xref: /linux/drivers/char/random.c (revision 18ca45f5ba1e31704bcca038b8b612e9b1f52b4f)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311 
312 #include <linux/utsname.h>
313 #include <linux/module.h>
314 #include <linux/kernel.h>
315 #include <linux/major.h>
316 #include <linux/string.h>
317 #include <linux/fcntl.h>
318 #include <linux/slab.h>
319 #include <linux/random.h>
320 #include <linux/poll.h>
321 #include <linux/init.h>
322 #include <linux/fs.h>
323 #include <linux/genhd.h>
324 #include <linux/interrupt.h>
325 #include <linux/mm.h>
326 #include <linux/nodemask.h>
327 #include <linux/spinlock.h>
328 #include <linux/kthread.h>
329 #include <linux/percpu.h>
330 #include <linux/fips.h>
331 #include <linux/ptrace.h>
332 #include <linux/workqueue.h>
333 #include <linux/irq.h>
334 #include <linux/ratelimit.h>
335 #include <linux/syscalls.h>
336 #include <linux/completion.h>
337 #include <linux/uuid.h>
338 #include <crypto/chacha.h>
339 #include <crypto/sha1.h>
340 
341 #include <asm/processor.h>
342 #include <linux/uaccess.h>
343 #include <asm/irq.h>
344 #include <asm/irq_regs.h>
345 #include <asm/io.h>
346 
347 #define CREATE_TRACE_POINTS
348 #include <trace/events/random.h>
349 
350 /* #define ADD_INTERRUPT_BENCH */
351 
352 /*
353  * Configuration information
354  */
355 #define INPUT_POOL_SHIFT	12
356 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
357 #define OUTPUT_POOL_SHIFT	10
358 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
359 #define EXTRACT_SIZE		10
360 
361 
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363 
364 /*
365  * To allow fractional bits to be tracked, the entropy_count field is
366  * denominated in units of 1/8th bits.
367  *
368  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369  * credit_entropy_bits() needs to be 64 bits wide.
370  */
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373 
374 /*
375  * If the entropy count falls under this number of bits, then we
376  * should wake up processes which are selecting or polling on write
377  * access to /dev/random.
378  */
379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
380 
381 /*
382  * Originally, we used a primitive polynomial of degree .poolwords
383  * over GF(2).  The taps for various sizes are defined below.  They
384  * were chosen to be evenly spaced except for the last tap, which is 1
385  * to get the twisting happening as fast as possible.
386  *
387  * For the purposes of better mixing, we use the CRC-32 polynomial as
388  * well to make a (modified) twisted Generalized Feedback Shift
389  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
390  * generators.  ACM Transactions on Modeling and Computer Simulation
391  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
392  * GFSR generators II.  ACM Transactions on Modeling and Computer
393  * Simulation 4:254-266)
394  *
395  * Thanks to Colin Plumb for suggesting this.
396  *
397  * The mixing operation is much less sensitive than the output hash,
398  * where we use SHA-1.  All that we want of mixing operation is that
399  * it be a good non-cryptographic hash; i.e. it not produce collisions
400  * when fed "random" data of the sort we expect to see.  As long as
401  * the pool state differs for different inputs, we have preserved the
402  * input entropy and done a good job.  The fact that an intelligent
403  * attacker can construct inputs that will produce controlled
404  * alterations to the pool's state is not important because we don't
405  * consider such inputs to contribute any randomness.  The only
406  * property we need with respect to them is that the attacker can't
407  * increase his/her knowledge of the pool's state.  Since all
408  * additions are reversible (knowing the final state and the input,
409  * you can reconstruct the initial state), if an attacker has any
410  * uncertainty about the initial state, he/she can only shuffle that
411  * uncertainty about, but never cause any collisions (which would
412  * decrease the uncertainty).
413  *
414  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415  * Videau in their paper, "The Linux Pseudorandom Number Generator
416  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
417  * paper, they point out that we are not using a true Twisted GFSR,
418  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419  * is, with only three taps, instead of the six that we are using).
420  * As a result, the resulting polynomial is neither primitive nor
421  * irreducible, and hence does not have a maximal period over
422  * GF(2**32).  They suggest a slight change to the generator
423  * polynomial which improves the resulting TGFSR polynomial to be
424  * irreducible, which we have made here.
425  */
426 static const struct poolinfo {
427 	int poolbitshift, poolwords, poolbytes, poolfracbits;
428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 	int tap1, tap2, tap3, tap4, tap5;
430 } poolinfo_table[] = {
431 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 	{ S(128),	104,	76,	51,	25,	1 },
434 };
435 
436 /*
437  * Static global variables
438  */
439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440 static struct fasync_struct *fasync;
441 
442 static DEFINE_SPINLOCK(random_ready_list_lock);
443 static LIST_HEAD(random_ready_list);
444 
445 struct crng_state {
446 	__u32		state[16];
447 	unsigned long	init_time;
448 	spinlock_t	lock;
449 };
450 
451 static struct crng_state primary_crng = {
452 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453 };
454 
455 /*
456  * crng_init =  0 --> Uninitialized
457  *		1 --> Initialized
458  *		2 --> Initialized from input_pool
459  *
460  * crng_init is protected by primary_crng->lock, and only increases
461  * its value (from 0->1->2).
462  */
463 static int crng_init = 0;
464 #define crng_ready() (likely(crng_init > 1))
465 static int crng_init_cnt = 0;
466 static unsigned long crng_global_init_time = 0;
467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469 static void _crng_backtrack_protect(struct crng_state *crng,
470 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471 static void process_random_ready_list(void);
472 static void _get_random_bytes(void *buf, int nbytes);
473 
474 static struct ratelimit_state unseeded_warning =
475 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476 static struct ratelimit_state urandom_warning =
477 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
478 
479 static int ratelimit_disable __read_mostly;
480 
481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
483 
484 /**********************************************************************
485  *
486  * OS independent entropy store.   Here are the functions which handle
487  * storing entropy in an entropy pool.
488  *
489  **********************************************************************/
490 
491 struct entropy_store;
492 struct entropy_store {
493 	/* read-only data: */
494 	const struct poolinfo *poolinfo;
495 	__u32 *pool;
496 	const char *name;
497 
498 	/* read-write data: */
499 	spinlock_t lock;
500 	unsigned short add_ptr;
501 	unsigned short input_rotate;
502 	int entropy_count;
503 	unsigned int last_data_init:1;
504 	__u8 last_data[EXTRACT_SIZE];
505 };
506 
507 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
508 			       size_t nbytes, int min, int rsvd);
509 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
510 				size_t nbytes, int fips);
511 
512 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
513 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
514 
515 static struct entropy_store input_pool = {
516 	.poolinfo = &poolinfo_table[0],
517 	.name = "input",
518 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
519 	.pool = input_pool_data
520 };
521 
522 static __u32 const twist_table[8] = {
523 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
524 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
525 
526 /*
527  * This function adds bytes into the entropy "pool".  It does not
528  * update the entropy estimate.  The caller should call
529  * credit_entropy_bits if this is appropriate.
530  *
531  * The pool is stirred with a primitive polynomial of the appropriate
532  * degree, and then twisted.  We twist by three bits at a time because
533  * it's cheap to do so and helps slightly in the expected case where
534  * the entropy is concentrated in the low-order bits.
535  */
536 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
537 			    int nbytes)
538 {
539 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
540 	int input_rotate;
541 	int wordmask = r->poolinfo->poolwords - 1;
542 	const char *bytes = in;
543 	__u32 w;
544 
545 	tap1 = r->poolinfo->tap1;
546 	tap2 = r->poolinfo->tap2;
547 	tap3 = r->poolinfo->tap3;
548 	tap4 = r->poolinfo->tap4;
549 	tap5 = r->poolinfo->tap5;
550 
551 	input_rotate = r->input_rotate;
552 	i = r->add_ptr;
553 
554 	/* mix one byte at a time to simplify size handling and churn faster */
555 	while (nbytes--) {
556 		w = rol32(*bytes++, input_rotate);
557 		i = (i - 1) & wordmask;
558 
559 		/* XOR in the various taps */
560 		w ^= r->pool[i];
561 		w ^= r->pool[(i + tap1) & wordmask];
562 		w ^= r->pool[(i + tap2) & wordmask];
563 		w ^= r->pool[(i + tap3) & wordmask];
564 		w ^= r->pool[(i + tap4) & wordmask];
565 		w ^= r->pool[(i + tap5) & wordmask];
566 
567 		/* Mix the result back in with a twist */
568 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
569 
570 		/*
571 		 * Normally, we add 7 bits of rotation to the pool.
572 		 * At the beginning of the pool, add an extra 7 bits
573 		 * rotation, so that successive passes spread the
574 		 * input bits across the pool evenly.
575 		 */
576 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
577 	}
578 
579 	r->input_rotate = input_rotate;
580 	r->add_ptr = i;
581 }
582 
583 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
584 			     int nbytes)
585 {
586 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
587 	_mix_pool_bytes(r, in, nbytes);
588 }
589 
590 static void mix_pool_bytes(struct entropy_store *r, const void *in,
591 			   int nbytes)
592 {
593 	unsigned long flags;
594 
595 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
596 	spin_lock_irqsave(&r->lock, flags);
597 	_mix_pool_bytes(r, in, nbytes);
598 	spin_unlock_irqrestore(&r->lock, flags);
599 }
600 
601 struct fast_pool {
602 	__u32		pool[4];
603 	unsigned long	last;
604 	unsigned short	reg_idx;
605 	unsigned char	count;
606 };
607 
608 /*
609  * This is a fast mixing routine used by the interrupt randomness
610  * collector.  It's hardcoded for an 128 bit pool and assumes that any
611  * locks that might be needed are taken by the caller.
612  */
613 static void fast_mix(struct fast_pool *f)
614 {
615 	__u32 a = f->pool[0],	b = f->pool[1];
616 	__u32 c = f->pool[2],	d = f->pool[3];
617 
618 	a += b;			c += d;
619 	b = rol32(b, 6);	d = rol32(d, 27);
620 	d ^= a;			b ^= c;
621 
622 	a += b;			c += d;
623 	b = rol32(b, 16);	d = rol32(d, 14);
624 	d ^= a;			b ^= c;
625 
626 	a += b;			c += d;
627 	b = rol32(b, 6);	d = rol32(d, 27);
628 	d ^= a;			b ^= c;
629 
630 	a += b;			c += d;
631 	b = rol32(b, 16);	d = rol32(d, 14);
632 	d ^= a;			b ^= c;
633 
634 	f->pool[0] = a;  f->pool[1] = b;
635 	f->pool[2] = c;  f->pool[3] = d;
636 	f->count++;
637 }
638 
639 static void process_random_ready_list(void)
640 {
641 	unsigned long flags;
642 	struct random_ready_callback *rdy, *tmp;
643 
644 	spin_lock_irqsave(&random_ready_list_lock, flags);
645 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
646 		struct module *owner = rdy->owner;
647 
648 		list_del_init(&rdy->list);
649 		rdy->func(rdy);
650 		module_put(owner);
651 	}
652 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
653 }
654 
655 /*
656  * Credit (or debit) the entropy store with n bits of entropy.
657  * Use credit_entropy_bits_safe() if the value comes from userspace
658  * or otherwise should be checked for extreme values.
659  */
660 static void credit_entropy_bits(struct entropy_store *r, int nbits)
661 {
662 	int entropy_count, orig;
663 	const int pool_size = r->poolinfo->poolfracbits;
664 	int nfrac = nbits << ENTROPY_SHIFT;
665 
666 	if (!nbits)
667 		return;
668 
669 retry:
670 	entropy_count = orig = READ_ONCE(r->entropy_count);
671 	if (nfrac < 0) {
672 		/* Debit */
673 		entropy_count += nfrac;
674 	} else {
675 		/*
676 		 * Credit: we have to account for the possibility of
677 		 * overwriting already present entropy.	 Even in the
678 		 * ideal case of pure Shannon entropy, new contributions
679 		 * approach the full value asymptotically:
680 		 *
681 		 * entropy <- entropy + (pool_size - entropy) *
682 		 *	(1 - exp(-add_entropy/pool_size))
683 		 *
684 		 * For add_entropy <= pool_size/2 then
685 		 * (1 - exp(-add_entropy/pool_size)) >=
686 		 *    (add_entropy/pool_size)*0.7869...
687 		 * so we can approximate the exponential with
688 		 * 3/4*add_entropy/pool_size and still be on the
689 		 * safe side by adding at most pool_size/2 at a time.
690 		 *
691 		 * The use of pool_size-2 in the while statement is to
692 		 * prevent rounding artifacts from making the loop
693 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
694 		 * turns no matter how large nbits is.
695 		 */
696 		int pnfrac = nfrac;
697 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
698 		/* The +2 corresponds to the /4 in the denominator */
699 
700 		do {
701 			unsigned int anfrac = min(pnfrac, pool_size/2);
702 			unsigned int add =
703 				((pool_size - entropy_count)*anfrac*3) >> s;
704 
705 			entropy_count += add;
706 			pnfrac -= anfrac;
707 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
708 	}
709 
710 	if (WARN_ON(entropy_count < 0)) {
711 		pr_warn("negative entropy/overflow: pool %s count %d\n",
712 			r->name, entropy_count);
713 		entropy_count = 0;
714 	} else if (entropy_count > pool_size)
715 		entropy_count = pool_size;
716 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
717 		goto retry;
718 
719 	trace_credit_entropy_bits(r->name, nbits,
720 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
721 
722 	if (r == &input_pool) {
723 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
724 
725 		if (crng_init < 2 && entropy_bits >= 128)
726 			crng_reseed(&primary_crng, r);
727 	}
728 }
729 
730 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
731 {
732 	const int nbits_max = r->poolinfo->poolwords * 32;
733 
734 	if (nbits < 0)
735 		return -EINVAL;
736 
737 	/* Cap the value to avoid overflows */
738 	nbits = min(nbits,  nbits_max);
739 
740 	credit_entropy_bits(r, nbits);
741 	return 0;
742 }
743 
744 /*********************************************************************
745  *
746  * CRNG using CHACHA20
747  *
748  *********************************************************************/
749 
750 #define CRNG_RESEED_INTERVAL (300*HZ)
751 
752 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
753 
754 #ifdef CONFIG_NUMA
755 /*
756  * Hack to deal with crazy userspace progams when they are all trying
757  * to access /dev/urandom in parallel.  The programs are almost
758  * certainly doing something terribly wrong, but we'll work around
759  * their brain damage.
760  */
761 static struct crng_state **crng_node_pool __read_mostly;
762 #endif
763 
764 static void invalidate_batched_entropy(void);
765 static void numa_crng_init(void);
766 
767 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
768 static int __init parse_trust_cpu(char *arg)
769 {
770 	return kstrtobool(arg, &trust_cpu);
771 }
772 early_param("random.trust_cpu", parse_trust_cpu);
773 
774 static bool crng_init_try_arch(struct crng_state *crng)
775 {
776 	int		i;
777 	bool		arch_init = true;
778 	unsigned long	rv;
779 
780 	for (i = 4; i < 16; i++) {
781 		if (!arch_get_random_seed_long(&rv) &&
782 		    !arch_get_random_long(&rv)) {
783 			rv = random_get_entropy();
784 			arch_init = false;
785 		}
786 		crng->state[i] ^= rv;
787 	}
788 
789 	return arch_init;
790 }
791 
792 static bool __init crng_init_try_arch_early(struct crng_state *crng)
793 {
794 	int		i;
795 	bool		arch_init = true;
796 	unsigned long	rv;
797 
798 	for (i = 4; i < 16; i++) {
799 		if (!arch_get_random_seed_long_early(&rv) &&
800 		    !arch_get_random_long_early(&rv)) {
801 			rv = random_get_entropy();
802 			arch_init = false;
803 		}
804 		crng->state[i] ^= rv;
805 	}
806 
807 	return arch_init;
808 }
809 
810 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
811 {
812 	chacha_init_consts(crng->state);
813 	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
814 	crng_init_try_arch(crng);
815 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
816 }
817 
818 static void __init crng_initialize_primary(struct crng_state *crng)
819 {
820 	chacha_init_consts(crng->state);
821 	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
822 	if (crng_init_try_arch_early(crng) && trust_cpu) {
823 		invalidate_batched_entropy();
824 		numa_crng_init();
825 		crng_init = 2;
826 		pr_notice("crng done (trusting CPU's manufacturer)\n");
827 	}
828 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
829 }
830 
831 #ifdef CONFIG_NUMA
832 static void do_numa_crng_init(struct work_struct *work)
833 {
834 	int i;
835 	struct crng_state *crng;
836 	struct crng_state **pool;
837 
838 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
839 	for_each_online_node(i) {
840 		crng = kmalloc_node(sizeof(struct crng_state),
841 				    GFP_KERNEL | __GFP_NOFAIL, i);
842 		spin_lock_init(&crng->lock);
843 		crng_initialize_secondary(crng);
844 		pool[i] = crng;
845 	}
846 	mb();
847 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
848 		for_each_node(i)
849 			kfree(pool[i]);
850 		kfree(pool);
851 	}
852 }
853 
854 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
855 
856 static void numa_crng_init(void)
857 {
858 	schedule_work(&numa_crng_init_work);
859 }
860 #else
861 static void numa_crng_init(void) {}
862 #endif
863 
864 /*
865  * crng_fast_load() can be called by code in the interrupt service
866  * path.  So we can't afford to dilly-dally.
867  */
868 static int crng_fast_load(const char *cp, size_t len)
869 {
870 	unsigned long flags;
871 	char *p;
872 
873 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
874 		return 0;
875 	if (crng_init != 0) {
876 		spin_unlock_irqrestore(&primary_crng.lock, flags);
877 		return 0;
878 	}
879 	p = (unsigned char *) &primary_crng.state[4];
880 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
881 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
882 		cp++; crng_init_cnt++; len--;
883 	}
884 	spin_unlock_irqrestore(&primary_crng.lock, flags);
885 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
886 		invalidate_batched_entropy();
887 		crng_init = 1;
888 		pr_notice("fast init done\n");
889 	}
890 	return 1;
891 }
892 
893 /*
894  * crng_slow_load() is called by add_device_randomness, which has two
895  * attributes.  (1) We can't trust the buffer passed to it is
896  * guaranteed to be unpredictable (so it might not have any entropy at
897  * all), and (2) it doesn't have the performance constraints of
898  * crng_fast_load().
899  *
900  * So we do something more comprehensive which is guaranteed to touch
901  * all of the primary_crng's state, and which uses a LFSR with a
902  * period of 255 as part of the mixing algorithm.  Finally, we do
903  * *not* advance crng_init_cnt since buffer we may get may be something
904  * like a fixed DMI table (for example), which might very well be
905  * unique to the machine, but is otherwise unvarying.
906  */
907 static int crng_slow_load(const char *cp, size_t len)
908 {
909 	unsigned long		flags;
910 	static unsigned char	lfsr = 1;
911 	unsigned char		tmp;
912 	unsigned		i, max = CHACHA_KEY_SIZE;
913 	const char *		src_buf = cp;
914 	char *			dest_buf = (char *) &primary_crng.state[4];
915 
916 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
917 		return 0;
918 	if (crng_init != 0) {
919 		spin_unlock_irqrestore(&primary_crng.lock, flags);
920 		return 0;
921 	}
922 	if (len > max)
923 		max = len;
924 
925 	for (i = 0; i < max ; i++) {
926 		tmp = lfsr;
927 		lfsr >>= 1;
928 		if (tmp & 1)
929 			lfsr ^= 0xE1;
930 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
931 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
932 		lfsr += (tmp << 3) | (tmp >> 5);
933 	}
934 	spin_unlock_irqrestore(&primary_crng.lock, flags);
935 	return 1;
936 }
937 
938 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
939 {
940 	unsigned long	flags;
941 	int		i, num;
942 	union {
943 		__u8	block[CHACHA_BLOCK_SIZE];
944 		__u32	key[8];
945 	} buf;
946 
947 	if (r) {
948 		num = extract_entropy(r, &buf, 32, 16, 0);
949 		if (num == 0)
950 			return;
951 	} else {
952 		_extract_crng(&primary_crng, buf.block);
953 		_crng_backtrack_protect(&primary_crng, buf.block,
954 					CHACHA_KEY_SIZE);
955 	}
956 	spin_lock_irqsave(&crng->lock, flags);
957 	for (i = 0; i < 8; i++) {
958 		unsigned long	rv;
959 		if (!arch_get_random_seed_long(&rv) &&
960 		    !arch_get_random_long(&rv))
961 			rv = random_get_entropy();
962 		crng->state[i+4] ^= buf.key[i] ^ rv;
963 	}
964 	memzero_explicit(&buf, sizeof(buf));
965 	crng->init_time = jiffies;
966 	spin_unlock_irqrestore(&crng->lock, flags);
967 	if (crng == &primary_crng && crng_init < 2) {
968 		invalidate_batched_entropy();
969 		numa_crng_init();
970 		crng_init = 2;
971 		process_random_ready_list();
972 		wake_up_interruptible(&crng_init_wait);
973 		kill_fasync(&fasync, SIGIO, POLL_IN);
974 		pr_notice("crng init done\n");
975 		if (unseeded_warning.missed) {
976 			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
977 				  unseeded_warning.missed);
978 			unseeded_warning.missed = 0;
979 		}
980 		if (urandom_warning.missed) {
981 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
982 				  urandom_warning.missed);
983 			urandom_warning.missed = 0;
984 		}
985 	}
986 }
987 
988 static void _extract_crng(struct crng_state *crng,
989 			  __u8 out[CHACHA_BLOCK_SIZE])
990 {
991 	unsigned long v, flags;
992 
993 	if (crng_ready() &&
994 	    (time_after(crng_global_init_time, crng->init_time) ||
995 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
996 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
997 	spin_lock_irqsave(&crng->lock, flags);
998 	if (arch_get_random_long(&v))
999 		crng->state[14] ^= v;
1000 	chacha20_block(&crng->state[0], out);
1001 	if (crng->state[12] == 0)
1002 		crng->state[13]++;
1003 	spin_unlock_irqrestore(&crng->lock, flags);
1004 }
1005 
1006 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1007 {
1008 	struct crng_state *crng = NULL;
1009 
1010 #ifdef CONFIG_NUMA
1011 	if (crng_node_pool)
1012 		crng = crng_node_pool[numa_node_id()];
1013 	if (crng == NULL)
1014 #endif
1015 		crng = &primary_crng;
1016 	_extract_crng(crng, out);
1017 }
1018 
1019 /*
1020  * Use the leftover bytes from the CRNG block output (if there is
1021  * enough) to mutate the CRNG key to provide backtracking protection.
1022  */
1023 static void _crng_backtrack_protect(struct crng_state *crng,
1024 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1025 {
1026 	unsigned long	flags;
1027 	__u32		*s, *d;
1028 	int		i;
1029 
1030 	used = round_up(used, sizeof(__u32));
1031 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1032 		extract_crng(tmp);
1033 		used = 0;
1034 	}
1035 	spin_lock_irqsave(&crng->lock, flags);
1036 	s = (__u32 *) &tmp[used];
1037 	d = &crng->state[4];
1038 	for (i=0; i < 8; i++)
1039 		*d++ ^= *s++;
1040 	spin_unlock_irqrestore(&crng->lock, flags);
1041 }
1042 
1043 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1044 {
1045 	struct crng_state *crng = NULL;
1046 
1047 #ifdef CONFIG_NUMA
1048 	if (crng_node_pool)
1049 		crng = crng_node_pool[numa_node_id()];
1050 	if (crng == NULL)
1051 #endif
1052 		crng = &primary_crng;
1053 	_crng_backtrack_protect(crng, tmp, used);
1054 }
1055 
1056 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1057 {
1058 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1059 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1060 	int large_request = (nbytes > 256);
1061 
1062 	while (nbytes) {
1063 		if (large_request && need_resched()) {
1064 			if (signal_pending(current)) {
1065 				if (ret == 0)
1066 					ret = -ERESTARTSYS;
1067 				break;
1068 			}
1069 			schedule();
1070 		}
1071 
1072 		extract_crng(tmp);
1073 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1074 		if (copy_to_user(buf, tmp, i)) {
1075 			ret = -EFAULT;
1076 			break;
1077 		}
1078 
1079 		nbytes -= i;
1080 		buf += i;
1081 		ret += i;
1082 	}
1083 	crng_backtrack_protect(tmp, i);
1084 
1085 	/* Wipe data just written to memory */
1086 	memzero_explicit(tmp, sizeof(tmp));
1087 
1088 	return ret;
1089 }
1090 
1091 
1092 /*********************************************************************
1093  *
1094  * Entropy input management
1095  *
1096  *********************************************************************/
1097 
1098 /* There is one of these per entropy source */
1099 struct timer_rand_state {
1100 	cycles_t last_time;
1101 	long last_delta, last_delta2;
1102 };
1103 
1104 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1105 
1106 /*
1107  * Add device- or boot-specific data to the input pool to help
1108  * initialize it.
1109  *
1110  * None of this adds any entropy; it is meant to avoid the problem of
1111  * the entropy pool having similar initial state across largely
1112  * identical devices.
1113  */
1114 void add_device_randomness(const void *buf, unsigned int size)
1115 {
1116 	unsigned long time = random_get_entropy() ^ jiffies;
1117 	unsigned long flags;
1118 
1119 	if (!crng_ready() && size)
1120 		crng_slow_load(buf, size);
1121 
1122 	trace_add_device_randomness(size, _RET_IP_);
1123 	spin_lock_irqsave(&input_pool.lock, flags);
1124 	_mix_pool_bytes(&input_pool, buf, size);
1125 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1126 	spin_unlock_irqrestore(&input_pool.lock, flags);
1127 }
1128 EXPORT_SYMBOL(add_device_randomness);
1129 
1130 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1131 
1132 /*
1133  * This function adds entropy to the entropy "pool" by using timing
1134  * delays.  It uses the timer_rand_state structure to make an estimate
1135  * of how many bits of entropy this call has added to the pool.
1136  *
1137  * The number "num" is also added to the pool - it should somehow describe
1138  * the type of event which just happened.  This is currently 0-255 for
1139  * keyboard scan codes, and 256 upwards for interrupts.
1140  *
1141  */
1142 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1143 {
1144 	struct entropy_store	*r;
1145 	struct {
1146 		long jiffies;
1147 		unsigned cycles;
1148 		unsigned num;
1149 	} sample;
1150 	long delta, delta2, delta3;
1151 
1152 	sample.jiffies = jiffies;
1153 	sample.cycles = random_get_entropy();
1154 	sample.num = num;
1155 	r = &input_pool;
1156 	mix_pool_bytes(r, &sample, sizeof(sample));
1157 
1158 	/*
1159 	 * Calculate number of bits of randomness we probably added.
1160 	 * We take into account the first, second and third-order deltas
1161 	 * in order to make our estimate.
1162 	 */
1163 	delta = sample.jiffies - READ_ONCE(state->last_time);
1164 	WRITE_ONCE(state->last_time, sample.jiffies);
1165 
1166 	delta2 = delta - READ_ONCE(state->last_delta);
1167 	WRITE_ONCE(state->last_delta, delta);
1168 
1169 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1170 	WRITE_ONCE(state->last_delta2, delta2);
1171 
1172 	if (delta < 0)
1173 		delta = -delta;
1174 	if (delta2 < 0)
1175 		delta2 = -delta2;
1176 	if (delta3 < 0)
1177 		delta3 = -delta3;
1178 	if (delta > delta2)
1179 		delta = delta2;
1180 	if (delta > delta3)
1181 		delta = delta3;
1182 
1183 	/*
1184 	 * delta is now minimum absolute delta.
1185 	 * Round down by 1 bit on general principles,
1186 	 * and limit entropy estimate to 12 bits.
1187 	 */
1188 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1189 }
1190 
1191 void add_input_randomness(unsigned int type, unsigned int code,
1192 				 unsigned int value)
1193 {
1194 	static unsigned char last_value;
1195 
1196 	/* ignore autorepeat and the like */
1197 	if (value == last_value)
1198 		return;
1199 
1200 	last_value = value;
1201 	add_timer_randomness(&input_timer_state,
1202 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1203 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1204 }
1205 EXPORT_SYMBOL_GPL(add_input_randomness);
1206 
1207 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1208 
1209 #ifdef ADD_INTERRUPT_BENCH
1210 static unsigned long avg_cycles, avg_deviation;
1211 
1212 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1213 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1214 
1215 static void add_interrupt_bench(cycles_t start)
1216 {
1217         long delta = random_get_entropy() - start;
1218 
1219         /* Use a weighted moving average */
1220         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1221         avg_cycles += delta;
1222         /* And average deviation */
1223         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1224         avg_deviation += delta;
1225 }
1226 #else
1227 #define add_interrupt_bench(x)
1228 #endif
1229 
1230 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1231 {
1232 	__u32 *ptr = (__u32 *) regs;
1233 	unsigned int idx;
1234 
1235 	if (regs == NULL)
1236 		return 0;
1237 	idx = READ_ONCE(f->reg_idx);
1238 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1239 		idx = 0;
1240 	ptr += idx++;
1241 	WRITE_ONCE(f->reg_idx, idx);
1242 	return *ptr;
1243 }
1244 
1245 void add_interrupt_randomness(int irq, int irq_flags)
1246 {
1247 	struct entropy_store	*r;
1248 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1249 	struct pt_regs		*regs = get_irq_regs();
1250 	unsigned long		now = jiffies;
1251 	cycles_t		cycles = random_get_entropy();
1252 	__u32			c_high, j_high;
1253 	__u64			ip;
1254 
1255 	if (cycles == 0)
1256 		cycles = get_reg(fast_pool, regs);
1257 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1258 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1259 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1260 	fast_pool->pool[1] ^= now ^ c_high;
1261 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1262 	fast_pool->pool[2] ^= ip;
1263 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1264 		get_reg(fast_pool, regs);
1265 
1266 	fast_mix(fast_pool);
1267 	add_interrupt_bench(cycles);
1268 
1269 	if (unlikely(crng_init == 0)) {
1270 		if ((fast_pool->count >= 64) &&
1271 		    crng_fast_load((char *) fast_pool->pool,
1272 				   sizeof(fast_pool->pool))) {
1273 			fast_pool->count = 0;
1274 			fast_pool->last = now;
1275 		}
1276 		return;
1277 	}
1278 
1279 	if ((fast_pool->count < 64) &&
1280 	    !time_after(now, fast_pool->last + HZ))
1281 		return;
1282 
1283 	r = &input_pool;
1284 	if (!spin_trylock(&r->lock))
1285 		return;
1286 
1287 	fast_pool->last = now;
1288 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1289 	spin_unlock(&r->lock);
1290 
1291 	fast_pool->count = 0;
1292 
1293 	/* award one bit for the contents of the fast pool */
1294 	credit_entropy_bits(r, 1);
1295 }
1296 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1297 
1298 #ifdef CONFIG_BLOCK
1299 void add_disk_randomness(struct gendisk *disk)
1300 {
1301 	if (!disk || !disk->random)
1302 		return;
1303 	/* first major is 1, so we get >= 0x200 here */
1304 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1305 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1306 }
1307 EXPORT_SYMBOL_GPL(add_disk_randomness);
1308 #endif
1309 
1310 /*********************************************************************
1311  *
1312  * Entropy extraction routines
1313  *
1314  *********************************************************************/
1315 
1316 /*
1317  * This function decides how many bytes to actually take from the
1318  * given pool, and also debits the entropy count accordingly.
1319  */
1320 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1321 		      int reserved)
1322 {
1323 	int entropy_count, orig, have_bytes;
1324 	size_t ibytes, nfrac;
1325 
1326 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1327 
1328 	/* Can we pull enough? */
1329 retry:
1330 	entropy_count = orig = READ_ONCE(r->entropy_count);
1331 	ibytes = nbytes;
1332 	/* never pull more than available */
1333 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1334 
1335 	if ((have_bytes -= reserved) < 0)
1336 		have_bytes = 0;
1337 	ibytes = min_t(size_t, ibytes, have_bytes);
1338 	if (ibytes < min)
1339 		ibytes = 0;
1340 
1341 	if (WARN_ON(entropy_count < 0)) {
1342 		pr_warn("negative entropy count: pool %s count %d\n",
1343 			r->name, entropy_count);
1344 		entropy_count = 0;
1345 	}
1346 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1347 	if ((size_t) entropy_count > nfrac)
1348 		entropy_count -= nfrac;
1349 	else
1350 		entropy_count = 0;
1351 
1352 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1353 		goto retry;
1354 
1355 	trace_debit_entropy(r->name, 8 * ibytes);
1356 	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1357 		wake_up_interruptible(&random_write_wait);
1358 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1359 	}
1360 
1361 	return ibytes;
1362 }
1363 
1364 /*
1365  * This function does the actual extraction for extract_entropy.
1366  *
1367  * Note: we assume that .poolwords is a multiple of 16 words.
1368  */
1369 static void extract_buf(struct entropy_store *r, __u8 *out)
1370 {
1371 	int i;
1372 	union {
1373 		__u32 w[5];
1374 		unsigned long l[LONGS(20)];
1375 	} hash;
1376 	__u32 workspace[SHA1_WORKSPACE_WORDS];
1377 	unsigned long flags;
1378 
1379 	/*
1380 	 * If we have an architectural hardware random number
1381 	 * generator, use it for SHA's initial vector
1382 	 */
1383 	sha1_init(hash.w);
1384 	for (i = 0; i < LONGS(20); i++) {
1385 		unsigned long v;
1386 		if (!arch_get_random_long(&v))
1387 			break;
1388 		hash.l[i] = v;
1389 	}
1390 
1391 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1392 	spin_lock_irqsave(&r->lock, flags);
1393 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1394 		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1395 
1396 	/*
1397 	 * We mix the hash back into the pool to prevent backtracking
1398 	 * attacks (where the attacker knows the state of the pool
1399 	 * plus the current outputs, and attempts to find previous
1400 	 * ouputs), unless the hash function can be inverted. By
1401 	 * mixing at least a SHA1 worth of hash data back, we make
1402 	 * brute-forcing the feedback as hard as brute-forcing the
1403 	 * hash.
1404 	 */
1405 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1406 	spin_unlock_irqrestore(&r->lock, flags);
1407 
1408 	memzero_explicit(workspace, sizeof(workspace));
1409 
1410 	/*
1411 	 * In case the hash function has some recognizable output
1412 	 * pattern, we fold it in half. Thus, we always feed back
1413 	 * twice as much data as we output.
1414 	 */
1415 	hash.w[0] ^= hash.w[3];
1416 	hash.w[1] ^= hash.w[4];
1417 	hash.w[2] ^= rol32(hash.w[2], 16);
1418 
1419 	memcpy(out, &hash, EXTRACT_SIZE);
1420 	memzero_explicit(&hash, sizeof(hash));
1421 }
1422 
1423 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1424 				size_t nbytes, int fips)
1425 {
1426 	ssize_t ret = 0, i;
1427 	__u8 tmp[EXTRACT_SIZE];
1428 	unsigned long flags;
1429 
1430 	while (nbytes) {
1431 		extract_buf(r, tmp);
1432 
1433 		if (fips) {
1434 			spin_lock_irqsave(&r->lock, flags);
1435 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1436 				panic("Hardware RNG duplicated output!\n");
1437 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1438 			spin_unlock_irqrestore(&r->lock, flags);
1439 		}
1440 		i = min_t(int, nbytes, EXTRACT_SIZE);
1441 		memcpy(buf, tmp, i);
1442 		nbytes -= i;
1443 		buf += i;
1444 		ret += i;
1445 	}
1446 
1447 	/* Wipe data just returned from memory */
1448 	memzero_explicit(tmp, sizeof(tmp));
1449 
1450 	return ret;
1451 }
1452 
1453 /*
1454  * This function extracts randomness from the "entropy pool", and
1455  * returns it in a buffer.
1456  *
1457  * The min parameter specifies the minimum amount we can pull before
1458  * failing to avoid races that defeat catastrophic reseeding while the
1459  * reserved parameter indicates how much entropy we must leave in the
1460  * pool after each pull to avoid starving other readers.
1461  */
1462 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1463 				 size_t nbytes, int min, int reserved)
1464 {
1465 	__u8 tmp[EXTRACT_SIZE];
1466 	unsigned long flags;
1467 
1468 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1469 	if (fips_enabled) {
1470 		spin_lock_irqsave(&r->lock, flags);
1471 		if (!r->last_data_init) {
1472 			r->last_data_init = 1;
1473 			spin_unlock_irqrestore(&r->lock, flags);
1474 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1475 					      ENTROPY_BITS(r), _RET_IP_);
1476 			extract_buf(r, tmp);
1477 			spin_lock_irqsave(&r->lock, flags);
1478 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1479 		}
1480 		spin_unlock_irqrestore(&r->lock, flags);
1481 	}
1482 
1483 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1484 	nbytes = account(r, nbytes, min, reserved);
1485 
1486 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1487 }
1488 
1489 #define warn_unseeded_randomness(previous) \
1490 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1491 
1492 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1493 				      void **previous)
1494 {
1495 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1496 	const bool print_once = false;
1497 #else
1498 	static bool print_once __read_mostly;
1499 #endif
1500 
1501 	if (print_once ||
1502 	    crng_ready() ||
1503 	    (previous && (caller == READ_ONCE(*previous))))
1504 		return;
1505 	WRITE_ONCE(*previous, caller);
1506 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1507 	print_once = true;
1508 #endif
1509 	if (__ratelimit(&unseeded_warning))
1510 		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1511 				"with crng_init=%d\n", func_name, caller,
1512 				crng_init);
1513 }
1514 
1515 /*
1516  * This function is the exported kernel interface.  It returns some
1517  * number of good random numbers, suitable for key generation, seeding
1518  * TCP sequence numbers, etc.  It does not rely on the hardware random
1519  * number generator.  For random bytes direct from the hardware RNG
1520  * (when available), use get_random_bytes_arch(). In order to ensure
1521  * that the randomness provided by this function is okay, the function
1522  * wait_for_random_bytes() should be called and return 0 at least once
1523  * at any point prior.
1524  */
1525 static void _get_random_bytes(void *buf, int nbytes)
1526 {
1527 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1528 
1529 	trace_get_random_bytes(nbytes, _RET_IP_);
1530 
1531 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1532 		extract_crng(buf);
1533 		buf += CHACHA_BLOCK_SIZE;
1534 		nbytes -= CHACHA_BLOCK_SIZE;
1535 	}
1536 
1537 	if (nbytes > 0) {
1538 		extract_crng(tmp);
1539 		memcpy(buf, tmp, nbytes);
1540 		crng_backtrack_protect(tmp, nbytes);
1541 	} else
1542 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1543 	memzero_explicit(tmp, sizeof(tmp));
1544 }
1545 
1546 void get_random_bytes(void *buf, int nbytes)
1547 {
1548 	static void *previous;
1549 
1550 	warn_unseeded_randomness(&previous);
1551 	_get_random_bytes(buf, nbytes);
1552 }
1553 EXPORT_SYMBOL(get_random_bytes);
1554 
1555 
1556 /*
1557  * Each time the timer fires, we expect that we got an unpredictable
1558  * jump in the cycle counter. Even if the timer is running on another
1559  * CPU, the timer activity will be touching the stack of the CPU that is
1560  * generating entropy..
1561  *
1562  * Note that we don't re-arm the timer in the timer itself - we are
1563  * happy to be scheduled away, since that just makes the load more
1564  * complex, but we do not want the timer to keep ticking unless the
1565  * entropy loop is running.
1566  *
1567  * So the re-arming always happens in the entropy loop itself.
1568  */
1569 static void entropy_timer(struct timer_list *t)
1570 {
1571 	credit_entropy_bits(&input_pool, 1);
1572 }
1573 
1574 /*
1575  * If we have an actual cycle counter, see if we can
1576  * generate enough entropy with timing noise
1577  */
1578 static void try_to_generate_entropy(void)
1579 {
1580 	struct {
1581 		unsigned long now;
1582 		struct timer_list timer;
1583 	} stack;
1584 
1585 	stack.now = random_get_entropy();
1586 
1587 	/* Slow counter - or none. Don't even bother */
1588 	if (stack.now == random_get_entropy())
1589 		return;
1590 
1591 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1592 	while (!crng_ready()) {
1593 		if (!timer_pending(&stack.timer))
1594 			mod_timer(&stack.timer, jiffies+1);
1595 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1596 		schedule();
1597 		stack.now = random_get_entropy();
1598 	}
1599 
1600 	del_timer_sync(&stack.timer);
1601 	destroy_timer_on_stack(&stack.timer);
1602 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1603 }
1604 
1605 /*
1606  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1607  * cryptographically secure random numbers. This applies to: the /dev/urandom
1608  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1609  * family of functions. Using any of these functions without first calling
1610  * this function forfeits the guarantee of security.
1611  *
1612  * Returns: 0 if the urandom pool has been seeded.
1613  *          -ERESTARTSYS if the function was interrupted by a signal.
1614  */
1615 int wait_for_random_bytes(void)
1616 {
1617 	if (likely(crng_ready()))
1618 		return 0;
1619 
1620 	do {
1621 		int ret;
1622 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1623 		if (ret)
1624 			return ret > 0 ? 0 : ret;
1625 
1626 		try_to_generate_entropy();
1627 	} while (!crng_ready());
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(wait_for_random_bytes);
1632 
1633 /*
1634  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1635  * to supply cryptographically secure random numbers. This applies to: the
1636  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1637  * ,u64,int,long} family of functions.
1638  *
1639  * Returns: true if the urandom pool has been seeded.
1640  *          false if the urandom pool has not been seeded.
1641  */
1642 bool rng_is_initialized(void)
1643 {
1644 	return crng_ready();
1645 }
1646 EXPORT_SYMBOL(rng_is_initialized);
1647 
1648 /*
1649  * Add a callback function that will be invoked when the nonblocking
1650  * pool is initialised.
1651  *
1652  * returns: 0 if callback is successfully added
1653  *	    -EALREADY if pool is already initialised (callback not called)
1654  *	    -ENOENT if module for callback is not alive
1655  */
1656 int add_random_ready_callback(struct random_ready_callback *rdy)
1657 {
1658 	struct module *owner;
1659 	unsigned long flags;
1660 	int err = -EALREADY;
1661 
1662 	if (crng_ready())
1663 		return err;
1664 
1665 	owner = rdy->owner;
1666 	if (!try_module_get(owner))
1667 		return -ENOENT;
1668 
1669 	spin_lock_irqsave(&random_ready_list_lock, flags);
1670 	if (crng_ready())
1671 		goto out;
1672 
1673 	owner = NULL;
1674 
1675 	list_add(&rdy->list, &random_ready_list);
1676 	err = 0;
1677 
1678 out:
1679 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1680 
1681 	module_put(owner);
1682 
1683 	return err;
1684 }
1685 EXPORT_SYMBOL(add_random_ready_callback);
1686 
1687 /*
1688  * Delete a previously registered readiness callback function.
1689  */
1690 void del_random_ready_callback(struct random_ready_callback *rdy)
1691 {
1692 	unsigned long flags;
1693 	struct module *owner = NULL;
1694 
1695 	spin_lock_irqsave(&random_ready_list_lock, flags);
1696 	if (!list_empty(&rdy->list)) {
1697 		list_del_init(&rdy->list);
1698 		owner = rdy->owner;
1699 	}
1700 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1701 
1702 	module_put(owner);
1703 }
1704 EXPORT_SYMBOL(del_random_ready_callback);
1705 
1706 /*
1707  * This function will use the architecture-specific hardware random
1708  * number generator if it is available.  The arch-specific hw RNG will
1709  * almost certainly be faster than what we can do in software, but it
1710  * is impossible to verify that it is implemented securely (as
1711  * opposed, to, say, the AES encryption of a sequence number using a
1712  * key known by the NSA).  So it's useful if we need the speed, but
1713  * only if we're willing to trust the hardware manufacturer not to
1714  * have put in a back door.
1715  *
1716  * Return number of bytes filled in.
1717  */
1718 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1719 {
1720 	int left = nbytes;
1721 	char *p = buf;
1722 
1723 	trace_get_random_bytes_arch(left, _RET_IP_);
1724 	while (left) {
1725 		unsigned long v;
1726 		int chunk = min_t(int, left, sizeof(unsigned long));
1727 
1728 		if (!arch_get_random_long(&v))
1729 			break;
1730 
1731 		memcpy(p, &v, chunk);
1732 		p += chunk;
1733 		left -= chunk;
1734 	}
1735 
1736 	return nbytes - left;
1737 }
1738 EXPORT_SYMBOL(get_random_bytes_arch);
1739 
1740 /*
1741  * init_std_data - initialize pool with system data
1742  *
1743  * @r: pool to initialize
1744  *
1745  * This function clears the pool's entropy count and mixes some system
1746  * data into the pool to prepare it for use. The pool is not cleared
1747  * as that can only decrease the entropy in the pool.
1748  */
1749 static void __init init_std_data(struct entropy_store *r)
1750 {
1751 	int i;
1752 	ktime_t now = ktime_get_real();
1753 	unsigned long rv;
1754 
1755 	mix_pool_bytes(r, &now, sizeof(now));
1756 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1757 		if (!arch_get_random_seed_long(&rv) &&
1758 		    !arch_get_random_long(&rv))
1759 			rv = random_get_entropy();
1760 		mix_pool_bytes(r, &rv, sizeof(rv));
1761 	}
1762 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1763 }
1764 
1765 /*
1766  * Note that setup_arch() may call add_device_randomness()
1767  * long before we get here. This allows seeding of the pools
1768  * with some platform dependent data very early in the boot
1769  * process. But it limits our options here. We must use
1770  * statically allocated structures that already have all
1771  * initializations complete at compile time. We should also
1772  * take care not to overwrite the precious per platform data
1773  * we were given.
1774  */
1775 int __init rand_initialize(void)
1776 {
1777 	init_std_data(&input_pool);
1778 	crng_initialize_primary(&primary_crng);
1779 	crng_global_init_time = jiffies;
1780 	if (ratelimit_disable) {
1781 		urandom_warning.interval = 0;
1782 		unseeded_warning.interval = 0;
1783 	}
1784 	return 0;
1785 }
1786 
1787 #ifdef CONFIG_BLOCK
1788 void rand_initialize_disk(struct gendisk *disk)
1789 {
1790 	struct timer_rand_state *state;
1791 
1792 	/*
1793 	 * If kzalloc returns null, we just won't use that entropy
1794 	 * source.
1795 	 */
1796 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1797 	if (state) {
1798 		state->last_time = INITIAL_JIFFIES;
1799 		disk->random = state;
1800 	}
1801 }
1802 #endif
1803 
1804 static ssize_t
1805 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1806 		    loff_t *ppos)
1807 {
1808 	int ret;
1809 
1810 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1811 	ret = extract_crng_user(buf, nbytes);
1812 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1813 	return ret;
1814 }
1815 
1816 static ssize_t
1817 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1818 {
1819 	unsigned long flags;
1820 	static int maxwarn = 10;
1821 
1822 	if (!crng_ready() && maxwarn > 0) {
1823 		maxwarn--;
1824 		if (__ratelimit(&urandom_warning))
1825 			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1826 				  current->comm, nbytes);
1827 		spin_lock_irqsave(&primary_crng.lock, flags);
1828 		crng_init_cnt = 0;
1829 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1830 	}
1831 
1832 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1833 }
1834 
1835 static ssize_t
1836 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1837 {
1838 	int ret;
1839 
1840 	ret = wait_for_random_bytes();
1841 	if (ret != 0)
1842 		return ret;
1843 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1844 }
1845 
1846 static __poll_t
1847 random_poll(struct file *file, poll_table * wait)
1848 {
1849 	__poll_t mask;
1850 
1851 	poll_wait(file, &crng_init_wait, wait);
1852 	poll_wait(file, &random_write_wait, wait);
1853 	mask = 0;
1854 	if (crng_ready())
1855 		mask |= EPOLLIN | EPOLLRDNORM;
1856 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1857 		mask |= EPOLLOUT | EPOLLWRNORM;
1858 	return mask;
1859 }
1860 
1861 static int
1862 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1863 {
1864 	size_t bytes;
1865 	__u32 t, buf[16];
1866 	const char __user *p = buffer;
1867 
1868 	while (count > 0) {
1869 		int b, i = 0;
1870 
1871 		bytes = min(count, sizeof(buf));
1872 		if (copy_from_user(&buf, p, bytes))
1873 			return -EFAULT;
1874 
1875 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1876 			if (!arch_get_random_int(&t))
1877 				break;
1878 			buf[i] ^= t;
1879 		}
1880 
1881 		count -= bytes;
1882 		p += bytes;
1883 
1884 		mix_pool_bytes(r, buf, bytes);
1885 		cond_resched();
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static ssize_t random_write(struct file *file, const char __user *buffer,
1892 			    size_t count, loff_t *ppos)
1893 {
1894 	size_t ret;
1895 
1896 	ret = write_pool(&input_pool, buffer, count);
1897 	if (ret)
1898 		return ret;
1899 
1900 	return (ssize_t)count;
1901 }
1902 
1903 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1904 {
1905 	int size, ent_count;
1906 	int __user *p = (int __user *)arg;
1907 	int retval;
1908 
1909 	switch (cmd) {
1910 	case RNDGETENTCNT:
1911 		/* inherently racy, no point locking */
1912 		ent_count = ENTROPY_BITS(&input_pool);
1913 		if (put_user(ent_count, p))
1914 			return -EFAULT;
1915 		return 0;
1916 	case RNDADDTOENTCNT:
1917 		if (!capable(CAP_SYS_ADMIN))
1918 			return -EPERM;
1919 		if (get_user(ent_count, p))
1920 			return -EFAULT;
1921 		return credit_entropy_bits_safe(&input_pool, ent_count);
1922 	case RNDADDENTROPY:
1923 		if (!capable(CAP_SYS_ADMIN))
1924 			return -EPERM;
1925 		if (get_user(ent_count, p++))
1926 			return -EFAULT;
1927 		if (ent_count < 0)
1928 			return -EINVAL;
1929 		if (get_user(size, p++))
1930 			return -EFAULT;
1931 		retval = write_pool(&input_pool, (const char __user *)p,
1932 				    size);
1933 		if (retval < 0)
1934 			return retval;
1935 		return credit_entropy_bits_safe(&input_pool, ent_count);
1936 	case RNDZAPENTCNT:
1937 	case RNDCLEARPOOL:
1938 		/*
1939 		 * Clear the entropy pool counters. We no longer clear
1940 		 * the entropy pool, as that's silly.
1941 		 */
1942 		if (!capable(CAP_SYS_ADMIN))
1943 			return -EPERM;
1944 		input_pool.entropy_count = 0;
1945 		return 0;
1946 	case RNDRESEEDCRNG:
1947 		if (!capable(CAP_SYS_ADMIN))
1948 			return -EPERM;
1949 		if (crng_init < 2)
1950 			return -ENODATA;
1951 		crng_reseed(&primary_crng, &input_pool);
1952 		crng_global_init_time = jiffies - 1;
1953 		return 0;
1954 	default:
1955 		return -EINVAL;
1956 	}
1957 }
1958 
1959 static int random_fasync(int fd, struct file *filp, int on)
1960 {
1961 	return fasync_helper(fd, filp, on, &fasync);
1962 }
1963 
1964 const struct file_operations random_fops = {
1965 	.read  = random_read,
1966 	.write = random_write,
1967 	.poll  = random_poll,
1968 	.unlocked_ioctl = random_ioctl,
1969 	.compat_ioctl = compat_ptr_ioctl,
1970 	.fasync = random_fasync,
1971 	.llseek = noop_llseek,
1972 };
1973 
1974 const struct file_operations urandom_fops = {
1975 	.read  = urandom_read,
1976 	.write = random_write,
1977 	.unlocked_ioctl = random_ioctl,
1978 	.compat_ioctl = compat_ptr_ioctl,
1979 	.fasync = random_fasync,
1980 	.llseek = noop_llseek,
1981 };
1982 
1983 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1984 		unsigned int, flags)
1985 {
1986 	int ret;
1987 
1988 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
1989 		return -EINVAL;
1990 
1991 	/*
1992 	 * Requesting insecure and blocking randomness at the same time makes
1993 	 * no sense.
1994 	 */
1995 	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1996 		return -EINVAL;
1997 
1998 	if (count > INT_MAX)
1999 		count = INT_MAX;
2000 
2001 	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2002 		if (flags & GRND_NONBLOCK)
2003 			return -EAGAIN;
2004 		ret = wait_for_random_bytes();
2005 		if (unlikely(ret))
2006 			return ret;
2007 	}
2008 	return urandom_read_nowarn(NULL, buf, count, NULL);
2009 }
2010 
2011 /********************************************************************
2012  *
2013  * Sysctl interface
2014  *
2015  ********************************************************************/
2016 
2017 #ifdef CONFIG_SYSCTL
2018 
2019 #include <linux/sysctl.h>
2020 
2021 static int min_write_thresh;
2022 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2023 static int random_min_urandom_seed = 60;
2024 static char sysctl_bootid[16];
2025 
2026 /*
2027  * This function is used to return both the bootid UUID, and random
2028  * UUID.  The difference is in whether table->data is NULL; if it is,
2029  * then a new UUID is generated and returned to the user.
2030  *
2031  * If the user accesses this via the proc interface, the UUID will be
2032  * returned as an ASCII string in the standard UUID format; if via the
2033  * sysctl system call, as 16 bytes of binary data.
2034  */
2035 static int proc_do_uuid(struct ctl_table *table, int write,
2036 			void *buffer, size_t *lenp, loff_t *ppos)
2037 {
2038 	struct ctl_table fake_table;
2039 	unsigned char buf[64], tmp_uuid[16], *uuid;
2040 
2041 	uuid = table->data;
2042 	if (!uuid) {
2043 		uuid = tmp_uuid;
2044 		generate_random_uuid(uuid);
2045 	} else {
2046 		static DEFINE_SPINLOCK(bootid_spinlock);
2047 
2048 		spin_lock(&bootid_spinlock);
2049 		if (!uuid[8])
2050 			generate_random_uuid(uuid);
2051 		spin_unlock(&bootid_spinlock);
2052 	}
2053 
2054 	sprintf(buf, "%pU", uuid);
2055 
2056 	fake_table.data = buf;
2057 	fake_table.maxlen = sizeof(buf);
2058 
2059 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2060 }
2061 
2062 /*
2063  * Return entropy available scaled to integral bits
2064  */
2065 static int proc_do_entropy(struct ctl_table *table, int write,
2066 			   void *buffer, size_t *lenp, loff_t *ppos)
2067 {
2068 	struct ctl_table fake_table;
2069 	int entropy_count;
2070 
2071 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2072 
2073 	fake_table.data = &entropy_count;
2074 	fake_table.maxlen = sizeof(entropy_count);
2075 
2076 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2077 }
2078 
2079 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2080 extern struct ctl_table random_table[];
2081 struct ctl_table random_table[] = {
2082 	{
2083 		.procname	= "poolsize",
2084 		.data		= &sysctl_poolsize,
2085 		.maxlen		= sizeof(int),
2086 		.mode		= 0444,
2087 		.proc_handler	= proc_dointvec,
2088 	},
2089 	{
2090 		.procname	= "entropy_avail",
2091 		.maxlen		= sizeof(int),
2092 		.mode		= 0444,
2093 		.proc_handler	= proc_do_entropy,
2094 		.data		= &input_pool.entropy_count,
2095 	},
2096 	{
2097 		.procname	= "write_wakeup_threshold",
2098 		.data		= &random_write_wakeup_bits,
2099 		.maxlen		= sizeof(int),
2100 		.mode		= 0644,
2101 		.proc_handler	= proc_dointvec_minmax,
2102 		.extra1		= &min_write_thresh,
2103 		.extra2		= &max_write_thresh,
2104 	},
2105 	{
2106 		.procname	= "urandom_min_reseed_secs",
2107 		.data		= &random_min_urandom_seed,
2108 		.maxlen		= sizeof(int),
2109 		.mode		= 0644,
2110 		.proc_handler	= proc_dointvec,
2111 	},
2112 	{
2113 		.procname	= "boot_id",
2114 		.data		= &sysctl_bootid,
2115 		.maxlen		= 16,
2116 		.mode		= 0444,
2117 		.proc_handler	= proc_do_uuid,
2118 	},
2119 	{
2120 		.procname	= "uuid",
2121 		.maxlen		= 16,
2122 		.mode		= 0444,
2123 		.proc_handler	= proc_do_uuid,
2124 	},
2125 #ifdef ADD_INTERRUPT_BENCH
2126 	{
2127 		.procname	= "add_interrupt_avg_cycles",
2128 		.data		= &avg_cycles,
2129 		.maxlen		= sizeof(avg_cycles),
2130 		.mode		= 0444,
2131 		.proc_handler	= proc_doulongvec_minmax,
2132 	},
2133 	{
2134 		.procname	= "add_interrupt_avg_deviation",
2135 		.data		= &avg_deviation,
2136 		.maxlen		= sizeof(avg_deviation),
2137 		.mode		= 0444,
2138 		.proc_handler	= proc_doulongvec_minmax,
2139 	},
2140 #endif
2141 	{ }
2142 };
2143 #endif 	/* CONFIG_SYSCTL */
2144 
2145 struct batched_entropy {
2146 	union {
2147 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2148 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2149 	};
2150 	unsigned int position;
2151 	spinlock_t batch_lock;
2152 };
2153 
2154 /*
2155  * Get a random word for internal kernel use only. The quality of the random
2156  * number is good as /dev/urandom, but there is no backtrack protection, with
2157  * the goal of being quite fast and not depleting entropy. In order to ensure
2158  * that the randomness provided by this function is okay, the function
2159  * wait_for_random_bytes() should be called and return 0 at least once at any
2160  * point prior.
2161  */
2162 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2163 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2164 };
2165 
2166 u64 get_random_u64(void)
2167 {
2168 	u64 ret;
2169 	unsigned long flags;
2170 	struct batched_entropy *batch;
2171 	static void *previous;
2172 
2173 	warn_unseeded_randomness(&previous);
2174 
2175 	batch = raw_cpu_ptr(&batched_entropy_u64);
2176 	spin_lock_irqsave(&batch->batch_lock, flags);
2177 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2178 		extract_crng((u8 *)batch->entropy_u64);
2179 		batch->position = 0;
2180 	}
2181 	ret = batch->entropy_u64[batch->position++];
2182 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2183 	return ret;
2184 }
2185 EXPORT_SYMBOL(get_random_u64);
2186 
2187 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2188 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2189 };
2190 u32 get_random_u32(void)
2191 {
2192 	u32 ret;
2193 	unsigned long flags;
2194 	struct batched_entropy *batch;
2195 	static void *previous;
2196 
2197 	warn_unseeded_randomness(&previous);
2198 
2199 	batch = raw_cpu_ptr(&batched_entropy_u32);
2200 	spin_lock_irqsave(&batch->batch_lock, flags);
2201 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2202 		extract_crng((u8 *)batch->entropy_u32);
2203 		batch->position = 0;
2204 	}
2205 	ret = batch->entropy_u32[batch->position++];
2206 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(get_random_u32);
2210 
2211 /* It's important to invalidate all potential batched entropy that might
2212  * be stored before the crng is initialized, which we can do lazily by
2213  * simply resetting the counter to zero so that it's re-extracted on the
2214  * next usage. */
2215 static void invalidate_batched_entropy(void)
2216 {
2217 	int cpu;
2218 	unsigned long flags;
2219 
2220 	for_each_possible_cpu (cpu) {
2221 		struct batched_entropy *batched_entropy;
2222 
2223 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2224 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2225 		batched_entropy->position = 0;
2226 		spin_unlock(&batched_entropy->batch_lock);
2227 
2228 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2229 		spin_lock(&batched_entropy->batch_lock);
2230 		batched_entropy->position = 0;
2231 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2232 	}
2233 }
2234 
2235 /**
2236  * randomize_page - Generate a random, page aligned address
2237  * @start:	The smallest acceptable address the caller will take.
2238  * @range:	The size of the area, starting at @start, within which the
2239  *		random address must fall.
2240  *
2241  * If @start + @range would overflow, @range is capped.
2242  *
2243  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2244  * @start was already page aligned.  We now align it regardless.
2245  *
2246  * Return: A page aligned address within [start, start + range).  On error,
2247  * @start is returned.
2248  */
2249 unsigned long
2250 randomize_page(unsigned long start, unsigned long range)
2251 {
2252 	if (!PAGE_ALIGNED(start)) {
2253 		range -= PAGE_ALIGN(start) - start;
2254 		start = PAGE_ALIGN(start);
2255 	}
2256 
2257 	if (start > ULONG_MAX - range)
2258 		range = ULONG_MAX - start;
2259 
2260 	range >>= PAGE_SHIFT;
2261 
2262 	if (range == 0)
2263 		return start;
2264 
2265 	return start + (get_random_long() % range << PAGE_SHIFT);
2266 }
2267 
2268 /* Interface for in-kernel drivers of true hardware RNGs.
2269  * Those devices may produce endless random bits and will be throttled
2270  * when our pool is full.
2271  */
2272 void add_hwgenerator_randomness(const char *buffer, size_t count,
2273 				size_t entropy)
2274 {
2275 	struct entropy_store *poolp = &input_pool;
2276 
2277 	if (unlikely(crng_init == 0)) {
2278 		crng_fast_load(buffer, count);
2279 		return;
2280 	}
2281 
2282 	/* Suspend writing if we're above the trickle threshold.
2283 	 * We'll be woken up again once below random_write_wakeup_thresh,
2284 	 * or when the calling thread is about to terminate.
2285 	 */
2286 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2287 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2288 	mix_pool_bytes(poolp, buffer, count);
2289 	credit_entropy_bits(poolp, entropy);
2290 }
2291 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2292 
2293 /* Handle random seed passed by bootloader.
2294  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2295  * it would be regarded as device data.
2296  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2297  */
2298 void add_bootloader_randomness(const void *buf, unsigned int size)
2299 {
2300 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2301 		add_hwgenerator_randomness(buf, size, size * 8);
2302 	else
2303 		add_device_randomness(buf, size);
2304 }
2305 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2306