xref: /linux/drivers/char/random.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 /*********************************************************************
64  *
65  * Initialization and readiness waiting.
66  *
67  * Much of the RNG infrastructure is devoted to various dependencies
68  * being able to wait until the RNG has collected enough entropy and
69  * is ready for safe consumption.
70  *
71  *********************************************************************/
72 
73 /*
74  * crng_init is protected by base_crng->lock, and only increases
75  * its value (from empty->early->ready).
76  */
77 static enum {
78 	CRNG_EMPTY = 0, /* Little to no entropy collected */
79 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84 /* Various types of waiters for crng_init->CRNG_READY transition. */
85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86 static struct fasync_struct *fasync;
87 
88 /* Control how we warn userspace. */
89 static struct ratelimit_state urandom_warning =
90 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 static int ratelimit_disable __read_mostly =
92 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95 
96 /*
97  * Returns whether or not the input pool has been seeded and thus guaranteed
98  * to supply cryptographically secure random numbers. This applies to: the
99  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
100  * ,u64,int,long} family of functions.
101  *
102  * Returns: true if the input pool has been seeded.
103  *          false if the input pool has not been seeded.
104  */
105 bool rng_is_initialized(void)
106 {
107 	return crng_ready();
108 }
109 EXPORT_SYMBOL(rng_is_initialized);
110 
111 static void __cold crng_set_ready(struct work_struct *work)
112 {
113 	static_branch_enable(&crng_is_ready);
114 }
115 
116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117 static void try_to_generate_entropy(void);
118 
119 /*
120  * Wait for the input pool to be seeded and thus guaranteed to supply
121  * cryptographically secure random numbers. This applies to: the /dev/urandom
122  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
123  * family of functions. Using any of these functions without first calling
124  * this function forfeits the guarantee of security.
125  *
126  * Returns: 0 if the input pool has been seeded.
127  *          -ERESTARTSYS if the function was interrupted by a signal.
128  */
129 int wait_for_random_bytes(void)
130 {
131 	while (!crng_ready()) {
132 		int ret;
133 
134 		try_to_generate_entropy();
135 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 		if (ret)
137 			return ret > 0 ? 0 : ret;
138 	}
139 	return 0;
140 }
141 EXPORT_SYMBOL(wait_for_random_bytes);
142 
143 #define warn_unseeded_randomness() \
144 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 				__func__, (void *)_RET_IP_, crng_init)
147 
148 
149 /*********************************************************************
150  *
151  * Fast key erasure RNG, the "crng".
152  *
153  * These functions expand entropy from the entropy extractor into
154  * long streams for external consumption using the "fast key erasure"
155  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156  *
157  * There are a few exported interfaces for use by other drivers:
158  *
159  *	void get_random_bytes(void *buf, size_t len)
160  *	u32 get_random_u32()
161  *	u64 get_random_u64()
162  *	unsigned int get_random_int()
163  *	unsigned long get_random_long()
164  *
165  * These interfaces will return the requested number of random bytes
166  * into the given buffer or as a return value. This is equivalent to
167  * a read from /dev/urandom. The u32, u64, int, and long family of
168  * functions may be higher performance for one-off random integers,
169  * because they do a bit of buffering and do not invoke reseeding
170  * until the buffer is emptied.
171  *
172  *********************************************************************/
173 
174 enum {
175 	CRNG_RESEED_START_INTERVAL = HZ,
176 	CRNG_RESEED_INTERVAL = 60 * HZ
177 };
178 
179 static struct {
180 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
181 	unsigned long birth;
182 	unsigned long generation;
183 	spinlock_t lock;
184 } base_crng = {
185 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
186 };
187 
188 struct crng {
189 	u8 key[CHACHA_KEY_SIZE];
190 	unsigned long generation;
191 	local_lock_t lock;
192 };
193 
194 static DEFINE_PER_CPU(struct crng, crngs) = {
195 	.generation = ULONG_MAX,
196 	.lock = INIT_LOCAL_LOCK(crngs.lock),
197 };
198 
199 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
200 static void extract_entropy(void *buf, size_t len);
201 
202 /* This extracts a new crng key from the input pool. */
203 static void crng_reseed(void)
204 {
205 	unsigned long flags;
206 	unsigned long next_gen;
207 	u8 key[CHACHA_KEY_SIZE];
208 
209 	extract_entropy(key, sizeof(key));
210 
211 	/*
212 	 * We copy the new key into the base_crng, overwriting the old one,
213 	 * and update the generation counter. We avoid hitting ULONG_MAX,
214 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
215 	 * forces new CPUs that come online to always initialize.
216 	 */
217 	spin_lock_irqsave(&base_crng.lock, flags);
218 	memcpy(base_crng.key, key, sizeof(base_crng.key));
219 	next_gen = base_crng.generation + 1;
220 	if (next_gen == ULONG_MAX)
221 		++next_gen;
222 	WRITE_ONCE(base_crng.generation, next_gen);
223 	WRITE_ONCE(base_crng.birth, jiffies);
224 	if (!static_branch_likely(&crng_is_ready))
225 		crng_init = CRNG_READY;
226 	spin_unlock_irqrestore(&base_crng.lock, flags);
227 	memzero_explicit(key, sizeof(key));
228 }
229 
230 /*
231  * This generates a ChaCha block using the provided key, and then
232  * immediately overwrites that key with half the block. It returns
233  * the resultant ChaCha state to the user, along with the second
234  * half of the block containing 32 bytes of random data that may
235  * be used; random_data_len may not be greater than 32.
236  *
237  * The returned ChaCha state contains within it a copy of the old
238  * key value, at index 4, so the state should always be zeroed out
239  * immediately after using in order to maintain forward secrecy.
240  * If the state cannot be erased in a timely manner, then it is
241  * safer to set the random_data parameter to &chacha_state[4] so
242  * that this function overwrites it before returning.
243  */
244 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
245 				  u32 chacha_state[CHACHA_STATE_WORDS],
246 				  u8 *random_data, size_t random_data_len)
247 {
248 	u8 first_block[CHACHA_BLOCK_SIZE];
249 
250 	BUG_ON(random_data_len > 32);
251 
252 	chacha_init_consts(chacha_state);
253 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
254 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
255 	chacha20_block(chacha_state, first_block);
256 
257 	memcpy(key, first_block, CHACHA_KEY_SIZE);
258 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
259 	memzero_explicit(first_block, sizeof(first_block));
260 }
261 
262 /*
263  * Return whether the crng seed is considered to be sufficiently old
264  * that a reseeding is needed. This happens if the last reseeding
265  * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
266  * proportional to the uptime.
267  */
268 static bool crng_has_old_seed(void)
269 {
270 	static bool early_boot = true;
271 	unsigned long interval = CRNG_RESEED_INTERVAL;
272 
273 	if (unlikely(READ_ONCE(early_boot))) {
274 		time64_t uptime = ktime_get_seconds();
275 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
276 			WRITE_ONCE(early_boot, false);
277 		else
278 			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
279 					 (unsigned int)uptime / 2 * HZ);
280 	}
281 	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
282 }
283 
284 /*
285  * This function returns a ChaCha state that you may use for generating
286  * random data. It also returns up to 32 bytes on its own of random data
287  * that may be used; random_data_len may not be greater than 32.
288  */
289 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
290 			    u8 *random_data, size_t random_data_len)
291 {
292 	unsigned long flags;
293 	struct crng *crng;
294 
295 	BUG_ON(random_data_len > 32);
296 
297 	/*
298 	 * For the fast path, we check whether we're ready, unlocked first, and
299 	 * then re-check once locked later. In the case where we're really not
300 	 * ready, we do fast key erasure with the base_crng directly, extracting
301 	 * when crng_init is CRNG_EMPTY.
302 	 */
303 	if (!crng_ready()) {
304 		bool ready;
305 
306 		spin_lock_irqsave(&base_crng.lock, flags);
307 		ready = crng_ready();
308 		if (!ready) {
309 			if (crng_init == CRNG_EMPTY)
310 				extract_entropy(base_crng.key, sizeof(base_crng.key));
311 			crng_fast_key_erasure(base_crng.key, chacha_state,
312 					      random_data, random_data_len);
313 		}
314 		spin_unlock_irqrestore(&base_crng.lock, flags);
315 		if (!ready)
316 			return;
317 	}
318 
319 	/*
320 	 * If the base_crng is old enough, we reseed, which in turn bumps the
321 	 * generation counter that we check below.
322 	 */
323 	if (unlikely(crng_has_old_seed()))
324 		crng_reseed();
325 
326 	local_lock_irqsave(&crngs.lock, flags);
327 	crng = raw_cpu_ptr(&crngs);
328 
329 	/*
330 	 * If our per-cpu crng is older than the base_crng, then it means
331 	 * somebody reseeded the base_crng. In that case, we do fast key
332 	 * erasure on the base_crng, and use its output as the new key
333 	 * for our per-cpu crng. This brings us up to date with base_crng.
334 	 */
335 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
336 		spin_lock(&base_crng.lock);
337 		crng_fast_key_erasure(base_crng.key, chacha_state,
338 				      crng->key, sizeof(crng->key));
339 		crng->generation = base_crng.generation;
340 		spin_unlock(&base_crng.lock);
341 	}
342 
343 	/*
344 	 * Finally, when we've made it this far, our per-cpu crng has an up
345 	 * to date key, and we can do fast key erasure with it to produce
346 	 * some random data and a ChaCha state for the caller. All other
347 	 * branches of this function are "unlikely", so most of the time we
348 	 * should wind up here immediately.
349 	 */
350 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
351 	local_unlock_irqrestore(&crngs.lock, flags);
352 }
353 
354 static void _get_random_bytes(void *buf, size_t len)
355 {
356 	u32 chacha_state[CHACHA_STATE_WORDS];
357 	u8 tmp[CHACHA_BLOCK_SIZE];
358 	size_t first_block_len;
359 
360 	if (!len)
361 		return;
362 
363 	first_block_len = min_t(size_t, 32, len);
364 	crng_make_state(chacha_state, buf, first_block_len);
365 	len -= first_block_len;
366 	buf += first_block_len;
367 
368 	while (len) {
369 		if (len < CHACHA_BLOCK_SIZE) {
370 			chacha20_block(chacha_state, tmp);
371 			memcpy(buf, tmp, len);
372 			memzero_explicit(tmp, sizeof(tmp));
373 			break;
374 		}
375 
376 		chacha20_block(chacha_state, buf);
377 		if (unlikely(chacha_state[12] == 0))
378 			++chacha_state[13];
379 		len -= CHACHA_BLOCK_SIZE;
380 		buf += CHACHA_BLOCK_SIZE;
381 	}
382 
383 	memzero_explicit(chacha_state, sizeof(chacha_state));
384 }
385 
386 /*
387  * This function is the exported kernel interface.  It returns some
388  * number of good random numbers, suitable for key generation, seeding
389  * TCP sequence numbers, etc. In order to ensure that the randomness
390  * by this function is okay, the function wait_for_random_bytes()
391  * should be called and return 0 at least once at any point prior.
392  */
393 void get_random_bytes(void *buf, size_t len)
394 {
395 	warn_unseeded_randomness();
396 	_get_random_bytes(buf, len);
397 }
398 EXPORT_SYMBOL(get_random_bytes);
399 
400 static ssize_t get_random_bytes_user(struct iov_iter *iter)
401 {
402 	u32 chacha_state[CHACHA_STATE_WORDS];
403 	u8 block[CHACHA_BLOCK_SIZE];
404 	size_t ret = 0, copied;
405 
406 	if (unlikely(!iov_iter_count(iter)))
407 		return 0;
408 
409 	/*
410 	 * Immediately overwrite the ChaCha key at index 4 with random
411 	 * bytes, in case userspace causes copy_to_iter() below to sleep
412 	 * forever, so that we still retain forward secrecy in that case.
413 	 */
414 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
415 	/*
416 	 * However, if we're doing a read of len <= 32, we don't need to
417 	 * use chacha_state after, so we can simply return those bytes to
418 	 * the user directly.
419 	 */
420 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
421 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
422 		goto out_zero_chacha;
423 	}
424 
425 	for (;;) {
426 		chacha20_block(chacha_state, block);
427 		if (unlikely(chacha_state[12] == 0))
428 			++chacha_state[13];
429 
430 		copied = copy_to_iter(block, sizeof(block), iter);
431 		ret += copied;
432 		if (!iov_iter_count(iter) || copied != sizeof(block))
433 			break;
434 
435 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
436 		if (ret % PAGE_SIZE == 0) {
437 			if (signal_pending(current))
438 				break;
439 			cond_resched();
440 		}
441 	}
442 
443 	memzero_explicit(block, sizeof(block));
444 out_zero_chacha:
445 	memzero_explicit(chacha_state, sizeof(chacha_state));
446 	return ret ? ret : -EFAULT;
447 }
448 
449 /*
450  * Batched entropy returns random integers. The quality of the random
451  * number is good as /dev/urandom. In order to ensure that the randomness
452  * provided by this function is okay, the function wait_for_random_bytes()
453  * should be called and return 0 at least once at any point prior.
454  */
455 
456 #define DEFINE_BATCHED_ENTROPY(type)						\
457 struct batch_ ##type {								\
458 	/*									\
459 	 * We make this 1.5x a ChaCha block, so that we get the			\
460 	 * remaining 32 bytes from fast key erasure, plus one full		\
461 	 * block from the detached ChaCha state. We can increase		\
462 	 * the size of this later if needed so long as we keep the		\
463 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
464 	 */									\
465 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
466 	local_lock_t lock;							\
467 	unsigned long generation;						\
468 	unsigned int position;							\
469 };										\
470 										\
471 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
472 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
473 	.position = UINT_MAX							\
474 };										\
475 										\
476 type get_random_ ##type(void)							\
477 {										\
478 	type ret;								\
479 	unsigned long flags;							\
480 	struct batch_ ##type *batch;						\
481 	unsigned long next_gen;							\
482 										\
483 	warn_unseeded_randomness();						\
484 										\
485 	if  (!crng_ready()) {							\
486 		_get_random_bytes(&ret, sizeof(ret));				\
487 		return ret;							\
488 	}									\
489 										\
490 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
491 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
492 										\
493 	next_gen = READ_ONCE(base_crng.generation);				\
494 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
495 	    next_gen != batch->generation) {					\
496 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
497 		batch->position = 0;						\
498 		batch->generation = next_gen;					\
499 	}									\
500 										\
501 	ret = batch->entropy[batch->position];					\
502 	batch->entropy[batch->position] = 0;					\
503 	++batch->position;							\
504 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
505 	return ret;								\
506 }										\
507 EXPORT_SYMBOL(get_random_ ##type);
508 
509 DEFINE_BATCHED_ENTROPY(u64)
510 DEFINE_BATCHED_ENTROPY(u32)
511 
512 #ifdef CONFIG_SMP
513 /*
514  * This function is called when the CPU is coming up, with entry
515  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
516  */
517 int __cold random_prepare_cpu(unsigned int cpu)
518 {
519 	/*
520 	 * When the cpu comes back online, immediately invalidate both
521 	 * the per-cpu crng and all batches, so that we serve fresh
522 	 * randomness.
523 	 */
524 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
525 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
526 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
527 	return 0;
528 }
529 #endif
530 
531 
532 /**********************************************************************
533  *
534  * Entropy accumulation and extraction routines.
535  *
536  * Callers may add entropy via:
537  *
538  *     static void mix_pool_bytes(const void *buf, size_t len)
539  *
540  * After which, if added entropy should be credited:
541  *
542  *     static void credit_init_bits(size_t bits)
543  *
544  * Finally, extract entropy via:
545  *
546  *     static void extract_entropy(void *buf, size_t len)
547  *
548  **********************************************************************/
549 
550 enum {
551 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
552 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
553 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
554 };
555 
556 static struct {
557 	struct blake2s_state hash;
558 	spinlock_t lock;
559 	unsigned int init_bits;
560 } input_pool = {
561 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
562 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
563 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
564 	.hash.outlen = BLAKE2S_HASH_SIZE,
565 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
566 };
567 
568 static void _mix_pool_bytes(const void *buf, size_t len)
569 {
570 	blake2s_update(&input_pool.hash, buf, len);
571 }
572 
573 /*
574  * This function adds bytes into the input pool. It does not
575  * update the initialization bit counter; the caller should call
576  * credit_init_bits if this is appropriate.
577  */
578 static void mix_pool_bytes(const void *buf, size_t len)
579 {
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&input_pool.lock, flags);
583 	_mix_pool_bytes(buf, len);
584 	spin_unlock_irqrestore(&input_pool.lock, flags);
585 }
586 
587 /*
588  * This is an HKDF-like construction for using the hashed collected entropy
589  * as a PRF key, that's then expanded block-by-block.
590  */
591 static void extract_entropy(void *buf, size_t len)
592 {
593 	unsigned long flags;
594 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
595 	struct {
596 		unsigned long rdseed[32 / sizeof(long)];
597 		size_t counter;
598 	} block;
599 	size_t i, longs;
600 
601 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
602 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
603 		if (longs) {
604 			i += longs;
605 			continue;
606 		}
607 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
608 		if (longs) {
609 			i += longs;
610 			continue;
611 		}
612 		block.rdseed[i++] = random_get_entropy();
613 	}
614 
615 	spin_lock_irqsave(&input_pool.lock, flags);
616 
617 	/* seed = HASHPRF(last_key, entropy_input) */
618 	blake2s_final(&input_pool.hash, seed);
619 
620 	/* next_key = HASHPRF(seed, RDSEED || 0) */
621 	block.counter = 0;
622 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
623 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
624 
625 	spin_unlock_irqrestore(&input_pool.lock, flags);
626 	memzero_explicit(next_key, sizeof(next_key));
627 
628 	while (len) {
629 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
630 		/* output = HASHPRF(seed, RDSEED || ++counter) */
631 		++block.counter;
632 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
633 		len -= i;
634 		buf += i;
635 	}
636 
637 	memzero_explicit(seed, sizeof(seed));
638 	memzero_explicit(&block, sizeof(block));
639 }
640 
641 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
642 
643 static void __cold _credit_init_bits(size_t bits)
644 {
645 	static struct execute_work set_ready;
646 	unsigned int new, orig, add;
647 	unsigned long flags;
648 
649 	if (!bits)
650 		return;
651 
652 	add = min_t(size_t, bits, POOL_BITS);
653 
654 	orig = READ_ONCE(input_pool.init_bits);
655 	do {
656 		new = min_t(unsigned int, POOL_BITS, orig + add);
657 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
658 
659 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
660 		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
661 		if (static_key_initialized)
662 			execute_in_process_context(crng_set_ready, &set_ready);
663 		wake_up_interruptible(&crng_init_wait);
664 		kill_fasync(&fasync, SIGIO, POLL_IN);
665 		pr_notice("crng init done\n");
666 		if (urandom_warning.missed)
667 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
668 				  urandom_warning.missed);
669 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
670 		spin_lock_irqsave(&base_crng.lock, flags);
671 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
672 		if (crng_init == CRNG_EMPTY) {
673 			extract_entropy(base_crng.key, sizeof(base_crng.key));
674 			crng_init = CRNG_EARLY;
675 		}
676 		spin_unlock_irqrestore(&base_crng.lock, flags);
677 	}
678 }
679 
680 
681 /**********************************************************************
682  *
683  * Entropy collection routines.
684  *
685  * The following exported functions are used for pushing entropy into
686  * the above entropy accumulation routines:
687  *
688  *	void add_device_randomness(const void *buf, size_t len);
689  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
690  *	void add_bootloader_randomness(const void *buf, size_t len);
691  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
692  *	void add_interrupt_randomness(int irq);
693  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
694  *	void add_disk_randomness(struct gendisk *disk);
695  *
696  * add_device_randomness() adds data to the input pool that
697  * is likely to differ between two devices (or possibly even per boot).
698  * This would be things like MAC addresses or serial numbers, or the
699  * read-out of the RTC. This does *not* credit any actual entropy to
700  * the pool, but it initializes the pool to different values for devices
701  * that might otherwise be identical and have very little entropy
702  * available to them (particularly common in the embedded world).
703  *
704  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
705  * entropy as specified by the caller. If the entropy pool is full it will
706  * block until more entropy is needed.
707  *
708  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
709  * and device tree, and credits its input depending on whether or not the
710  * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
711  *
712  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
713  * representing the current instance of a VM to the pool, without crediting,
714  * and then force-reseeds the crng so that it takes effect immediately.
715  *
716  * add_interrupt_randomness() uses the interrupt timing as random
717  * inputs to the entropy pool. Using the cycle counters and the irq source
718  * as inputs, it feeds the input pool roughly once a second or after 64
719  * interrupts, crediting 1 bit of entropy for whichever comes first.
720  *
721  * add_input_randomness() uses the input layer interrupt timing, as well
722  * as the event type information from the hardware.
723  *
724  * add_disk_randomness() uses what amounts to the seek time of block
725  * layer request events, on a per-disk_devt basis, as input to the
726  * entropy pool. Note that high-speed solid state drives with very low
727  * seek times do not make for good sources of entropy, as their seek
728  * times are usually fairly consistent.
729  *
730  * The last two routines try to estimate how many bits of entropy
731  * to credit. They do this by keeping track of the first and second
732  * order deltas of the event timings.
733  *
734  **********************************************************************/
735 
736 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
737 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
738 static int __init parse_trust_cpu(char *arg)
739 {
740 	return kstrtobool(arg, &trust_cpu);
741 }
742 static int __init parse_trust_bootloader(char *arg)
743 {
744 	return kstrtobool(arg, &trust_bootloader);
745 }
746 early_param("random.trust_cpu", parse_trust_cpu);
747 early_param("random.trust_bootloader", parse_trust_bootloader);
748 
749 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
750 {
751 	unsigned long flags, entropy = random_get_entropy();
752 
753 	/*
754 	 * Encode a representation of how long the system has been suspended,
755 	 * in a way that is distinct from prior system suspends.
756 	 */
757 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
758 
759 	spin_lock_irqsave(&input_pool.lock, flags);
760 	_mix_pool_bytes(&action, sizeof(action));
761 	_mix_pool_bytes(stamps, sizeof(stamps));
762 	_mix_pool_bytes(&entropy, sizeof(entropy));
763 	spin_unlock_irqrestore(&input_pool.lock, flags);
764 
765 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
766 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
767 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
768 		crng_reseed();
769 		pr_notice("crng reseeded on system resumption\n");
770 	}
771 	return 0;
772 }
773 
774 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
775 
776 /*
777  * The first collection of entropy occurs at system boot while interrupts
778  * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
779  * utsname(), and the command line. Depending on the above configuration knob,
780  * RDSEED may be considered sufficient for initialization. Note that much
781  * earlier setup may already have pushed entropy into the input pool by the
782  * time we get here.
783  */
784 int __init random_init(const char *command_line)
785 {
786 	ktime_t now = ktime_get_real();
787 	size_t i, longs, arch_bits;
788 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
789 
790 #if defined(LATENT_ENTROPY_PLUGIN)
791 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
792 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
793 #endif
794 
795 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
796 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
797 		if (longs) {
798 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
799 			i += longs;
800 			continue;
801 		}
802 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
803 		if (longs) {
804 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
805 			i += longs;
806 			continue;
807 		}
808 		entropy[0] = random_get_entropy();
809 		_mix_pool_bytes(entropy, sizeof(*entropy));
810 		arch_bits -= sizeof(*entropy) * 8;
811 		++i;
812 	}
813 	_mix_pool_bytes(&now, sizeof(now));
814 	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
815 	_mix_pool_bytes(command_line, strlen(command_line));
816 	add_latent_entropy();
817 
818 	/*
819 	 * If we were initialized by the bootloader before jump labels are
820 	 * initialized, then we should enable the static branch here, where
821 	 * it's guaranteed that jump labels have been initialized.
822 	 */
823 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
824 		crng_set_ready(NULL);
825 
826 	if (crng_ready())
827 		crng_reseed();
828 	else if (trust_cpu)
829 		_credit_init_bits(arch_bits);
830 
831 	WARN_ON(register_pm_notifier(&pm_notifier));
832 
833 	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
834 				    "entropy collection will consequently suffer.");
835 	return 0;
836 }
837 
838 /*
839  * Add device- or boot-specific data to the input pool to help
840  * initialize it.
841  *
842  * None of this adds any entropy; it is meant to avoid the problem of
843  * the entropy pool having similar initial state across largely
844  * identical devices.
845  */
846 void add_device_randomness(const void *buf, size_t len)
847 {
848 	unsigned long entropy = random_get_entropy();
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&input_pool.lock, flags);
852 	_mix_pool_bytes(&entropy, sizeof(entropy));
853 	_mix_pool_bytes(buf, len);
854 	spin_unlock_irqrestore(&input_pool.lock, flags);
855 }
856 EXPORT_SYMBOL(add_device_randomness);
857 
858 /*
859  * Interface for in-kernel drivers of true hardware RNGs.
860  * Those devices may produce endless random bits and will be throttled
861  * when our pool is full.
862  */
863 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
864 {
865 	mix_pool_bytes(buf, len);
866 	credit_init_bits(entropy);
867 
868 	/*
869 	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
870 	 * we're not yet initialized.
871 	 */
872 	if (!kthread_should_stop() && crng_ready())
873 		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
874 }
875 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
876 
877 /*
878  * Handle random seed passed by bootloader, and credit it if
879  * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
880  */
881 void __init add_bootloader_randomness(const void *buf, size_t len)
882 {
883 	mix_pool_bytes(buf, len);
884 	if (trust_bootloader)
885 		credit_init_bits(len * 8);
886 }
887 
888 #if IS_ENABLED(CONFIG_VMGENID)
889 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
890 
891 /*
892  * Handle a new unique VM ID, which is unique, not secret, so we
893  * don't credit it, but we do immediately force a reseed after so
894  * that it's used by the crng posthaste.
895  */
896 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
897 {
898 	add_device_randomness(unique_vm_id, len);
899 	if (crng_ready()) {
900 		crng_reseed();
901 		pr_notice("crng reseeded due to virtual machine fork\n");
902 	}
903 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
904 }
905 #if IS_MODULE(CONFIG_VMGENID)
906 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
907 #endif
908 
909 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
910 {
911 	return blocking_notifier_chain_register(&vmfork_chain, nb);
912 }
913 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
914 
915 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
916 {
917 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
918 }
919 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
920 #endif
921 
922 struct fast_pool {
923 	struct work_struct mix;
924 	unsigned long pool[4];
925 	unsigned long last;
926 	unsigned int count;
927 };
928 
929 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
930 #ifdef CONFIG_64BIT
931 #define FASTMIX_PERM SIPHASH_PERMUTATION
932 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
933 #else
934 #define FASTMIX_PERM HSIPHASH_PERMUTATION
935 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
936 #endif
937 };
938 
939 /*
940  * This is [Half]SipHash-1-x, starting from an empty key. Because
941  * the key is fixed, it assumes that its inputs are non-malicious,
942  * and therefore this has no security on its own. s represents the
943  * four-word SipHash state, while v represents a two-word input.
944  */
945 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
946 {
947 	s[3] ^= v1;
948 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
949 	s[0] ^= v1;
950 	s[3] ^= v2;
951 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
952 	s[0] ^= v2;
953 }
954 
955 #ifdef CONFIG_SMP
956 /*
957  * This function is called when the CPU has just come online, with
958  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
959  */
960 int __cold random_online_cpu(unsigned int cpu)
961 {
962 	/*
963 	 * During CPU shutdown and before CPU onlining, add_interrupt_
964 	 * randomness() may schedule mix_interrupt_randomness(), and
965 	 * set the MIX_INFLIGHT flag. However, because the worker can
966 	 * be scheduled on a different CPU during this period, that
967 	 * flag will never be cleared. For that reason, we zero out
968 	 * the flag here, which runs just after workqueues are onlined
969 	 * for the CPU again. This also has the effect of setting the
970 	 * irq randomness count to zero so that new accumulated irqs
971 	 * are fresh.
972 	 */
973 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
974 	return 0;
975 }
976 #endif
977 
978 static void mix_interrupt_randomness(struct work_struct *work)
979 {
980 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
981 	/*
982 	 * The size of the copied stack pool is explicitly 2 longs so that we
983 	 * only ever ingest half of the siphash output each time, retaining
984 	 * the other half as the next "key" that carries over. The entropy is
985 	 * supposed to be sufficiently dispersed between bits so on average
986 	 * we don't wind up "losing" some.
987 	 */
988 	unsigned long pool[2];
989 	unsigned int count;
990 
991 	/* Check to see if we're running on the wrong CPU due to hotplug. */
992 	local_irq_disable();
993 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
994 		local_irq_enable();
995 		return;
996 	}
997 
998 	/*
999 	 * Copy the pool to the stack so that the mixer always has a
1000 	 * consistent view, before we reenable irqs again.
1001 	 */
1002 	memcpy(pool, fast_pool->pool, sizeof(pool));
1003 	count = fast_pool->count;
1004 	fast_pool->count = 0;
1005 	fast_pool->last = jiffies;
1006 	local_irq_enable();
1007 
1008 	mix_pool_bytes(pool, sizeof(pool));
1009 	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1010 
1011 	memzero_explicit(pool, sizeof(pool));
1012 }
1013 
1014 void add_interrupt_randomness(int irq)
1015 {
1016 	enum { MIX_INFLIGHT = 1U << 31 };
1017 	unsigned long entropy = random_get_entropy();
1018 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1019 	struct pt_regs *regs = get_irq_regs();
1020 	unsigned int new_count;
1021 
1022 	fast_mix(fast_pool->pool, entropy,
1023 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1024 	new_count = ++fast_pool->count;
1025 
1026 	if (new_count & MIX_INFLIGHT)
1027 		return;
1028 
1029 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1030 		return;
1031 
1032 	if (unlikely(!fast_pool->mix.func))
1033 		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1034 	fast_pool->count |= MIX_INFLIGHT;
1035 	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1036 }
1037 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1038 
1039 /* There is one of these per entropy source */
1040 struct timer_rand_state {
1041 	unsigned long last_time;
1042 	long last_delta, last_delta2;
1043 };
1044 
1045 /*
1046  * This function adds entropy to the entropy "pool" by using timing
1047  * delays. It uses the timer_rand_state structure to make an estimate
1048  * of how many bits of entropy this call has added to the pool. The
1049  * value "num" is also added to the pool; it should somehow describe
1050  * the type of event that just happened.
1051  */
1052 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1053 {
1054 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1055 	long delta, delta2, delta3;
1056 	unsigned int bits;
1057 
1058 	/*
1059 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1060 	 * sometime after, so mix into the fast pool.
1061 	 */
1062 	if (in_hardirq()) {
1063 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1064 	} else {
1065 		spin_lock_irqsave(&input_pool.lock, flags);
1066 		_mix_pool_bytes(&entropy, sizeof(entropy));
1067 		_mix_pool_bytes(&num, sizeof(num));
1068 		spin_unlock_irqrestore(&input_pool.lock, flags);
1069 	}
1070 
1071 	if (crng_ready())
1072 		return;
1073 
1074 	/*
1075 	 * Calculate number of bits of randomness we probably added.
1076 	 * We take into account the first, second and third-order deltas
1077 	 * in order to make our estimate.
1078 	 */
1079 	delta = now - READ_ONCE(state->last_time);
1080 	WRITE_ONCE(state->last_time, now);
1081 
1082 	delta2 = delta - READ_ONCE(state->last_delta);
1083 	WRITE_ONCE(state->last_delta, delta);
1084 
1085 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1086 	WRITE_ONCE(state->last_delta2, delta2);
1087 
1088 	if (delta < 0)
1089 		delta = -delta;
1090 	if (delta2 < 0)
1091 		delta2 = -delta2;
1092 	if (delta3 < 0)
1093 		delta3 = -delta3;
1094 	if (delta > delta2)
1095 		delta = delta2;
1096 	if (delta > delta3)
1097 		delta = delta3;
1098 
1099 	/*
1100 	 * delta is now minimum absolute delta. Round down by 1 bit
1101 	 * on general principles, and limit entropy estimate to 11 bits.
1102 	 */
1103 	bits = min(fls(delta >> 1), 11);
1104 
1105 	/*
1106 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1107 	 * will run after this, which uses a different crediting scheme of 1 bit
1108 	 * per every 64 interrupts. In order to let that function do accounting
1109 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1110 	 * and then subtract one to account for the extra one added.
1111 	 */
1112 	if (in_hardirq())
1113 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1114 	else
1115 		_credit_init_bits(bits);
1116 }
1117 
1118 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1119 {
1120 	static unsigned char last_value;
1121 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1122 
1123 	/* Ignore autorepeat and the like. */
1124 	if (value == last_value)
1125 		return;
1126 
1127 	last_value = value;
1128 	add_timer_randomness(&input_timer_state,
1129 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1130 }
1131 EXPORT_SYMBOL_GPL(add_input_randomness);
1132 
1133 #ifdef CONFIG_BLOCK
1134 void add_disk_randomness(struct gendisk *disk)
1135 {
1136 	if (!disk || !disk->random)
1137 		return;
1138 	/* First major is 1, so we get >= 0x200 here. */
1139 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1140 }
1141 EXPORT_SYMBOL_GPL(add_disk_randomness);
1142 
1143 void __cold rand_initialize_disk(struct gendisk *disk)
1144 {
1145 	struct timer_rand_state *state;
1146 
1147 	/*
1148 	 * If kzalloc returns null, we just won't use that entropy
1149 	 * source.
1150 	 */
1151 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1152 	if (state) {
1153 		state->last_time = INITIAL_JIFFIES;
1154 		disk->random = state;
1155 	}
1156 }
1157 #endif
1158 
1159 struct entropy_timer_state {
1160 	unsigned long entropy;
1161 	struct timer_list timer;
1162 	unsigned int samples, samples_per_bit;
1163 };
1164 
1165 /*
1166  * Each time the timer fires, we expect that we got an unpredictable
1167  * jump in the cycle counter. Even if the timer is running on another
1168  * CPU, the timer activity will be touching the stack of the CPU that is
1169  * generating entropy..
1170  *
1171  * Note that we don't re-arm the timer in the timer itself - we are
1172  * happy to be scheduled away, since that just makes the load more
1173  * complex, but we do not want the timer to keep ticking unless the
1174  * entropy loop is running.
1175  *
1176  * So the re-arming always happens in the entropy loop itself.
1177  */
1178 static void __cold entropy_timer(struct timer_list *timer)
1179 {
1180 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1181 
1182 	if (++state->samples == state->samples_per_bit) {
1183 		credit_init_bits(1);
1184 		state->samples = 0;
1185 	}
1186 }
1187 
1188 /*
1189  * If we have an actual cycle counter, see if we can
1190  * generate enough entropy with timing noise
1191  */
1192 static void __cold try_to_generate_entropy(void)
1193 {
1194 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 30 };
1195 	struct entropy_timer_state stack;
1196 	unsigned int i, num_different = 0;
1197 	unsigned long last = random_get_entropy();
1198 
1199 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1200 		stack.entropy = random_get_entropy();
1201 		if (stack.entropy != last)
1202 			++num_different;
1203 		last = stack.entropy;
1204 	}
1205 	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1206 	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1207 		return;
1208 
1209 	stack.samples = 0;
1210 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1211 	while (!crng_ready() && !signal_pending(current)) {
1212 		if (!timer_pending(&stack.timer))
1213 			mod_timer(&stack.timer, jiffies + 1);
1214 		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1215 		schedule();
1216 		stack.entropy = random_get_entropy();
1217 	}
1218 
1219 	del_timer_sync(&stack.timer);
1220 	destroy_timer_on_stack(&stack.timer);
1221 	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1222 }
1223 
1224 
1225 /**********************************************************************
1226  *
1227  * Userspace reader/writer interfaces.
1228  *
1229  * getrandom(2) is the primary modern interface into the RNG and should
1230  * be used in preference to anything else.
1231  *
1232  * Reading from /dev/random has the same functionality as calling
1233  * getrandom(2) with flags=0. In earlier versions, however, it had
1234  * vastly different semantics and should therefore be avoided, to
1235  * prevent backwards compatibility issues.
1236  *
1237  * Reading from /dev/urandom has the same functionality as calling
1238  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1239  * waiting for the RNG to be ready, it should not be used.
1240  *
1241  * Writing to either /dev/random or /dev/urandom adds entropy to
1242  * the input pool but does not credit it.
1243  *
1244  * Polling on /dev/random indicates when the RNG is initialized, on
1245  * the read side, and when it wants new entropy, on the write side.
1246  *
1247  * Both /dev/random and /dev/urandom have the same set of ioctls for
1248  * adding entropy, getting the entropy count, zeroing the count, and
1249  * reseeding the crng.
1250  *
1251  **********************************************************************/
1252 
1253 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1254 {
1255 	struct iov_iter iter;
1256 	struct iovec iov;
1257 	int ret;
1258 
1259 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1260 		return -EINVAL;
1261 
1262 	/*
1263 	 * Requesting insecure and blocking randomness at the same time makes
1264 	 * no sense.
1265 	 */
1266 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1267 		return -EINVAL;
1268 
1269 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1270 		if (flags & GRND_NONBLOCK)
1271 			return -EAGAIN;
1272 		ret = wait_for_random_bytes();
1273 		if (unlikely(ret))
1274 			return ret;
1275 	}
1276 
1277 	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1278 	if (unlikely(ret))
1279 		return ret;
1280 	return get_random_bytes_user(&iter);
1281 }
1282 
1283 static __poll_t random_poll(struct file *file, poll_table *wait)
1284 {
1285 	poll_wait(file, &crng_init_wait, wait);
1286 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1287 }
1288 
1289 static ssize_t write_pool_user(struct iov_iter *iter)
1290 {
1291 	u8 block[BLAKE2S_BLOCK_SIZE];
1292 	ssize_t ret = 0;
1293 	size_t copied;
1294 
1295 	if (unlikely(!iov_iter_count(iter)))
1296 		return 0;
1297 
1298 	for (;;) {
1299 		copied = copy_from_iter(block, sizeof(block), iter);
1300 		ret += copied;
1301 		mix_pool_bytes(block, copied);
1302 		if (!iov_iter_count(iter) || copied != sizeof(block))
1303 			break;
1304 
1305 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1306 		if (ret % PAGE_SIZE == 0) {
1307 			if (signal_pending(current))
1308 				break;
1309 			cond_resched();
1310 		}
1311 	}
1312 
1313 	memzero_explicit(block, sizeof(block));
1314 	return ret ? ret : -EFAULT;
1315 }
1316 
1317 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1318 {
1319 	return write_pool_user(iter);
1320 }
1321 
1322 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1323 {
1324 	static int maxwarn = 10;
1325 
1326 	/*
1327 	 * Opportunistically attempt to initialize the RNG on platforms that
1328 	 * have fast cycle counters, but don't (for now) require it to succeed.
1329 	 */
1330 	if (!crng_ready())
1331 		try_to_generate_entropy();
1332 
1333 	if (!crng_ready()) {
1334 		if (!ratelimit_disable && maxwarn <= 0)
1335 			++urandom_warning.missed;
1336 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1337 			--maxwarn;
1338 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1339 				  current->comm, iov_iter_count(iter));
1340 		}
1341 	}
1342 
1343 	return get_random_bytes_user(iter);
1344 }
1345 
1346 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1347 {
1348 	int ret;
1349 
1350 	ret = wait_for_random_bytes();
1351 	if (ret != 0)
1352 		return ret;
1353 	return get_random_bytes_user(iter);
1354 }
1355 
1356 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1357 {
1358 	int __user *p = (int __user *)arg;
1359 	int ent_count;
1360 
1361 	switch (cmd) {
1362 	case RNDGETENTCNT:
1363 		/* Inherently racy, no point locking. */
1364 		if (put_user(input_pool.init_bits, p))
1365 			return -EFAULT;
1366 		return 0;
1367 	case RNDADDTOENTCNT:
1368 		if (!capable(CAP_SYS_ADMIN))
1369 			return -EPERM;
1370 		if (get_user(ent_count, p))
1371 			return -EFAULT;
1372 		if (ent_count < 0)
1373 			return -EINVAL;
1374 		credit_init_bits(ent_count);
1375 		return 0;
1376 	case RNDADDENTROPY: {
1377 		struct iov_iter iter;
1378 		struct iovec iov;
1379 		ssize_t ret;
1380 		int len;
1381 
1382 		if (!capable(CAP_SYS_ADMIN))
1383 			return -EPERM;
1384 		if (get_user(ent_count, p++))
1385 			return -EFAULT;
1386 		if (ent_count < 0)
1387 			return -EINVAL;
1388 		if (get_user(len, p++))
1389 			return -EFAULT;
1390 		ret = import_single_range(WRITE, p, len, &iov, &iter);
1391 		if (unlikely(ret))
1392 			return ret;
1393 		ret = write_pool_user(&iter);
1394 		if (unlikely(ret < 0))
1395 			return ret;
1396 		/* Since we're crediting, enforce that it was all written into the pool. */
1397 		if (unlikely(ret != len))
1398 			return -EFAULT;
1399 		credit_init_bits(ent_count);
1400 		return 0;
1401 	}
1402 	case RNDZAPENTCNT:
1403 	case RNDCLEARPOOL:
1404 		/* No longer has any effect. */
1405 		if (!capable(CAP_SYS_ADMIN))
1406 			return -EPERM;
1407 		return 0;
1408 	case RNDRESEEDCRNG:
1409 		if (!capable(CAP_SYS_ADMIN))
1410 			return -EPERM;
1411 		if (!crng_ready())
1412 			return -ENODATA;
1413 		crng_reseed();
1414 		return 0;
1415 	default:
1416 		return -EINVAL;
1417 	}
1418 }
1419 
1420 static int random_fasync(int fd, struct file *filp, int on)
1421 {
1422 	return fasync_helper(fd, filp, on, &fasync);
1423 }
1424 
1425 const struct file_operations random_fops = {
1426 	.read_iter = random_read_iter,
1427 	.write_iter = random_write_iter,
1428 	.poll = random_poll,
1429 	.unlocked_ioctl = random_ioctl,
1430 	.compat_ioctl = compat_ptr_ioctl,
1431 	.fasync = random_fasync,
1432 	.llseek = noop_llseek,
1433 	.splice_read = generic_file_splice_read,
1434 	.splice_write = iter_file_splice_write,
1435 };
1436 
1437 const struct file_operations urandom_fops = {
1438 	.read_iter = urandom_read_iter,
1439 	.write_iter = random_write_iter,
1440 	.unlocked_ioctl = random_ioctl,
1441 	.compat_ioctl = compat_ptr_ioctl,
1442 	.fasync = random_fasync,
1443 	.llseek = noop_llseek,
1444 	.splice_read = generic_file_splice_read,
1445 	.splice_write = iter_file_splice_write,
1446 };
1447 
1448 
1449 /********************************************************************
1450  *
1451  * Sysctl interface.
1452  *
1453  * These are partly unused legacy knobs with dummy values to not break
1454  * userspace and partly still useful things. They are usually accessible
1455  * in /proc/sys/kernel/random/ and are as follows:
1456  *
1457  * - boot_id - a UUID representing the current boot.
1458  *
1459  * - uuid - a random UUID, different each time the file is read.
1460  *
1461  * - poolsize - the number of bits of entropy that the input pool can
1462  *   hold, tied to the POOL_BITS constant.
1463  *
1464  * - entropy_avail - the number of bits of entropy currently in the
1465  *   input pool. Always <= poolsize.
1466  *
1467  * - write_wakeup_threshold - the amount of entropy in the input pool
1468  *   below which write polls to /dev/random will unblock, requesting
1469  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1470  *   to avoid breaking old userspaces, but writing to it does not
1471  *   change any behavior of the RNG.
1472  *
1473  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1474  *   It is writable to avoid breaking old userspaces, but writing
1475  *   to it does not change any behavior of the RNG.
1476  *
1477  ********************************************************************/
1478 
1479 #ifdef CONFIG_SYSCTL
1480 
1481 #include <linux/sysctl.h>
1482 
1483 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1484 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1485 static int sysctl_poolsize = POOL_BITS;
1486 static u8 sysctl_bootid[UUID_SIZE];
1487 
1488 /*
1489  * This function is used to return both the bootid UUID, and random
1490  * UUID. The difference is in whether table->data is NULL; if it is,
1491  * then a new UUID is generated and returned to the user.
1492  */
1493 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1494 			size_t *lenp, loff_t *ppos)
1495 {
1496 	u8 tmp_uuid[UUID_SIZE], *uuid;
1497 	char uuid_string[UUID_STRING_LEN + 1];
1498 	struct ctl_table fake_table = {
1499 		.data = uuid_string,
1500 		.maxlen = UUID_STRING_LEN
1501 	};
1502 
1503 	if (write)
1504 		return -EPERM;
1505 
1506 	uuid = table->data;
1507 	if (!uuid) {
1508 		uuid = tmp_uuid;
1509 		generate_random_uuid(uuid);
1510 	} else {
1511 		static DEFINE_SPINLOCK(bootid_spinlock);
1512 
1513 		spin_lock(&bootid_spinlock);
1514 		if (!uuid[8])
1515 			generate_random_uuid(uuid);
1516 		spin_unlock(&bootid_spinlock);
1517 	}
1518 
1519 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1520 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1521 }
1522 
1523 /* The same as proc_dointvec, but writes don't change anything. */
1524 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1525 			    size_t *lenp, loff_t *ppos)
1526 {
1527 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1528 }
1529 
1530 static struct ctl_table random_table[] = {
1531 	{
1532 		.procname	= "poolsize",
1533 		.data		= &sysctl_poolsize,
1534 		.maxlen		= sizeof(int),
1535 		.mode		= 0444,
1536 		.proc_handler	= proc_dointvec,
1537 	},
1538 	{
1539 		.procname	= "entropy_avail",
1540 		.data		= &input_pool.init_bits,
1541 		.maxlen		= sizeof(int),
1542 		.mode		= 0444,
1543 		.proc_handler	= proc_dointvec,
1544 	},
1545 	{
1546 		.procname	= "write_wakeup_threshold",
1547 		.data		= &sysctl_random_write_wakeup_bits,
1548 		.maxlen		= sizeof(int),
1549 		.mode		= 0644,
1550 		.proc_handler	= proc_do_rointvec,
1551 	},
1552 	{
1553 		.procname	= "urandom_min_reseed_secs",
1554 		.data		= &sysctl_random_min_urandom_seed,
1555 		.maxlen		= sizeof(int),
1556 		.mode		= 0644,
1557 		.proc_handler	= proc_do_rointvec,
1558 	},
1559 	{
1560 		.procname	= "boot_id",
1561 		.data		= &sysctl_bootid,
1562 		.mode		= 0444,
1563 		.proc_handler	= proc_do_uuid,
1564 	},
1565 	{
1566 		.procname	= "uuid",
1567 		.mode		= 0444,
1568 		.proc_handler	= proc_do_uuid,
1569 	},
1570 	{ }
1571 };
1572 
1573 /*
1574  * random_init() is called before sysctl_init(),
1575  * so we cannot call register_sysctl_init() in random_init()
1576  */
1577 static int __init random_sysctls_init(void)
1578 {
1579 	register_sysctl_init("kernel/random", random_table);
1580 	return 0;
1581 }
1582 device_initcall(random_sysctls_init);
1583 #endif
1584