xref: /linux/drivers/char/random.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/spinlock.h>
240 #include <linux/percpu.h>
241 #include <linux/cryptohash.h>
242 
243 #include <asm/processor.h>
244 #include <asm/uaccess.h>
245 #include <asm/irq.h>
246 #include <asm/io.h>
247 
248 /*
249  * Configuration information
250  */
251 #define INPUT_POOL_WORDS 128
252 #define OUTPUT_POOL_WORDS 32
253 #define SEC_XFER_SIZE 512
254 
255 /*
256  * The minimum number of bits of entropy before we wake up a read on
257  * /dev/random.  Should be enough to do a significant reseed.
258  */
259 static int random_read_wakeup_thresh = 64;
260 
261 /*
262  * If the entropy count falls under this number of bits, then we
263  * should wake up processes which are selecting or polling on write
264  * access to /dev/random.
265  */
266 static int random_write_wakeup_thresh = 128;
267 
268 /*
269  * When the input pool goes over trickle_thresh, start dropping most
270  * samples to avoid wasting CPU time and reduce lock contention.
271  */
272 
273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
274 
275 static DEFINE_PER_CPU(int, trickle_count) = 0;
276 
277 /*
278  * A pool of size .poolwords is stirred with a primitive polynomial
279  * of degree .poolwords over GF(2).  The taps for various sizes are
280  * defined below.  They are chosen to be evenly spaced (minimum RMS
281  * distance from evenly spaced; the numbers in the comments are a
282  * scaled squared error sum) except for the last tap, which is 1 to
283  * get the twisting happening as fast as possible.
284  */
285 static struct poolinfo {
286 	int poolwords;
287 	int tap1, tap2, tap3, tap4, tap5;
288 } poolinfo_table[] = {
289 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 	{ 128,	103,	76,	51,	25,	1 },
291 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 	{ 32,	26,	20,	14,	7,	1 },
293 #if 0
294 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
295 	{ 2048,	1638,	1231,	819,	411,	1 },
296 
297 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 	{ 1024,	817,	615,	412,	204,	1 },
299 
300 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 	{ 1024,	819,	616,	410,	207,	2 },
302 
303 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 	{ 512,	411,	308,	208,	104,	1 },
305 
306 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 	{ 512,	409,	307,	206,	102,	2 },
308 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 	{ 512,	409,	309,	205,	103,	2 },
310 
311 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 	{ 256,	205,	155,	101,	52,	1 },
313 
314 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 	{ 128,	103,	78,	51,	27,	2 },
316 
317 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 	{ 64,	52,	39,	26,	14,	1 },
319 #endif
320 };
321 
322 #define POOLBITS	poolwords*32
323 #define POOLBYTES	poolwords*4
324 
325 /*
326  * For the purposes of better mixing, we use the CRC-32 polynomial as
327  * well to make a twisted Generalized Feedback Shift Reigster
328  *
329  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
330  * Transactions on Modeling and Computer Simulation 2(3):179-194.
331  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
332  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333  *
334  * Thanks to Colin Plumb for suggesting this.
335  *
336  * We have not analyzed the resultant polynomial to prove it primitive;
337  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
338  * of a random large-degree polynomial over GF(2) are more than large enough
339  * that periodicity is not a concern.
340  *
341  * The input hash is much less sensitive than the output hash.  All
342  * that we want of it is that it be a good non-cryptographic hash;
343  * i.e. it not produce collisions when fed "random" data of the sort
344  * we expect to see.  As long as the pool state differs for different
345  * inputs, we have preserved the input entropy and done a good job.
346  * The fact that an intelligent attacker can construct inputs that
347  * will produce controlled alterations to the pool's state is not
348  * important because we don't consider such inputs to contribute any
349  * randomness.  The only property we need with respect to them is that
350  * the attacker can't increase his/her knowledge of the pool's state.
351  * Since all additions are reversible (knowing the final state and the
352  * input, you can reconstruct the initial state), if an attacker has
353  * any uncertainty about the initial state, he/she can only shuffle
354  * that uncertainty about, but never cause any collisions (which would
355  * decrease the uncertainty).
356  *
357  * The chosen system lets the state of the pool be (essentially) the input
358  * modulo the generator polymnomial.  Now, for random primitive polynomials,
359  * this is a universal class of hash functions, meaning that the chance
360  * of a collision is limited by the attacker's knowledge of the generator
361  * polynomail, so if it is chosen at random, an attacker can never force
362  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
363  * ###--> it is unknown to the processes generating the input entropy. <-###
364  * Because of this important property, this is a good, collision-resistant
365  * hash; hash collisions will occur no more often than chance.
366  */
367 
368 /*
369  * Static global variables
370  */
371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373 
374 #if 0
375 static int debug = 0;
376 module_param(debug, bool, 0644);
377 #define DEBUG_ENT(fmt, arg...) do { if (debug) \
378 	printk(KERN_DEBUG "random %04d %04d %04d: " \
379 	fmt,\
380 	input_pool.entropy_count,\
381 	blocking_pool.entropy_count,\
382 	nonblocking_pool.entropy_count,\
383 	## arg); } while (0)
384 #else
385 #define DEBUG_ENT(fmt, arg...) do {} while (0)
386 #endif
387 
388 /**********************************************************************
389  *
390  * OS independent entropy store.   Here are the functions which handle
391  * storing entropy in an entropy pool.
392  *
393  **********************************************************************/
394 
395 struct entropy_store;
396 struct entropy_store {
397 	/* mostly-read data: */
398 	struct poolinfo *poolinfo;
399 	__u32 *pool;
400 	const char *name;
401 	int limit;
402 	struct entropy_store *pull;
403 
404 	/* read-write data: */
405 	spinlock_t lock ____cacheline_aligned_in_smp;
406 	unsigned add_ptr;
407 	int entropy_count;
408 	int input_rotate;
409 };
410 
411 static __u32 input_pool_data[INPUT_POOL_WORDS];
412 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
413 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
414 
415 static struct entropy_store input_pool = {
416 	.poolinfo = &poolinfo_table[0],
417 	.name = "input",
418 	.limit = 1,
419 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
420 	.pool = input_pool_data
421 };
422 
423 static struct entropy_store blocking_pool = {
424 	.poolinfo = &poolinfo_table[1],
425 	.name = "blocking",
426 	.limit = 1,
427 	.pull = &input_pool,
428 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
429 	.pool = blocking_pool_data
430 };
431 
432 static struct entropy_store nonblocking_pool = {
433 	.poolinfo = &poolinfo_table[1],
434 	.name = "nonblocking",
435 	.pull = &input_pool,
436 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
437 	.pool = nonblocking_pool_data
438 };
439 
440 /*
441  * This function adds a byte into the entropy "pool".  It does not
442  * update the entropy estimate.  The caller should call
443  * credit_entropy_store if this is appropriate.
444  *
445  * The pool is stirred with a primitive polynomial of the appropriate
446  * degree, and then twisted.  We twist by three bits at a time because
447  * it's cheap to do so and helps slightly in the expected case where
448  * the entropy is concentrated in the low-order bits.
449  */
450 static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
451 				int nwords, __u32 out[16])
452 {
453 	static __u32 const twist_table[8] = {
454 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
455 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
456 	unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
457 	int new_rotate, input_rotate;
458 	int wordmask = r->poolinfo->poolwords - 1;
459 	__u32 w, next_w;
460 	unsigned long flags;
461 
462 	/* Taps are constant, so we can load them without holding r->lock.  */
463 	tap1 = r->poolinfo->tap1;
464 	tap2 = r->poolinfo->tap2;
465 	tap3 = r->poolinfo->tap3;
466 	tap4 = r->poolinfo->tap4;
467 	tap5 = r->poolinfo->tap5;
468 	next_w = *in++;
469 
470 	spin_lock_irqsave(&r->lock, flags);
471 	prefetch_range(r->pool, wordmask);
472 	input_rotate = r->input_rotate;
473 	add_ptr = r->add_ptr;
474 
475 	while (nwords--) {
476 		w = rol32(next_w, input_rotate);
477 		if (nwords > 0)
478 			next_w = *in++;
479 		i = add_ptr = (add_ptr - 1) & wordmask;
480 		/*
481 		 * Normally, we add 7 bits of rotation to the pool.
482 		 * At the beginning of the pool, add an extra 7 bits
483 		 * rotation, so that successive passes spread the
484 		 * input bits across the pool evenly.
485 		 */
486 		new_rotate = input_rotate + 14;
487 		if (i)
488 			new_rotate = input_rotate + 7;
489 		input_rotate = new_rotate & 31;
490 
491 		/* XOR in the various taps */
492 		w ^= r->pool[(i + tap1) & wordmask];
493 		w ^= r->pool[(i + tap2) & wordmask];
494 		w ^= r->pool[(i + tap3) & wordmask];
495 		w ^= r->pool[(i + tap4) & wordmask];
496 		w ^= r->pool[(i + tap5) & wordmask];
497 		w ^= r->pool[i];
498 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
499 	}
500 
501 	r->input_rotate = input_rotate;
502 	r->add_ptr = add_ptr;
503 
504 	if (out) {
505 		for (i = 0; i < 16; i++) {
506 			out[i] = r->pool[add_ptr];
507 			add_ptr = (add_ptr - 1) & wordmask;
508 		}
509 	}
510 
511 	spin_unlock_irqrestore(&r->lock, flags);
512 }
513 
514 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
515 				     int nwords)
516 {
517 	__add_entropy_words(r, in, nwords, NULL);
518 }
519 
520 /*
521  * Credit (or debit) the entropy store with n bits of entropy
522  */
523 static void credit_entropy_store(struct entropy_store *r, int nbits)
524 {
525 	unsigned long flags;
526 
527 	spin_lock_irqsave(&r->lock, flags);
528 
529 	if (r->entropy_count + nbits < 0) {
530 		DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
531 			  r->entropy_count, nbits);
532 		r->entropy_count = 0;
533 	} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
534 		r->entropy_count = r->poolinfo->POOLBITS;
535 	} else {
536 		r->entropy_count += nbits;
537 		if (nbits)
538 			DEBUG_ENT("added %d entropy credits to %s\n",
539 				  nbits, r->name);
540 	}
541 
542 	spin_unlock_irqrestore(&r->lock, flags);
543 }
544 
545 /*********************************************************************
546  *
547  * Entropy input management
548  *
549  *********************************************************************/
550 
551 /* There is one of these per entropy source */
552 struct timer_rand_state {
553 	cycles_t last_time;
554 	long last_delta,last_delta2;
555 	unsigned dont_count_entropy:1;
556 };
557 
558 static struct timer_rand_state input_timer_state;
559 static struct timer_rand_state *irq_timer_state[NR_IRQS];
560 
561 /*
562  * This function adds entropy to the entropy "pool" by using timing
563  * delays.  It uses the timer_rand_state structure to make an estimate
564  * of how many bits of entropy this call has added to the pool.
565  *
566  * The number "num" is also added to the pool - it should somehow describe
567  * the type of event which just happened.  This is currently 0-255 for
568  * keyboard scan codes, and 256 upwards for interrupts.
569  *
570  */
571 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
572 {
573 	struct {
574 		cycles_t cycles;
575 		long jiffies;
576 		unsigned num;
577 	} sample;
578 	long delta, delta2, delta3;
579 
580 	preempt_disable();
581 	/* if over the trickle threshold, use only 1 in 4096 samples */
582 	if (input_pool.entropy_count > trickle_thresh &&
583 	    (__get_cpu_var(trickle_count)++ & 0xfff))
584 		goto out;
585 
586 	sample.jiffies = jiffies;
587 	sample.cycles = get_cycles();
588 	sample.num = num;
589 	add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
590 
591 	/*
592 	 * Calculate number of bits of randomness we probably added.
593 	 * We take into account the first, second and third-order deltas
594 	 * in order to make our estimate.
595 	 */
596 
597 	if (!state->dont_count_entropy) {
598 		delta = sample.jiffies - state->last_time;
599 		state->last_time = sample.jiffies;
600 
601 		delta2 = delta - state->last_delta;
602 		state->last_delta = delta;
603 
604 		delta3 = delta2 - state->last_delta2;
605 		state->last_delta2 = delta2;
606 
607 		if (delta < 0)
608 			delta = -delta;
609 		if (delta2 < 0)
610 			delta2 = -delta2;
611 		if (delta3 < 0)
612 			delta3 = -delta3;
613 		if (delta > delta2)
614 			delta = delta2;
615 		if (delta > delta3)
616 			delta = delta3;
617 
618 		/*
619 		 * delta is now minimum absolute delta.
620 		 * Round down by 1 bit on general principles,
621 		 * and limit entropy entimate to 12 bits.
622 		 */
623 		credit_entropy_store(&input_pool,
624 				     min_t(int, fls(delta>>1), 11));
625 	}
626 
627 	if(input_pool.entropy_count >= random_read_wakeup_thresh)
628 		wake_up_interruptible(&random_read_wait);
629 
630 out:
631 	preempt_enable();
632 }
633 
634 void add_input_randomness(unsigned int type, unsigned int code,
635 				 unsigned int value)
636 {
637 	static unsigned char last_value;
638 
639 	/* ignore autorepeat and the like */
640 	if (value == last_value)
641 		return;
642 
643 	DEBUG_ENT("input event\n");
644 	last_value = value;
645 	add_timer_randomness(&input_timer_state,
646 			     (type << 4) ^ code ^ (code >> 4) ^ value);
647 }
648 
649 void add_interrupt_randomness(int irq)
650 {
651 	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
652 		return;
653 
654 	DEBUG_ENT("irq event %d\n", irq);
655 	add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
656 }
657 
658 void add_disk_randomness(struct gendisk *disk)
659 {
660 	if (!disk || !disk->random)
661 		return;
662 	/* first major is 1, so we get >= 0x200 here */
663 	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
664 
665 	add_timer_randomness(disk->random,
666 			     0x100 + MKDEV(disk->major, disk->first_minor));
667 }
668 
669 EXPORT_SYMBOL(add_disk_randomness);
670 
671 #define EXTRACT_SIZE 10
672 
673 /*********************************************************************
674  *
675  * Entropy extraction routines
676  *
677  *********************************************************************/
678 
679 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
680 			       size_t nbytes, int min, int rsvd);
681 
682 /*
683  * This utility inline function is responsible for transfering entropy
684  * from the primary pool to the secondary extraction pool. We make
685  * sure we pull enough for a 'catastrophic reseed'.
686  */
687 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
688 {
689 	__u32 tmp[OUTPUT_POOL_WORDS];
690 
691 	if (r->pull && r->entropy_count < nbytes * 8 &&
692 	    r->entropy_count < r->poolinfo->POOLBITS) {
693 		int bytes = max_t(int, random_read_wakeup_thresh / 8,
694 				min_t(int, nbytes, sizeof(tmp)));
695 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
696 
697 		DEBUG_ENT("going to reseed %s with %d bits "
698 			  "(%d of %d requested)\n",
699 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
700 
701 		bytes=extract_entropy(r->pull, tmp, bytes,
702 				      random_read_wakeup_thresh / 8, rsvd);
703 		add_entropy_words(r, tmp, (bytes + 3) / 4);
704 		credit_entropy_store(r, bytes*8);
705 	}
706 }
707 
708 /*
709  * These functions extracts randomness from the "entropy pool", and
710  * returns it in a buffer.
711  *
712  * The min parameter specifies the minimum amount we can pull before
713  * failing to avoid races that defeat catastrophic reseeding while the
714  * reserved parameter indicates how much entropy we must leave in the
715  * pool after each pull to avoid starving other readers.
716  *
717  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
718  */
719 
720 static size_t account(struct entropy_store *r, size_t nbytes, int min,
721 		      int reserved)
722 {
723 	unsigned long flags;
724 
725 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
726 
727 	/* Hold lock while accounting */
728 	spin_lock_irqsave(&r->lock, flags);
729 
730 	DEBUG_ENT("trying to extract %d bits from %s\n",
731 		  nbytes * 8, r->name);
732 
733 	/* Can we pull enough? */
734 	if (r->entropy_count / 8 < min + reserved) {
735 		nbytes = 0;
736 	} else {
737 		/* If limited, never pull more than available */
738 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
739 			nbytes = r->entropy_count/8 - reserved;
740 
741 		if(r->entropy_count / 8 >= nbytes + reserved)
742 			r->entropy_count -= nbytes*8;
743 		else
744 			r->entropy_count = reserved;
745 
746 		if (r->entropy_count < random_write_wakeup_thresh)
747 			wake_up_interruptible(&random_write_wait);
748 	}
749 
750 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
751 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
752 
753 	spin_unlock_irqrestore(&r->lock, flags);
754 
755 	return nbytes;
756 }
757 
758 static void extract_buf(struct entropy_store *r, __u8 *out)
759 {
760 	int i, x;
761 	__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
762 
763 	sha_init(buf);
764 	/*
765 	 * As we hash the pool, we mix intermediate values of
766 	 * the hash back into the pool.  This eliminates
767 	 * backtracking attacks (where the attacker knows
768 	 * the state of the pool plus the current outputs, and
769 	 * attempts to find previous ouputs), unless the hash
770 	 * function can be inverted.
771 	 */
772 	for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) {
773 		sha_transform(buf, (__u8 *)r->pool+i, buf + 5);
774 		add_entropy_words(r, &buf[x % 5], 1);
775 	}
776 
777 	/*
778 	 * To avoid duplicates, we atomically extract a
779 	 * portion of the pool while mixing, and hash one
780 	 * final time.
781 	 */
782 	__add_entropy_words(r, &buf[x % 5], 1, data);
783 	sha_transform(buf, (__u8 *)data, buf + 5);
784 
785 	/*
786 	 * In case the hash function has some recognizable
787 	 * output pattern, we fold it in half.
788 	 */
789 
790 	buf[0] ^= buf[3];
791 	buf[1] ^= buf[4];
792 	buf[0] ^= rol32(buf[3], 16);
793 	memcpy(out, buf, EXTRACT_SIZE);
794 	memset(buf, 0, sizeof(buf));
795 }
796 
797 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
798 			       size_t nbytes, int min, int reserved)
799 {
800 	ssize_t ret = 0, i;
801 	__u8 tmp[EXTRACT_SIZE];
802 
803 	xfer_secondary_pool(r, nbytes);
804 	nbytes = account(r, nbytes, min, reserved);
805 
806 	while (nbytes) {
807 		extract_buf(r, tmp);
808 		i = min_t(int, nbytes, EXTRACT_SIZE);
809 		memcpy(buf, tmp, i);
810 		nbytes -= i;
811 		buf += i;
812 		ret += i;
813 	}
814 
815 	/* Wipe data just returned from memory */
816 	memset(tmp, 0, sizeof(tmp));
817 
818 	return ret;
819 }
820 
821 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
822 				    size_t nbytes)
823 {
824 	ssize_t ret = 0, i;
825 	__u8 tmp[EXTRACT_SIZE];
826 
827 	xfer_secondary_pool(r, nbytes);
828 	nbytes = account(r, nbytes, 0, 0);
829 
830 	while (nbytes) {
831 		if (need_resched()) {
832 			if (signal_pending(current)) {
833 				if (ret == 0)
834 					ret = -ERESTARTSYS;
835 				break;
836 			}
837 			schedule();
838 		}
839 
840 		extract_buf(r, tmp);
841 		i = min_t(int, nbytes, EXTRACT_SIZE);
842 		if (copy_to_user(buf, tmp, i)) {
843 			ret = -EFAULT;
844 			break;
845 		}
846 
847 		nbytes -= i;
848 		buf += i;
849 		ret += i;
850 	}
851 
852 	/* Wipe data just returned from memory */
853 	memset(tmp, 0, sizeof(tmp));
854 
855 	return ret;
856 }
857 
858 /*
859  * This function is the exported kernel interface.  It returns some
860  * number of good random numbers, suitable for seeding TCP sequence
861  * numbers, etc.
862  */
863 void get_random_bytes(void *buf, int nbytes)
864 {
865 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
866 }
867 
868 EXPORT_SYMBOL(get_random_bytes);
869 
870 /*
871  * init_std_data - initialize pool with system data
872  *
873  * @r: pool to initialize
874  *
875  * This function clears the pool's entropy count and mixes some system
876  * data into the pool to prepare it for use. The pool is not cleared
877  * as that can only decrease the entropy in the pool.
878  */
879 static void init_std_data(struct entropy_store *r)
880 {
881 	struct timeval tv;
882 	unsigned long flags;
883 
884 	spin_lock_irqsave(&r->lock, flags);
885 	r->entropy_count = 0;
886 	spin_unlock_irqrestore(&r->lock, flags);
887 
888 	do_gettimeofday(&tv);
889 	add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4);
890 	add_entropy_words(r, (__u32 *)&system_utsname,
891 			  sizeof(system_utsname)/4);
892 }
893 
894 static int __init rand_initialize(void)
895 {
896 	init_std_data(&input_pool);
897 	init_std_data(&blocking_pool);
898 	init_std_data(&nonblocking_pool);
899 	return 0;
900 }
901 module_init(rand_initialize);
902 
903 void rand_initialize_irq(int irq)
904 {
905 	struct timer_rand_state *state;
906 
907 	if (irq >= NR_IRQS || irq_timer_state[irq])
908 		return;
909 
910 	/*
911 	 * If kmalloc returns null, we just won't use that entropy
912 	 * source.
913 	 */
914 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
915 	if (state) {
916 		memset(state, 0, sizeof(struct timer_rand_state));
917 		irq_timer_state[irq] = state;
918 	}
919 }
920 
921 void rand_initialize_disk(struct gendisk *disk)
922 {
923 	struct timer_rand_state *state;
924 
925 	/*
926 	 * If kmalloc returns null, we just won't use that entropy
927 	 * source.
928 	 */
929 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
930 	if (state) {
931 		memset(state, 0, sizeof(struct timer_rand_state));
932 		disk->random = state;
933 	}
934 }
935 
936 static ssize_t
937 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
938 {
939 	ssize_t n, retval = 0, count = 0;
940 
941 	if (nbytes == 0)
942 		return 0;
943 
944 	while (nbytes > 0) {
945 		n = nbytes;
946 		if (n > SEC_XFER_SIZE)
947 			n = SEC_XFER_SIZE;
948 
949 		DEBUG_ENT("reading %d bits\n", n*8);
950 
951 		n = extract_entropy_user(&blocking_pool, buf, n);
952 
953 		DEBUG_ENT("read got %d bits (%d still needed)\n",
954 			  n*8, (nbytes-n)*8);
955 
956 		if (n == 0) {
957 			if (file->f_flags & O_NONBLOCK) {
958 				retval = -EAGAIN;
959 				break;
960 			}
961 
962 			DEBUG_ENT("sleeping?\n");
963 
964 			wait_event_interruptible(random_read_wait,
965 				input_pool.entropy_count >=
966 						 random_read_wakeup_thresh);
967 
968 			DEBUG_ENT("awake\n");
969 
970 			if (signal_pending(current)) {
971 				retval = -ERESTARTSYS;
972 				break;
973 			}
974 
975 			continue;
976 		}
977 
978 		if (n < 0) {
979 			retval = n;
980 			break;
981 		}
982 		count += n;
983 		buf += n;
984 		nbytes -= n;
985 		break;		/* This break makes the device work */
986 				/* like a named pipe */
987 	}
988 
989 	/*
990 	 * If we gave the user some bytes, update the access time.
991 	 */
992 	if (count)
993 		file_accessed(file);
994 
995 	return (count ? count : retval);
996 }
997 
998 static ssize_t
999 urandom_read(struct file * file, char __user * buf,
1000 		      size_t nbytes, loff_t *ppos)
1001 {
1002 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1003 }
1004 
1005 static unsigned int
1006 random_poll(struct file *file, poll_table * wait)
1007 {
1008 	unsigned int mask;
1009 
1010 	poll_wait(file, &random_read_wait, wait);
1011 	poll_wait(file, &random_write_wait, wait);
1012 	mask = 0;
1013 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1014 		mask |= POLLIN | POLLRDNORM;
1015 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1016 		mask |= POLLOUT | POLLWRNORM;
1017 	return mask;
1018 }
1019 
1020 static ssize_t
1021 random_write(struct file * file, const char __user * buffer,
1022 	     size_t count, loff_t *ppos)
1023 {
1024 	int ret = 0;
1025 	size_t bytes;
1026 	__u32 buf[16];
1027 	const char __user *p = buffer;
1028 	size_t c = count;
1029 
1030 	while (c > 0) {
1031 		bytes = min(c, sizeof(buf));
1032 
1033 		bytes -= copy_from_user(&buf, p, bytes);
1034 		if (!bytes) {
1035 			ret = -EFAULT;
1036 			break;
1037 		}
1038 		c -= bytes;
1039 		p += bytes;
1040 
1041 		add_entropy_words(&input_pool, buf, (bytes + 3) / 4);
1042 	}
1043 	if (p == buffer) {
1044 		return (ssize_t)ret;
1045 	} else {
1046 		struct inode *inode = file->f_dentry->d_inode;
1047 	        inode->i_mtime = current_fs_time(inode->i_sb);
1048 		mark_inode_dirty(inode);
1049 		return (ssize_t)(p - buffer);
1050 	}
1051 }
1052 
1053 static int
1054 random_ioctl(struct inode * inode, struct file * file,
1055 	     unsigned int cmd, unsigned long arg)
1056 {
1057 	int size, ent_count;
1058 	int __user *p = (int __user *)arg;
1059 	int retval;
1060 
1061 	switch (cmd) {
1062 	case RNDGETENTCNT:
1063 		ent_count = input_pool.entropy_count;
1064 		if (put_user(ent_count, p))
1065 			return -EFAULT;
1066 		return 0;
1067 	case RNDADDTOENTCNT:
1068 		if (!capable(CAP_SYS_ADMIN))
1069 			return -EPERM;
1070 		if (get_user(ent_count, p))
1071 			return -EFAULT;
1072 		credit_entropy_store(&input_pool, ent_count);
1073 		/*
1074 		 * Wake up waiting processes if we have enough
1075 		 * entropy.
1076 		 */
1077 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1078 			wake_up_interruptible(&random_read_wait);
1079 		return 0;
1080 	case RNDADDENTROPY:
1081 		if (!capable(CAP_SYS_ADMIN))
1082 			return -EPERM;
1083 		if (get_user(ent_count, p++))
1084 			return -EFAULT;
1085 		if (ent_count < 0)
1086 			return -EINVAL;
1087 		if (get_user(size, p++))
1088 			return -EFAULT;
1089 		retval = random_write(file, (const char __user *) p,
1090 				      size, &file->f_pos);
1091 		if (retval < 0)
1092 			return retval;
1093 		credit_entropy_store(&input_pool, ent_count);
1094 		/*
1095 		 * Wake up waiting processes if we have enough
1096 		 * entropy.
1097 		 */
1098 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1099 			wake_up_interruptible(&random_read_wait);
1100 		return 0;
1101 	case RNDZAPENTCNT:
1102 	case RNDCLEARPOOL:
1103 		/* Clear the entropy pool counters. */
1104 		if (!capable(CAP_SYS_ADMIN))
1105 			return -EPERM;
1106 		init_std_data(&input_pool);
1107 		init_std_data(&blocking_pool);
1108 		init_std_data(&nonblocking_pool);
1109 		return 0;
1110 	default:
1111 		return -EINVAL;
1112 	}
1113 }
1114 
1115 struct file_operations random_fops = {
1116 	.read  = random_read,
1117 	.write = random_write,
1118 	.poll  = random_poll,
1119 	.ioctl = random_ioctl,
1120 };
1121 
1122 struct file_operations urandom_fops = {
1123 	.read  = urandom_read,
1124 	.write = random_write,
1125 	.ioctl = random_ioctl,
1126 };
1127 
1128 /***************************************************************
1129  * Random UUID interface
1130  *
1131  * Used here for a Boot ID, but can be useful for other kernel
1132  * drivers.
1133  ***************************************************************/
1134 
1135 /*
1136  * Generate random UUID
1137  */
1138 void generate_random_uuid(unsigned char uuid_out[16])
1139 {
1140 	get_random_bytes(uuid_out, 16);
1141 	/* Set UUID version to 4 --- truely random generation */
1142 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1143 	/* Set the UUID variant to DCE */
1144 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1145 }
1146 
1147 EXPORT_SYMBOL(generate_random_uuid);
1148 
1149 /********************************************************************
1150  *
1151  * Sysctl interface
1152  *
1153  ********************************************************************/
1154 
1155 #ifdef CONFIG_SYSCTL
1156 
1157 #include <linux/sysctl.h>
1158 
1159 static int min_read_thresh = 8, min_write_thresh;
1160 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1161 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1162 static char sysctl_bootid[16];
1163 
1164 /*
1165  * These functions is used to return both the bootid UUID, and random
1166  * UUID.  The difference is in whether table->data is NULL; if it is,
1167  * then a new UUID is generated and returned to the user.
1168  *
1169  * If the user accesses this via the proc interface, it will be returned
1170  * as an ASCII string in the standard UUID format.  If accesses via the
1171  * sysctl system call, it is returned as 16 bytes of binary data.
1172  */
1173 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1174 			void __user *buffer, size_t *lenp, loff_t *ppos)
1175 {
1176 	ctl_table fake_table;
1177 	unsigned char buf[64], tmp_uuid[16], *uuid;
1178 
1179 	uuid = table->data;
1180 	if (!uuid) {
1181 		uuid = tmp_uuid;
1182 		uuid[8] = 0;
1183 	}
1184 	if (uuid[8] == 0)
1185 		generate_random_uuid(uuid);
1186 
1187 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1188 		"%02x%02x%02x%02x%02x%02x",
1189 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1190 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1191 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1192 		uuid[12], uuid[13], uuid[14], uuid[15]);
1193 	fake_table.data = buf;
1194 	fake_table.maxlen = sizeof(buf);
1195 
1196 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1197 }
1198 
1199 static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1200 			 void __user *oldval, size_t __user *oldlenp,
1201 			 void __user *newval, size_t newlen, void **context)
1202 {
1203 	unsigned char tmp_uuid[16], *uuid;
1204 	unsigned int len;
1205 
1206 	if (!oldval || !oldlenp)
1207 		return 1;
1208 
1209 	uuid = table->data;
1210 	if (!uuid) {
1211 		uuid = tmp_uuid;
1212 		uuid[8] = 0;
1213 	}
1214 	if (uuid[8] == 0)
1215 		generate_random_uuid(uuid);
1216 
1217 	if (get_user(len, oldlenp))
1218 		return -EFAULT;
1219 	if (len) {
1220 		if (len > 16)
1221 			len = 16;
1222 		if (copy_to_user(oldval, uuid, len) ||
1223 		    put_user(len, oldlenp))
1224 			return -EFAULT;
1225 	}
1226 	return 1;
1227 }
1228 
1229 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1230 ctl_table random_table[] = {
1231 	{
1232 		.ctl_name 	= RANDOM_POOLSIZE,
1233 		.procname	= "poolsize",
1234 		.data		= &sysctl_poolsize,
1235 		.maxlen		= sizeof(int),
1236 		.mode		= 0444,
1237 		.proc_handler	= &proc_dointvec,
1238 	},
1239 	{
1240 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1241 		.procname	= "entropy_avail",
1242 		.maxlen		= sizeof(int),
1243 		.mode		= 0444,
1244 		.proc_handler	= &proc_dointvec,
1245 		.data		= &input_pool.entropy_count,
1246 	},
1247 	{
1248 		.ctl_name	= RANDOM_READ_THRESH,
1249 		.procname	= "read_wakeup_threshold",
1250 		.data		= &random_read_wakeup_thresh,
1251 		.maxlen		= sizeof(int),
1252 		.mode		= 0644,
1253 		.proc_handler	= &proc_dointvec_minmax,
1254 		.strategy	= &sysctl_intvec,
1255 		.extra1		= &min_read_thresh,
1256 		.extra2		= &max_read_thresh,
1257 	},
1258 	{
1259 		.ctl_name	= RANDOM_WRITE_THRESH,
1260 		.procname	= "write_wakeup_threshold",
1261 		.data		= &random_write_wakeup_thresh,
1262 		.maxlen		= sizeof(int),
1263 		.mode		= 0644,
1264 		.proc_handler	= &proc_dointvec_minmax,
1265 		.strategy	= &sysctl_intvec,
1266 		.extra1		= &min_write_thresh,
1267 		.extra2		= &max_write_thresh,
1268 	},
1269 	{
1270 		.ctl_name	= RANDOM_BOOT_ID,
1271 		.procname	= "boot_id",
1272 		.data		= &sysctl_bootid,
1273 		.maxlen		= 16,
1274 		.mode		= 0444,
1275 		.proc_handler	= &proc_do_uuid,
1276 		.strategy	= &uuid_strategy,
1277 	},
1278 	{
1279 		.ctl_name	= RANDOM_UUID,
1280 		.procname	= "uuid",
1281 		.maxlen		= 16,
1282 		.mode		= 0444,
1283 		.proc_handler	= &proc_do_uuid,
1284 		.strategy	= &uuid_strategy,
1285 	},
1286 	{ .ctl_name = 0 }
1287 };
1288 #endif 	/* CONFIG_SYSCTL */
1289 
1290 /********************************************************************
1291  *
1292  * Random funtions for networking
1293  *
1294  ********************************************************************/
1295 
1296 /*
1297  * TCP initial sequence number picking.  This uses the random number
1298  * generator to pick an initial secret value.  This value is hashed
1299  * along with the TCP endpoint information to provide a unique
1300  * starting point for each pair of TCP endpoints.  This defeats
1301  * attacks which rely on guessing the initial TCP sequence number.
1302  * This algorithm was suggested by Steve Bellovin.
1303  *
1304  * Using a very strong hash was taking an appreciable amount of the total
1305  * TCP connection establishment time, so this is a weaker hash,
1306  * compensated for by changing the secret periodically.
1307  */
1308 
1309 /* F, G and H are basic MD4 functions: selection, majority, parity */
1310 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1311 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1312 #define H(x, y, z) ((x) ^ (y) ^ (z))
1313 
1314 /*
1315  * The generic round function.  The application is so specific that
1316  * we don't bother protecting all the arguments with parens, as is generally
1317  * good macro practice, in favor of extra legibility.
1318  * Rotation is separate from addition to prevent recomputation
1319  */
1320 #define ROUND(f, a, b, c, d, x, s)	\
1321 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1322 #define K1 0
1323 #define K2 013240474631UL
1324 #define K3 015666365641UL
1325 
1326 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1327 
1328 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1329 {
1330 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1331 
1332 	/* Round 1 */
1333 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1334 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1335 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1336 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1337 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1338 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1339 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1340 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1341 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1342 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1343 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1344 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1345 
1346 	/* Round 2 */
1347 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1348 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1349 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1350 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1351 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1352 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1353 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1354 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1355 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1356 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1357 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1358 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1359 
1360 	/* Round 3 */
1361 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1362 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1363 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1364 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1365 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1366 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1367 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1368 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1369 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1370 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1371 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1372 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1373 
1374 	return buf[1] + b; /* "most hashed" word */
1375 	/* Alternative: return sum of all words? */
1376 }
1377 #endif
1378 
1379 #undef ROUND
1380 #undef F
1381 #undef G
1382 #undef H
1383 #undef K1
1384 #undef K2
1385 #undef K3
1386 
1387 /* This should not be decreased so low that ISNs wrap too fast. */
1388 #define REKEY_INTERVAL (300 * HZ)
1389 /*
1390  * Bit layout of the tcp sequence numbers (before adding current time):
1391  * bit 24-31: increased after every key exchange
1392  * bit 0-23: hash(source,dest)
1393  *
1394  * The implementation is similar to the algorithm described
1395  * in the Appendix of RFC 1185, except that
1396  * - it uses a 1 MHz clock instead of a 250 kHz clock
1397  * - it performs a rekey every 5 minutes, which is equivalent
1398  * 	to a (source,dest) tulple dependent forward jump of the
1399  * 	clock by 0..2^(HASH_BITS+1)
1400  *
1401  * Thus the average ISN wraparound time is 68 minutes instead of
1402  * 4.55 hours.
1403  *
1404  * SMP cleanup and lock avoidance with poor man's RCU.
1405  * 			Manfred Spraul <manfred@colorfullife.com>
1406  *
1407  */
1408 #define COUNT_BITS 8
1409 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1410 #define HASH_BITS 24
1411 #define HASH_MASK ((1 << HASH_BITS) - 1)
1412 
1413 static struct keydata {
1414 	__u32 count; /* already shifted to the final position */
1415 	__u32 secret[12];
1416 } ____cacheline_aligned ip_keydata[2];
1417 
1418 static unsigned int ip_cnt;
1419 
1420 static void rekey_seq_generator(void *private_);
1421 
1422 static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL);
1423 
1424 /*
1425  * Lock avoidance:
1426  * The ISN generation runs lockless - it's just a hash over random data.
1427  * State changes happen every 5 minutes when the random key is replaced.
1428  * Synchronization is performed by having two copies of the hash function
1429  * state and rekey_seq_generator always updates the inactive copy.
1430  * The copy is then activated by updating ip_cnt.
1431  * The implementation breaks down if someone blocks the thread
1432  * that processes SYN requests for more than 5 minutes. Should never
1433  * happen, and even if that happens only a not perfectly compliant
1434  * ISN is generated, nothing fatal.
1435  */
1436 static void rekey_seq_generator(void *private_)
1437 {
1438 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1439 
1440 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1441 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1442 	smp_wmb();
1443 	ip_cnt++;
1444 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1445 }
1446 
1447 static inline struct keydata *get_keyptr(void)
1448 {
1449 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1450 
1451 	smp_rmb();
1452 
1453 	return keyptr;
1454 }
1455 
1456 static __init int seqgen_init(void)
1457 {
1458 	rekey_seq_generator(NULL);
1459 	return 0;
1460 }
1461 late_initcall(seqgen_init);
1462 
1463 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1464 __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
1465 				   __u16 sport, __u16 dport)
1466 {
1467 	struct timeval tv;
1468 	__u32 seq;
1469 	__u32 hash[12];
1470 	struct keydata *keyptr = get_keyptr();
1471 
1472 	/* The procedure is the same as for IPv4, but addresses are longer.
1473 	 * Thus we must use twothirdsMD4Transform.
1474 	 */
1475 
1476 	memcpy(hash, saddr, 16);
1477 	hash[4]=(sport << 16) + dport;
1478 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1479 
1480 	seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK;
1481 	seq += keyptr->count;
1482 
1483 	do_gettimeofday(&tv);
1484 	seq += tv.tv_usec + tv.tv_sec * 1000000;
1485 
1486 	return seq;
1487 }
1488 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1489 #endif
1490 
1491 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1492  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1493  */
1494 __u32 secure_ip_id(__u32 daddr)
1495 {
1496 	struct keydata *keyptr;
1497 	__u32 hash[4];
1498 
1499 	keyptr = get_keyptr();
1500 
1501 	/*
1502 	 *  Pick a unique starting offset for each IP destination.
1503 	 *  The dest ip address is placed in the starting vector,
1504 	 *  which is then hashed with random data.
1505 	 */
1506 	hash[0] = daddr;
1507 	hash[1] = keyptr->secret[9];
1508 	hash[2] = keyptr->secret[10];
1509 	hash[3] = keyptr->secret[11];
1510 
1511 	return half_md4_transform(hash, keyptr->secret);
1512 }
1513 
1514 #ifdef CONFIG_INET
1515 
1516 __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
1517 				 __u16 sport, __u16 dport)
1518 {
1519 	struct timeval tv;
1520 	__u32 seq;
1521 	__u32 hash[4];
1522 	struct keydata *keyptr = get_keyptr();
1523 
1524 	/*
1525 	 *  Pick a unique starting offset for each TCP connection endpoints
1526 	 *  (saddr, daddr, sport, dport).
1527 	 *  Note that the words are placed into the starting vector, which is
1528 	 *  then mixed with a partial MD4 over random data.
1529 	 */
1530 	hash[0]=saddr;
1531 	hash[1]=daddr;
1532 	hash[2]=(sport << 16) + dport;
1533 	hash[3]=keyptr->secret[11];
1534 
1535 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1536 	seq += keyptr->count;
1537 	/*
1538 	 *	As close as possible to RFC 793, which
1539 	 *	suggests using a 250 kHz clock.
1540 	 *	Further reading shows this assumes 2 Mb/s networks.
1541 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1542 	 *	That's funny, Linux has one built in!  Use it!
1543 	 *	(Networks are faster now - should this be increased?)
1544 	 */
1545 	do_gettimeofday(&tv);
1546 	seq += tv.tv_usec + tv.tv_sec * 1000000;
1547 #if 0
1548 	printk("init_seq(%lx, %lx, %d, %d) = %d\n",
1549 	       saddr, daddr, sport, dport, seq);
1550 #endif
1551 	return seq;
1552 }
1553 
1554 EXPORT_SYMBOL(secure_tcp_sequence_number);
1555 
1556 /* Generate secure starting point for ephemeral IPV4 transport port search */
1557 u32 secure_ipv4_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport)
1558 {
1559 	struct keydata *keyptr = get_keyptr();
1560 	u32 hash[4];
1561 
1562 	/*
1563 	 *  Pick a unique starting offset for each ephemeral port search
1564 	 *  (saddr, daddr, dport) and 48bits of random data.
1565 	 */
1566 	hash[0] = saddr;
1567 	hash[1] = daddr;
1568 	hash[2] = dport ^ keyptr->secret[10];
1569 	hash[3] = keyptr->secret[11];
1570 
1571 	return half_md4_transform(hash, keyptr->secret);
1572 }
1573 
1574 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1575 u32 secure_ipv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport)
1576 {
1577 	struct keydata *keyptr = get_keyptr();
1578 	u32 hash[12];
1579 
1580 	memcpy(hash, saddr, 16);
1581 	hash[4] = dport;
1582 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1583 
1584 	return twothirdsMD4Transform(daddr, hash);
1585 }
1586 #endif
1587 
1588 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1589 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1590  * bit's 32-47 increase every key exchange
1591  *       0-31  hash(source, dest)
1592  */
1593 u64 secure_dccp_sequence_number(__u32 saddr, __u32 daddr,
1594 				__u16 sport, __u16 dport)
1595 {
1596 	struct timeval tv;
1597 	u64 seq;
1598 	__u32 hash[4];
1599 	struct keydata *keyptr = get_keyptr();
1600 
1601 	hash[0] = saddr;
1602 	hash[1] = daddr;
1603 	hash[2] = (sport << 16) + dport;
1604 	hash[3] = keyptr->secret[11];
1605 
1606 	seq = half_md4_transform(hash, keyptr->secret);
1607 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1608 
1609 	do_gettimeofday(&tv);
1610 	seq += tv.tv_usec + tv.tv_sec * 1000000;
1611 	seq &= (1ull << 48) - 1;
1612 #if 0
1613 	printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
1614 	       saddr, daddr, sport, dport, seq);
1615 #endif
1616 	return seq;
1617 }
1618 
1619 EXPORT_SYMBOL(secure_dccp_sequence_number);
1620 #endif
1621 
1622 #endif /* CONFIG_INET */
1623 
1624 
1625 /*
1626  * Get a random word for internal kernel use only. Similar to urandom but
1627  * with the goal of minimal entropy pool depletion. As a result, the random
1628  * value is not cryptographically secure but for several uses the cost of
1629  * depleting entropy is too high
1630  */
1631 unsigned int get_random_int(void)
1632 {
1633 	/*
1634 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1635 	 * every second, from the entropy pool (and thus creates a limited
1636 	 * drain on it), and uses halfMD4Transform within the second. We
1637 	 * also mix it with jiffies and the PID:
1638 	 */
1639 	return secure_ip_id(current->pid + jiffies);
1640 }
1641 
1642 /*
1643  * randomize_range() returns a start address such that
1644  *
1645  *    [...... <range> .....]
1646  *  start                  end
1647  *
1648  * a <range> with size "len" starting at the return value is inside in the
1649  * area defined by [start, end], but is otherwise randomized.
1650  */
1651 unsigned long
1652 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1653 {
1654 	unsigned long range = end - len - start;
1655 
1656 	if (end <= start + len)
1657 		return 0;
1658 	return PAGE_ALIGN(get_random_int() % range + start);
1659 }
1660