activity will be touching the stack of the CPU that is generating entropy. 1244 * 1245 * Note that we don't re-arm the timer in the timer itself - we are happy to be 1246 * scheduled away, since that just makes the load more complex, but we do not 1247 * want the timer to keep ticking unless the entropy loop is running. 1248 * 1249 * So the re-arming always happens in the entropy loop itself. 1250 */ 1251 static void __cold entropy_timer(struct timer_list *timer) 1252 { 1253 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1254 unsigned long entropy = random_get_entropy(); 1255 1256 mix_pool_bytes(&entropy, sizeof(entropy)); 1257 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) 1258 credit_init_bits(1); 1259 } 1260 1261 /* 1262 * If we have an actual cycle counter, see if we can generate enough entropy 1263 * with timing noise. 1264 */ 1265 static void __cold try_to_generate_entropy(void) 1266 { 1267 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1268 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; 1269 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); 1270 unsigned int i, num_different = 0; 1271 unsigned long last = random_get_entropy(); 1272 int cpu = -1; 1273 1274 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1275 stack->entropy = random_get_entropy(); 1276 if (stack->entropy != last) 1277 ++num_different; 1278 last = stack->entropy; 1279 } 1280 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1281 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) 1282 return; 1283 1284 atomic_set(&stack->samples, 0); 1285 timer_setup_on_stack(&stack->timer, entropy_timer, 0); 1286 while (!crng_ready() && !signal_pending(current)) { 1287 /* 1288 * Check !timer_pending() and then ensure that any previous callback has finished 1289 * executing by checking try_to_del_timer_sync(), before queueing the next one. 1290 */ 1291 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) { 1292 struct cpumask timer_cpus; 1293 unsigned int num_cpus; 1294 1295 /* 1296 * Preemption must be disabled here, both to read the current CPU number 1297 * and to avoid scheduling a timer on a dead CPU. 1298 */ 1299 preempt_disable(); 1300 1301 /* Only schedule callbacks on timer CPUs that are online. */ 1302 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); 1303 num_cpus = cpumask_weight(&timer_cpus); 1304 /* In very bizarre case of misconfiguration, fallback to all online. */ 1305 if (unlikely(num_cpus == 0)) { 1306 timer_cpus = *cpu_online_mask; 1307 num_cpus = cpumask_weight(&timer_cpus); 1308 } 1309 1310 /* Basic CPU round-robin, which avoids the current CPU. */ 1311 do { 1312 cpu = cpumask_next(cpu, &timer_cpus); 1313 if (cpu == nr_cpumask_bits) 1314 cpu = cpumask_first(&timer_cpus); 1315 } while (cpu == smp_processor_id() && num_cpus > 1); 1316 1317 /* Expiring the timer at `jiffies` means it's the next tick. */ 1318 stack->timer.expires = jiffies; 1319 1320 add_timer_on(&stack->timer, cpu); 1321 1322 preempt_enable(); 1323 } 1324 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1325 schedule(); 1326 stack->entropy = random_get_entropy(); 1327 } 1328 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1329 1330 del_timer_sync(&stack->timer); 1331 destroy_timer_on_stack(&stack->timer); 1332 } 1333 1334 1335 /********************************************************************** 1336 * 1337 * Userspace reader/writer interfaces. 1338 * 1339 * getrandom(2) is the primary modern interface into the RNG and should 1340 * be used in preference to anything else. 1341 * 1342 * Reading from /dev/random has the same functionality as calling 1343 * getrandom(2) with flags=0. In earlier versions, however, it had 1344 * vastly different semantics and should therefore be avoided, to 1345 * prevent backwards compatibility issues. 1346 * 1347 * Reading from /dev/urandom has the same functionality as calling 1348 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1349 * waiting for the RNG to be ready, it should not be used. 1350 * 1351 * Writing to either /dev/random or /dev/urandom adds entropy to 1352 * the input pool but does not credit it. 1353 * 1354 * Polling on /dev/random indicates when the RNG is initialized, on 1355 * the read side, and when it wants new entropy, on the write side. 1356 * 1357 * Both /dev/random and /dev/urandom have the same set of ioctls for 1358 * adding entropy, getting the entropy count, zeroing the count, and 1359 * reseeding the crng. 1360 * 1361 **********************************************************************/ 1362 1363 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1364 { 1365 struct iov_iter iter; 1366 struct iovec iov; 1367 int ret; 1368 1369 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1370 return -EINVAL; 1371 1372 /* 1373 * Requesting insecure and blocking randomness at the same time makes 1374 * no sense. 1375 */ 1376 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1377 return -EINVAL; 1378 1379 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1380 if (flags & GRND_NONBLOCK) 1381 return -EAGAIN; 1382 ret = wait_for_random_bytes(); 1383 if (unlikely(ret)) 1384 return ret; 1385 } 1386 1387 ret = import_single_range(ITER_DEST, ubuf, len, &iov, &iter); 1388 if (unlikely(ret)) 1389 return ret; 1390 return get_random_bytes_user(&iter); 1391 } 1392 1393 static __poll_t random_poll(struct file *file, poll_table *wait) 1394 { 1395 poll_wait(file, &crng_init_wait, wait); 1396 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1397 } 1398 1399 static ssize_t write_pool_user(struct iov_iter *iter) 1400 { 1401 u8 block[BLAKE2S_BLOCK_SIZE]; 1402 ssize_t ret = 0; 1403 size_t copied; 1404 1405 if (unlikely(!iov_iter_count(iter))) 1406 return 0; 1407 1408 for (;;) { 1409 copied = copy_from_iter(block, sizeof(block), iter); 1410 ret += copied; 1411 mix_pool_bytes(block, copied); 1412 if (!iov_iter_count(iter) || copied != sizeof(block)) 1413 break; 1414 1415 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1416 if (ret % PAGE_SIZE == 0) { 1417 if (signal_pending(current)) 1418 break; 1419 cond_resched(); 1420 } 1421 } 1422 1423 memzero_explicit(block, sizeof(block)); 1424 return ret ? ret : -EFAULT; 1425 } 1426 1427 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1428 { 1429 return write_pool_user(iter); 1430 } 1431 1432 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1433 { 1434 static int maxwarn = 10; 1435 1436 /* 1437 * Opportunistically attempt to initialize the RNG on platforms that 1438 * have fast cycle counters, but don't (for now) require it to succeed. 1439 */ 1440 if (!crng_ready()) 1441 try_to_generate_entropy(); 1442 1443 if (!crng_ready()) { 1444 if (!ratelimit_disable && maxwarn <= 0) 1445 ++urandom_warning.missed; 1446 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1447 --maxwarn; 1448 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1449 current->comm, iov_iter_count(iter)); 1450 } 1451 } 1452 1453 return get_random_bytes_user(iter); 1454 } 1455 1456 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1457 { 1458 int ret; 1459 1460 if (!crng_ready() && 1461 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1462 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1463 return -EAGAIN; 1464 1465 ret = wait_for_random_bytes(); 1466 if (ret != 0) 1467 return ret; 1468 return get_random_bytes_user(iter); 1469 } 1470 1471 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1472 { 1473 int __user *p = (int __user *)arg; 1474 int ent_count; 1475 1476 switch (cmd) { 1477 case RNDGETENTCNT: 1478 /* Inherently racy, no point locking. */ 1479 if (put_user(input_pool.init_bits, p)) 1480 return -EFAULT; 1481 return 0; 1482 case RNDADDTOENTCNT: 1483 if (!capable(CAP_SYS_ADMIN)) 1484 return -EPERM; 1485 if (get_user(ent_count, p)) 1486 return -EFAULT; 1487 if (ent_count < 0) 1488 return -EINVAL; 1489 credit_init_bits(ent_count); 1490 return 0; 1491 case RNDADDENTROPY: { 1492 struct iov_iter iter; 1493 struct iovec iov; 1494 ssize_t ret; 1495 int len; 1496 1497 if (!capable(CAP_SYS_ADMIN)) 1498 return -EPERM; 1499 if (get_user(ent_count, p++)) 1500 return -EFAULT; 1501 if (ent_count < 0) 1502 return -EINVAL; 1503 if (get_user(len, p++)) 1504 return -EFAULT; 1505 ret = import_single_range(ITER_SOURCE, p, len, &iov, &iter); 1506 if (unlikely(ret)) 1507 return ret; 1508 ret = write_pool_user(&iter); 1509 if (unlikely(ret < 0)) 1510 return ret; 1511 /* Since we're crediting, enforce that it was all written into the pool. */ 1512 if (unlikely(ret != len)) 1513 return -EFAULT; 1514 credit_init_bits(ent_count); 1515 return 0; 1516 } 1517 case RNDZAPENTCNT: 1518 case RNDCLEARPOOL: 1519 /* No longer has any effect. */ 1520 if (!capable(CAP_SYS_ADMIN)) 1521 return -EPERM; 1522 return 0; 1523 case RNDRESEEDCRNG: 1524 if (!capable(CAP_SYS_ADMIN)) 1525 return -EPERM; 1526 if (!crng_ready()) 1527 return -ENODATA; 1528 crng_reseed(NULL); 1529 return 0; 1530 default: 1531 return -EINVAL; 1532 } 1533 } 1534 1535 static int random_fasync(int fd, struct file *filp, int on) 1536 { 1537 return fasync_helper(fd, filp, on, &fasync); 1538 } 1539 1540 const struct file_operations random_fops = { 1541 .read_iter = random_read_iter, 1542 .write_iter = random_write_iter, 1543 .poll = random_poll, 1544 .unlocked_ioctl = random_ioctl, 1545 .compat_ioctl = compat_ptr_ioctl, 1546 .fasync = random_fasync, 1547 .llseek = noop_llseek, 1548 .splice_read = generic_file_splice_read, 1549 .splice_write = iter_file_splice_write, 1550 }; 1551 1552 const struct file_operations urandom_fops = { 1553 .read_iter = urandom_read_iter, 1554 .write_iter = random_write_iter, 1555 .unlocked_ioctl = random_ioctl, 1556 .compat_ioctl = compat_ptr_ioctl, 1557 .fasync = random_fasync, 1558 .llseek = noop_llseek, 1559 .splice_read = generic_file_splice_read, 1560 .splice_write = iter_file_splice_write, 1561 }; 1562 1563 1564 /******************************************************************** 1565 * 1566 * Sysctl interface. 1567 * 1568 * These are partly unused legacy knobs with dummy values to not break 1569 * userspace and partly still useful things. They are usually accessible 1570 * in /proc/sys/kernel/random/ and are as follows: 1571 * 1572 * - boot_id - a UUID representing the current boot. 1573 * 1574 * - uuid - a random UUID, different each time the file is read. 1575 * 1576 * - poolsize - the number of bits of entropy that the input pool can 1577 * hold, tied to the POOL_BITS constant. 1578 * 1579 * - entropy_avail - the number of bits of entropy currently in the 1580 * input pool. Always <= poolsize. 1581 * 1582 * - write_wakeup_threshold - the amount of entropy in the input pool 1583 * below which write polls to /dev/random will unblock, requesting 1584 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1585 * to avoid breaking old userspaces, but writing to it does not 1586 * change any behavior of the RNG. 1587 * 1588 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1589 * It is writable to avoid breaking old userspaces, but writing 1590 * to it does not change any behavior of the RNG. 1591 * 1592 ********************************************************************/ 1593 1594 #ifdef CONFIG_SYSCTL 1595 1596 #include <linux/sysctl.h> 1597 1598 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1599 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1600 static int sysctl_poolsize = POOL_BITS; 1601 static u8 sysctl_bootid[UUID_SIZE]; 1602 1603 /* 1604 * This function is used to return both the bootid UUID, and random 1605 * UUID. The difference is in whether table->data is NULL; if it is, 1606 * then a new UUID is generated and returned to the user. 1607 */ 1608 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1609 size_t *lenp, loff_t *ppos) 1610 { 1611 u8 tmp_uuid[UUID_SIZE], *uuid; 1612 char uuid_string[UUID_STRING_LEN + 1]; 1613 struct ctl_table fake_table = { 1614 .data = uuid_string, 1615 .maxlen = UUID_STRING_LEN 1616 }; 1617 1618 if (write) 1619 return -EPERM; 1620 1621 uuid = table->data; 1622 if (!uuid) { 1623 uuid = tmp_uuid; 1624 generate_random_uuid(uuid); 1625 } else { 1626 static DEFINE_SPINLOCK(bootid_spinlock); 1627 1628 spin_lock(&bootid_spinlock); 1629 if (!uuid[8]) 1630 generate_random_uuid(uuid); 1631 spin_unlock(&bootid_spinlock); 1632 } 1633 1634 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1635 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1636 } 1637 1638 /* The same as proc_dointvec, but writes don't change anything. */ 1639 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1640 size_t *lenp, loff_t *ppos) 1641 { 1642 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1643 } 1644 1645 static struct ctl_table random_table[] = { 1646 { 1647 .procname = "poolsize", 1648 .data = &sysctl_poolsize, 1649 .maxlen = sizeof(int), 1650 .mode = 0444, 1651 .proc_handler = proc_dointvec, 1652 }, 1653 { 1654 .procname = "entropy_avail", 1655 .data = &input_pool.init_bits, 1656 .maxlen = sizeof(int), 1657 .mode = 0444, 1658 .proc_handler = proc_dointvec, 1659 }, 1660 { 1661 .procname = "write_wakeup_threshold", 1662 .data = &sysctl_random_write_wakeup_bits, 1663 .maxlen = sizeof(int), 1664 .mode = 0644, 1665 .proc_handler = proc_do_rointvec, 1666 }, 1667 { 1668 .procname = "urandom_min_reseed_secs", 1669 .data = &sysctl_random_min_urandom_seed, 1670 .maxlen = sizeof(int), 1671 .mode = 0644, 1672 .proc_handler = proc_do_rointvec, 1673 }, 1674 { 1675 .procname = "boot_id", 1676 .data = &sysctl_bootid, 1677 .mode = 0444, 1678 .proc_handler = proc_do_uuid, 1679 }, 1680 { 1681 .procname = "uuid", 1682 .mode = 0444, 1683 .proc_handler = proc_do_uuid, 1684 }, 1685 { } 1686 }; 1687 1688 /* 1689 * random_init() is called before sysctl_init(), 1690 * so we cannot call register_sysctl_init() in random_init() 1691 */ 1692 static int __init random_sysctls_init(void) 1693 { 1694 register_sysctl_init("kernel/random", random_table); 1695 return 0; 1696 } 1697 device_initcall(random_sysctls_init); 1698 #endif 1699