1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 311 312 #include <linux/utsname.h> 313 #include <linux/module.h> 314 #include <linux/kernel.h> 315 #include <linux/major.h> 316 #include <linux/string.h> 317 #include <linux/fcntl.h> 318 #include <linux/slab.h> 319 #include <linux/random.h> 320 #include <linux/poll.h> 321 #include <linux/init.h> 322 #include <linux/fs.h> 323 #include <linux/genhd.h> 324 #include <linux/interrupt.h> 325 #include <linux/mm.h> 326 #include <linux/nodemask.h> 327 #include <linux/spinlock.h> 328 #include <linux/kthread.h> 329 #include <linux/percpu.h> 330 #include <linux/fips.h> 331 #include <linux/ptrace.h> 332 #include <linux/workqueue.h> 333 #include <linux/irq.h> 334 #include <linux/ratelimit.h> 335 #include <linux/syscalls.h> 336 #include <linux/completion.h> 337 #include <linux/uuid.h> 338 #include <crypto/chacha.h> 339 #include <crypto/sha1.h> 340 341 #include <asm/processor.h> 342 #include <linux/uaccess.h> 343 #include <asm/irq.h> 344 #include <asm/irq_regs.h> 345 #include <asm/io.h> 346 347 #define CREATE_TRACE_POINTS 348 #include <trace/events/random.h> 349 350 /* #define ADD_INTERRUPT_BENCH */ 351 352 /* 353 * Configuration information 354 */ 355 #define INPUT_POOL_SHIFT 12 356 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 357 #define OUTPUT_POOL_SHIFT 10 358 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 359 #define EXTRACT_SIZE 10 360 361 362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 363 364 /* 365 * To allow fractional bits to be tracked, the entropy_count field is 366 * denominated in units of 1/8th bits. 367 * 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 369 * credit_entropy_bits() needs to be 64 bits wide. 370 */ 371 #define ENTROPY_SHIFT 3 372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 373 374 /* 375 * If the entropy count falls under this number of bits, then we 376 * should wake up processes which are selecting or polling on write 377 * access to /dev/random. 378 */ 379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 380 381 /* 382 * Originally, we used a primitive polynomial of degree .poolwords 383 * over GF(2). The taps for various sizes are defined below. They 384 * were chosen to be evenly spaced except for the last tap, which is 1 385 * to get the twisting happening as fast as possible. 386 * 387 * For the purposes of better mixing, we use the CRC-32 polynomial as 388 * well to make a (modified) twisted Generalized Feedback Shift 389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 390 * generators. ACM Transactions on Modeling and Computer Simulation 391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 392 * GFSR generators II. ACM Transactions on Modeling and Computer 393 * Simulation 4:254-266) 394 * 395 * Thanks to Colin Plumb for suggesting this. 396 * 397 * The mixing operation is much less sensitive than the output hash, 398 * where we use SHA-1. All that we want of mixing operation is that 399 * it be a good non-cryptographic hash; i.e. it not produce collisions 400 * when fed "random" data of the sort we expect to see. As long as 401 * the pool state differs for different inputs, we have preserved the 402 * input entropy and done a good job. The fact that an intelligent 403 * attacker can construct inputs that will produce controlled 404 * alterations to the pool's state is not important because we don't 405 * consider such inputs to contribute any randomness. The only 406 * property we need with respect to them is that the attacker can't 407 * increase his/her knowledge of the pool's state. Since all 408 * additions are reversible (knowing the final state and the input, 409 * you can reconstruct the initial state), if an attacker has any 410 * uncertainty about the initial state, he/she can only shuffle that 411 * uncertainty about, but never cause any collisions (which would 412 * decrease the uncertainty). 413 * 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 415 * Videau in their paper, "The Linux Pseudorandom Number Generator 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 417 * paper, they point out that we are not using a true Twisted GFSR, 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 419 * is, with only three taps, instead of the six that we are using). 420 * As a result, the resulting polynomial is neither primitive nor 421 * irreducible, and hence does not have a maximal period over 422 * GF(2**32). They suggest a slight change to the generator 423 * polynomial which improves the resulting TGFSR polynomial to be 424 * irreducible, which we have made here. 425 */ 426 static const struct poolinfo { 427 int poolbitshift, poolwords, poolbytes, poolfracbits; 428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 429 int tap1, tap2, tap3, tap4, tap5; 430 } poolinfo_table[] = { 431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 433 { S(128), 104, 76, 51, 25, 1 }, 434 }; 435 436 /* 437 * Static global variables 438 */ 439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 440 static struct fasync_struct *fasync; 441 442 static DEFINE_SPINLOCK(random_ready_list_lock); 443 static LIST_HEAD(random_ready_list); 444 445 struct crng_state { 446 __u32 state[16]; 447 unsigned long init_time; 448 spinlock_t lock; 449 }; 450 451 static struct crng_state primary_crng = { 452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 453 }; 454 455 /* 456 * crng_init = 0 --> Uninitialized 457 * 1 --> Initialized 458 * 2 --> Initialized from input_pool 459 * 460 * crng_init is protected by primary_crng->lock, and only increases 461 * its value (from 0->1->2). 462 */ 463 static int crng_init = 0; 464 #define crng_ready() (likely(crng_init > 1)) 465 static int crng_init_cnt = 0; 466 static unsigned long crng_global_init_time = 0; 467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 469 static void _crng_backtrack_protect(struct crng_state *crng, 470 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 471 static void process_random_ready_list(void); 472 static void _get_random_bytes(void *buf, int nbytes); 473 474 static struct ratelimit_state unseeded_warning = 475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 476 static struct ratelimit_state urandom_warning = 477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 478 479 static int ratelimit_disable __read_mostly; 480 481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 483 484 /********************************************************************** 485 * 486 * OS independent entropy store. Here are the functions which handle 487 * storing entropy in an entropy pool. 488 * 489 **********************************************************************/ 490 491 struct entropy_store; 492 struct entropy_store { 493 /* read-only data: */ 494 const struct poolinfo *poolinfo; 495 __u32 *pool; 496 const char *name; 497 498 /* read-write data: */ 499 spinlock_t lock; 500 unsigned short add_ptr; 501 unsigned short input_rotate; 502 int entropy_count; 503 unsigned int last_data_init:1; 504 __u8 last_data[EXTRACT_SIZE]; 505 }; 506 507 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 508 size_t nbytes, int min, int rsvd); 509 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 510 size_t nbytes, int fips); 511 512 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 513 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 514 515 static struct entropy_store input_pool = { 516 .poolinfo = &poolinfo_table[0], 517 .name = "input", 518 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 519 .pool = input_pool_data 520 }; 521 522 static __u32 const twist_table[8] = { 523 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 524 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 525 526 /* 527 * This function adds bytes into the entropy "pool". It does not 528 * update the entropy estimate. The caller should call 529 * credit_entropy_bits if this is appropriate. 530 * 531 * The pool is stirred with a primitive polynomial of the appropriate 532 * degree, and then twisted. We twist by three bits at a time because 533 * it's cheap to do so and helps slightly in the expected case where 534 * the entropy is concentrated in the low-order bits. 535 */ 536 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 537 int nbytes) 538 { 539 unsigned long i, tap1, tap2, tap3, tap4, tap5; 540 int input_rotate; 541 int wordmask = r->poolinfo->poolwords - 1; 542 const char *bytes = in; 543 __u32 w; 544 545 tap1 = r->poolinfo->tap1; 546 tap2 = r->poolinfo->tap2; 547 tap3 = r->poolinfo->tap3; 548 tap4 = r->poolinfo->tap4; 549 tap5 = r->poolinfo->tap5; 550 551 input_rotate = r->input_rotate; 552 i = r->add_ptr; 553 554 /* mix one byte at a time to simplify size handling and churn faster */ 555 while (nbytes--) { 556 w = rol32(*bytes++, input_rotate); 557 i = (i - 1) & wordmask; 558 559 /* XOR in the various taps */ 560 w ^= r->pool[i]; 561 w ^= r->pool[(i + tap1) & wordmask]; 562 w ^= r->pool[(i + tap2) & wordmask]; 563 w ^= r->pool[(i + tap3) & wordmask]; 564 w ^= r->pool[(i + tap4) & wordmask]; 565 w ^= r->pool[(i + tap5) & wordmask]; 566 567 /* Mix the result back in with a twist */ 568 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 569 570 /* 571 * Normally, we add 7 bits of rotation to the pool. 572 * At the beginning of the pool, add an extra 7 bits 573 * rotation, so that successive passes spread the 574 * input bits across the pool evenly. 575 */ 576 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 577 } 578 579 r->input_rotate = input_rotate; 580 r->add_ptr = i; 581 } 582 583 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 584 int nbytes) 585 { 586 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 587 _mix_pool_bytes(r, in, nbytes); 588 } 589 590 static void mix_pool_bytes(struct entropy_store *r, const void *in, 591 int nbytes) 592 { 593 unsigned long flags; 594 595 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 596 spin_lock_irqsave(&r->lock, flags); 597 _mix_pool_bytes(r, in, nbytes); 598 spin_unlock_irqrestore(&r->lock, flags); 599 } 600 601 struct fast_pool { 602 __u32 pool[4]; 603 unsigned long last; 604 unsigned short reg_idx; 605 unsigned char count; 606 }; 607 608 /* 609 * This is a fast mixing routine used by the interrupt randomness 610 * collector. It's hardcoded for an 128 bit pool and assumes that any 611 * locks that might be needed are taken by the caller. 612 */ 613 static void fast_mix(struct fast_pool *f) 614 { 615 __u32 a = f->pool[0], b = f->pool[1]; 616 __u32 c = f->pool[2], d = f->pool[3]; 617 618 a += b; c += d; 619 b = rol32(b, 6); d = rol32(d, 27); 620 d ^= a; b ^= c; 621 622 a += b; c += d; 623 b = rol32(b, 16); d = rol32(d, 14); 624 d ^= a; b ^= c; 625 626 a += b; c += d; 627 b = rol32(b, 6); d = rol32(d, 27); 628 d ^= a; b ^= c; 629 630 a += b; c += d; 631 b = rol32(b, 16); d = rol32(d, 14); 632 d ^= a; b ^= c; 633 634 f->pool[0] = a; f->pool[1] = b; 635 f->pool[2] = c; f->pool[3] = d; 636 f->count++; 637 } 638 639 static void process_random_ready_list(void) 640 { 641 unsigned long flags; 642 struct random_ready_callback *rdy, *tmp; 643 644 spin_lock_irqsave(&random_ready_list_lock, flags); 645 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 646 struct module *owner = rdy->owner; 647 648 list_del_init(&rdy->list); 649 rdy->func(rdy); 650 module_put(owner); 651 } 652 spin_unlock_irqrestore(&random_ready_list_lock, flags); 653 } 654 655 /* 656 * Credit (or debit) the entropy store with n bits of entropy. 657 * Use credit_entropy_bits_safe() if the value comes from userspace 658 * or otherwise should be checked for extreme values. 659 */ 660 static void credit_entropy_bits(struct entropy_store *r, int nbits) 661 { 662 int entropy_count, orig; 663 const int pool_size = r->poolinfo->poolfracbits; 664 int nfrac = nbits << ENTROPY_SHIFT; 665 666 if (!nbits) 667 return; 668 669 retry: 670 entropy_count = orig = READ_ONCE(r->entropy_count); 671 if (nfrac < 0) { 672 /* Debit */ 673 entropy_count += nfrac; 674 } else { 675 /* 676 * Credit: we have to account for the possibility of 677 * overwriting already present entropy. Even in the 678 * ideal case of pure Shannon entropy, new contributions 679 * approach the full value asymptotically: 680 * 681 * entropy <- entropy + (pool_size - entropy) * 682 * (1 - exp(-add_entropy/pool_size)) 683 * 684 * For add_entropy <= pool_size/2 then 685 * (1 - exp(-add_entropy/pool_size)) >= 686 * (add_entropy/pool_size)*0.7869... 687 * so we can approximate the exponential with 688 * 3/4*add_entropy/pool_size and still be on the 689 * safe side by adding at most pool_size/2 at a time. 690 * 691 * The use of pool_size-2 in the while statement is to 692 * prevent rounding artifacts from making the loop 693 * arbitrarily long; this limits the loop to log2(pool_size)*2 694 * turns no matter how large nbits is. 695 */ 696 int pnfrac = nfrac; 697 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 698 /* The +2 corresponds to the /4 in the denominator */ 699 700 do { 701 unsigned int anfrac = min(pnfrac, pool_size/2); 702 unsigned int add = 703 ((pool_size - entropy_count)*anfrac*3) >> s; 704 705 entropy_count += add; 706 pnfrac -= anfrac; 707 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 708 } 709 710 if (WARN_ON(entropy_count < 0)) { 711 pr_warn("negative entropy/overflow: pool %s count %d\n", 712 r->name, entropy_count); 713 entropy_count = 0; 714 } else if (entropy_count > pool_size) 715 entropy_count = pool_size; 716 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 717 goto retry; 718 719 trace_credit_entropy_bits(r->name, nbits, 720 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 721 722 if (r == &input_pool) { 723 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 724 725 if (crng_init < 2 && entropy_bits >= 128) 726 crng_reseed(&primary_crng, r); 727 } 728 } 729 730 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 731 { 732 const int nbits_max = r->poolinfo->poolwords * 32; 733 734 if (nbits < 0) 735 return -EINVAL; 736 737 /* Cap the value to avoid overflows */ 738 nbits = min(nbits, nbits_max); 739 740 credit_entropy_bits(r, nbits); 741 return 0; 742 } 743 744 /********************************************************************* 745 * 746 * CRNG using CHACHA20 747 * 748 *********************************************************************/ 749 750 #define CRNG_RESEED_INTERVAL (300*HZ) 751 752 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 753 754 #ifdef CONFIG_NUMA 755 /* 756 * Hack to deal with crazy userspace progams when they are all trying 757 * to access /dev/urandom in parallel. The programs are almost 758 * certainly doing something terribly wrong, but we'll work around 759 * their brain damage. 760 */ 761 static struct crng_state **crng_node_pool __read_mostly; 762 #endif 763 764 static void invalidate_batched_entropy(void); 765 static void numa_crng_init(void); 766 767 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 768 static int __init parse_trust_cpu(char *arg) 769 { 770 return kstrtobool(arg, &trust_cpu); 771 } 772 early_param("random.trust_cpu", parse_trust_cpu); 773 774 static bool crng_init_try_arch(struct crng_state *crng) 775 { 776 int i; 777 bool arch_init = true; 778 unsigned long rv; 779 780 for (i = 4; i < 16; i++) { 781 if (!arch_get_random_seed_long(&rv) && 782 !arch_get_random_long(&rv)) { 783 rv = random_get_entropy(); 784 arch_init = false; 785 } 786 crng->state[i] ^= rv; 787 } 788 789 return arch_init; 790 } 791 792 static bool __init crng_init_try_arch_early(struct crng_state *crng) 793 { 794 int i; 795 bool arch_init = true; 796 unsigned long rv; 797 798 for (i = 4; i < 16; i++) { 799 if (!arch_get_random_seed_long_early(&rv) && 800 !arch_get_random_long_early(&rv)) { 801 rv = random_get_entropy(); 802 arch_init = false; 803 } 804 crng->state[i] ^= rv; 805 } 806 807 return arch_init; 808 } 809 810 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng) 811 { 812 chacha_init_consts(crng->state); 813 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 814 crng_init_try_arch(crng); 815 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 816 } 817 818 static void __init crng_initialize_primary(struct crng_state *crng) 819 { 820 chacha_init_consts(crng->state); 821 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0); 822 if (crng_init_try_arch_early(crng) && trust_cpu) { 823 invalidate_batched_entropy(); 824 numa_crng_init(); 825 crng_init = 2; 826 pr_notice("crng done (trusting CPU's manufacturer)\n"); 827 } 828 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 829 } 830 831 #ifdef CONFIG_NUMA 832 static void do_numa_crng_init(struct work_struct *work) 833 { 834 int i; 835 struct crng_state *crng; 836 struct crng_state **pool; 837 838 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 839 for_each_online_node(i) { 840 crng = kmalloc_node(sizeof(struct crng_state), 841 GFP_KERNEL | __GFP_NOFAIL, i); 842 spin_lock_init(&crng->lock); 843 crng_initialize_secondary(crng); 844 pool[i] = crng; 845 } 846 mb(); 847 if (cmpxchg(&crng_node_pool, NULL, pool)) { 848 for_each_node(i) 849 kfree(pool[i]); 850 kfree(pool); 851 } 852 } 853 854 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 855 856 static void numa_crng_init(void) 857 { 858 schedule_work(&numa_crng_init_work); 859 } 860 #else 861 static void numa_crng_init(void) {} 862 #endif 863 864 /* 865 * crng_fast_load() can be called by code in the interrupt service 866 * path. So we can't afford to dilly-dally. 867 */ 868 static int crng_fast_load(const char *cp, size_t len) 869 { 870 unsigned long flags; 871 char *p; 872 873 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 874 return 0; 875 if (crng_init != 0) { 876 spin_unlock_irqrestore(&primary_crng.lock, flags); 877 return 0; 878 } 879 p = (unsigned char *) &primary_crng.state[4]; 880 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 881 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 882 cp++; crng_init_cnt++; len--; 883 } 884 spin_unlock_irqrestore(&primary_crng.lock, flags); 885 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 886 invalidate_batched_entropy(); 887 crng_init = 1; 888 pr_notice("fast init done\n"); 889 } 890 return 1; 891 } 892 893 /* 894 * crng_slow_load() is called by add_device_randomness, which has two 895 * attributes. (1) We can't trust the buffer passed to it is 896 * guaranteed to be unpredictable (so it might not have any entropy at 897 * all), and (2) it doesn't have the performance constraints of 898 * crng_fast_load(). 899 * 900 * So we do something more comprehensive which is guaranteed to touch 901 * all of the primary_crng's state, and which uses a LFSR with a 902 * period of 255 as part of the mixing algorithm. Finally, we do 903 * *not* advance crng_init_cnt since buffer we may get may be something 904 * like a fixed DMI table (for example), which might very well be 905 * unique to the machine, but is otherwise unvarying. 906 */ 907 static int crng_slow_load(const char *cp, size_t len) 908 { 909 unsigned long flags; 910 static unsigned char lfsr = 1; 911 unsigned char tmp; 912 unsigned i, max = CHACHA_KEY_SIZE; 913 const char * src_buf = cp; 914 char * dest_buf = (char *) &primary_crng.state[4]; 915 916 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 917 return 0; 918 if (crng_init != 0) { 919 spin_unlock_irqrestore(&primary_crng.lock, flags); 920 return 0; 921 } 922 if (len > max) 923 max = len; 924 925 for (i = 0; i < max ; i++) { 926 tmp = lfsr; 927 lfsr >>= 1; 928 if (tmp & 1) 929 lfsr ^= 0xE1; 930 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 931 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 932 lfsr += (tmp << 3) | (tmp >> 5); 933 } 934 spin_unlock_irqrestore(&primary_crng.lock, flags); 935 return 1; 936 } 937 938 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 939 { 940 unsigned long flags; 941 int i, num; 942 union { 943 __u8 block[CHACHA_BLOCK_SIZE]; 944 __u32 key[8]; 945 } buf; 946 947 if (r) { 948 num = extract_entropy(r, &buf, 32, 16, 0); 949 if (num == 0) 950 return; 951 } else { 952 _extract_crng(&primary_crng, buf.block); 953 _crng_backtrack_protect(&primary_crng, buf.block, 954 CHACHA_KEY_SIZE); 955 } 956 spin_lock_irqsave(&crng->lock, flags); 957 for (i = 0; i < 8; i++) { 958 unsigned long rv; 959 if (!arch_get_random_seed_long(&rv) && 960 !arch_get_random_long(&rv)) 961 rv = random_get_entropy(); 962 crng->state[i+4] ^= buf.key[i] ^ rv; 963 } 964 memzero_explicit(&buf, sizeof(buf)); 965 crng->init_time = jiffies; 966 spin_unlock_irqrestore(&crng->lock, flags); 967 if (crng == &primary_crng && crng_init < 2) { 968 invalidate_batched_entropy(); 969 numa_crng_init(); 970 crng_init = 2; 971 process_random_ready_list(); 972 wake_up_interruptible(&crng_init_wait); 973 kill_fasync(&fasync, SIGIO, POLL_IN); 974 pr_notice("crng init done\n"); 975 if (unseeded_warning.missed) { 976 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 977 unseeded_warning.missed); 978 unseeded_warning.missed = 0; 979 } 980 if (urandom_warning.missed) { 981 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 982 urandom_warning.missed); 983 urandom_warning.missed = 0; 984 } 985 } 986 } 987 988 static void _extract_crng(struct crng_state *crng, 989 __u8 out[CHACHA_BLOCK_SIZE]) 990 { 991 unsigned long v, flags; 992 993 if (crng_ready() && 994 (time_after(crng_global_init_time, crng->init_time) || 995 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 996 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 997 spin_lock_irqsave(&crng->lock, flags); 998 if (arch_get_random_long(&v)) 999 crng->state[14] ^= v; 1000 chacha20_block(&crng->state[0], out); 1001 if (crng->state[12] == 0) 1002 crng->state[13]++; 1003 spin_unlock_irqrestore(&crng->lock, flags); 1004 } 1005 1006 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1007 { 1008 struct crng_state *crng = NULL; 1009 1010 #ifdef CONFIG_NUMA 1011 if (crng_node_pool) 1012 crng = crng_node_pool[numa_node_id()]; 1013 if (crng == NULL) 1014 #endif 1015 crng = &primary_crng; 1016 _extract_crng(crng, out); 1017 } 1018 1019 /* 1020 * Use the leftover bytes from the CRNG block output (if there is 1021 * enough) to mutate the CRNG key to provide backtracking protection. 1022 */ 1023 static void _crng_backtrack_protect(struct crng_state *crng, 1024 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1025 { 1026 unsigned long flags; 1027 __u32 *s, *d; 1028 int i; 1029 1030 used = round_up(used, sizeof(__u32)); 1031 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1032 extract_crng(tmp); 1033 used = 0; 1034 } 1035 spin_lock_irqsave(&crng->lock, flags); 1036 s = (__u32 *) &tmp[used]; 1037 d = &crng->state[4]; 1038 for (i=0; i < 8; i++) 1039 *d++ ^= *s++; 1040 spin_unlock_irqrestore(&crng->lock, flags); 1041 } 1042 1043 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1044 { 1045 struct crng_state *crng = NULL; 1046 1047 #ifdef CONFIG_NUMA 1048 if (crng_node_pool) 1049 crng = crng_node_pool[numa_node_id()]; 1050 if (crng == NULL) 1051 #endif 1052 crng = &primary_crng; 1053 _crng_backtrack_protect(crng, tmp, used); 1054 } 1055 1056 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1057 { 1058 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1059 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1060 int large_request = (nbytes > 256); 1061 1062 while (nbytes) { 1063 if (large_request && need_resched()) { 1064 if (signal_pending(current)) { 1065 if (ret == 0) 1066 ret = -ERESTARTSYS; 1067 break; 1068 } 1069 schedule(); 1070 } 1071 1072 extract_crng(tmp); 1073 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1074 if (copy_to_user(buf, tmp, i)) { 1075 ret = -EFAULT; 1076 break; 1077 } 1078 1079 nbytes -= i; 1080 buf += i; 1081 ret += i; 1082 } 1083 crng_backtrack_protect(tmp, i); 1084 1085 /* Wipe data just written to memory */ 1086 memzero_explicit(tmp, sizeof(tmp)); 1087 1088 return ret; 1089 } 1090 1091 1092 /********************************************************************* 1093 * 1094 * Entropy input management 1095 * 1096 *********************************************************************/ 1097 1098 /* There is one of these per entropy source */ 1099 struct timer_rand_state { 1100 cycles_t last_time; 1101 long last_delta, last_delta2; 1102 }; 1103 1104 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1105 1106 /* 1107 * Add device- or boot-specific data to the input pool to help 1108 * initialize it. 1109 * 1110 * None of this adds any entropy; it is meant to avoid the problem of 1111 * the entropy pool having similar initial state across largely 1112 * identical devices. 1113 */ 1114 void add_device_randomness(const void *buf, unsigned int size) 1115 { 1116 unsigned long time = random_get_entropy() ^ jiffies; 1117 unsigned long flags; 1118 1119 if (!crng_ready() && size) 1120 crng_slow_load(buf, size); 1121 1122 trace_add_device_randomness(size, _RET_IP_); 1123 spin_lock_irqsave(&input_pool.lock, flags); 1124 _mix_pool_bytes(&input_pool, buf, size); 1125 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1126 spin_unlock_irqrestore(&input_pool.lock, flags); 1127 } 1128 EXPORT_SYMBOL(add_device_randomness); 1129 1130 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1131 1132 /* 1133 * This function adds entropy to the entropy "pool" by using timing 1134 * delays. It uses the timer_rand_state structure to make an estimate 1135 * of how many bits of entropy this call has added to the pool. 1136 * 1137 * The number "num" is also added to the pool - it should somehow describe 1138 * the type of event which just happened. This is currently 0-255 for 1139 * keyboard scan codes, and 256 upwards for interrupts. 1140 * 1141 */ 1142 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1143 { 1144 struct entropy_store *r; 1145 struct { 1146 long jiffies; 1147 unsigned cycles; 1148 unsigned num; 1149 } sample; 1150 long delta, delta2, delta3; 1151 1152 sample.jiffies = jiffies; 1153 sample.cycles = random_get_entropy(); 1154 sample.num = num; 1155 r = &input_pool; 1156 mix_pool_bytes(r, &sample, sizeof(sample)); 1157 1158 /* 1159 * Calculate number of bits of randomness we probably added. 1160 * We take into account the first, second and third-order deltas 1161 * in order to make our estimate. 1162 */ 1163 delta = sample.jiffies - READ_ONCE(state->last_time); 1164 WRITE_ONCE(state->last_time, sample.jiffies); 1165 1166 delta2 = delta - READ_ONCE(state->last_delta); 1167 WRITE_ONCE(state->last_delta, delta); 1168 1169 delta3 = delta2 - READ_ONCE(state->last_delta2); 1170 WRITE_ONCE(state->last_delta2, delta2); 1171 1172 if (delta < 0) 1173 delta = -delta; 1174 if (delta2 < 0) 1175 delta2 = -delta2; 1176 if (delta3 < 0) 1177 delta3 = -delta3; 1178 if (delta > delta2) 1179 delta = delta2; 1180 if (delta > delta3) 1181 delta = delta3; 1182 1183 /* 1184 * delta is now minimum absolute delta. 1185 * Round down by 1 bit on general principles, 1186 * and limit entropy estimate to 12 bits. 1187 */ 1188 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1189 } 1190 1191 void add_input_randomness(unsigned int type, unsigned int code, 1192 unsigned int value) 1193 { 1194 static unsigned char last_value; 1195 1196 /* ignore autorepeat and the like */ 1197 if (value == last_value) 1198 return; 1199 1200 last_value = value; 1201 add_timer_randomness(&input_timer_state, 1202 (type << 4) ^ code ^ (code >> 4) ^ value); 1203 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1204 } 1205 EXPORT_SYMBOL_GPL(add_input_randomness); 1206 1207 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1208 1209 #ifdef ADD_INTERRUPT_BENCH 1210 static unsigned long avg_cycles, avg_deviation; 1211 1212 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1213 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1214 1215 static void add_interrupt_bench(cycles_t start) 1216 { 1217 long delta = random_get_entropy() - start; 1218 1219 /* Use a weighted moving average */ 1220 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1221 avg_cycles += delta; 1222 /* And average deviation */ 1223 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1224 avg_deviation += delta; 1225 } 1226 #else 1227 #define add_interrupt_bench(x) 1228 #endif 1229 1230 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1231 { 1232 __u32 *ptr = (__u32 *) regs; 1233 unsigned int idx; 1234 1235 if (regs == NULL) 1236 return 0; 1237 idx = READ_ONCE(f->reg_idx); 1238 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1239 idx = 0; 1240 ptr += idx++; 1241 WRITE_ONCE(f->reg_idx, idx); 1242 return *ptr; 1243 } 1244 1245 void add_interrupt_randomness(int irq, int irq_flags) 1246 { 1247 struct entropy_store *r; 1248 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1249 struct pt_regs *regs = get_irq_regs(); 1250 unsigned long now = jiffies; 1251 cycles_t cycles = random_get_entropy(); 1252 __u32 c_high, j_high; 1253 __u64 ip; 1254 1255 if (cycles == 0) 1256 cycles = get_reg(fast_pool, regs); 1257 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1258 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1259 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1260 fast_pool->pool[1] ^= now ^ c_high; 1261 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1262 fast_pool->pool[2] ^= ip; 1263 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1264 get_reg(fast_pool, regs); 1265 1266 fast_mix(fast_pool); 1267 add_interrupt_bench(cycles); 1268 1269 if (unlikely(crng_init == 0)) { 1270 if ((fast_pool->count >= 64) && 1271 crng_fast_load((char *) fast_pool->pool, 1272 sizeof(fast_pool->pool))) { 1273 fast_pool->count = 0; 1274 fast_pool->last = now; 1275 } 1276 return; 1277 } 1278 1279 if ((fast_pool->count < 64) && 1280 !time_after(now, fast_pool->last + HZ)) 1281 return; 1282 1283 r = &input_pool; 1284 if (!spin_trylock(&r->lock)) 1285 return; 1286 1287 fast_pool->last = now; 1288 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1289 spin_unlock(&r->lock); 1290 1291 fast_pool->count = 0; 1292 1293 /* award one bit for the contents of the fast pool */ 1294 credit_entropy_bits(r, 1); 1295 } 1296 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1297 1298 #ifdef CONFIG_BLOCK 1299 void add_disk_randomness(struct gendisk *disk) 1300 { 1301 if (!disk || !disk->random) 1302 return; 1303 /* first major is 1, so we get >= 0x200 here */ 1304 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1305 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1306 } 1307 EXPORT_SYMBOL_GPL(add_disk_randomness); 1308 #endif 1309 1310 /********************************************************************* 1311 * 1312 * Entropy extraction routines 1313 * 1314 *********************************************************************/ 1315 1316 /* 1317 * This function decides how many bytes to actually take from the 1318 * given pool, and also debits the entropy count accordingly. 1319 */ 1320 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1321 int reserved) 1322 { 1323 int entropy_count, orig, have_bytes; 1324 size_t ibytes, nfrac; 1325 1326 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1327 1328 /* Can we pull enough? */ 1329 retry: 1330 entropy_count = orig = READ_ONCE(r->entropy_count); 1331 ibytes = nbytes; 1332 /* never pull more than available */ 1333 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1334 1335 if ((have_bytes -= reserved) < 0) 1336 have_bytes = 0; 1337 ibytes = min_t(size_t, ibytes, have_bytes); 1338 if (ibytes < min) 1339 ibytes = 0; 1340 1341 if (WARN_ON(entropy_count < 0)) { 1342 pr_warn("negative entropy count: pool %s count %d\n", 1343 r->name, entropy_count); 1344 entropy_count = 0; 1345 } 1346 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1347 if ((size_t) entropy_count > nfrac) 1348 entropy_count -= nfrac; 1349 else 1350 entropy_count = 0; 1351 1352 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1353 goto retry; 1354 1355 trace_debit_entropy(r->name, 8 * ibytes); 1356 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) { 1357 wake_up_interruptible(&random_write_wait); 1358 kill_fasync(&fasync, SIGIO, POLL_OUT); 1359 } 1360 1361 return ibytes; 1362 } 1363 1364 /* 1365 * This function does the actual extraction for extract_entropy. 1366 * 1367 * Note: we assume that .poolwords is a multiple of 16 words. 1368 */ 1369 static void extract_buf(struct entropy_store *r, __u8 *out) 1370 { 1371 int i; 1372 union { 1373 __u32 w[5]; 1374 unsigned long l[LONGS(20)]; 1375 } hash; 1376 __u32 workspace[SHA1_WORKSPACE_WORDS]; 1377 unsigned long flags; 1378 1379 /* 1380 * If we have an architectural hardware random number 1381 * generator, use it for SHA's initial vector 1382 */ 1383 sha1_init(hash.w); 1384 for (i = 0; i < LONGS(20); i++) { 1385 unsigned long v; 1386 if (!arch_get_random_long(&v)) 1387 break; 1388 hash.l[i] = v; 1389 } 1390 1391 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1392 spin_lock_irqsave(&r->lock, flags); 1393 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1394 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1395 1396 /* 1397 * We mix the hash back into the pool to prevent backtracking 1398 * attacks (where the attacker knows the state of the pool 1399 * plus the current outputs, and attempts to find previous 1400 * ouputs), unless the hash function can be inverted. By 1401 * mixing at least a SHA1 worth of hash data back, we make 1402 * brute-forcing the feedback as hard as brute-forcing the 1403 * hash. 1404 */ 1405 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1406 spin_unlock_irqrestore(&r->lock, flags); 1407 1408 memzero_explicit(workspace, sizeof(workspace)); 1409 1410 /* 1411 * In case the hash function has some recognizable output 1412 * pattern, we fold it in half. Thus, we always feed back 1413 * twice as much data as we output. 1414 */ 1415 hash.w[0] ^= hash.w[3]; 1416 hash.w[1] ^= hash.w[4]; 1417 hash.w[2] ^= rol32(hash.w[2], 16); 1418 1419 memcpy(out, &hash, EXTRACT_SIZE); 1420 memzero_explicit(&hash, sizeof(hash)); 1421 } 1422 1423 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1424 size_t nbytes, int fips) 1425 { 1426 ssize_t ret = 0, i; 1427 __u8 tmp[EXTRACT_SIZE]; 1428 unsigned long flags; 1429 1430 while (nbytes) { 1431 extract_buf(r, tmp); 1432 1433 if (fips) { 1434 spin_lock_irqsave(&r->lock, flags); 1435 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1436 panic("Hardware RNG duplicated output!\n"); 1437 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1438 spin_unlock_irqrestore(&r->lock, flags); 1439 } 1440 i = min_t(int, nbytes, EXTRACT_SIZE); 1441 memcpy(buf, tmp, i); 1442 nbytes -= i; 1443 buf += i; 1444 ret += i; 1445 } 1446 1447 /* Wipe data just returned from memory */ 1448 memzero_explicit(tmp, sizeof(tmp)); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * This function extracts randomness from the "entropy pool", and 1455 * returns it in a buffer. 1456 * 1457 * The min parameter specifies the minimum amount we can pull before 1458 * failing to avoid races that defeat catastrophic reseeding while the 1459 * reserved parameter indicates how much entropy we must leave in the 1460 * pool after each pull to avoid starving other readers. 1461 */ 1462 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1463 size_t nbytes, int min, int reserved) 1464 { 1465 __u8 tmp[EXTRACT_SIZE]; 1466 unsigned long flags; 1467 1468 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1469 if (fips_enabled) { 1470 spin_lock_irqsave(&r->lock, flags); 1471 if (!r->last_data_init) { 1472 r->last_data_init = 1; 1473 spin_unlock_irqrestore(&r->lock, flags); 1474 trace_extract_entropy(r->name, EXTRACT_SIZE, 1475 ENTROPY_BITS(r), _RET_IP_); 1476 extract_buf(r, tmp); 1477 spin_lock_irqsave(&r->lock, flags); 1478 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1479 } 1480 spin_unlock_irqrestore(&r->lock, flags); 1481 } 1482 1483 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1484 nbytes = account(r, nbytes, min, reserved); 1485 1486 return _extract_entropy(r, buf, nbytes, fips_enabled); 1487 } 1488 1489 #define warn_unseeded_randomness(previous) \ 1490 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1491 1492 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1493 void **previous) 1494 { 1495 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1496 const bool print_once = false; 1497 #else 1498 static bool print_once __read_mostly; 1499 #endif 1500 1501 if (print_once || 1502 crng_ready() || 1503 (previous && (caller == READ_ONCE(*previous)))) 1504 return; 1505 WRITE_ONCE(*previous, caller); 1506 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1507 print_once = true; 1508 #endif 1509 if (__ratelimit(&unseeded_warning)) 1510 printk_deferred(KERN_NOTICE "random: %s called from %pS " 1511 "with crng_init=%d\n", func_name, caller, 1512 crng_init); 1513 } 1514 1515 /* 1516 * This function is the exported kernel interface. It returns some 1517 * number of good random numbers, suitable for key generation, seeding 1518 * TCP sequence numbers, etc. It does not rely on the hardware random 1519 * number generator. For random bytes direct from the hardware RNG 1520 * (when available), use get_random_bytes_arch(). In order to ensure 1521 * that the randomness provided by this function is okay, the function 1522 * wait_for_random_bytes() should be called and return 0 at least once 1523 * at any point prior. 1524 */ 1525 static void _get_random_bytes(void *buf, int nbytes) 1526 { 1527 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1528 1529 trace_get_random_bytes(nbytes, _RET_IP_); 1530 1531 while (nbytes >= CHACHA_BLOCK_SIZE) { 1532 extract_crng(buf); 1533 buf += CHACHA_BLOCK_SIZE; 1534 nbytes -= CHACHA_BLOCK_SIZE; 1535 } 1536 1537 if (nbytes > 0) { 1538 extract_crng(tmp); 1539 memcpy(buf, tmp, nbytes); 1540 crng_backtrack_protect(tmp, nbytes); 1541 } else 1542 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1543 memzero_explicit(tmp, sizeof(tmp)); 1544 } 1545 1546 void get_random_bytes(void *buf, int nbytes) 1547 { 1548 static void *previous; 1549 1550 warn_unseeded_randomness(&previous); 1551 _get_random_bytes(buf, nbytes); 1552 } 1553 EXPORT_SYMBOL(get_random_bytes); 1554 1555 1556 /* 1557 * Each time the timer fires, we expect that we got an unpredictable 1558 * jump in the cycle counter. Even if the timer is running on another 1559 * CPU, the timer activity will be touching the stack of the CPU that is 1560 * generating entropy.. 1561 * 1562 * Note that we don't re-arm the timer in the timer itself - we are 1563 * happy to be scheduled away, since that just makes the load more 1564 * complex, but we do not want the timer to keep ticking unless the 1565 * entropy loop is running. 1566 * 1567 * So the re-arming always happens in the entropy loop itself. 1568 */ 1569 static void entropy_timer(struct timer_list *t) 1570 { 1571 credit_entropy_bits(&input_pool, 1); 1572 } 1573 1574 /* 1575 * If we have an actual cycle counter, see if we can 1576 * generate enough entropy with timing noise 1577 */ 1578 static void try_to_generate_entropy(void) 1579 { 1580 struct { 1581 unsigned long now; 1582 struct timer_list timer; 1583 } stack; 1584 1585 stack.now = random_get_entropy(); 1586 1587 /* Slow counter - or none. Don't even bother */ 1588 if (stack.now == random_get_entropy()) 1589 return; 1590 1591 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1592 while (!crng_ready()) { 1593 if (!timer_pending(&stack.timer)) 1594 mod_timer(&stack.timer, jiffies+1); 1595 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1596 schedule(); 1597 stack.now = random_get_entropy(); 1598 } 1599 1600 del_timer_sync(&stack.timer); 1601 destroy_timer_on_stack(&stack.timer); 1602 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1603 } 1604 1605 /* 1606 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1607 * cryptographically secure random numbers. This applies to: the /dev/urandom 1608 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1609 * family of functions. Using any of these functions without first calling 1610 * this function forfeits the guarantee of security. 1611 * 1612 * Returns: 0 if the urandom pool has been seeded. 1613 * -ERESTARTSYS if the function was interrupted by a signal. 1614 */ 1615 int wait_for_random_bytes(void) 1616 { 1617 if (likely(crng_ready())) 1618 return 0; 1619 1620 do { 1621 int ret; 1622 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1623 if (ret) 1624 return ret > 0 ? 0 : ret; 1625 1626 try_to_generate_entropy(); 1627 } while (!crng_ready()); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(wait_for_random_bytes); 1632 1633 /* 1634 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1635 * to supply cryptographically secure random numbers. This applies to: the 1636 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1637 * ,u64,int,long} family of functions. 1638 * 1639 * Returns: true if the urandom pool has been seeded. 1640 * false if the urandom pool has not been seeded. 1641 */ 1642 bool rng_is_initialized(void) 1643 { 1644 return crng_ready(); 1645 } 1646 EXPORT_SYMBOL(rng_is_initialized); 1647 1648 /* 1649 * Add a callback function that will be invoked when the nonblocking 1650 * pool is initialised. 1651 * 1652 * returns: 0 if callback is successfully added 1653 * -EALREADY if pool is already initialised (callback not called) 1654 * -ENOENT if module for callback is not alive 1655 */ 1656 int add_random_ready_callback(struct random_ready_callback *rdy) 1657 { 1658 struct module *owner; 1659 unsigned long flags; 1660 int err = -EALREADY; 1661 1662 if (crng_ready()) 1663 return err; 1664 1665 owner = rdy->owner; 1666 if (!try_module_get(owner)) 1667 return -ENOENT; 1668 1669 spin_lock_irqsave(&random_ready_list_lock, flags); 1670 if (crng_ready()) 1671 goto out; 1672 1673 owner = NULL; 1674 1675 list_add(&rdy->list, &random_ready_list); 1676 err = 0; 1677 1678 out: 1679 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1680 1681 module_put(owner); 1682 1683 return err; 1684 } 1685 EXPORT_SYMBOL(add_random_ready_callback); 1686 1687 /* 1688 * Delete a previously registered readiness callback function. 1689 */ 1690 void del_random_ready_callback(struct random_ready_callback *rdy) 1691 { 1692 unsigned long flags; 1693 struct module *owner = NULL; 1694 1695 spin_lock_irqsave(&random_ready_list_lock, flags); 1696 if (!list_empty(&rdy->list)) { 1697 list_del_init(&rdy->list); 1698 owner = rdy->owner; 1699 } 1700 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1701 1702 module_put(owner); 1703 } 1704 EXPORT_SYMBOL(del_random_ready_callback); 1705 1706 /* 1707 * This function will use the architecture-specific hardware random 1708 * number generator if it is available. The arch-specific hw RNG will 1709 * almost certainly be faster than what we can do in software, but it 1710 * is impossible to verify that it is implemented securely (as 1711 * opposed, to, say, the AES encryption of a sequence number using a 1712 * key known by the NSA). So it's useful if we need the speed, but 1713 * only if we're willing to trust the hardware manufacturer not to 1714 * have put in a back door. 1715 * 1716 * Return number of bytes filled in. 1717 */ 1718 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1719 { 1720 int left = nbytes; 1721 char *p = buf; 1722 1723 trace_get_random_bytes_arch(left, _RET_IP_); 1724 while (left) { 1725 unsigned long v; 1726 int chunk = min_t(int, left, sizeof(unsigned long)); 1727 1728 if (!arch_get_random_long(&v)) 1729 break; 1730 1731 memcpy(p, &v, chunk); 1732 p += chunk; 1733 left -= chunk; 1734 } 1735 1736 return nbytes - left; 1737 } 1738 EXPORT_SYMBOL(get_random_bytes_arch); 1739 1740 /* 1741 * init_std_data - initialize pool with system data 1742 * 1743 * @r: pool to initialize 1744 * 1745 * This function clears the pool's entropy count and mixes some system 1746 * data into the pool to prepare it for use. The pool is not cleared 1747 * as that can only decrease the entropy in the pool. 1748 */ 1749 static void __init init_std_data(struct entropy_store *r) 1750 { 1751 int i; 1752 ktime_t now = ktime_get_real(); 1753 unsigned long rv; 1754 1755 mix_pool_bytes(r, &now, sizeof(now)); 1756 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1757 if (!arch_get_random_seed_long(&rv) && 1758 !arch_get_random_long(&rv)) 1759 rv = random_get_entropy(); 1760 mix_pool_bytes(r, &rv, sizeof(rv)); 1761 } 1762 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1763 } 1764 1765 /* 1766 * Note that setup_arch() may call add_device_randomness() 1767 * long before we get here. This allows seeding of the pools 1768 * with some platform dependent data very early in the boot 1769 * process. But it limits our options here. We must use 1770 * statically allocated structures that already have all 1771 * initializations complete at compile time. We should also 1772 * take care not to overwrite the precious per platform data 1773 * we were given. 1774 */ 1775 int __init rand_initialize(void) 1776 { 1777 init_std_data(&input_pool); 1778 crng_initialize_primary(&primary_crng); 1779 crng_global_init_time = jiffies; 1780 if (ratelimit_disable) { 1781 urandom_warning.interval = 0; 1782 unseeded_warning.interval = 0; 1783 } 1784 return 0; 1785 } 1786 1787 #ifdef CONFIG_BLOCK 1788 void rand_initialize_disk(struct gendisk *disk) 1789 { 1790 struct timer_rand_state *state; 1791 1792 /* 1793 * If kzalloc returns null, we just won't use that entropy 1794 * source. 1795 */ 1796 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1797 if (state) { 1798 state->last_time = INITIAL_JIFFIES; 1799 disk->random = state; 1800 } 1801 } 1802 #endif 1803 1804 static ssize_t 1805 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes, 1806 loff_t *ppos) 1807 { 1808 int ret; 1809 1810 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1811 ret = extract_crng_user(buf, nbytes); 1812 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1813 return ret; 1814 } 1815 1816 static ssize_t 1817 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1818 { 1819 unsigned long flags; 1820 static int maxwarn = 10; 1821 1822 if (!crng_ready() && maxwarn > 0) { 1823 maxwarn--; 1824 if (__ratelimit(&urandom_warning)) 1825 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1826 current->comm, nbytes); 1827 spin_lock_irqsave(&primary_crng.lock, flags); 1828 crng_init_cnt = 0; 1829 spin_unlock_irqrestore(&primary_crng.lock, flags); 1830 } 1831 1832 return urandom_read_nowarn(file, buf, nbytes, ppos); 1833 } 1834 1835 static ssize_t 1836 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1837 { 1838 int ret; 1839 1840 ret = wait_for_random_bytes(); 1841 if (ret != 0) 1842 return ret; 1843 return urandom_read_nowarn(file, buf, nbytes, ppos); 1844 } 1845 1846 static __poll_t 1847 random_poll(struct file *file, poll_table * wait) 1848 { 1849 __poll_t mask; 1850 1851 poll_wait(file, &crng_init_wait, wait); 1852 poll_wait(file, &random_write_wait, wait); 1853 mask = 0; 1854 if (crng_ready()) 1855 mask |= EPOLLIN | EPOLLRDNORM; 1856 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1857 mask |= EPOLLOUT | EPOLLWRNORM; 1858 return mask; 1859 } 1860 1861 static int 1862 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1863 { 1864 size_t bytes; 1865 __u32 t, buf[16]; 1866 const char __user *p = buffer; 1867 1868 while (count > 0) { 1869 int b, i = 0; 1870 1871 bytes = min(count, sizeof(buf)); 1872 if (copy_from_user(&buf, p, bytes)) 1873 return -EFAULT; 1874 1875 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 1876 if (!arch_get_random_int(&t)) 1877 break; 1878 buf[i] ^= t; 1879 } 1880 1881 count -= bytes; 1882 p += bytes; 1883 1884 mix_pool_bytes(r, buf, bytes); 1885 cond_resched(); 1886 } 1887 1888 return 0; 1889 } 1890 1891 static ssize_t random_write(struct file *file, const char __user *buffer, 1892 size_t count, loff_t *ppos) 1893 { 1894 size_t ret; 1895 1896 ret = write_pool(&input_pool, buffer, count); 1897 if (ret) 1898 return ret; 1899 1900 return (ssize_t)count; 1901 } 1902 1903 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1904 { 1905 int size, ent_count; 1906 int __user *p = (int __user *)arg; 1907 int retval; 1908 1909 switch (cmd) { 1910 case RNDGETENTCNT: 1911 /* inherently racy, no point locking */ 1912 ent_count = ENTROPY_BITS(&input_pool); 1913 if (put_user(ent_count, p)) 1914 return -EFAULT; 1915 return 0; 1916 case RNDADDTOENTCNT: 1917 if (!capable(CAP_SYS_ADMIN)) 1918 return -EPERM; 1919 if (get_user(ent_count, p)) 1920 return -EFAULT; 1921 return credit_entropy_bits_safe(&input_pool, ent_count); 1922 case RNDADDENTROPY: 1923 if (!capable(CAP_SYS_ADMIN)) 1924 return -EPERM; 1925 if (get_user(ent_count, p++)) 1926 return -EFAULT; 1927 if (ent_count < 0) 1928 return -EINVAL; 1929 if (get_user(size, p++)) 1930 return -EFAULT; 1931 retval = write_pool(&input_pool, (const char __user *)p, 1932 size); 1933 if (retval < 0) 1934 return retval; 1935 return credit_entropy_bits_safe(&input_pool, ent_count); 1936 case RNDZAPENTCNT: 1937 case RNDCLEARPOOL: 1938 /* 1939 * Clear the entropy pool counters. We no longer clear 1940 * the entropy pool, as that's silly. 1941 */ 1942 if (!capable(CAP_SYS_ADMIN)) 1943 return -EPERM; 1944 input_pool.entropy_count = 0; 1945 return 0; 1946 case RNDRESEEDCRNG: 1947 if (!capable(CAP_SYS_ADMIN)) 1948 return -EPERM; 1949 if (crng_init < 2) 1950 return -ENODATA; 1951 crng_reseed(&primary_crng, &input_pool); 1952 crng_global_init_time = jiffies - 1; 1953 return 0; 1954 default: 1955 return -EINVAL; 1956 } 1957 } 1958 1959 static int random_fasync(int fd, struct file *filp, int on) 1960 { 1961 return fasync_helper(fd, filp, on, &fasync); 1962 } 1963 1964 const struct file_operations random_fops = { 1965 .read = random_read, 1966 .write = random_write, 1967 .poll = random_poll, 1968 .unlocked_ioctl = random_ioctl, 1969 .compat_ioctl = compat_ptr_ioctl, 1970 .fasync = random_fasync, 1971 .llseek = noop_llseek, 1972 }; 1973 1974 const struct file_operations urandom_fops = { 1975 .read = urandom_read, 1976 .write = random_write, 1977 .unlocked_ioctl = random_ioctl, 1978 .compat_ioctl = compat_ptr_ioctl, 1979 .fasync = random_fasync, 1980 .llseek = noop_llseek, 1981 }; 1982 1983 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1984 unsigned int, flags) 1985 { 1986 int ret; 1987 1988 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE)) 1989 return -EINVAL; 1990 1991 /* 1992 * Requesting insecure and blocking randomness at the same time makes 1993 * no sense. 1994 */ 1995 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM)) 1996 return -EINVAL; 1997 1998 if (count > INT_MAX) 1999 count = INT_MAX; 2000 2001 if (!(flags & GRND_INSECURE) && !crng_ready()) { 2002 if (flags & GRND_NONBLOCK) 2003 return -EAGAIN; 2004 ret = wait_for_random_bytes(); 2005 if (unlikely(ret)) 2006 return ret; 2007 } 2008 return urandom_read_nowarn(NULL, buf, count, NULL); 2009 } 2010 2011 /******************************************************************** 2012 * 2013 * Sysctl interface 2014 * 2015 ********************************************************************/ 2016 2017 #ifdef CONFIG_SYSCTL 2018 2019 #include <linux/sysctl.h> 2020 2021 static int min_write_thresh; 2022 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2023 static int random_min_urandom_seed = 60; 2024 static char sysctl_bootid[16]; 2025 2026 /* 2027 * This function is used to return both the bootid UUID, and random 2028 * UUID. The difference is in whether table->data is NULL; if it is, 2029 * then a new UUID is generated and returned to the user. 2030 * 2031 * If the user accesses this via the proc interface, the UUID will be 2032 * returned as an ASCII string in the standard UUID format; if via the 2033 * sysctl system call, as 16 bytes of binary data. 2034 */ 2035 static int proc_do_uuid(struct ctl_table *table, int write, 2036 void *buffer, size_t *lenp, loff_t *ppos) 2037 { 2038 struct ctl_table fake_table; 2039 unsigned char buf[64], tmp_uuid[16], *uuid; 2040 2041 uuid = table->data; 2042 if (!uuid) { 2043 uuid = tmp_uuid; 2044 generate_random_uuid(uuid); 2045 } else { 2046 static DEFINE_SPINLOCK(bootid_spinlock); 2047 2048 spin_lock(&bootid_spinlock); 2049 if (!uuid[8]) 2050 generate_random_uuid(uuid); 2051 spin_unlock(&bootid_spinlock); 2052 } 2053 2054 sprintf(buf, "%pU", uuid); 2055 2056 fake_table.data = buf; 2057 fake_table.maxlen = sizeof(buf); 2058 2059 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2060 } 2061 2062 /* 2063 * Return entropy available scaled to integral bits 2064 */ 2065 static int proc_do_entropy(struct ctl_table *table, int write, 2066 void *buffer, size_t *lenp, loff_t *ppos) 2067 { 2068 struct ctl_table fake_table; 2069 int entropy_count; 2070 2071 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2072 2073 fake_table.data = &entropy_count; 2074 fake_table.maxlen = sizeof(entropy_count); 2075 2076 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2077 } 2078 2079 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2080 extern struct ctl_table random_table[]; 2081 struct ctl_table random_table[] = { 2082 { 2083 .procname = "poolsize", 2084 .data = &sysctl_poolsize, 2085 .maxlen = sizeof(int), 2086 .mode = 0444, 2087 .proc_handler = proc_dointvec, 2088 }, 2089 { 2090 .procname = "entropy_avail", 2091 .maxlen = sizeof(int), 2092 .mode = 0444, 2093 .proc_handler = proc_do_entropy, 2094 .data = &input_pool.entropy_count, 2095 }, 2096 { 2097 .procname = "write_wakeup_threshold", 2098 .data = &random_write_wakeup_bits, 2099 .maxlen = sizeof(int), 2100 .mode = 0644, 2101 .proc_handler = proc_dointvec_minmax, 2102 .extra1 = &min_write_thresh, 2103 .extra2 = &max_write_thresh, 2104 }, 2105 { 2106 .procname = "urandom_min_reseed_secs", 2107 .data = &random_min_urandom_seed, 2108 .maxlen = sizeof(int), 2109 .mode = 0644, 2110 .proc_handler = proc_dointvec, 2111 }, 2112 { 2113 .procname = "boot_id", 2114 .data = &sysctl_bootid, 2115 .maxlen = 16, 2116 .mode = 0444, 2117 .proc_handler = proc_do_uuid, 2118 }, 2119 { 2120 .procname = "uuid", 2121 .maxlen = 16, 2122 .mode = 0444, 2123 .proc_handler = proc_do_uuid, 2124 }, 2125 #ifdef ADD_INTERRUPT_BENCH 2126 { 2127 .procname = "add_interrupt_avg_cycles", 2128 .data = &avg_cycles, 2129 .maxlen = sizeof(avg_cycles), 2130 .mode = 0444, 2131 .proc_handler = proc_doulongvec_minmax, 2132 }, 2133 { 2134 .procname = "add_interrupt_avg_deviation", 2135 .data = &avg_deviation, 2136 .maxlen = sizeof(avg_deviation), 2137 .mode = 0444, 2138 .proc_handler = proc_doulongvec_minmax, 2139 }, 2140 #endif 2141 { } 2142 }; 2143 #endif /* CONFIG_SYSCTL */ 2144 2145 struct batched_entropy { 2146 union { 2147 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2148 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2149 }; 2150 unsigned int position; 2151 spinlock_t batch_lock; 2152 }; 2153 2154 /* 2155 * Get a random word for internal kernel use only. The quality of the random 2156 * number is good as /dev/urandom, but there is no backtrack protection, with 2157 * the goal of being quite fast and not depleting entropy. In order to ensure 2158 * that the randomness provided by this function is okay, the function 2159 * wait_for_random_bytes() should be called and return 0 at least once at any 2160 * point prior. 2161 */ 2162 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2163 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2164 }; 2165 2166 u64 get_random_u64(void) 2167 { 2168 u64 ret; 2169 unsigned long flags; 2170 struct batched_entropy *batch; 2171 static void *previous; 2172 2173 warn_unseeded_randomness(&previous); 2174 2175 batch = raw_cpu_ptr(&batched_entropy_u64); 2176 spin_lock_irqsave(&batch->batch_lock, flags); 2177 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2178 extract_crng((u8 *)batch->entropy_u64); 2179 batch->position = 0; 2180 } 2181 ret = batch->entropy_u64[batch->position++]; 2182 spin_unlock_irqrestore(&batch->batch_lock, flags); 2183 return ret; 2184 } 2185 EXPORT_SYMBOL(get_random_u64); 2186 2187 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2188 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2189 }; 2190 u32 get_random_u32(void) 2191 { 2192 u32 ret; 2193 unsigned long flags; 2194 struct batched_entropy *batch; 2195 static void *previous; 2196 2197 warn_unseeded_randomness(&previous); 2198 2199 batch = raw_cpu_ptr(&batched_entropy_u32); 2200 spin_lock_irqsave(&batch->batch_lock, flags); 2201 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2202 extract_crng((u8 *)batch->entropy_u32); 2203 batch->position = 0; 2204 } 2205 ret = batch->entropy_u32[batch->position++]; 2206 spin_unlock_irqrestore(&batch->batch_lock, flags); 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(get_random_u32); 2210 2211 /* It's important to invalidate all potential batched entropy that might 2212 * be stored before the crng is initialized, which we can do lazily by 2213 * simply resetting the counter to zero so that it's re-extracted on the 2214 * next usage. */ 2215 static void invalidate_batched_entropy(void) 2216 { 2217 int cpu; 2218 unsigned long flags; 2219 2220 for_each_possible_cpu (cpu) { 2221 struct batched_entropy *batched_entropy; 2222 2223 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2224 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2225 batched_entropy->position = 0; 2226 spin_unlock(&batched_entropy->batch_lock); 2227 2228 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2229 spin_lock(&batched_entropy->batch_lock); 2230 batched_entropy->position = 0; 2231 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2232 } 2233 } 2234 2235 /** 2236 * randomize_page - Generate a random, page aligned address 2237 * @start: The smallest acceptable address the caller will take. 2238 * @range: The size of the area, starting at @start, within which the 2239 * random address must fall. 2240 * 2241 * If @start + @range would overflow, @range is capped. 2242 * 2243 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2244 * @start was already page aligned. We now align it regardless. 2245 * 2246 * Return: A page aligned address within [start, start + range). On error, 2247 * @start is returned. 2248 */ 2249 unsigned long 2250 randomize_page(unsigned long start, unsigned long range) 2251 { 2252 if (!PAGE_ALIGNED(start)) { 2253 range -= PAGE_ALIGN(start) - start; 2254 start = PAGE_ALIGN(start); 2255 } 2256 2257 if (start > ULONG_MAX - range) 2258 range = ULONG_MAX - start; 2259 2260 range >>= PAGE_SHIFT; 2261 2262 if (range == 0) 2263 return start; 2264 2265 return start + (get_random_long() % range << PAGE_SHIFT); 2266 } 2267 2268 /* Interface for in-kernel drivers of true hardware RNGs. 2269 * Those devices may produce endless random bits and will be throttled 2270 * when our pool is full. 2271 */ 2272 void add_hwgenerator_randomness(const char *buffer, size_t count, 2273 size_t entropy) 2274 { 2275 struct entropy_store *poolp = &input_pool; 2276 2277 if (unlikely(crng_init == 0)) { 2278 crng_fast_load(buffer, count); 2279 return; 2280 } 2281 2282 /* Suspend writing if we're above the trickle threshold. 2283 * We'll be woken up again once below random_write_wakeup_thresh, 2284 * or when the calling thread is about to terminate. 2285 */ 2286 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2287 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2288 mix_pool_bytes(poolp, buffer, count); 2289 credit_entropy_bits(poolp, entropy); 2290 } 2291 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2292 2293 /* Handle random seed passed by bootloader. 2294 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2295 * it would be regarded as device data. 2296 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2297 */ 2298 void add_bootloader_randomness(const void *buf, unsigned int size) 2299 { 2300 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2301 add_hwgenerator_randomness(buf, size, size * 8); 2302 else 2303 add_device_randomness(buf, size); 2304 } 2305 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 2306