1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Some of that data is then "credited" as 19 * having a certain number of bits of entropy. When enough bits of entropy are 20 * available, the hash is finalized and handed as a key to a stream cipher that 21 * expands it indefinitely for various consumers. This key is periodically 22 * refreshed as the various entropy collectors, described below, add data to the 23 * input pool and credit it. There is currently no Fortuna-like scheduler 24 * involved, which can lead to malicious entropy sources causing a premature 25 * reseed, and the entropy estimates are, at best, conservative guesses. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/utsname.h> 31 #include <linux/module.h> 32 #include <linux/kernel.h> 33 #include <linux/major.h> 34 #include <linux/string.h> 35 #include <linux/fcntl.h> 36 #include <linux/slab.h> 37 #include <linux/random.h> 38 #include <linux/poll.h> 39 #include <linux/init.h> 40 #include <linux/fs.h> 41 #include <linux/blkdev.h> 42 #include <linux/interrupt.h> 43 #include <linux/mm.h> 44 #include <linux/nodemask.h> 45 #include <linux/spinlock.h> 46 #include <linux/kthread.h> 47 #include <linux/percpu.h> 48 #include <linux/ptrace.h> 49 #include <linux/workqueue.h> 50 #include <linux/irq.h> 51 #include <linux/ratelimit.h> 52 #include <linux/syscalls.h> 53 #include <linux/completion.h> 54 #include <linux/uuid.h> 55 #include <linux/uaccess.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init = 0 --> Uninitialized 75 * 1 --> Initialized 76 * 2 --> Initialized from input_pool 77 * 78 * crng_init is protected by base_crng->lock, and only increases 79 * its value (from 0->1->2). 80 */ 81 static int crng_init = 0; 82 #define crng_ready() (likely(crng_init > 1)) 83 /* Various types of waiters for crng_init->2 transition. */ 84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 85 static struct fasync_struct *fasync; 86 static DEFINE_SPINLOCK(random_ready_chain_lock); 87 static RAW_NOTIFIER_HEAD(random_ready_chain); 88 89 /* Control how we warn userspace. */ 90 static struct ratelimit_state unseeded_warning = 91 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 92 static struct ratelimit_state urandom_warning = 93 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 94 static int ratelimit_disable __read_mostly; 95 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 96 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 97 98 /* 99 * Returns whether or not the input pool has been seeded and thus guaranteed 100 * to supply cryptographically secure random numbers. This applies to: the 101 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 102 * ,u64,int,long} family of functions. 103 * 104 * Returns: true if the input pool has been seeded. 105 * false if the input pool has not been seeded. 106 */ 107 bool rng_is_initialized(void) 108 { 109 return crng_ready(); 110 } 111 EXPORT_SYMBOL(rng_is_initialized); 112 113 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 114 static void try_to_generate_entropy(void); 115 116 /* 117 * Wait for the input pool to be seeded and thus guaranteed to supply 118 * cryptographically secure random numbers. This applies to: the /dev/urandom 119 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 120 * family of functions. Using any of these functions without first calling 121 * this function forfeits the guarantee of security. 122 * 123 * Returns: 0 if the input pool has been seeded. 124 * -ERESTARTSYS if the function was interrupted by a signal. 125 */ 126 int wait_for_random_bytes(void) 127 { 128 while (!crng_ready()) { 129 int ret; 130 131 try_to_generate_entropy(); 132 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 133 if (ret) 134 return ret > 0 ? 0 : ret; 135 } 136 return 0; 137 } 138 EXPORT_SYMBOL(wait_for_random_bytes); 139 140 /* 141 * Add a callback function that will be invoked when the input 142 * pool is initialised. 143 * 144 * returns: 0 if callback is successfully added 145 * -EALREADY if pool is already initialised (callback not called) 146 */ 147 int register_random_ready_notifier(struct notifier_block *nb) 148 { 149 unsigned long flags; 150 int ret = -EALREADY; 151 152 if (crng_ready()) 153 return ret; 154 155 spin_lock_irqsave(&random_ready_chain_lock, flags); 156 if (!crng_ready()) 157 ret = raw_notifier_chain_register(&random_ready_chain, nb); 158 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 159 return ret; 160 } 161 162 /* 163 * Delete a previously registered readiness callback function. 164 */ 165 int unregister_random_ready_notifier(struct notifier_block *nb) 166 { 167 unsigned long flags; 168 int ret; 169 170 spin_lock_irqsave(&random_ready_chain_lock, flags); 171 ret = raw_notifier_chain_unregister(&random_ready_chain, nb); 172 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 173 return ret; 174 } 175 176 static void process_random_ready_list(void) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&random_ready_chain_lock, flags); 181 raw_notifier_call_chain(&random_ready_chain, 0, NULL); 182 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 183 } 184 185 #define warn_unseeded_randomness(previous) \ 186 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) 187 188 static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous) 189 { 190 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 191 const bool print_once = false; 192 #else 193 static bool print_once __read_mostly; 194 #endif 195 196 if (print_once || crng_ready() || 197 (previous && (caller == READ_ONCE(*previous)))) 198 return; 199 WRITE_ONCE(*previous, caller); 200 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 201 print_once = true; 202 #endif 203 if (__ratelimit(&unseeded_warning)) 204 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", 205 func_name, caller, crng_init); 206 } 207 208 209 /********************************************************************* 210 * 211 * Fast key erasure RNG, the "crng". 212 * 213 * These functions expand entropy from the entropy extractor into 214 * long streams for external consumption using the "fast key erasure" 215 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 216 * 217 * There are a few exported interfaces for use by other drivers: 218 * 219 * void get_random_bytes(void *buf, size_t nbytes) 220 * u32 get_random_u32() 221 * u64 get_random_u64() 222 * unsigned int get_random_int() 223 * unsigned long get_random_long() 224 * 225 * These interfaces will return the requested number of random bytes 226 * into the given buffer or as a return value. This is equivalent to 227 * a read from /dev/urandom. The u32, u64, int, and long family of 228 * functions may be higher performance for one-off random integers, 229 * because they do a bit of buffering and do not invoke reseeding 230 * until the buffer is emptied. 231 * 232 *********************************************************************/ 233 234 enum { 235 CRNG_RESEED_INTERVAL = 300 * HZ, 236 CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE 237 }; 238 239 static struct { 240 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 241 unsigned long birth; 242 unsigned long generation; 243 spinlock_t lock; 244 } base_crng = { 245 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 246 }; 247 248 struct crng { 249 u8 key[CHACHA_KEY_SIZE]; 250 unsigned long generation; 251 local_lock_t lock; 252 }; 253 254 static DEFINE_PER_CPU(struct crng, crngs) = { 255 .generation = ULONG_MAX, 256 .lock = INIT_LOCAL_LOCK(crngs.lock), 257 }; 258 259 /* Used by crng_reseed() to extract a new seed from the input pool. */ 260 static bool drain_entropy(void *buf, size_t nbytes, bool force); 261 262 /* 263 * This extracts a new crng key from the input pool, but only if there is a 264 * sufficient amount of entropy available or force is true, in order to 265 * mitigate bruteforcing of newly added bits. 266 */ 267 static void crng_reseed(bool force) 268 { 269 unsigned long flags; 270 unsigned long next_gen; 271 u8 key[CHACHA_KEY_SIZE]; 272 bool finalize_init = false; 273 274 /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ 275 if (!drain_entropy(key, sizeof(key), force)) 276 return; 277 278 /* 279 * We copy the new key into the base_crng, overwriting the old one, 280 * and update the generation counter. We avoid hitting ULONG_MAX, 281 * because the per-cpu crngs are initialized to ULONG_MAX, so this 282 * forces new CPUs that come online to always initialize. 283 */ 284 spin_lock_irqsave(&base_crng.lock, flags); 285 memcpy(base_crng.key, key, sizeof(base_crng.key)); 286 next_gen = base_crng.generation + 1; 287 if (next_gen == ULONG_MAX) 288 ++next_gen; 289 WRITE_ONCE(base_crng.generation, next_gen); 290 WRITE_ONCE(base_crng.birth, jiffies); 291 if (!crng_ready()) { 292 crng_init = 2; 293 finalize_init = true; 294 } 295 spin_unlock_irqrestore(&base_crng.lock, flags); 296 memzero_explicit(key, sizeof(key)); 297 if (finalize_init) { 298 process_random_ready_list(); 299 wake_up_interruptible(&crng_init_wait); 300 kill_fasync(&fasync, SIGIO, POLL_IN); 301 pr_notice("crng init done\n"); 302 if (unseeded_warning.missed) { 303 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 304 unseeded_warning.missed); 305 unseeded_warning.missed = 0; 306 } 307 if (urandom_warning.missed) { 308 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 309 urandom_warning.missed); 310 urandom_warning.missed = 0; 311 } 312 } 313 } 314 315 /* 316 * This generates a ChaCha block using the provided key, and then 317 * immediately overwites that key with half the block. It returns 318 * the resultant ChaCha state to the user, along with the second 319 * half of the block containing 32 bytes of random data that may 320 * be used; random_data_len may not be greater than 32. 321 */ 322 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 323 u32 chacha_state[CHACHA_STATE_WORDS], 324 u8 *random_data, size_t random_data_len) 325 { 326 u8 first_block[CHACHA_BLOCK_SIZE]; 327 328 BUG_ON(random_data_len > 32); 329 330 chacha_init_consts(chacha_state); 331 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 332 memset(&chacha_state[12], 0, sizeof(u32) * 4); 333 chacha20_block(chacha_state, first_block); 334 335 memcpy(key, first_block, CHACHA_KEY_SIZE); 336 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 337 memzero_explicit(first_block, sizeof(first_block)); 338 } 339 340 /* 341 * Return whether the crng seed is considered to be sufficiently 342 * old that a reseeding might be attempted. This happens if the last 343 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at 344 * an interval proportional to the uptime. 345 */ 346 static bool crng_has_old_seed(void) 347 { 348 static bool early_boot = true; 349 unsigned long interval = CRNG_RESEED_INTERVAL; 350 351 if (unlikely(READ_ONCE(early_boot))) { 352 time64_t uptime = ktime_get_seconds(); 353 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 354 WRITE_ONCE(early_boot, false); 355 else 356 interval = max_t(unsigned int, 5 * HZ, 357 (unsigned int)uptime / 2 * HZ); 358 } 359 return time_after(jiffies, READ_ONCE(base_crng.birth) + interval); 360 } 361 362 /* 363 * This function returns a ChaCha state that you may use for generating 364 * random data. It also returns up to 32 bytes on its own of random data 365 * that may be used; random_data_len may not be greater than 32. 366 */ 367 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 368 u8 *random_data, size_t random_data_len) 369 { 370 unsigned long flags; 371 struct crng *crng; 372 373 BUG_ON(random_data_len > 32); 374 375 /* 376 * For the fast path, we check whether we're ready, unlocked first, and 377 * then re-check once locked later. In the case where we're really not 378 * ready, we do fast key erasure with the base_crng directly, because 379 * this is what crng_pre_init_inject() mutates during early init. 380 */ 381 if (!crng_ready()) { 382 bool ready; 383 384 spin_lock_irqsave(&base_crng.lock, flags); 385 ready = crng_ready(); 386 if (!ready) 387 crng_fast_key_erasure(base_crng.key, chacha_state, 388 random_data, random_data_len); 389 spin_unlock_irqrestore(&base_crng.lock, flags); 390 if (!ready) 391 return; 392 } 393 394 /* 395 * If the base_crng is old enough, we try to reseed, which in turn 396 * bumps the generation counter that we check below. 397 */ 398 if (unlikely(crng_has_old_seed())) 399 crng_reseed(false); 400 401 local_lock_irqsave(&crngs.lock, flags); 402 crng = raw_cpu_ptr(&crngs); 403 404 /* 405 * If our per-cpu crng is older than the base_crng, then it means 406 * somebody reseeded the base_crng. In that case, we do fast key 407 * erasure on the base_crng, and use its output as the new key 408 * for our per-cpu crng. This brings us up to date with base_crng. 409 */ 410 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 411 spin_lock(&base_crng.lock); 412 crng_fast_key_erasure(base_crng.key, chacha_state, 413 crng->key, sizeof(crng->key)); 414 crng->generation = base_crng.generation; 415 spin_unlock(&base_crng.lock); 416 } 417 418 /* 419 * Finally, when we've made it this far, our per-cpu crng has an up 420 * to date key, and we can do fast key erasure with it to produce 421 * some random data and a ChaCha state for the caller. All other 422 * branches of this function are "unlikely", so most of the time we 423 * should wind up here immediately. 424 */ 425 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 426 local_unlock_irqrestore(&crngs.lock, flags); 427 } 428 429 /* 430 * This function is for crng_init == 0 only. It loads entropy directly 431 * into the crng's key, without going through the input pool. It is, 432 * generally speaking, not very safe, but we use this only at early 433 * boot time when it's better to have something there rather than 434 * nothing. 435 * 436 * If account is set, then the crng_init_cnt counter is incremented. 437 * This shouldn't be set by functions like add_device_randomness(), 438 * where we can't trust the buffer passed to it is guaranteed to be 439 * unpredictable (so it might not have any entropy at all). 440 * 441 * Returns the number of bytes processed from input, which is bounded 442 * by CRNG_INIT_CNT_THRESH if account is true. 443 */ 444 static size_t crng_pre_init_inject(const void *input, size_t len, bool account) 445 { 446 static int crng_init_cnt = 0; 447 struct blake2s_state hash; 448 unsigned long flags; 449 450 blake2s_init(&hash, sizeof(base_crng.key)); 451 452 spin_lock_irqsave(&base_crng.lock, flags); 453 if (crng_init != 0) { 454 spin_unlock_irqrestore(&base_crng.lock, flags); 455 return 0; 456 } 457 458 if (account) 459 len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt); 460 461 blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); 462 blake2s_update(&hash, input, len); 463 blake2s_final(&hash, base_crng.key); 464 465 if (account) { 466 crng_init_cnt += len; 467 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 468 ++base_crng.generation; 469 crng_init = 1; 470 } 471 } 472 473 spin_unlock_irqrestore(&base_crng.lock, flags); 474 475 if (crng_init == 1) 476 pr_notice("fast init done\n"); 477 478 return len; 479 } 480 481 static void _get_random_bytes(void *buf, size_t nbytes) 482 { 483 u32 chacha_state[CHACHA_STATE_WORDS]; 484 u8 tmp[CHACHA_BLOCK_SIZE]; 485 size_t len; 486 487 if (!nbytes) 488 return; 489 490 len = min_t(size_t, 32, nbytes); 491 crng_make_state(chacha_state, buf, len); 492 nbytes -= len; 493 buf += len; 494 495 while (nbytes) { 496 if (nbytes < CHACHA_BLOCK_SIZE) { 497 chacha20_block(chacha_state, tmp); 498 memcpy(buf, tmp, nbytes); 499 memzero_explicit(tmp, sizeof(tmp)); 500 break; 501 } 502 503 chacha20_block(chacha_state, buf); 504 if (unlikely(chacha_state[12] == 0)) 505 ++chacha_state[13]; 506 nbytes -= CHACHA_BLOCK_SIZE; 507 buf += CHACHA_BLOCK_SIZE; 508 } 509 510 memzero_explicit(chacha_state, sizeof(chacha_state)); 511 } 512 513 /* 514 * This function is the exported kernel interface. It returns some 515 * number of good random numbers, suitable for key generation, seeding 516 * TCP sequence numbers, etc. It does not rely on the hardware random 517 * number generator. For random bytes direct from the hardware RNG 518 * (when available), use get_random_bytes_arch(). In order to ensure 519 * that the randomness provided by this function is okay, the function 520 * wait_for_random_bytes() should be called and return 0 at least once 521 * at any point prior. 522 */ 523 void get_random_bytes(void *buf, size_t nbytes) 524 { 525 static void *previous; 526 527 warn_unseeded_randomness(&previous); 528 _get_random_bytes(buf, nbytes); 529 } 530 EXPORT_SYMBOL(get_random_bytes); 531 532 static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) 533 { 534 bool large_request = nbytes > 256; 535 ssize_t ret = 0; 536 size_t len; 537 u32 chacha_state[CHACHA_STATE_WORDS]; 538 u8 output[CHACHA_BLOCK_SIZE]; 539 540 if (!nbytes) 541 return 0; 542 543 len = min_t(size_t, 32, nbytes); 544 crng_make_state(chacha_state, output, len); 545 546 if (copy_to_user(buf, output, len)) 547 return -EFAULT; 548 nbytes -= len; 549 buf += len; 550 ret += len; 551 552 while (nbytes) { 553 if (large_request && need_resched()) { 554 if (signal_pending(current)) 555 break; 556 schedule(); 557 } 558 559 chacha20_block(chacha_state, output); 560 if (unlikely(chacha_state[12] == 0)) 561 ++chacha_state[13]; 562 563 len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE); 564 if (copy_to_user(buf, output, len)) { 565 ret = -EFAULT; 566 break; 567 } 568 569 nbytes -= len; 570 buf += len; 571 ret += len; 572 } 573 574 memzero_explicit(chacha_state, sizeof(chacha_state)); 575 memzero_explicit(output, sizeof(output)); 576 return ret; 577 } 578 579 /* 580 * Batched entropy returns random integers. The quality of the random 581 * number is good as /dev/urandom. In order to ensure that the randomness 582 * provided by this function is okay, the function wait_for_random_bytes() 583 * should be called and return 0 at least once at any point prior. 584 */ 585 struct batched_entropy { 586 union { 587 /* 588 * We make this 1.5x a ChaCha block, so that we get the 589 * remaining 32 bytes from fast key erasure, plus one full 590 * block from the detached ChaCha state. We can increase 591 * the size of this later if needed so long as we keep the 592 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. 593 */ 594 u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; 595 u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; 596 }; 597 local_lock_t lock; 598 unsigned long generation; 599 unsigned int position; 600 }; 601 602 603 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 604 .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), 605 .position = UINT_MAX 606 }; 607 608 u64 get_random_u64(void) 609 { 610 u64 ret; 611 unsigned long flags; 612 struct batched_entropy *batch; 613 static void *previous; 614 unsigned long next_gen; 615 616 warn_unseeded_randomness(&previous); 617 618 local_lock_irqsave(&batched_entropy_u64.lock, flags); 619 batch = raw_cpu_ptr(&batched_entropy_u64); 620 621 next_gen = READ_ONCE(base_crng.generation); 622 if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || 623 next_gen != batch->generation) { 624 _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); 625 batch->position = 0; 626 batch->generation = next_gen; 627 } 628 629 ret = batch->entropy_u64[batch->position]; 630 batch->entropy_u64[batch->position] = 0; 631 ++batch->position; 632 local_unlock_irqrestore(&batched_entropy_u64.lock, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(get_random_u64); 636 637 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 638 .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), 639 .position = UINT_MAX 640 }; 641 642 u32 get_random_u32(void) 643 { 644 u32 ret; 645 unsigned long flags; 646 struct batched_entropy *batch; 647 static void *previous; 648 unsigned long next_gen; 649 650 warn_unseeded_randomness(&previous); 651 652 local_lock_irqsave(&batched_entropy_u32.lock, flags); 653 batch = raw_cpu_ptr(&batched_entropy_u32); 654 655 next_gen = READ_ONCE(base_crng.generation); 656 if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || 657 next_gen != batch->generation) { 658 _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); 659 batch->position = 0; 660 batch->generation = next_gen; 661 } 662 663 ret = batch->entropy_u32[batch->position]; 664 batch->entropy_u32[batch->position] = 0; 665 ++batch->position; 666 local_unlock_irqrestore(&batched_entropy_u32.lock, flags); 667 return ret; 668 } 669 EXPORT_SYMBOL(get_random_u32); 670 671 #ifdef CONFIG_SMP 672 /* 673 * This function is called when the CPU is coming up, with entry 674 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 675 */ 676 int random_prepare_cpu(unsigned int cpu) 677 { 678 /* 679 * When the cpu comes back online, immediately invalidate both 680 * the per-cpu crng and all batches, so that we serve fresh 681 * randomness. 682 */ 683 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 684 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 685 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 686 return 0; 687 } 688 #endif 689 690 /** 691 * randomize_page - Generate a random, page aligned address 692 * @start: The smallest acceptable address the caller will take. 693 * @range: The size of the area, starting at @start, within which the 694 * random address must fall. 695 * 696 * If @start + @range would overflow, @range is capped. 697 * 698 * NOTE: Historical use of randomize_range, which this replaces, presumed that 699 * @start was already page aligned. We now align it regardless. 700 * 701 * Return: A page aligned address within [start, start + range). On error, 702 * @start is returned. 703 */ 704 unsigned long randomize_page(unsigned long start, unsigned long range) 705 { 706 if (!PAGE_ALIGNED(start)) { 707 range -= PAGE_ALIGN(start) - start; 708 start = PAGE_ALIGN(start); 709 } 710 711 if (start > ULONG_MAX - range) 712 range = ULONG_MAX - start; 713 714 range >>= PAGE_SHIFT; 715 716 if (range == 0) 717 return start; 718 719 return start + (get_random_long() % range << PAGE_SHIFT); 720 } 721 722 /* 723 * This function will use the architecture-specific hardware random 724 * number generator if it is available. It is not recommended for 725 * use. Use get_random_bytes() instead. It returns the number of 726 * bytes filled in. 727 */ 728 size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes) 729 { 730 size_t left = nbytes; 731 u8 *p = buf; 732 733 while (left) { 734 unsigned long v; 735 size_t chunk = min_t(size_t, left, sizeof(unsigned long)); 736 737 if (!arch_get_random_long(&v)) 738 break; 739 740 memcpy(p, &v, chunk); 741 p += chunk; 742 left -= chunk; 743 } 744 745 return nbytes - left; 746 } 747 EXPORT_SYMBOL(get_random_bytes_arch); 748 749 750 /********************************************************************** 751 * 752 * Entropy accumulation and extraction routines. 753 * 754 * Callers may add entropy via: 755 * 756 * static void mix_pool_bytes(const void *in, size_t nbytes) 757 * 758 * After which, if added entropy should be credited: 759 * 760 * static void credit_entropy_bits(size_t nbits) 761 * 762 * Finally, extract entropy via these two, with the latter one 763 * setting the entropy count to zero and extracting only if there 764 * is POOL_MIN_BITS entropy credited prior or force is true: 765 * 766 * static void extract_entropy(void *buf, size_t nbytes) 767 * static bool drain_entropy(void *buf, size_t nbytes, bool force) 768 * 769 **********************************************************************/ 770 771 enum { 772 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 773 POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ 774 }; 775 776 /* For notifying userspace should write into /dev/random. */ 777 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 778 779 static struct { 780 struct blake2s_state hash; 781 spinlock_t lock; 782 unsigned int entropy_count; 783 } input_pool = { 784 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 785 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 786 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 787 .hash.outlen = BLAKE2S_HASH_SIZE, 788 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 789 }; 790 791 static void _mix_pool_bytes(const void *in, size_t nbytes) 792 { 793 blake2s_update(&input_pool.hash, in, nbytes); 794 } 795 796 /* 797 * This function adds bytes into the entropy "pool". It does not 798 * update the entropy estimate. The caller should call 799 * credit_entropy_bits if this is appropriate. 800 */ 801 static void mix_pool_bytes(const void *in, size_t nbytes) 802 { 803 unsigned long flags; 804 805 spin_lock_irqsave(&input_pool.lock, flags); 806 _mix_pool_bytes(in, nbytes); 807 spin_unlock_irqrestore(&input_pool.lock, flags); 808 } 809 810 static void credit_entropy_bits(size_t nbits) 811 { 812 unsigned int entropy_count, orig, add; 813 814 if (!nbits) 815 return; 816 817 add = min_t(size_t, nbits, POOL_BITS); 818 819 do { 820 orig = READ_ONCE(input_pool.entropy_count); 821 entropy_count = min_t(unsigned int, POOL_BITS, orig + add); 822 } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); 823 824 if (!crng_ready() && entropy_count >= POOL_MIN_BITS) 825 crng_reseed(false); 826 } 827 828 /* 829 * This is an HKDF-like construction for using the hashed collected entropy 830 * as a PRF key, that's then expanded block-by-block. 831 */ 832 static void extract_entropy(void *buf, size_t nbytes) 833 { 834 unsigned long flags; 835 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 836 struct { 837 unsigned long rdseed[32 / sizeof(long)]; 838 size_t counter; 839 } block; 840 size_t i; 841 842 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { 843 if (!arch_get_random_seed_long(&block.rdseed[i]) && 844 !arch_get_random_long(&block.rdseed[i])) 845 block.rdseed[i] = random_get_entropy(); 846 } 847 848 spin_lock_irqsave(&input_pool.lock, flags); 849 850 /* seed = HASHPRF(last_key, entropy_input) */ 851 blake2s_final(&input_pool.hash, seed); 852 853 /* next_key = HASHPRF(seed, RDSEED || 0) */ 854 block.counter = 0; 855 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 856 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 857 858 spin_unlock_irqrestore(&input_pool.lock, flags); 859 memzero_explicit(next_key, sizeof(next_key)); 860 861 while (nbytes) { 862 i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); 863 /* output = HASHPRF(seed, RDSEED || ++counter) */ 864 ++block.counter; 865 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 866 nbytes -= i; 867 buf += i; 868 } 869 870 memzero_explicit(seed, sizeof(seed)); 871 memzero_explicit(&block, sizeof(block)); 872 } 873 874 /* 875 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force 876 * is true, and then we set the entropy count to zero (but don't actually touch 877 * any data). Only then can we extract a new key with extract_entropy(). 878 */ 879 static bool drain_entropy(void *buf, size_t nbytes, bool force) 880 { 881 unsigned int entropy_count; 882 do { 883 entropy_count = READ_ONCE(input_pool.entropy_count); 884 if (!force && entropy_count < POOL_MIN_BITS) 885 return false; 886 } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); 887 extract_entropy(buf, nbytes); 888 wake_up_interruptible(&random_write_wait); 889 kill_fasync(&fasync, SIGIO, POLL_OUT); 890 return true; 891 } 892 893 894 /********************************************************************** 895 * 896 * Entropy collection routines. 897 * 898 * The following exported functions are used for pushing entropy into 899 * the above entropy accumulation routines: 900 * 901 * void add_device_randomness(const void *buf, size_t size); 902 * void add_input_randomness(unsigned int type, unsigned int code, 903 * unsigned int value); 904 * void add_disk_randomness(struct gendisk *disk); 905 * void add_hwgenerator_randomness(const void *buffer, size_t count, 906 * size_t entropy); 907 * void add_bootloader_randomness(const void *buf, size_t size); 908 * void add_vmfork_randomness(const void *unique_vm_id, size_t size); 909 * void add_interrupt_randomness(int irq); 910 * 911 * add_device_randomness() adds data to the input pool that 912 * is likely to differ between two devices (or possibly even per boot). 913 * This would be things like MAC addresses or serial numbers, or the 914 * read-out of the RTC. This does *not* credit any actual entropy to 915 * the pool, but it initializes the pool to different values for devices 916 * that might otherwise be identical and have very little entropy 917 * available to them (particularly common in the embedded world). 918 * 919 * add_input_randomness() uses the input layer interrupt timing, as well 920 * as the event type information from the hardware. 921 * 922 * add_disk_randomness() uses what amounts to the seek time of block 923 * layer request events, on a per-disk_devt basis, as input to the 924 * entropy pool. Note that high-speed solid state drives with very low 925 * seek times do not make for good sources of entropy, as their seek 926 * times are usually fairly consistent. 927 * 928 * The above two routines try to estimate how many bits of entropy 929 * to credit. They do this by keeping track of the first and second 930 * order deltas of the event timings. 931 * 932 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 933 * entropy as specified by the caller. If the entropy pool is full it will 934 * block until more entropy is needed. 935 * 936 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or 937 * add_device_randomness(), depending on whether or not the configuration 938 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 939 * 940 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 941 * representing the current instance of a VM to the pool, without crediting, 942 * and then force-reseeds the crng so that it takes effect immediately. 943 * 944 * add_interrupt_randomness() uses the interrupt timing as random 945 * inputs to the entropy pool. Using the cycle counters and the irq source 946 * as inputs, it feeds the input pool roughly once a second or after 64 947 * interrupts, crediting 1 bit of entropy for whichever comes first. 948 * 949 **********************************************************************/ 950 951 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 952 static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); 953 static int __init parse_trust_cpu(char *arg) 954 { 955 return kstrtobool(arg, &trust_cpu); 956 } 957 static int __init parse_trust_bootloader(char *arg) 958 { 959 return kstrtobool(arg, &trust_bootloader); 960 } 961 early_param("random.trust_cpu", parse_trust_cpu); 962 early_param("random.trust_bootloader", parse_trust_bootloader); 963 964 /* 965 * The first collection of entropy occurs at system boot while interrupts 966 * are still turned off. Here we push in RDSEED, a timestamp, and utsname(). 967 * Depending on the above configuration knob, RDSEED may be considered 968 * sufficient for initialization. Note that much earlier setup may already 969 * have pushed entropy into the input pool by the time we get here. 970 */ 971 int __init rand_initialize(void) 972 { 973 size_t i; 974 ktime_t now = ktime_get_real(); 975 bool arch_init = true; 976 unsigned long rv; 977 978 #if defined(LATENT_ENTROPY_PLUGIN) 979 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 980 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 981 #endif 982 983 for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { 984 if (!arch_get_random_seed_long_early(&rv) && 985 !arch_get_random_long_early(&rv)) { 986 rv = random_get_entropy(); 987 arch_init = false; 988 } 989 _mix_pool_bytes(&rv, sizeof(rv)); 990 } 991 _mix_pool_bytes(&now, sizeof(now)); 992 _mix_pool_bytes(utsname(), sizeof(*(utsname()))); 993 994 extract_entropy(base_crng.key, sizeof(base_crng.key)); 995 ++base_crng.generation; 996 997 if (arch_init && trust_cpu && !crng_ready()) { 998 crng_init = 2; 999 pr_notice("crng init done (trusting CPU's manufacturer)\n"); 1000 } 1001 1002 if (ratelimit_disable) { 1003 urandom_warning.interval = 0; 1004 unseeded_warning.interval = 0; 1005 } 1006 return 0; 1007 } 1008 1009 /* 1010 * Add device- or boot-specific data to the input pool to help 1011 * initialize it. 1012 * 1013 * None of this adds any entropy; it is meant to avoid the problem of 1014 * the entropy pool having similar initial state across largely 1015 * identical devices. 1016 */ 1017 void add_device_randomness(const void *buf, size_t size) 1018 { 1019 cycles_t cycles = random_get_entropy(); 1020 unsigned long flags, now = jiffies; 1021 1022 if (crng_init == 0 && size) 1023 crng_pre_init_inject(buf, size, false); 1024 1025 spin_lock_irqsave(&input_pool.lock, flags); 1026 _mix_pool_bytes(&cycles, sizeof(cycles)); 1027 _mix_pool_bytes(&now, sizeof(now)); 1028 _mix_pool_bytes(buf, size); 1029 spin_unlock_irqrestore(&input_pool.lock, flags); 1030 } 1031 EXPORT_SYMBOL(add_device_randomness); 1032 1033 /* There is one of these per entropy source */ 1034 struct timer_rand_state { 1035 unsigned long last_time; 1036 long last_delta, last_delta2; 1037 }; 1038 1039 /* 1040 * This function adds entropy to the entropy "pool" by using timing 1041 * delays. It uses the timer_rand_state structure to make an estimate 1042 * of how many bits of entropy this call has added to the pool. 1043 * 1044 * The number "num" is also added to the pool - it should somehow describe 1045 * the type of event which just happened. This is currently 0-255 for 1046 * keyboard scan codes, and 256 upwards for interrupts. 1047 */ 1048 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1049 { 1050 cycles_t cycles = random_get_entropy(); 1051 unsigned long flags, now = jiffies; 1052 long delta, delta2, delta3; 1053 1054 spin_lock_irqsave(&input_pool.lock, flags); 1055 _mix_pool_bytes(&cycles, sizeof(cycles)); 1056 _mix_pool_bytes(&now, sizeof(now)); 1057 _mix_pool_bytes(&num, sizeof(num)); 1058 spin_unlock_irqrestore(&input_pool.lock, flags); 1059 1060 /* 1061 * Calculate number of bits of randomness we probably added. 1062 * We take into account the first, second and third-order deltas 1063 * in order to make our estimate. 1064 */ 1065 delta = now - READ_ONCE(state->last_time); 1066 WRITE_ONCE(state->last_time, now); 1067 1068 delta2 = delta - READ_ONCE(state->last_delta); 1069 WRITE_ONCE(state->last_delta, delta); 1070 1071 delta3 = delta2 - READ_ONCE(state->last_delta2); 1072 WRITE_ONCE(state->last_delta2, delta2); 1073 1074 if (delta < 0) 1075 delta = -delta; 1076 if (delta2 < 0) 1077 delta2 = -delta2; 1078 if (delta3 < 0) 1079 delta3 = -delta3; 1080 if (delta > delta2) 1081 delta = delta2; 1082 if (delta > delta3) 1083 delta = delta3; 1084 1085 /* 1086 * delta is now minimum absolute delta. 1087 * Round down by 1 bit on general principles, 1088 * and limit entropy estimate to 12 bits. 1089 */ 1090 credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11)); 1091 } 1092 1093 void add_input_randomness(unsigned int type, unsigned int code, 1094 unsigned int value) 1095 { 1096 static unsigned char last_value; 1097 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1098 1099 /* Ignore autorepeat and the like. */ 1100 if (value == last_value) 1101 return; 1102 1103 last_value = value; 1104 add_timer_randomness(&input_timer_state, 1105 (type << 4) ^ code ^ (code >> 4) ^ value); 1106 } 1107 EXPORT_SYMBOL_GPL(add_input_randomness); 1108 1109 #ifdef CONFIG_BLOCK 1110 void add_disk_randomness(struct gendisk *disk) 1111 { 1112 if (!disk || !disk->random) 1113 return; 1114 /* First major is 1, so we get >= 0x200 here. */ 1115 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1116 } 1117 EXPORT_SYMBOL_GPL(add_disk_randomness); 1118 1119 void rand_initialize_disk(struct gendisk *disk) 1120 { 1121 struct timer_rand_state *state; 1122 1123 /* 1124 * If kzalloc returns null, we just won't use that entropy 1125 * source. 1126 */ 1127 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1128 if (state) { 1129 state->last_time = INITIAL_JIFFIES; 1130 disk->random = state; 1131 } 1132 } 1133 #endif 1134 1135 /* 1136 * Interface for in-kernel drivers of true hardware RNGs. 1137 * Those devices may produce endless random bits and will be throttled 1138 * when our pool is full. 1139 */ 1140 void add_hwgenerator_randomness(const void *buffer, size_t count, 1141 size_t entropy) 1142 { 1143 if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) { 1144 size_t ret = crng_pre_init_inject(buffer, count, true); 1145 mix_pool_bytes(buffer, ret); 1146 count -= ret; 1147 buffer += ret; 1148 if (!count || crng_init == 0) 1149 return; 1150 } 1151 1152 /* 1153 * Throttle writing if we're above the trickle threshold. 1154 * We'll be woken up again once below POOL_MIN_BITS, when 1155 * the calling thread is about to terminate, or once 1156 * CRNG_RESEED_INTERVAL has elapsed. 1157 */ 1158 wait_event_interruptible_timeout(random_write_wait, 1159 !system_wq || kthread_should_stop() || 1160 input_pool.entropy_count < POOL_MIN_BITS, 1161 CRNG_RESEED_INTERVAL); 1162 mix_pool_bytes(buffer, count); 1163 credit_entropy_bits(entropy); 1164 } 1165 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 1166 1167 /* 1168 * Handle random seed passed by bootloader. 1169 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 1170 * it would be regarded as device data. 1171 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 1172 */ 1173 void add_bootloader_randomness(const void *buf, size_t size) 1174 { 1175 if (trust_bootloader) 1176 add_hwgenerator_randomness(buf, size, size * 8); 1177 else 1178 add_device_randomness(buf, size); 1179 } 1180 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 1181 1182 #if IS_ENABLED(CONFIG_VMGENID) 1183 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 1184 1185 /* 1186 * Handle a new unique VM ID, which is unique, not secret, so we 1187 * don't credit it, but we do immediately force a reseed after so 1188 * that it's used by the crng posthaste. 1189 */ 1190 void add_vmfork_randomness(const void *unique_vm_id, size_t size) 1191 { 1192 add_device_randomness(unique_vm_id, size); 1193 if (crng_ready()) { 1194 crng_reseed(true); 1195 pr_notice("crng reseeded due to virtual machine fork\n"); 1196 } 1197 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 1198 } 1199 #if IS_MODULE(CONFIG_VMGENID) 1200 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 1201 #endif 1202 1203 int register_random_vmfork_notifier(struct notifier_block *nb) 1204 { 1205 return blocking_notifier_chain_register(&vmfork_chain, nb); 1206 } 1207 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1208 1209 int unregister_random_vmfork_notifier(struct notifier_block *nb) 1210 { 1211 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1212 } 1213 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1214 #endif 1215 1216 struct fast_pool { 1217 struct work_struct mix; 1218 unsigned long pool[4]; 1219 unsigned long last; 1220 unsigned int count; 1221 u16 reg_idx; 1222 }; 1223 1224 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1225 #ifdef CONFIG_64BIT 1226 /* SipHash constants */ 1227 .pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL, 1228 0x6c7967656e657261UL, 0x7465646279746573UL } 1229 #else 1230 /* HalfSipHash constants */ 1231 .pool = { 0, 0, 0x6c796765U, 0x74656462U } 1232 #endif 1233 }; 1234 1235 /* 1236 * This is [Half]SipHash-1-x, starting from an empty key. Because 1237 * the key is fixed, it assumes that its inputs are non-malicious, 1238 * and therefore this has no security on its own. s represents the 1239 * 128 or 256-bit SipHash state, while v represents a 128-bit input. 1240 */ 1241 static void fast_mix(unsigned long s[4], const unsigned long *v) 1242 { 1243 size_t i; 1244 1245 for (i = 0; i < 16 / sizeof(long); ++i) { 1246 s[3] ^= v[i]; 1247 #ifdef CONFIG_64BIT 1248 s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32); 1249 s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2]; 1250 s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0]; 1251 s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32); 1252 #else 1253 s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16); 1254 s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2]; 1255 s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0]; 1256 s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16); 1257 #endif 1258 s[0] ^= v[i]; 1259 } 1260 } 1261 1262 #ifdef CONFIG_SMP 1263 /* 1264 * This function is called when the CPU has just come online, with 1265 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1266 */ 1267 int random_online_cpu(unsigned int cpu) 1268 { 1269 /* 1270 * During CPU shutdown and before CPU onlining, add_interrupt_ 1271 * randomness() may schedule mix_interrupt_randomness(), and 1272 * set the MIX_INFLIGHT flag. However, because the worker can 1273 * be scheduled on a different CPU during this period, that 1274 * flag will never be cleared. For that reason, we zero out 1275 * the flag here, which runs just after workqueues are onlined 1276 * for the CPU again. This also has the effect of setting the 1277 * irq randomness count to zero so that new accumulated irqs 1278 * are fresh. 1279 */ 1280 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1281 return 0; 1282 } 1283 #endif 1284 1285 static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs) 1286 { 1287 unsigned long *ptr = (unsigned long *)regs; 1288 unsigned int idx; 1289 1290 if (regs == NULL) 1291 return 0; 1292 idx = READ_ONCE(f->reg_idx); 1293 if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long)) 1294 idx = 0; 1295 ptr += idx++; 1296 WRITE_ONCE(f->reg_idx, idx); 1297 return *ptr; 1298 } 1299 1300 static void mix_interrupt_randomness(struct work_struct *work) 1301 { 1302 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1303 /* 1304 * The size of the copied stack pool is explicitly 16 bytes so that we 1305 * tax mix_pool_byte()'s compression function the same amount on all 1306 * platforms. This means on 64-bit we copy half the pool into this, 1307 * while on 32-bit we copy all of it. The entropy is supposed to be 1308 * sufficiently dispersed between bits that in the sponge-like 1309 * half case, on average we don't wind up "losing" some. 1310 */ 1311 u8 pool[16]; 1312 1313 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1314 local_irq_disable(); 1315 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1316 local_irq_enable(); 1317 return; 1318 } 1319 1320 /* 1321 * Copy the pool to the stack so that the mixer always has a 1322 * consistent view, before we reenable irqs again. 1323 */ 1324 memcpy(pool, fast_pool->pool, sizeof(pool)); 1325 fast_pool->count = 0; 1326 fast_pool->last = jiffies; 1327 local_irq_enable(); 1328 1329 if (unlikely(crng_init == 0)) { 1330 crng_pre_init_inject(pool, sizeof(pool), true); 1331 mix_pool_bytes(pool, sizeof(pool)); 1332 } else { 1333 mix_pool_bytes(pool, sizeof(pool)); 1334 credit_entropy_bits(1); 1335 } 1336 1337 memzero_explicit(pool, sizeof(pool)); 1338 } 1339 1340 void add_interrupt_randomness(int irq) 1341 { 1342 enum { MIX_INFLIGHT = 1U << 31 }; 1343 cycles_t cycles = random_get_entropy(); 1344 unsigned long now = jiffies; 1345 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1346 struct pt_regs *regs = get_irq_regs(); 1347 unsigned int new_count; 1348 union { 1349 u32 u32[4]; 1350 u64 u64[2]; 1351 unsigned long longs[16 / sizeof(long)]; 1352 } irq_data; 1353 1354 if (cycles == 0) 1355 cycles = get_reg(fast_pool, regs); 1356 1357 if (sizeof(cycles) == 8) 1358 irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq; 1359 else { 1360 irq_data.u32[0] = cycles ^ irq; 1361 irq_data.u32[1] = now; 1362 } 1363 1364 if (sizeof(unsigned long) == 8) 1365 irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_; 1366 else { 1367 irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_; 1368 irq_data.u32[3] = get_reg(fast_pool, regs); 1369 } 1370 1371 fast_mix(fast_pool->pool, irq_data.longs); 1372 new_count = ++fast_pool->count; 1373 1374 if (new_count & MIX_INFLIGHT) 1375 return; 1376 1377 if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) || 1378 unlikely(crng_init == 0))) 1379 return; 1380 1381 if (unlikely(!fast_pool->mix.func)) 1382 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); 1383 fast_pool->count |= MIX_INFLIGHT; 1384 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); 1385 } 1386 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1387 1388 /* 1389 * Each time the timer fires, we expect that we got an unpredictable 1390 * jump in the cycle counter. Even if the timer is running on another 1391 * CPU, the timer activity will be touching the stack of the CPU that is 1392 * generating entropy.. 1393 * 1394 * Note that we don't re-arm the timer in the timer itself - we are 1395 * happy to be scheduled away, since that just makes the load more 1396 * complex, but we do not want the timer to keep ticking unless the 1397 * entropy loop is running. 1398 * 1399 * So the re-arming always happens in the entropy loop itself. 1400 */ 1401 static void entropy_timer(struct timer_list *t) 1402 { 1403 credit_entropy_bits(1); 1404 } 1405 1406 /* 1407 * If we have an actual cycle counter, see if we can 1408 * generate enough entropy with timing noise 1409 */ 1410 static void try_to_generate_entropy(void) 1411 { 1412 struct { 1413 cycles_t cycles; 1414 struct timer_list timer; 1415 } stack; 1416 1417 stack.cycles = random_get_entropy(); 1418 1419 /* Slow counter - or none. Don't even bother */ 1420 if (stack.cycles == random_get_entropy()) 1421 return; 1422 1423 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1424 while (!crng_ready() && !signal_pending(current)) { 1425 if (!timer_pending(&stack.timer)) 1426 mod_timer(&stack.timer, jiffies + 1); 1427 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1428 schedule(); 1429 stack.cycles = random_get_entropy(); 1430 } 1431 1432 del_timer_sync(&stack.timer); 1433 destroy_timer_on_stack(&stack.timer); 1434 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1435 } 1436 1437 1438 /********************************************************************** 1439 * 1440 * Userspace reader/writer interfaces. 1441 * 1442 * getrandom(2) is the primary modern interface into the RNG and should 1443 * be used in preference to anything else. 1444 * 1445 * Reading from /dev/random has the same functionality as calling 1446 * getrandom(2) with flags=0. In earlier versions, however, it had 1447 * vastly different semantics and should therefore be avoided, to 1448 * prevent backwards compatibility issues. 1449 * 1450 * Reading from /dev/urandom has the same functionality as calling 1451 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1452 * waiting for the RNG to be ready, it should not be used. 1453 * 1454 * Writing to either /dev/random or /dev/urandom adds entropy to 1455 * the input pool but does not credit it. 1456 * 1457 * Polling on /dev/random indicates when the RNG is initialized, on 1458 * the read side, and when it wants new entropy, on the write side. 1459 * 1460 * Both /dev/random and /dev/urandom have the same set of ioctls for 1461 * adding entropy, getting the entropy count, zeroing the count, and 1462 * reseeding the crng. 1463 * 1464 **********************************************************************/ 1465 1466 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, 1467 flags) 1468 { 1469 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1470 return -EINVAL; 1471 1472 /* 1473 * Requesting insecure and blocking randomness at the same time makes 1474 * no sense. 1475 */ 1476 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1477 return -EINVAL; 1478 1479 if (count > INT_MAX) 1480 count = INT_MAX; 1481 1482 if (!(flags & GRND_INSECURE) && !crng_ready()) { 1483 int ret; 1484 1485 if (flags & GRND_NONBLOCK) 1486 return -EAGAIN; 1487 ret = wait_for_random_bytes(); 1488 if (unlikely(ret)) 1489 return ret; 1490 } 1491 return get_random_bytes_user(buf, count); 1492 } 1493 1494 static __poll_t random_poll(struct file *file, poll_table *wait) 1495 { 1496 __poll_t mask; 1497 1498 poll_wait(file, &crng_init_wait, wait); 1499 poll_wait(file, &random_write_wait, wait); 1500 mask = 0; 1501 if (crng_ready()) 1502 mask |= EPOLLIN | EPOLLRDNORM; 1503 if (input_pool.entropy_count < POOL_MIN_BITS) 1504 mask |= EPOLLOUT | EPOLLWRNORM; 1505 return mask; 1506 } 1507 1508 static int write_pool(const char __user *ubuf, size_t count) 1509 { 1510 size_t len; 1511 int ret = 0; 1512 u8 block[BLAKE2S_BLOCK_SIZE]; 1513 1514 while (count) { 1515 len = min(count, sizeof(block)); 1516 if (copy_from_user(block, ubuf, len)) { 1517 ret = -EFAULT; 1518 goto out; 1519 } 1520 count -= len; 1521 ubuf += len; 1522 mix_pool_bytes(block, len); 1523 cond_resched(); 1524 } 1525 1526 out: 1527 memzero_explicit(block, sizeof(block)); 1528 return ret; 1529 } 1530 1531 static ssize_t random_write(struct file *file, const char __user *buffer, 1532 size_t count, loff_t *ppos) 1533 { 1534 int ret; 1535 1536 ret = write_pool(buffer, count); 1537 if (ret) 1538 return ret; 1539 1540 return (ssize_t)count; 1541 } 1542 1543 static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes, 1544 loff_t *ppos) 1545 { 1546 static int maxwarn = 10; 1547 1548 if (!crng_ready() && maxwarn > 0) { 1549 maxwarn--; 1550 if (__ratelimit(&urandom_warning)) 1551 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1552 current->comm, nbytes); 1553 } 1554 1555 return get_random_bytes_user(buf, nbytes); 1556 } 1557 1558 static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, 1559 loff_t *ppos) 1560 { 1561 int ret; 1562 1563 ret = wait_for_random_bytes(); 1564 if (ret != 0) 1565 return ret; 1566 return get_random_bytes_user(buf, nbytes); 1567 } 1568 1569 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1570 { 1571 int size, ent_count; 1572 int __user *p = (int __user *)arg; 1573 int retval; 1574 1575 switch (cmd) { 1576 case RNDGETENTCNT: 1577 /* Inherently racy, no point locking. */ 1578 if (put_user(input_pool.entropy_count, p)) 1579 return -EFAULT; 1580 return 0; 1581 case RNDADDTOENTCNT: 1582 if (!capable(CAP_SYS_ADMIN)) 1583 return -EPERM; 1584 if (get_user(ent_count, p)) 1585 return -EFAULT; 1586 if (ent_count < 0) 1587 return -EINVAL; 1588 credit_entropy_bits(ent_count); 1589 return 0; 1590 case RNDADDENTROPY: 1591 if (!capable(CAP_SYS_ADMIN)) 1592 return -EPERM; 1593 if (get_user(ent_count, p++)) 1594 return -EFAULT; 1595 if (ent_count < 0) 1596 return -EINVAL; 1597 if (get_user(size, p++)) 1598 return -EFAULT; 1599 retval = write_pool((const char __user *)p, size); 1600 if (retval < 0) 1601 return retval; 1602 credit_entropy_bits(ent_count); 1603 return 0; 1604 case RNDZAPENTCNT: 1605 case RNDCLEARPOOL: 1606 /* 1607 * Clear the entropy pool counters. We no longer clear 1608 * the entropy pool, as that's silly. 1609 */ 1610 if (!capable(CAP_SYS_ADMIN)) 1611 return -EPERM; 1612 if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) { 1613 wake_up_interruptible(&random_write_wait); 1614 kill_fasync(&fasync, SIGIO, POLL_OUT); 1615 } 1616 return 0; 1617 case RNDRESEEDCRNG: 1618 if (!capable(CAP_SYS_ADMIN)) 1619 return -EPERM; 1620 if (!crng_ready()) 1621 return -ENODATA; 1622 crng_reseed(false); 1623 return 0; 1624 default: 1625 return -EINVAL; 1626 } 1627 } 1628 1629 static int random_fasync(int fd, struct file *filp, int on) 1630 { 1631 return fasync_helper(fd, filp, on, &fasync); 1632 } 1633 1634 const struct file_operations random_fops = { 1635 .read = random_read, 1636 .write = random_write, 1637 .poll = random_poll, 1638 .unlocked_ioctl = random_ioctl, 1639 .compat_ioctl = compat_ptr_ioctl, 1640 .fasync = random_fasync, 1641 .llseek = noop_llseek, 1642 }; 1643 1644 const struct file_operations urandom_fops = { 1645 .read = urandom_read, 1646 .write = random_write, 1647 .unlocked_ioctl = random_ioctl, 1648 .compat_ioctl = compat_ptr_ioctl, 1649 .fasync = random_fasync, 1650 .llseek = noop_llseek, 1651 }; 1652 1653 1654 /******************************************************************** 1655 * 1656 * Sysctl interface. 1657 * 1658 * These are partly unused legacy knobs with dummy values to not break 1659 * userspace and partly still useful things. They are usually accessible 1660 * in /proc/sys/kernel/random/ and are as follows: 1661 * 1662 * - boot_id - a UUID representing the current boot. 1663 * 1664 * - uuid - a random UUID, different each time the file is read. 1665 * 1666 * - poolsize - the number of bits of entropy that the input pool can 1667 * hold, tied to the POOL_BITS constant. 1668 * 1669 * - entropy_avail - the number of bits of entropy currently in the 1670 * input pool. Always <= poolsize. 1671 * 1672 * - write_wakeup_threshold - the amount of entropy in the input pool 1673 * below which write polls to /dev/random will unblock, requesting 1674 * more entropy, tied to the POOL_MIN_BITS constant. It is writable 1675 * to avoid breaking old userspaces, but writing to it does not 1676 * change any behavior of the RNG. 1677 * 1678 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1679 * It is writable to avoid breaking old userspaces, but writing 1680 * to it does not change any behavior of the RNG. 1681 * 1682 ********************************************************************/ 1683 1684 #ifdef CONFIG_SYSCTL 1685 1686 #include <linux/sysctl.h> 1687 1688 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1689 static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS; 1690 static int sysctl_poolsize = POOL_BITS; 1691 static u8 sysctl_bootid[UUID_SIZE]; 1692 1693 /* 1694 * This function is used to return both the bootid UUID, and random 1695 * UUID. The difference is in whether table->data is NULL; if it is, 1696 * then a new UUID is generated and returned to the user. 1697 */ 1698 static int proc_do_uuid(struct ctl_table *table, int write, void *buffer, 1699 size_t *lenp, loff_t *ppos) 1700 { 1701 u8 tmp_uuid[UUID_SIZE], *uuid; 1702 char uuid_string[UUID_STRING_LEN + 1]; 1703 struct ctl_table fake_table = { 1704 .data = uuid_string, 1705 .maxlen = UUID_STRING_LEN 1706 }; 1707 1708 if (write) 1709 return -EPERM; 1710 1711 uuid = table->data; 1712 if (!uuid) { 1713 uuid = tmp_uuid; 1714 generate_random_uuid(uuid); 1715 } else { 1716 static DEFINE_SPINLOCK(bootid_spinlock); 1717 1718 spin_lock(&bootid_spinlock); 1719 if (!uuid[8]) 1720 generate_random_uuid(uuid); 1721 spin_unlock(&bootid_spinlock); 1722 } 1723 1724 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1725 return proc_dostring(&fake_table, 0, buffer, lenp, ppos); 1726 } 1727 1728 /* The same as proc_dointvec, but writes don't change anything. */ 1729 static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer, 1730 size_t *lenp, loff_t *ppos) 1731 { 1732 return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos); 1733 } 1734 1735 static struct ctl_table random_table[] = { 1736 { 1737 .procname = "poolsize", 1738 .data = &sysctl_poolsize, 1739 .maxlen = sizeof(int), 1740 .mode = 0444, 1741 .proc_handler = proc_dointvec, 1742 }, 1743 { 1744 .procname = "entropy_avail", 1745 .data = &input_pool.entropy_count, 1746 .maxlen = sizeof(int), 1747 .mode = 0444, 1748 .proc_handler = proc_dointvec, 1749 }, 1750 { 1751 .procname = "write_wakeup_threshold", 1752 .data = &sysctl_random_write_wakeup_bits, 1753 .maxlen = sizeof(int), 1754 .mode = 0644, 1755 .proc_handler = proc_do_rointvec, 1756 }, 1757 { 1758 .procname = "urandom_min_reseed_secs", 1759 .data = &sysctl_random_min_urandom_seed, 1760 .maxlen = sizeof(int), 1761 .mode = 0644, 1762 .proc_handler = proc_do_rointvec, 1763 }, 1764 { 1765 .procname = "boot_id", 1766 .data = &sysctl_bootid, 1767 .mode = 0444, 1768 .proc_handler = proc_do_uuid, 1769 }, 1770 { 1771 .procname = "uuid", 1772 .mode = 0444, 1773 .proc_handler = proc_do_uuid, 1774 }, 1775 { } 1776 }; 1777 1778 /* 1779 * rand_initialize() is called before sysctl_init(), 1780 * so we cannot call register_sysctl_init() in rand_initialize() 1781 */ 1782 static int __init random_sysctls_init(void) 1783 { 1784 register_sysctl_init("kernel/random", random_table); 1785 return 0; 1786 } 1787 device_initcall(random_sysctls_init); 1788 #endif 1789