1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Some of that data is then "credited" as 19 * having a certain number of bits of entropy. When enough bits of entropy are 20 * available, the hash is finalized and handed as a key to a stream cipher that 21 * expands it indefinitely for various consumers. This key is periodically 22 * refreshed as the various entropy collectors, described below, add data to the 23 * input pool and credit it. There is currently no Fortuna-like scheduler 24 * involved, which can lead to malicious entropy sources causing a premature 25 * reseed, and the entropy estimates are, at best, conservative guesses. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/utsname.h> 31 #include <linux/module.h> 32 #include <linux/kernel.h> 33 #include <linux/major.h> 34 #include <linux/string.h> 35 #include <linux/fcntl.h> 36 #include <linux/slab.h> 37 #include <linux/random.h> 38 #include <linux/poll.h> 39 #include <linux/init.h> 40 #include <linux/fs.h> 41 #include <linux/blkdev.h> 42 #include <linux/interrupt.h> 43 #include <linux/mm.h> 44 #include <linux/nodemask.h> 45 #include <linux/spinlock.h> 46 #include <linux/kthread.h> 47 #include <linux/percpu.h> 48 #include <linux/ptrace.h> 49 #include <linux/workqueue.h> 50 #include <linux/irq.h> 51 #include <linux/ratelimit.h> 52 #include <linux/syscalls.h> 53 #include <linux/completion.h> 54 #include <linux/uuid.h> 55 #include <linux/uaccess.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init = 0 --> Uninitialized 75 * 1 --> Initialized 76 * 2 --> Initialized from input_pool 77 * 78 * crng_init is protected by base_crng->lock, and only increases 79 * its value (from 0->1->2). 80 */ 81 static int crng_init = 0; 82 #define crng_ready() (likely(crng_init > 1)) 83 /* Various types of waiters for crng_init->2 transition. */ 84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 85 static struct fasync_struct *fasync; 86 static DEFINE_SPINLOCK(random_ready_chain_lock); 87 static RAW_NOTIFIER_HEAD(random_ready_chain); 88 89 /* Control how we warn userspace. */ 90 static struct ratelimit_state unseeded_warning = 91 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 92 static int ratelimit_disable __read_mostly; 93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 95 96 /* 97 * Returns whether or not the input pool has been seeded and thus guaranteed 98 * to supply cryptographically secure random numbers. This applies to 99 * get_random_bytes() and get_random_{u32,u64,int,long}(). 100 * 101 * Returns: true if the input pool has been seeded. 102 * false if the input pool has not been seeded. 103 */ 104 bool rng_is_initialized(void) 105 { 106 return crng_ready(); 107 } 108 EXPORT_SYMBOL(rng_is_initialized); 109 110 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 111 static void try_to_generate_entropy(void); 112 113 /* 114 * Wait for the input pool to be seeded and thus guaranteed to supply 115 * cryptographically secure random numbers. This applies to 116 * get_random_bytes() and get_random_{u32,u64,int,long}(). Using any 117 * of these functions without first calling this function means that 118 * the returned numbers might not be cryptographically secure. 119 * 120 * Returns: 0 if the input pool has been seeded. 121 * -ERESTARTSYS if the function was interrupted by a signal. 122 */ 123 int wait_for_random_bytes(void) 124 { 125 while (!crng_ready()) { 126 int ret; 127 128 try_to_generate_entropy(); 129 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 130 if (ret) 131 return ret > 0 ? 0 : ret; 132 } 133 return 0; 134 } 135 EXPORT_SYMBOL(wait_for_random_bytes); 136 137 /* 138 * Add a callback function that will be invoked when the input 139 * pool is initialised. 140 * 141 * returns: 0 if callback is successfully added 142 * -EALREADY if pool is already initialised (callback not called) 143 */ 144 int register_random_ready_notifier(struct notifier_block *nb) 145 { 146 unsigned long flags; 147 int ret = -EALREADY; 148 149 if (crng_ready()) 150 return ret; 151 152 spin_lock_irqsave(&random_ready_chain_lock, flags); 153 if (!crng_ready()) 154 ret = raw_notifier_chain_register(&random_ready_chain, nb); 155 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 156 return ret; 157 } 158 159 /* 160 * Delete a previously registered readiness callback function. 161 */ 162 int unregister_random_ready_notifier(struct notifier_block *nb) 163 { 164 unsigned long flags; 165 int ret; 166 167 spin_lock_irqsave(&random_ready_chain_lock, flags); 168 ret = raw_notifier_chain_unregister(&random_ready_chain, nb); 169 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 170 return ret; 171 } 172 173 static void process_random_ready_list(void) 174 { 175 unsigned long flags; 176 177 spin_lock_irqsave(&random_ready_chain_lock, flags); 178 raw_notifier_call_chain(&random_ready_chain, 0, NULL); 179 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 180 } 181 182 #define warn_unseeded_randomness(previous) \ 183 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) 184 185 static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous) 186 { 187 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 188 const bool print_once = false; 189 #else 190 static bool print_once __read_mostly; 191 #endif 192 193 if (print_once || crng_ready() || 194 (previous && (caller == READ_ONCE(*previous)))) 195 return; 196 WRITE_ONCE(*previous, caller); 197 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 198 print_once = true; 199 #endif 200 if (__ratelimit(&unseeded_warning)) 201 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", 202 func_name, caller, crng_init); 203 } 204 205 206 /********************************************************************* 207 * 208 * Fast key erasure RNG, the "crng". 209 * 210 * These functions expand entropy from the entropy extractor into 211 * long streams for external consumption using the "fast key erasure" 212 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 213 * 214 * There are a few exported interfaces for use by other drivers: 215 * 216 * void get_random_bytes(void *buf, size_t nbytes) 217 * u32 get_random_u32() 218 * u64 get_random_u64() 219 * unsigned int get_random_int() 220 * unsigned long get_random_long() 221 * 222 * These interfaces will return the requested number of random bytes 223 * into the given buffer or as a return value. The returned numbers are 224 * the same as those of getrandom(0). The integer family of functions may 225 * be higher performance for one-off random integers, because they do a 226 * bit of buffering and do not invoke reseeding. 227 * 228 *********************************************************************/ 229 230 enum { 231 CRNG_RESEED_INTERVAL = 300 * HZ, 232 CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE 233 }; 234 235 static struct { 236 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 237 unsigned long birth; 238 unsigned long generation; 239 spinlock_t lock; 240 } base_crng = { 241 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 242 }; 243 244 struct crng { 245 u8 key[CHACHA_KEY_SIZE]; 246 unsigned long generation; 247 local_lock_t lock; 248 }; 249 250 static DEFINE_PER_CPU(struct crng, crngs) = { 251 .generation = ULONG_MAX, 252 .lock = INIT_LOCAL_LOCK(crngs.lock), 253 }; 254 255 /* Used by crng_reseed() to extract a new seed from the input pool. */ 256 static bool drain_entropy(void *buf, size_t nbytes, bool force); 257 258 /* 259 * This extracts a new crng key from the input pool, but only if there is a 260 * sufficient amount of entropy available or force is true, in order to 261 * mitigate bruteforcing of newly added bits. 262 */ 263 static void crng_reseed(bool force) 264 { 265 unsigned long flags; 266 unsigned long next_gen; 267 u8 key[CHACHA_KEY_SIZE]; 268 bool finalize_init = false; 269 270 /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ 271 if (!drain_entropy(key, sizeof(key), force)) 272 return; 273 274 /* 275 * We copy the new key into the base_crng, overwriting the old one, 276 * and update the generation counter. We avoid hitting ULONG_MAX, 277 * because the per-cpu crngs are initialized to ULONG_MAX, so this 278 * forces new CPUs that come online to always initialize. 279 */ 280 spin_lock_irqsave(&base_crng.lock, flags); 281 memcpy(base_crng.key, key, sizeof(base_crng.key)); 282 next_gen = base_crng.generation + 1; 283 if (next_gen == ULONG_MAX) 284 ++next_gen; 285 WRITE_ONCE(base_crng.generation, next_gen); 286 WRITE_ONCE(base_crng.birth, jiffies); 287 if (!crng_ready()) { 288 crng_init = 2; 289 finalize_init = true; 290 } 291 spin_unlock_irqrestore(&base_crng.lock, flags); 292 memzero_explicit(key, sizeof(key)); 293 if (finalize_init) { 294 process_random_ready_list(); 295 wake_up_interruptible(&crng_init_wait); 296 kill_fasync(&fasync, SIGIO, POLL_IN); 297 pr_notice("crng init done\n"); 298 if (unseeded_warning.missed) { 299 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 300 unseeded_warning.missed); 301 unseeded_warning.missed = 0; 302 } 303 } 304 } 305 306 /* 307 * This generates a ChaCha block using the provided key, and then 308 * immediately overwites that key with half the block. It returns 309 * the resultant ChaCha state to the user, along with the second 310 * half of the block containing 32 bytes of random data that may 311 * be used; random_data_len may not be greater than 32. 312 */ 313 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 314 u32 chacha_state[CHACHA_STATE_WORDS], 315 u8 *random_data, size_t random_data_len) 316 { 317 u8 first_block[CHACHA_BLOCK_SIZE]; 318 319 BUG_ON(random_data_len > 32); 320 321 chacha_init_consts(chacha_state); 322 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 323 memset(&chacha_state[12], 0, sizeof(u32) * 4); 324 chacha20_block(chacha_state, first_block); 325 326 memcpy(key, first_block, CHACHA_KEY_SIZE); 327 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 328 memzero_explicit(first_block, sizeof(first_block)); 329 } 330 331 /* 332 * Return whether the crng seed is considered to be sufficiently 333 * old that a reseeding might be attempted. This happens if the last 334 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at 335 * an interval proportional to the uptime. 336 */ 337 static bool crng_has_old_seed(void) 338 { 339 static bool early_boot = true; 340 unsigned long interval = CRNG_RESEED_INTERVAL; 341 342 if (unlikely(READ_ONCE(early_boot))) { 343 time64_t uptime = ktime_get_seconds(); 344 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 345 WRITE_ONCE(early_boot, false); 346 else 347 interval = max_t(unsigned int, 5 * HZ, 348 (unsigned int)uptime / 2 * HZ); 349 } 350 return time_after(jiffies, READ_ONCE(base_crng.birth) + interval); 351 } 352 353 /* 354 * This function returns a ChaCha state that you may use for generating 355 * random data. It also returns up to 32 bytes on its own of random data 356 * that may be used; random_data_len may not be greater than 32. 357 */ 358 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 359 u8 *random_data, size_t random_data_len) 360 { 361 unsigned long flags; 362 struct crng *crng; 363 364 BUG_ON(random_data_len > 32); 365 366 /* 367 * For the fast path, we check whether we're ready, unlocked first, and 368 * then re-check once locked later. In the case where we're really not 369 * ready, we do fast key erasure with the base_crng directly, because 370 * this is what crng_pre_init_inject() mutates during early init. 371 */ 372 if (!crng_ready()) { 373 bool ready; 374 375 spin_lock_irqsave(&base_crng.lock, flags); 376 ready = crng_ready(); 377 if (!ready) 378 crng_fast_key_erasure(base_crng.key, chacha_state, 379 random_data, random_data_len); 380 spin_unlock_irqrestore(&base_crng.lock, flags); 381 if (!ready) 382 return; 383 } 384 385 /* 386 * If the base_crng is old enough, we try to reseed, which in turn 387 * bumps the generation counter that we check below. 388 */ 389 if (unlikely(crng_has_old_seed())) 390 crng_reseed(false); 391 392 local_lock_irqsave(&crngs.lock, flags); 393 crng = raw_cpu_ptr(&crngs); 394 395 /* 396 * If our per-cpu crng is older than the base_crng, then it means 397 * somebody reseeded the base_crng. In that case, we do fast key 398 * erasure on the base_crng, and use its output as the new key 399 * for our per-cpu crng. This brings us up to date with base_crng. 400 */ 401 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 402 spin_lock(&base_crng.lock); 403 crng_fast_key_erasure(base_crng.key, chacha_state, 404 crng->key, sizeof(crng->key)); 405 crng->generation = base_crng.generation; 406 spin_unlock(&base_crng.lock); 407 } 408 409 /* 410 * Finally, when we've made it this far, our per-cpu crng has an up 411 * to date key, and we can do fast key erasure with it to produce 412 * some random data and a ChaCha state for the caller. All other 413 * branches of this function are "unlikely", so most of the time we 414 * should wind up here immediately. 415 */ 416 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 417 local_unlock_irqrestore(&crngs.lock, flags); 418 } 419 420 /* 421 * This function is for crng_init == 0 only. It loads entropy directly 422 * into the crng's key, without going through the input pool. It is, 423 * generally speaking, not very safe, but we use this only at early 424 * boot time when it's better to have something there rather than 425 * nothing. 426 * 427 * If account is set, then the crng_init_cnt counter is incremented. 428 * This shouldn't be set by functions like add_device_randomness(), 429 * where we can't trust the buffer passed to it is guaranteed to be 430 * unpredictable (so it might not have any entropy at all). 431 * 432 * Returns the number of bytes processed from input, which is bounded 433 * by CRNG_INIT_CNT_THRESH if account is true. 434 */ 435 static size_t crng_pre_init_inject(const void *input, size_t len, bool account) 436 { 437 static int crng_init_cnt = 0; 438 struct blake2s_state hash; 439 unsigned long flags; 440 441 blake2s_init(&hash, sizeof(base_crng.key)); 442 443 spin_lock_irqsave(&base_crng.lock, flags); 444 if (crng_init != 0) { 445 spin_unlock_irqrestore(&base_crng.lock, flags); 446 return 0; 447 } 448 449 if (account) 450 len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt); 451 452 blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); 453 blake2s_update(&hash, input, len); 454 blake2s_final(&hash, base_crng.key); 455 456 if (account) { 457 crng_init_cnt += len; 458 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 459 ++base_crng.generation; 460 crng_init = 1; 461 } 462 } 463 464 spin_unlock_irqrestore(&base_crng.lock, flags); 465 466 if (crng_init == 1) 467 pr_notice("fast init done\n"); 468 469 return len; 470 } 471 472 static void _get_random_bytes(void *buf, size_t nbytes) 473 { 474 u32 chacha_state[CHACHA_STATE_WORDS]; 475 u8 tmp[CHACHA_BLOCK_SIZE]; 476 size_t len; 477 478 if (!nbytes) 479 return; 480 481 len = min_t(size_t, 32, nbytes); 482 crng_make_state(chacha_state, buf, len); 483 nbytes -= len; 484 buf += len; 485 486 while (nbytes) { 487 if (nbytes < CHACHA_BLOCK_SIZE) { 488 chacha20_block(chacha_state, tmp); 489 memcpy(buf, tmp, nbytes); 490 memzero_explicit(tmp, sizeof(tmp)); 491 break; 492 } 493 494 chacha20_block(chacha_state, buf); 495 if (unlikely(chacha_state[12] == 0)) 496 ++chacha_state[13]; 497 nbytes -= CHACHA_BLOCK_SIZE; 498 buf += CHACHA_BLOCK_SIZE; 499 } 500 501 memzero_explicit(chacha_state, sizeof(chacha_state)); 502 } 503 504 /* 505 * This function is the exported kernel interface. It returns some 506 * number of good random numbers, suitable for key generation, seeding 507 * TCP sequence numbers, etc. It does not rely on the hardware random 508 * number generator. For random bytes direct from the hardware RNG 509 * (when available), use get_random_bytes_arch(). In order to ensure 510 * that the randomness provided by this function is okay, the function 511 * wait_for_random_bytes() should be called and return 0 at least once 512 * at any point prior. 513 */ 514 void get_random_bytes(void *buf, size_t nbytes) 515 { 516 static void *previous; 517 518 warn_unseeded_randomness(&previous); 519 _get_random_bytes(buf, nbytes); 520 } 521 EXPORT_SYMBOL(get_random_bytes); 522 523 static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) 524 { 525 bool large_request = nbytes > 256; 526 ssize_t ret = 0; 527 size_t len; 528 u32 chacha_state[CHACHA_STATE_WORDS]; 529 u8 output[CHACHA_BLOCK_SIZE]; 530 531 if (!nbytes) 532 return 0; 533 534 len = min_t(size_t, 32, nbytes); 535 crng_make_state(chacha_state, output, len); 536 537 if (copy_to_user(buf, output, len)) 538 return -EFAULT; 539 nbytes -= len; 540 buf += len; 541 ret += len; 542 543 while (nbytes) { 544 if (large_request && need_resched()) { 545 if (signal_pending(current)) 546 break; 547 schedule(); 548 } 549 550 chacha20_block(chacha_state, output); 551 if (unlikely(chacha_state[12] == 0)) 552 ++chacha_state[13]; 553 554 len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE); 555 if (copy_to_user(buf, output, len)) { 556 ret = -EFAULT; 557 break; 558 } 559 560 nbytes -= len; 561 buf += len; 562 ret += len; 563 } 564 565 memzero_explicit(chacha_state, sizeof(chacha_state)); 566 memzero_explicit(output, sizeof(output)); 567 return ret; 568 } 569 570 /* 571 * Batched entropy returns random integers. The quality of the random 572 * number is good as /dev/urandom. In order to ensure that the randomness 573 * provided by this function is okay, the function wait_for_random_bytes() 574 * should be called and return 0 at least once at any point prior. 575 */ 576 struct batched_entropy { 577 union { 578 /* 579 * We make this 1.5x a ChaCha block, so that we get the 580 * remaining 32 bytes from fast key erasure, plus one full 581 * block from the detached ChaCha state. We can increase 582 * the size of this later if needed so long as we keep the 583 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. 584 */ 585 u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; 586 u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; 587 }; 588 local_lock_t lock; 589 unsigned long generation; 590 unsigned int position; 591 }; 592 593 594 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 595 .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), 596 .position = UINT_MAX 597 }; 598 599 u64 get_random_u64(void) 600 { 601 u64 ret; 602 unsigned long flags; 603 struct batched_entropy *batch; 604 static void *previous; 605 unsigned long next_gen; 606 607 warn_unseeded_randomness(&previous); 608 609 local_lock_irqsave(&batched_entropy_u64.lock, flags); 610 batch = raw_cpu_ptr(&batched_entropy_u64); 611 612 next_gen = READ_ONCE(base_crng.generation); 613 if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || 614 next_gen != batch->generation) { 615 _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); 616 batch->position = 0; 617 batch->generation = next_gen; 618 } 619 620 ret = batch->entropy_u64[batch->position]; 621 batch->entropy_u64[batch->position] = 0; 622 ++batch->position; 623 local_unlock_irqrestore(&batched_entropy_u64.lock, flags); 624 return ret; 625 } 626 EXPORT_SYMBOL(get_random_u64); 627 628 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 629 .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), 630 .position = UINT_MAX 631 }; 632 633 u32 get_random_u32(void) 634 { 635 u32 ret; 636 unsigned long flags; 637 struct batched_entropy *batch; 638 static void *previous; 639 unsigned long next_gen; 640 641 warn_unseeded_randomness(&previous); 642 643 local_lock_irqsave(&batched_entropy_u32.lock, flags); 644 batch = raw_cpu_ptr(&batched_entropy_u32); 645 646 next_gen = READ_ONCE(base_crng.generation); 647 if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || 648 next_gen != batch->generation) { 649 _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); 650 batch->position = 0; 651 batch->generation = next_gen; 652 } 653 654 ret = batch->entropy_u32[batch->position]; 655 batch->entropy_u32[batch->position] = 0; 656 ++batch->position; 657 local_unlock_irqrestore(&batched_entropy_u32.lock, flags); 658 return ret; 659 } 660 EXPORT_SYMBOL(get_random_u32); 661 662 #ifdef CONFIG_SMP 663 /* 664 * This function is called when the CPU is coming up, with entry 665 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 666 */ 667 int random_prepare_cpu(unsigned int cpu) 668 { 669 /* 670 * When the cpu comes back online, immediately invalidate both 671 * the per-cpu crng and all batches, so that we serve fresh 672 * randomness. 673 */ 674 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 675 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 676 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 677 return 0; 678 } 679 #endif 680 681 /** 682 * randomize_page - Generate a random, page aligned address 683 * @start: The smallest acceptable address the caller will take. 684 * @range: The size of the area, starting at @start, within which the 685 * random address must fall. 686 * 687 * If @start + @range would overflow, @range is capped. 688 * 689 * NOTE: Historical use of randomize_range, which this replaces, presumed that 690 * @start was already page aligned. We now align it regardless. 691 * 692 * Return: A page aligned address within [start, start + range). On error, 693 * @start is returned. 694 */ 695 unsigned long randomize_page(unsigned long start, unsigned long range) 696 { 697 if (!PAGE_ALIGNED(start)) { 698 range -= PAGE_ALIGN(start) - start; 699 start = PAGE_ALIGN(start); 700 } 701 702 if (start > ULONG_MAX - range) 703 range = ULONG_MAX - start; 704 705 range >>= PAGE_SHIFT; 706 707 if (range == 0) 708 return start; 709 710 return start + (get_random_long() % range << PAGE_SHIFT); 711 } 712 713 /* 714 * This function will use the architecture-specific hardware random 715 * number generator if it is available. It is not recommended for 716 * use. Use get_random_bytes() instead. It returns the number of 717 * bytes filled in. 718 */ 719 size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes) 720 { 721 size_t left = nbytes; 722 u8 *p = buf; 723 724 while (left) { 725 unsigned long v; 726 size_t chunk = min_t(size_t, left, sizeof(unsigned long)); 727 728 if (!arch_get_random_long(&v)) 729 break; 730 731 memcpy(p, &v, chunk); 732 p += chunk; 733 left -= chunk; 734 } 735 736 return nbytes - left; 737 } 738 EXPORT_SYMBOL(get_random_bytes_arch); 739 740 741 /********************************************************************** 742 * 743 * Entropy accumulation and extraction routines. 744 * 745 * Callers may add entropy via: 746 * 747 * static void mix_pool_bytes(const void *in, size_t nbytes) 748 * 749 * After which, if added entropy should be credited: 750 * 751 * static void credit_entropy_bits(size_t nbits) 752 * 753 * Finally, extract entropy via these two, with the latter one 754 * setting the entropy count to zero and extracting only if there 755 * is POOL_MIN_BITS entropy credited prior or force is true: 756 * 757 * static void extract_entropy(void *buf, size_t nbytes) 758 * static bool drain_entropy(void *buf, size_t nbytes, bool force) 759 * 760 **********************************************************************/ 761 762 enum { 763 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 764 POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ 765 }; 766 767 /* For notifying userspace should write into /dev/random. */ 768 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 769 770 static struct { 771 struct blake2s_state hash; 772 spinlock_t lock; 773 unsigned int entropy_count; 774 } input_pool = { 775 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 776 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 777 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 778 .hash.outlen = BLAKE2S_HASH_SIZE, 779 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 780 }; 781 782 static void _mix_pool_bytes(const void *in, size_t nbytes) 783 { 784 blake2s_update(&input_pool.hash, in, nbytes); 785 } 786 787 /* 788 * This function adds bytes into the entropy "pool". It does not 789 * update the entropy estimate. The caller should call 790 * credit_entropy_bits if this is appropriate. 791 */ 792 static void mix_pool_bytes(const void *in, size_t nbytes) 793 { 794 unsigned long flags; 795 796 spin_lock_irqsave(&input_pool.lock, flags); 797 _mix_pool_bytes(in, nbytes); 798 spin_unlock_irqrestore(&input_pool.lock, flags); 799 } 800 801 static void credit_entropy_bits(size_t nbits) 802 { 803 unsigned int entropy_count, orig, add; 804 805 if (!nbits) 806 return; 807 808 add = min_t(size_t, nbits, POOL_BITS); 809 810 do { 811 orig = READ_ONCE(input_pool.entropy_count); 812 entropy_count = min_t(unsigned int, POOL_BITS, orig + add); 813 } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); 814 815 if (!crng_ready() && entropy_count >= POOL_MIN_BITS) 816 crng_reseed(false); 817 } 818 819 /* 820 * This is an HKDF-like construction for using the hashed collected entropy 821 * as a PRF key, that's then expanded block-by-block. 822 */ 823 static void extract_entropy(void *buf, size_t nbytes) 824 { 825 unsigned long flags; 826 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 827 struct { 828 unsigned long rdseed[32 / sizeof(long)]; 829 size_t counter; 830 } block; 831 size_t i; 832 833 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { 834 if (!arch_get_random_seed_long(&block.rdseed[i]) && 835 !arch_get_random_long(&block.rdseed[i])) 836 block.rdseed[i] = random_get_entropy(); 837 } 838 839 spin_lock_irqsave(&input_pool.lock, flags); 840 841 /* seed = HASHPRF(last_key, entropy_input) */ 842 blake2s_final(&input_pool.hash, seed); 843 844 /* next_key = HASHPRF(seed, RDSEED || 0) */ 845 block.counter = 0; 846 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 847 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 848 849 spin_unlock_irqrestore(&input_pool.lock, flags); 850 memzero_explicit(next_key, sizeof(next_key)); 851 852 while (nbytes) { 853 i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); 854 /* output = HASHPRF(seed, RDSEED || ++counter) */ 855 ++block.counter; 856 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 857 nbytes -= i; 858 buf += i; 859 } 860 861 memzero_explicit(seed, sizeof(seed)); 862 memzero_explicit(&block, sizeof(block)); 863 } 864 865 /* 866 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force 867 * is true, and then we set the entropy count to zero (but don't actually touch 868 * any data). Only then can we extract a new key with extract_entropy(). 869 */ 870 static bool drain_entropy(void *buf, size_t nbytes, bool force) 871 { 872 unsigned int entropy_count; 873 do { 874 entropy_count = READ_ONCE(input_pool.entropy_count); 875 if (!force && entropy_count < POOL_MIN_BITS) 876 return false; 877 } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); 878 extract_entropy(buf, nbytes); 879 wake_up_interruptible(&random_write_wait); 880 kill_fasync(&fasync, SIGIO, POLL_OUT); 881 return true; 882 } 883 884 885 /********************************************************************** 886 * 887 * Entropy collection routines. 888 * 889 * The following exported functions are used for pushing entropy into 890 * the above entropy accumulation routines: 891 * 892 * void add_device_randomness(const void *buf, size_t size); 893 * void add_input_randomness(unsigned int type, unsigned int code, 894 * unsigned int value); 895 * void add_disk_randomness(struct gendisk *disk); 896 * void add_hwgenerator_randomness(const void *buffer, size_t count, 897 * size_t entropy); 898 * void add_bootloader_randomness(const void *buf, size_t size); 899 * void add_vmfork_randomness(const void *unique_vm_id, size_t size); 900 * void add_interrupt_randomness(int irq); 901 * 902 * add_device_randomness() adds data to the input pool that 903 * is likely to differ between two devices (or possibly even per boot). 904 * This would be things like MAC addresses or serial numbers, or the 905 * read-out of the RTC. This does *not* credit any actual entropy to 906 * the pool, but it initializes the pool to different values for devices 907 * that might otherwise be identical and have very little entropy 908 * available to them (particularly common in the embedded world). 909 * 910 * add_input_randomness() uses the input layer interrupt timing, as well 911 * as the event type information from the hardware. 912 * 913 * add_disk_randomness() uses what amounts to the seek time of block 914 * layer request events, on a per-disk_devt basis, as input to the 915 * entropy pool. Note that high-speed solid state drives with very low 916 * seek times do not make for good sources of entropy, as their seek 917 * times are usually fairly consistent. 918 * 919 * The above two routines try to estimate how many bits of entropy 920 * to credit. They do this by keeping track of the first and second 921 * order deltas of the event timings. 922 * 923 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 924 * entropy as specified by the caller. If the entropy pool is full it will 925 * block until more entropy is needed. 926 * 927 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or 928 * add_device_randomness(), depending on whether or not the configuration 929 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 930 * 931 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 932 * representing the current instance of a VM to the pool, without crediting, 933 * and then force-reseeds the crng so that it takes effect immediately. 934 * 935 * add_interrupt_randomness() uses the interrupt timing as random 936 * inputs to the entropy pool. Using the cycle counters and the irq source 937 * as inputs, it feeds the input pool roughly once a second or after 64 938 * interrupts, crediting 1 bit of entropy for whichever comes first. 939 * 940 **********************************************************************/ 941 942 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 943 static int __init parse_trust_cpu(char *arg) 944 { 945 return kstrtobool(arg, &trust_cpu); 946 } 947 early_param("random.trust_cpu", parse_trust_cpu); 948 949 /* 950 * The first collection of entropy occurs at system boot while interrupts 951 * are still turned off. Here we push in RDSEED, a timestamp, and utsname(). 952 * Depending on the above configuration knob, RDSEED may be considered 953 * sufficient for initialization. Note that much earlier setup may already 954 * have pushed entropy into the input pool by the time we get here. 955 */ 956 int __init rand_initialize(void) 957 { 958 size_t i; 959 ktime_t now = ktime_get_real(); 960 bool arch_init = true; 961 unsigned long rv; 962 963 for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { 964 if (!arch_get_random_seed_long_early(&rv) && 965 !arch_get_random_long_early(&rv)) { 966 rv = random_get_entropy(); 967 arch_init = false; 968 } 969 _mix_pool_bytes(&rv, sizeof(rv)); 970 } 971 _mix_pool_bytes(&now, sizeof(now)); 972 _mix_pool_bytes(utsname(), sizeof(*(utsname()))); 973 974 extract_entropy(base_crng.key, sizeof(base_crng.key)); 975 ++base_crng.generation; 976 977 if (arch_init && trust_cpu && !crng_ready()) { 978 crng_init = 2; 979 pr_notice("crng init done (trusting CPU's manufacturer)\n"); 980 } 981 982 if (ratelimit_disable) 983 unseeded_warning.interval = 0; 984 return 0; 985 } 986 987 /* 988 * Add device- or boot-specific data to the input pool to help 989 * initialize it. 990 * 991 * None of this adds any entropy; it is meant to avoid the problem of 992 * the entropy pool having similar initial state across largely 993 * identical devices. 994 */ 995 void add_device_randomness(const void *buf, size_t size) 996 { 997 cycles_t cycles = random_get_entropy(); 998 unsigned long flags, now = jiffies; 999 1000 if (crng_init == 0 && size) 1001 crng_pre_init_inject(buf, size, false); 1002 1003 spin_lock_irqsave(&input_pool.lock, flags); 1004 _mix_pool_bytes(&cycles, sizeof(cycles)); 1005 _mix_pool_bytes(&now, sizeof(now)); 1006 _mix_pool_bytes(buf, size); 1007 spin_unlock_irqrestore(&input_pool.lock, flags); 1008 } 1009 EXPORT_SYMBOL(add_device_randomness); 1010 1011 /* There is one of these per entropy source */ 1012 struct timer_rand_state { 1013 unsigned long last_time; 1014 long last_delta, last_delta2; 1015 }; 1016 1017 /* 1018 * This function adds entropy to the entropy "pool" by using timing 1019 * delays. It uses the timer_rand_state structure to make an estimate 1020 * of how many bits of entropy this call has added to the pool. 1021 * 1022 * The number "num" is also added to the pool - it should somehow describe 1023 * the type of event which just happened. This is currently 0-255 for 1024 * keyboard scan codes, and 256 upwards for interrupts. 1025 */ 1026 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1027 { 1028 cycles_t cycles = random_get_entropy(); 1029 unsigned long flags, now = jiffies; 1030 long delta, delta2, delta3; 1031 1032 spin_lock_irqsave(&input_pool.lock, flags); 1033 _mix_pool_bytes(&cycles, sizeof(cycles)); 1034 _mix_pool_bytes(&now, sizeof(now)); 1035 _mix_pool_bytes(&num, sizeof(num)); 1036 spin_unlock_irqrestore(&input_pool.lock, flags); 1037 1038 /* 1039 * Calculate number of bits of randomness we probably added. 1040 * We take into account the first, second and third-order deltas 1041 * in order to make our estimate. 1042 */ 1043 delta = now - READ_ONCE(state->last_time); 1044 WRITE_ONCE(state->last_time, now); 1045 1046 delta2 = delta - READ_ONCE(state->last_delta); 1047 WRITE_ONCE(state->last_delta, delta); 1048 1049 delta3 = delta2 - READ_ONCE(state->last_delta2); 1050 WRITE_ONCE(state->last_delta2, delta2); 1051 1052 if (delta < 0) 1053 delta = -delta; 1054 if (delta2 < 0) 1055 delta2 = -delta2; 1056 if (delta3 < 0) 1057 delta3 = -delta3; 1058 if (delta > delta2) 1059 delta = delta2; 1060 if (delta > delta3) 1061 delta = delta3; 1062 1063 /* 1064 * delta is now minimum absolute delta. 1065 * Round down by 1 bit on general principles, 1066 * and limit entropy estimate to 12 bits. 1067 */ 1068 credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11)); 1069 } 1070 1071 void add_input_randomness(unsigned int type, unsigned int code, 1072 unsigned int value) 1073 { 1074 static unsigned char last_value; 1075 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1076 1077 /* Ignore autorepeat and the like. */ 1078 if (value == last_value) 1079 return; 1080 1081 last_value = value; 1082 add_timer_randomness(&input_timer_state, 1083 (type << 4) ^ code ^ (code >> 4) ^ value); 1084 } 1085 EXPORT_SYMBOL_GPL(add_input_randomness); 1086 1087 #ifdef CONFIG_BLOCK 1088 void add_disk_randomness(struct gendisk *disk) 1089 { 1090 if (!disk || !disk->random) 1091 return; 1092 /* First major is 1, so we get >= 0x200 here. */ 1093 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1094 } 1095 EXPORT_SYMBOL_GPL(add_disk_randomness); 1096 1097 void rand_initialize_disk(struct gendisk *disk) 1098 { 1099 struct timer_rand_state *state; 1100 1101 /* 1102 * If kzalloc returns null, we just won't use that entropy 1103 * source. 1104 */ 1105 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1106 if (state) { 1107 state->last_time = INITIAL_JIFFIES; 1108 disk->random = state; 1109 } 1110 } 1111 #endif 1112 1113 /* 1114 * Interface for in-kernel drivers of true hardware RNGs. 1115 * Those devices may produce endless random bits and will be throttled 1116 * when our pool is full. 1117 */ 1118 void add_hwgenerator_randomness(const void *buffer, size_t count, 1119 size_t entropy) 1120 { 1121 if (unlikely(crng_init == 0)) { 1122 size_t ret = crng_pre_init_inject(buffer, count, true); 1123 mix_pool_bytes(buffer, ret); 1124 count -= ret; 1125 buffer += ret; 1126 if (!count || crng_init == 0) 1127 return; 1128 } 1129 1130 /* 1131 * Throttle writing if we're above the trickle threshold. 1132 * We'll be woken up again once below POOL_MIN_BITS, when 1133 * the calling thread is about to terminate, or once 1134 * CRNG_RESEED_INTERVAL has elapsed. 1135 */ 1136 wait_event_interruptible_timeout(random_write_wait, 1137 !system_wq || kthread_should_stop() || 1138 input_pool.entropy_count < POOL_MIN_BITS, 1139 CRNG_RESEED_INTERVAL); 1140 mix_pool_bytes(buffer, count); 1141 credit_entropy_bits(entropy); 1142 } 1143 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 1144 1145 /* 1146 * Handle random seed passed by bootloader. 1147 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 1148 * it would be regarded as device data. 1149 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 1150 */ 1151 void add_bootloader_randomness(const void *buf, size_t size) 1152 { 1153 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 1154 add_hwgenerator_randomness(buf, size, size * 8); 1155 else 1156 add_device_randomness(buf, size); 1157 } 1158 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 1159 1160 #if IS_ENABLED(CONFIG_VMGENID) 1161 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 1162 1163 /* 1164 * Handle a new unique VM ID, which is unique, not secret, so we 1165 * don't credit it, but we do immediately force a reseed after so 1166 * that it's used by the crng posthaste. 1167 */ 1168 void add_vmfork_randomness(const void *unique_vm_id, size_t size) 1169 { 1170 add_device_randomness(unique_vm_id, size); 1171 if (crng_ready()) { 1172 crng_reseed(true); 1173 pr_notice("crng reseeded due to virtual machine fork\n"); 1174 } 1175 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 1176 } 1177 #if IS_MODULE(CONFIG_VMGENID) 1178 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 1179 #endif 1180 1181 int register_random_vmfork_notifier(struct notifier_block *nb) 1182 { 1183 return blocking_notifier_chain_register(&vmfork_chain, nb); 1184 } 1185 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1186 1187 int unregister_random_vmfork_notifier(struct notifier_block *nb) 1188 { 1189 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1190 } 1191 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1192 #endif 1193 1194 struct fast_pool { 1195 struct work_struct mix; 1196 unsigned long pool[4]; 1197 unsigned long last; 1198 unsigned int count; 1199 u16 reg_idx; 1200 }; 1201 1202 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1203 #ifdef CONFIG_64BIT 1204 /* SipHash constants */ 1205 .pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL, 1206 0x6c7967656e657261UL, 0x7465646279746573UL } 1207 #else 1208 /* HalfSipHash constants */ 1209 .pool = { 0, 0, 0x6c796765U, 0x74656462U } 1210 #endif 1211 }; 1212 1213 /* 1214 * This is [Half]SipHash-1-x, starting from an empty key. Because 1215 * the key is fixed, it assumes that its inputs are non-malicious, 1216 * and therefore this has no security on its own. s represents the 1217 * 128 or 256-bit SipHash state, while v represents a 128-bit input. 1218 */ 1219 static void fast_mix(unsigned long s[4], const unsigned long *v) 1220 { 1221 size_t i; 1222 1223 for (i = 0; i < 16 / sizeof(long); ++i) { 1224 s[3] ^= v[i]; 1225 #ifdef CONFIG_64BIT 1226 s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32); 1227 s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2]; 1228 s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0]; 1229 s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32); 1230 #else 1231 s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16); 1232 s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2]; 1233 s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0]; 1234 s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16); 1235 #endif 1236 s[0] ^= v[i]; 1237 } 1238 } 1239 1240 #ifdef CONFIG_SMP 1241 /* 1242 * This function is called when the CPU has just come online, with 1243 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1244 */ 1245 int random_online_cpu(unsigned int cpu) 1246 { 1247 /* 1248 * During CPU shutdown and before CPU onlining, add_interrupt_ 1249 * randomness() may schedule mix_interrupt_randomness(), and 1250 * set the MIX_INFLIGHT flag. However, because the worker can 1251 * be scheduled on a different CPU during this period, that 1252 * flag will never be cleared. For that reason, we zero out 1253 * the flag here, which runs just after workqueues are onlined 1254 * for the CPU again. This also has the effect of setting the 1255 * irq randomness count to zero so that new accumulated irqs 1256 * are fresh. 1257 */ 1258 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1259 return 0; 1260 } 1261 #endif 1262 1263 static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs) 1264 { 1265 unsigned long *ptr = (unsigned long *)regs; 1266 unsigned int idx; 1267 1268 if (regs == NULL) 1269 return 0; 1270 idx = READ_ONCE(f->reg_idx); 1271 if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long)) 1272 idx = 0; 1273 ptr += idx++; 1274 WRITE_ONCE(f->reg_idx, idx); 1275 return *ptr; 1276 } 1277 1278 static void mix_interrupt_randomness(struct work_struct *work) 1279 { 1280 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1281 /* 1282 * The size of the copied stack pool is explicitly 16 bytes so that we 1283 * tax mix_pool_byte()'s compression function the same amount on all 1284 * platforms. This means on 64-bit we copy half the pool into this, 1285 * while on 32-bit we copy all of it. The entropy is supposed to be 1286 * sufficiently dispersed between bits that in the sponge-like 1287 * half case, on average we don't wind up "losing" some. 1288 */ 1289 u8 pool[16]; 1290 1291 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1292 local_irq_disable(); 1293 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1294 local_irq_enable(); 1295 return; 1296 } 1297 1298 /* 1299 * Copy the pool to the stack so that the mixer always has a 1300 * consistent view, before we reenable irqs again. 1301 */ 1302 memcpy(pool, fast_pool->pool, sizeof(pool)); 1303 fast_pool->count = 0; 1304 fast_pool->last = jiffies; 1305 local_irq_enable(); 1306 1307 if (unlikely(crng_init == 0)) { 1308 crng_pre_init_inject(pool, sizeof(pool), true); 1309 mix_pool_bytes(pool, sizeof(pool)); 1310 } else { 1311 mix_pool_bytes(pool, sizeof(pool)); 1312 credit_entropy_bits(1); 1313 } 1314 1315 memzero_explicit(pool, sizeof(pool)); 1316 } 1317 1318 void add_interrupt_randomness(int irq) 1319 { 1320 enum { MIX_INFLIGHT = 1U << 31 }; 1321 cycles_t cycles = random_get_entropy(); 1322 unsigned long now = jiffies; 1323 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1324 struct pt_regs *regs = get_irq_regs(); 1325 unsigned int new_count; 1326 union { 1327 u32 u32[4]; 1328 u64 u64[2]; 1329 unsigned long longs[16 / sizeof(long)]; 1330 } irq_data; 1331 1332 if (cycles == 0) 1333 cycles = get_reg(fast_pool, regs); 1334 1335 if (sizeof(cycles) == 8) 1336 irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq; 1337 else { 1338 irq_data.u32[0] = cycles ^ irq; 1339 irq_data.u32[1] = now; 1340 } 1341 1342 if (sizeof(unsigned long) == 8) 1343 irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_; 1344 else { 1345 irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_; 1346 irq_data.u32[3] = get_reg(fast_pool, regs); 1347 } 1348 1349 fast_mix(fast_pool->pool, irq_data.longs); 1350 new_count = ++fast_pool->count; 1351 1352 if (new_count & MIX_INFLIGHT) 1353 return; 1354 1355 if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) || 1356 unlikely(crng_init == 0))) 1357 return; 1358 1359 if (unlikely(!fast_pool->mix.func)) 1360 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); 1361 fast_pool->count |= MIX_INFLIGHT; 1362 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); 1363 } 1364 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1365 1366 /* 1367 * Each time the timer fires, we expect that we got an unpredictable 1368 * jump in the cycle counter. Even if the timer is running on another 1369 * CPU, the timer activity will be touching the stack of the CPU that is 1370 * generating entropy.. 1371 * 1372 * Note that we don't re-arm the timer in the timer itself - we are 1373 * happy to be scheduled away, since that just makes the load more 1374 * complex, but we do not want the timer to keep ticking unless the 1375 * entropy loop is running. 1376 * 1377 * So the re-arming always happens in the entropy loop itself. 1378 */ 1379 static void entropy_timer(struct timer_list *t) 1380 { 1381 credit_entropy_bits(1); 1382 } 1383 1384 /* 1385 * If we have an actual cycle counter, see if we can 1386 * generate enough entropy with timing noise 1387 */ 1388 static void try_to_generate_entropy(void) 1389 { 1390 struct { 1391 cycles_t cycles; 1392 struct timer_list timer; 1393 } stack; 1394 1395 stack.cycles = random_get_entropy(); 1396 1397 /* Slow counter - or none. Don't even bother */ 1398 if (stack.cycles == random_get_entropy()) 1399 return; 1400 1401 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1402 while (!crng_ready() && !signal_pending(current)) { 1403 if (!timer_pending(&stack.timer)) 1404 mod_timer(&stack.timer, jiffies + 1); 1405 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1406 schedule(); 1407 stack.cycles = random_get_entropy(); 1408 } 1409 1410 del_timer_sync(&stack.timer); 1411 destroy_timer_on_stack(&stack.timer); 1412 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1413 } 1414 1415 1416 /********************************************************************** 1417 * 1418 * Userspace reader/writer interfaces. 1419 * 1420 * getrandom(2) is the primary modern interface into the RNG and should 1421 * be used in preference to anything else. 1422 * 1423 * Reading from /dev/random and /dev/urandom both have the same effect 1424 * as calling getrandom(2) with flags=0. (In earlier versions, however, 1425 * they each had different semantics.) 1426 * 1427 * Writing to either /dev/random or /dev/urandom adds entropy to 1428 * the input pool but does not credit it. 1429 * 1430 * Polling on /dev/random or /dev/urandom indicates when the RNG 1431 * is initialized, on the read side, and when it wants new entropy, 1432 * on the write side. 1433 * 1434 * Both /dev/random and /dev/urandom have the same set of ioctls for 1435 * adding entropy, getting the entropy count, zeroing the count, and 1436 * reseeding the crng. 1437 * 1438 **********************************************************************/ 1439 1440 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, 1441 flags) 1442 { 1443 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1444 return -EINVAL; 1445 1446 /* 1447 * Requesting insecure and blocking randomness at the same time makes 1448 * no sense. 1449 */ 1450 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1451 return -EINVAL; 1452 1453 if (count > INT_MAX) 1454 count = INT_MAX; 1455 1456 if (!(flags & GRND_INSECURE) && !crng_ready()) { 1457 int ret; 1458 1459 if (flags & GRND_NONBLOCK) 1460 return -EAGAIN; 1461 ret = wait_for_random_bytes(); 1462 if (unlikely(ret)) 1463 return ret; 1464 } 1465 return get_random_bytes_user(buf, count); 1466 } 1467 1468 static __poll_t random_poll(struct file *file, poll_table *wait) 1469 { 1470 __poll_t mask; 1471 1472 poll_wait(file, &crng_init_wait, wait); 1473 poll_wait(file, &random_write_wait, wait); 1474 mask = 0; 1475 if (crng_ready()) 1476 mask |= EPOLLIN | EPOLLRDNORM; 1477 if (input_pool.entropy_count < POOL_MIN_BITS) 1478 mask |= EPOLLOUT | EPOLLWRNORM; 1479 return mask; 1480 } 1481 1482 static int write_pool(const char __user *ubuf, size_t count) 1483 { 1484 size_t len; 1485 int ret = 0; 1486 u8 block[BLAKE2S_BLOCK_SIZE]; 1487 1488 while (count) { 1489 len = min(count, sizeof(block)); 1490 if (copy_from_user(block, ubuf, len)) { 1491 ret = -EFAULT; 1492 goto out; 1493 } 1494 count -= len; 1495 ubuf += len; 1496 mix_pool_bytes(block, len); 1497 cond_resched(); 1498 } 1499 1500 out: 1501 memzero_explicit(block, sizeof(block)); 1502 return ret; 1503 } 1504 1505 static ssize_t random_write(struct file *file, const char __user *buffer, 1506 size_t count, loff_t *ppos) 1507 { 1508 int ret; 1509 1510 ret = write_pool(buffer, count); 1511 if (ret) 1512 return ret; 1513 1514 return (ssize_t)count; 1515 } 1516 1517 static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, 1518 loff_t *ppos) 1519 { 1520 int ret; 1521 1522 ret = wait_for_random_bytes(); 1523 if (ret != 0) 1524 return ret; 1525 return get_random_bytes_user(buf, nbytes); 1526 } 1527 1528 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1529 { 1530 int size, ent_count; 1531 int __user *p = (int __user *)arg; 1532 int retval; 1533 1534 switch (cmd) { 1535 case RNDGETENTCNT: 1536 /* Inherently racy, no point locking. */ 1537 if (put_user(input_pool.entropy_count, p)) 1538 return -EFAULT; 1539 return 0; 1540 case RNDADDTOENTCNT: 1541 if (!capable(CAP_SYS_ADMIN)) 1542 return -EPERM; 1543 if (get_user(ent_count, p)) 1544 return -EFAULT; 1545 if (ent_count < 0) 1546 return -EINVAL; 1547 credit_entropy_bits(ent_count); 1548 return 0; 1549 case RNDADDENTROPY: 1550 if (!capable(CAP_SYS_ADMIN)) 1551 return -EPERM; 1552 if (get_user(ent_count, p++)) 1553 return -EFAULT; 1554 if (ent_count < 0) 1555 return -EINVAL; 1556 if (get_user(size, p++)) 1557 return -EFAULT; 1558 retval = write_pool((const char __user *)p, size); 1559 if (retval < 0) 1560 return retval; 1561 credit_entropy_bits(ent_count); 1562 return 0; 1563 case RNDZAPENTCNT: 1564 case RNDCLEARPOOL: 1565 /* 1566 * Clear the entropy pool counters. We no longer clear 1567 * the entropy pool, as that's silly. 1568 */ 1569 if (!capable(CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) { 1572 wake_up_interruptible(&random_write_wait); 1573 kill_fasync(&fasync, SIGIO, POLL_OUT); 1574 } 1575 return 0; 1576 case RNDRESEEDCRNG: 1577 if (!capable(CAP_SYS_ADMIN)) 1578 return -EPERM; 1579 if (!crng_ready()) 1580 return -ENODATA; 1581 crng_reseed(false); 1582 return 0; 1583 default: 1584 return -EINVAL; 1585 } 1586 } 1587 1588 static int random_fasync(int fd, struct file *filp, int on) 1589 { 1590 return fasync_helper(fd, filp, on, &fasync); 1591 } 1592 1593 const struct file_operations random_fops = { 1594 .read = random_read, 1595 .write = random_write, 1596 .poll = random_poll, 1597 .unlocked_ioctl = random_ioctl, 1598 .compat_ioctl = compat_ptr_ioctl, 1599 .fasync = random_fasync, 1600 .llseek = noop_llseek, 1601 }; 1602 1603 1604 /******************************************************************** 1605 * 1606 * Sysctl interface. 1607 * 1608 * These are partly unused legacy knobs with dummy values to not break 1609 * userspace and partly still useful things. They are usually accessible 1610 * in /proc/sys/kernel/random/ and are as follows: 1611 * 1612 * - boot_id - a UUID representing the current boot. 1613 * 1614 * - uuid - a random UUID, different each time the file is read. 1615 * 1616 * - poolsize - the number of bits of entropy that the input pool can 1617 * hold, tied to the POOL_BITS constant. 1618 * 1619 * - entropy_avail - the number of bits of entropy currently in the 1620 * input pool. Always <= poolsize. 1621 * 1622 * - write_wakeup_threshold - the amount of entropy in the input pool 1623 * below which write polls to /dev/random will unblock, requesting 1624 * more entropy, tied to the POOL_MIN_BITS constant. It is writable 1625 * to avoid breaking old userspaces, but writing to it does not 1626 * change any behavior of the RNG. 1627 * 1628 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1629 * It is writable to avoid breaking old userspaces, but writing 1630 * to it does not change any behavior of the RNG. 1631 * 1632 ********************************************************************/ 1633 1634 #ifdef CONFIG_SYSCTL 1635 1636 #include <linux/sysctl.h> 1637 1638 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1639 static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS; 1640 static int sysctl_poolsize = POOL_BITS; 1641 static u8 sysctl_bootid[UUID_SIZE]; 1642 1643 /* 1644 * This function is used to return both the bootid UUID, and random 1645 * UUID. The difference is in whether table->data is NULL; if it is, 1646 * then a new UUID is generated and returned to the user. 1647 */ 1648 static int proc_do_uuid(struct ctl_table *table, int write, void *buffer, 1649 size_t *lenp, loff_t *ppos) 1650 { 1651 u8 tmp_uuid[UUID_SIZE], *uuid; 1652 char uuid_string[UUID_STRING_LEN + 1]; 1653 struct ctl_table fake_table = { 1654 .data = uuid_string, 1655 .maxlen = UUID_STRING_LEN 1656 }; 1657 1658 if (write) 1659 return -EPERM; 1660 1661 uuid = table->data; 1662 if (!uuid) { 1663 uuid = tmp_uuid; 1664 generate_random_uuid(uuid); 1665 } else { 1666 static DEFINE_SPINLOCK(bootid_spinlock); 1667 1668 spin_lock(&bootid_spinlock); 1669 if (!uuid[8]) 1670 generate_random_uuid(uuid); 1671 spin_unlock(&bootid_spinlock); 1672 } 1673 1674 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1675 return proc_dostring(&fake_table, 0, buffer, lenp, ppos); 1676 } 1677 1678 /* The same as proc_dointvec, but writes don't change anything. */ 1679 static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer, 1680 size_t *lenp, loff_t *ppos) 1681 { 1682 return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos); 1683 } 1684 1685 static struct ctl_table random_table[] = { 1686 { 1687 .procname = "poolsize", 1688 .data = &sysctl_poolsize, 1689 .maxlen = sizeof(int), 1690 .mode = 0444, 1691 .proc_handler = proc_dointvec, 1692 }, 1693 { 1694 .procname = "entropy_avail", 1695 .data = &input_pool.entropy_count, 1696 .maxlen = sizeof(int), 1697 .mode = 0444, 1698 .proc_handler = proc_dointvec, 1699 }, 1700 { 1701 .procname = "write_wakeup_threshold", 1702 .data = &sysctl_random_write_wakeup_bits, 1703 .maxlen = sizeof(int), 1704 .mode = 0644, 1705 .proc_handler = proc_do_rointvec, 1706 }, 1707 { 1708 .procname = "urandom_min_reseed_secs", 1709 .data = &sysctl_random_min_urandom_seed, 1710 .maxlen = sizeof(int), 1711 .mode = 0644, 1712 .proc_handler = proc_do_rointvec, 1713 }, 1714 { 1715 .procname = "boot_id", 1716 .data = &sysctl_bootid, 1717 .mode = 0444, 1718 .proc_handler = proc_do_uuid, 1719 }, 1720 { 1721 .procname = "uuid", 1722 .mode = 0444, 1723 .proc_handler = proc_do_uuid, 1724 }, 1725 { } 1726 }; 1727 1728 /* 1729 * rand_initialize() is called before sysctl_init(), 1730 * so we cannot call register_sysctl_init() in rand_initialize() 1731 */ 1732 static int __init random_sysctls_init(void) 1733 { 1734 register_sysctl_init("kernel/random", random_table); 1735 return 0; 1736 } 1737 device_initcall(random_sysctls_init); 1738 #endif 1739