1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/percpu.h> 254 #include <linux/cryptohash.h> 255 #include <linux/fips.h> 256 #include <linux/ptrace.h> 257 #include <linux/kmemcheck.h> 258 259 #ifdef CONFIG_GENERIC_HARDIRQS 260 # include <linux/irq.h> 261 #endif 262 263 #include <asm/processor.h> 264 #include <asm/uaccess.h> 265 #include <asm/irq.h> 266 #include <asm/irq_regs.h> 267 #include <asm/io.h> 268 269 #define CREATE_TRACE_POINTS 270 #include <trace/events/random.h> 271 272 /* 273 * Configuration information 274 */ 275 #define INPUT_POOL_WORDS 128 276 #define OUTPUT_POOL_WORDS 32 277 #define SEC_XFER_SIZE 512 278 #define EXTRACT_SIZE 10 279 280 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 281 282 /* 283 * The minimum number of bits of entropy before we wake up a read on 284 * /dev/random. Should be enough to do a significant reseed. 285 */ 286 static int random_read_wakeup_thresh = 64; 287 288 /* 289 * If the entropy count falls under this number of bits, then we 290 * should wake up processes which are selecting or polling on write 291 * access to /dev/random. 292 */ 293 static int random_write_wakeup_thresh = 128; 294 295 /* 296 * When the input pool goes over trickle_thresh, start dropping most 297 * samples to avoid wasting CPU time and reduce lock contention. 298 */ 299 300 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 301 302 static DEFINE_PER_CPU(int, trickle_count); 303 304 /* 305 * A pool of size .poolwords is stirred with a primitive polynomial 306 * of degree .poolwords over GF(2). The taps for various sizes are 307 * defined below. They are chosen to be evenly spaced (minimum RMS 308 * distance from evenly spaced; the numbers in the comments are a 309 * scaled squared error sum) except for the last tap, which is 1 to 310 * get the twisting happening as fast as possible. 311 */ 312 static struct poolinfo { 313 int poolwords; 314 int tap1, tap2, tap3, tap4, tap5; 315 } poolinfo_table[] = { 316 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 317 { 128, 103, 76, 51, 25, 1 }, 318 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 319 { 32, 26, 20, 14, 7, 1 }, 320 #if 0 321 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 322 { 2048, 1638, 1231, 819, 411, 1 }, 323 324 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 325 { 1024, 817, 615, 412, 204, 1 }, 326 327 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 328 { 1024, 819, 616, 410, 207, 2 }, 329 330 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 331 { 512, 411, 308, 208, 104, 1 }, 332 333 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 334 { 512, 409, 307, 206, 102, 2 }, 335 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 336 { 512, 409, 309, 205, 103, 2 }, 337 338 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 339 { 256, 205, 155, 101, 52, 1 }, 340 341 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 342 { 128, 103, 78, 51, 27, 2 }, 343 344 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 345 { 64, 52, 39, 26, 14, 1 }, 346 #endif 347 }; 348 349 #define POOLBITS poolwords*32 350 #define POOLBYTES poolwords*4 351 352 /* 353 * For the purposes of better mixing, we use the CRC-32 polynomial as 354 * well to make a twisted Generalized Feedback Shift Reigster 355 * 356 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 357 * Transactions on Modeling and Computer Simulation 2(3):179-194. 358 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 359 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 360 * 361 * Thanks to Colin Plumb for suggesting this. 362 * 363 * We have not analyzed the resultant polynomial to prove it primitive; 364 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 365 * of a random large-degree polynomial over GF(2) are more than large enough 366 * that periodicity is not a concern. 367 * 368 * The input hash is much less sensitive than the output hash. All 369 * that we want of it is that it be a good non-cryptographic hash; 370 * i.e. it not produce collisions when fed "random" data of the sort 371 * we expect to see. As long as the pool state differs for different 372 * inputs, we have preserved the input entropy and done a good job. 373 * The fact that an intelligent attacker can construct inputs that 374 * will produce controlled alterations to the pool's state is not 375 * important because we don't consider such inputs to contribute any 376 * randomness. The only property we need with respect to them is that 377 * the attacker can't increase his/her knowledge of the pool's state. 378 * Since all additions are reversible (knowing the final state and the 379 * input, you can reconstruct the initial state), if an attacker has 380 * any uncertainty about the initial state, he/she can only shuffle 381 * that uncertainty about, but never cause any collisions (which would 382 * decrease the uncertainty). 383 * 384 * The chosen system lets the state of the pool be (essentially) the input 385 * modulo the generator polymnomial. Now, for random primitive polynomials, 386 * this is a universal class of hash functions, meaning that the chance 387 * of a collision is limited by the attacker's knowledge of the generator 388 * polynomail, so if it is chosen at random, an attacker can never force 389 * a collision. Here, we use a fixed polynomial, but we *can* assume that 390 * ###--> it is unknown to the processes generating the input entropy. <-### 391 * Because of this important property, this is a good, collision-resistant 392 * hash; hash collisions will occur no more often than chance. 393 */ 394 395 /* 396 * Static global variables 397 */ 398 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 399 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 400 static struct fasync_struct *fasync; 401 402 static bool debug; 403 module_param(debug, bool, 0644); 404 #define DEBUG_ENT(fmt, arg...) do { \ 405 if (debug) \ 406 printk(KERN_DEBUG "random %04d %04d %04d: " \ 407 fmt,\ 408 input_pool.entropy_count,\ 409 blocking_pool.entropy_count,\ 410 nonblocking_pool.entropy_count,\ 411 ## arg); } while (0) 412 413 /********************************************************************** 414 * 415 * OS independent entropy store. Here are the functions which handle 416 * storing entropy in an entropy pool. 417 * 418 **********************************************************************/ 419 420 struct entropy_store; 421 struct entropy_store { 422 /* read-only data: */ 423 struct poolinfo *poolinfo; 424 __u32 *pool; 425 const char *name; 426 struct entropy_store *pull; 427 int limit; 428 429 /* read-write data: */ 430 spinlock_t lock; 431 unsigned add_ptr; 432 unsigned input_rotate; 433 int entropy_count; 434 int entropy_total; 435 unsigned int initialized:1; 436 bool last_data_init; 437 __u8 last_data[EXTRACT_SIZE]; 438 }; 439 440 static __u32 input_pool_data[INPUT_POOL_WORDS]; 441 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 442 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 443 444 static struct entropy_store input_pool = { 445 .poolinfo = &poolinfo_table[0], 446 .name = "input", 447 .limit = 1, 448 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 449 .pool = input_pool_data 450 }; 451 452 static struct entropy_store blocking_pool = { 453 .poolinfo = &poolinfo_table[1], 454 .name = "blocking", 455 .limit = 1, 456 .pull = &input_pool, 457 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 458 .pool = blocking_pool_data 459 }; 460 461 static struct entropy_store nonblocking_pool = { 462 .poolinfo = &poolinfo_table[1], 463 .name = "nonblocking", 464 .pull = &input_pool, 465 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 466 .pool = nonblocking_pool_data 467 }; 468 469 static __u32 const twist_table[8] = { 470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 472 473 /* 474 * This function adds bytes into the entropy "pool". It does not 475 * update the entropy estimate. The caller should call 476 * credit_entropy_bits if this is appropriate. 477 * 478 * The pool is stirred with a primitive polynomial of the appropriate 479 * degree, and then twisted. We twist by three bits at a time because 480 * it's cheap to do so and helps slightly in the expected case where 481 * the entropy is concentrated in the low-order bits. 482 */ 483 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 484 int nbytes, __u8 out[64]) 485 { 486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 487 int input_rotate; 488 int wordmask = r->poolinfo->poolwords - 1; 489 const char *bytes = in; 490 __u32 w; 491 492 tap1 = r->poolinfo->tap1; 493 tap2 = r->poolinfo->tap2; 494 tap3 = r->poolinfo->tap3; 495 tap4 = r->poolinfo->tap4; 496 tap5 = r->poolinfo->tap5; 497 498 smp_rmb(); 499 input_rotate = ACCESS_ONCE(r->input_rotate); 500 i = ACCESS_ONCE(r->add_ptr); 501 502 /* mix one byte at a time to simplify size handling and churn faster */ 503 while (nbytes--) { 504 w = rol32(*bytes++, input_rotate & 31); 505 i = (i - 1) & wordmask; 506 507 /* XOR in the various taps */ 508 w ^= r->pool[i]; 509 w ^= r->pool[(i + tap1) & wordmask]; 510 w ^= r->pool[(i + tap2) & wordmask]; 511 w ^= r->pool[(i + tap3) & wordmask]; 512 w ^= r->pool[(i + tap4) & wordmask]; 513 w ^= r->pool[(i + tap5) & wordmask]; 514 515 /* Mix the result back in with a twist */ 516 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 517 518 /* 519 * Normally, we add 7 bits of rotation to the pool. 520 * At the beginning of the pool, add an extra 7 bits 521 * rotation, so that successive passes spread the 522 * input bits across the pool evenly. 523 */ 524 input_rotate += i ? 7 : 14; 525 } 526 527 ACCESS_ONCE(r->input_rotate) = input_rotate; 528 ACCESS_ONCE(r->add_ptr) = i; 529 smp_wmb(); 530 531 if (out) 532 for (j = 0; j < 16; j++) 533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 534 } 535 536 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 537 int nbytes, __u8 out[64]) 538 { 539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 540 _mix_pool_bytes(r, in, nbytes, out); 541 } 542 543 static void mix_pool_bytes(struct entropy_store *r, const void *in, 544 int nbytes, __u8 out[64]) 545 { 546 unsigned long flags; 547 548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 549 spin_lock_irqsave(&r->lock, flags); 550 _mix_pool_bytes(r, in, nbytes, out); 551 spin_unlock_irqrestore(&r->lock, flags); 552 } 553 554 struct fast_pool { 555 __u32 pool[4]; 556 unsigned long last; 557 unsigned short count; 558 unsigned char rotate; 559 unsigned char last_timer_intr; 560 }; 561 562 /* 563 * This is a fast mixing routine used by the interrupt randomness 564 * collector. It's hardcoded for an 128 bit pool and assumes that any 565 * locks that might be needed are taken by the caller. 566 */ 567 static void fast_mix(struct fast_pool *f, const void *in, int nbytes) 568 { 569 const char *bytes = in; 570 __u32 w; 571 unsigned i = f->count; 572 unsigned input_rotate = f->rotate; 573 574 while (nbytes--) { 575 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^ 576 f->pool[(i + 1) & 3]; 577 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7]; 578 input_rotate += (i++ & 3) ? 7 : 14; 579 } 580 f->count = i; 581 f->rotate = input_rotate; 582 } 583 584 /* 585 * Credit (or debit) the entropy store with n bits of entropy 586 */ 587 static void credit_entropy_bits(struct entropy_store *r, int nbits) 588 { 589 int entropy_count, orig; 590 591 if (!nbits) 592 return; 593 594 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 595 retry: 596 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 597 entropy_count += nbits; 598 599 if (entropy_count < 0) { 600 DEBUG_ENT("negative entropy/overflow\n"); 601 entropy_count = 0; 602 } else if (entropy_count > r->poolinfo->POOLBITS) 603 entropy_count = r->poolinfo->POOLBITS; 604 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 605 goto retry; 606 607 if (!r->initialized && nbits > 0) { 608 r->entropy_total += nbits; 609 if (r->entropy_total > 128) 610 r->initialized = 1; 611 } 612 613 trace_credit_entropy_bits(r->name, nbits, entropy_count, 614 r->entropy_total, _RET_IP_); 615 616 /* should we wake readers? */ 617 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 618 wake_up_interruptible(&random_read_wait); 619 kill_fasync(&fasync, SIGIO, POLL_IN); 620 } 621 } 622 623 /********************************************************************* 624 * 625 * Entropy input management 626 * 627 *********************************************************************/ 628 629 /* There is one of these per entropy source */ 630 struct timer_rand_state { 631 cycles_t last_time; 632 long last_delta, last_delta2; 633 unsigned dont_count_entropy:1; 634 }; 635 636 /* 637 * Add device- or boot-specific data to the input and nonblocking 638 * pools to help initialize them to unique values. 639 * 640 * None of this adds any entropy, it is meant to avoid the 641 * problem of the nonblocking pool having similar initial state 642 * across largely identical devices. 643 */ 644 void add_device_randomness(const void *buf, unsigned int size) 645 { 646 unsigned long time = get_cycles() ^ jiffies; 647 648 mix_pool_bytes(&input_pool, buf, size, NULL); 649 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); 650 mix_pool_bytes(&nonblocking_pool, buf, size, NULL); 651 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); 652 } 653 EXPORT_SYMBOL(add_device_randomness); 654 655 static struct timer_rand_state input_timer_state; 656 657 /* 658 * This function adds entropy to the entropy "pool" by using timing 659 * delays. It uses the timer_rand_state structure to make an estimate 660 * of how many bits of entropy this call has added to the pool. 661 * 662 * The number "num" is also added to the pool - it should somehow describe 663 * the type of event which just happened. This is currently 0-255 for 664 * keyboard scan codes, and 256 upwards for interrupts. 665 * 666 */ 667 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 668 { 669 struct { 670 long jiffies; 671 unsigned cycles; 672 unsigned num; 673 } sample; 674 long delta, delta2, delta3; 675 676 preempt_disable(); 677 /* if over the trickle threshold, use only 1 in 4096 samples */ 678 if (input_pool.entropy_count > trickle_thresh && 679 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) 680 goto out; 681 682 sample.jiffies = jiffies; 683 sample.cycles = get_cycles(); 684 sample.num = num; 685 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL); 686 687 /* 688 * Calculate number of bits of randomness we probably added. 689 * We take into account the first, second and third-order deltas 690 * in order to make our estimate. 691 */ 692 693 if (!state->dont_count_entropy) { 694 delta = sample.jiffies - state->last_time; 695 state->last_time = sample.jiffies; 696 697 delta2 = delta - state->last_delta; 698 state->last_delta = delta; 699 700 delta3 = delta2 - state->last_delta2; 701 state->last_delta2 = delta2; 702 703 if (delta < 0) 704 delta = -delta; 705 if (delta2 < 0) 706 delta2 = -delta2; 707 if (delta3 < 0) 708 delta3 = -delta3; 709 if (delta > delta2) 710 delta = delta2; 711 if (delta > delta3) 712 delta = delta3; 713 714 /* 715 * delta is now minimum absolute delta. 716 * Round down by 1 bit on general principles, 717 * and limit entropy entimate to 12 bits. 718 */ 719 credit_entropy_bits(&input_pool, 720 min_t(int, fls(delta>>1), 11)); 721 } 722 out: 723 preempt_enable(); 724 } 725 726 void add_input_randomness(unsigned int type, unsigned int code, 727 unsigned int value) 728 { 729 static unsigned char last_value; 730 731 /* ignore autorepeat and the like */ 732 if (value == last_value) 733 return; 734 735 DEBUG_ENT("input event\n"); 736 last_value = value; 737 add_timer_randomness(&input_timer_state, 738 (type << 4) ^ code ^ (code >> 4) ^ value); 739 } 740 EXPORT_SYMBOL_GPL(add_input_randomness); 741 742 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 743 744 void add_interrupt_randomness(int irq, int irq_flags) 745 { 746 struct entropy_store *r; 747 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness); 748 struct pt_regs *regs = get_irq_regs(); 749 unsigned long now = jiffies; 750 __u32 input[4], cycles = get_cycles(); 751 752 input[0] = cycles ^ jiffies; 753 input[1] = irq; 754 if (regs) { 755 __u64 ip = instruction_pointer(regs); 756 input[2] = ip; 757 input[3] = ip >> 32; 758 } 759 760 fast_mix(fast_pool, input, sizeof(input)); 761 762 if ((fast_pool->count & 1023) && 763 !time_after(now, fast_pool->last + HZ)) 764 return; 765 766 fast_pool->last = now; 767 768 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 769 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); 770 /* 771 * If we don't have a valid cycle counter, and we see 772 * back-to-back timer interrupts, then skip giving credit for 773 * any entropy. 774 */ 775 if (cycles == 0) { 776 if (irq_flags & __IRQF_TIMER) { 777 if (fast_pool->last_timer_intr) 778 return; 779 fast_pool->last_timer_intr = 1; 780 } else 781 fast_pool->last_timer_intr = 0; 782 } 783 credit_entropy_bits(r, 1); 784 } 785 786 #ifdef CONFIG_BLOCK 787 void add_disk_randomness(struct gendisk *disk) 788 { 789 if (!disk || !disk->random) 790 return; 791 /* first major is 1, so we get >= 0x200 here */ 792 DEBUG_ENT("disk event %d:%d\n", 793 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 794 795 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 796 } 797 #endif 798 799 /********************************************************************* 800 * 801 * Entropy extraction routines 802 * 803 *********************************************************************/ 804 805 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 806 size_t nbytes, int min, int rsvd); 807 808 /* 809 * This utility inline function is responsible for transferring entropy 810 * from the primary pool to the secondary extraction pool. We make 811 * sure we pull enough for a 'catastrophic reseed'. 812 */ 813 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 814 { 815 __u32 tmp[OUTPUT_POOL_WORDS]; 816 817 if (r->pull && r->entropy_count < nbytes * 8 && 818 r->entropy_count < r->poolinfo->POOLBITS) { 819 /* If we're limited, always leave two wakeup worth's BITS */ 820 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 821 int bytes = nbytes; 822 823 /* pull at least as many as BYTES as wakeup BITS */ 824 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 825 /* but never more than the buffer size */ 826 bytes = min_t(int, bytes, sizeof(tmp)); 827 828 DEBUG_ENT("going to reseed %s with %d bits " 829 "(%zu of %d requested)\n", 830 r->name, bytes * 8, nbytes * 8, r->entropy_count); 831 832 bytes = extract_entropy(r->pull, tmp, bytes, 833 random_read_wakeup_thresh / 8, rsvd); 834 mix_pool_bytes(r, tmp, bytes, NULL); 835 credit_entropy_bits(r, bytes*8); 836 } 837 } 838 839 /* 840 * These functions extracts randomness from the "entropy pool", and 841 * returns it in a buffer. 842 * 843 * The min parameter specifies the minimum amount we can pull before 844 * failing to avoid races that defeat catastrophic reseeding while the 845 * reserved parameter indicates how much entropy we must leave in the 846 * pool after each pull to avoid starving other readers. 847 * 848 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 849 */ 850 851 static size_t account(struct entropy_store *r, size_t nbytes, int min, 852 int reserved) 853 { 854 unsigned long flags; 855 int wakeup_write = 0; 856 857 /* Hold lock while accounting */ 858 spin_lock_irqsave(&r->lock, flags); 859 860 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 861 DEBUG_ENT("trying to extract %zu bits from %s\n", 862 nbytes * 8, r->name); 863 864 /* Can we pull enough? */ 865 if (r->entropy_count / 8 < min + reserved) { 866 nbytes = 0; 867 } else { 868 int entropy_count, orig; 869 retry: 870 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 871 /* If limited, never pull more than available */ 872 if (r->limit && nbytes + reserved >= entropy_count / 8) 873 nbytes = entropy_count/8 - reserved; 874 875 if (entropy_count / 8 >= nbytes + reserved) { 876 entropy_count -= nbytes*8; 877 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 878 goto retry; 879 } else { 880 entropy_count = reserved; 881 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 882 goto retry; 883 } 884 885 if (entropy_count < random_write_wakeup_thresh) 886 wakeup_write = 1; 887 } 888 889 DEBUG_ENT("debiting %zu entropy credits from %s%s\n", 890 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 891 892 spin_unlock_irqrestore(&r->lock, flags); 893 894 if (wakeup_write) { 895 wake_up_interruptible(&random_write_wait); 896 kill_fasync(&fasync, SIGIO, POLL_OUT); 897 } 898 899 return nbytes; 900 } 901 902 static void extract_buf(struct entropy_store *r, __u8 *out) 903 { 904 int i; 905 union { 906 __u32 w[5]; 907 unsigned long l[LONGS(EXTRACT_SIZE)]; 908 } hash; 909 __u32 workspace[SHA_WORKSPACE_WORDS]; 910 __u8 extract[64]; 911 unsigned long flags; 912 913 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 914 sha_init(hash.w); 915 spin_lock_irqsave(&r->lock, flags); 916 for (i = 0; i < r->poolinfo->poolwords; i += 16) 917 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 918 919 /* 920 * We mix the hash back into the pool to prevent backtracking 921 * attacks (where the attacker knows the state of the pool 922 * plus the current outputs, and attempts to find previous 923 * ouputs), unless the hash function can be inverted. By 924 * mixing at least a SHA1 worth of hash data back, we make 925 * brute-forcing the feedback as hard as brute-forcing the 926 * hash. 927 */ 928 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); 929 spin_unlock_irqrestore(&r->lock, flags); 930 931 /* 932 * To avoid duplicates, we atomically extract a portion of the 933 * pool while mixing, and hash one final time. 934 */ 935 sha_transform(hash.w, extract, workspace); 936 memset(extract, 0, sizeof(extract)); 937 memset(workspace, 0, sizeof(workspace)); 938 939 /* 940 * In case the hash function has some recognizable output 941 * pattern, we fold it in half. Thus, we always feed back 942 * twice as much data as we output. 943 */ 944 hash.w[0] ^= hash.w[3]; 945 hash.w[1] ^= hash.w[4]; 946 hash.w[2] ^= rol32(hash.w[2], 16); 947 948 /* 949 * If we have a architectural hardware random number 950 * generator, mix that in, too. 951 */ 952 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) { 953 unsigned long v; 954 if (!arch_get_random_long(&v)) 955 break; 956 hash.l[i] ^= v; 957 } 958 959 memcpy(out, &hash, EXTRACT_SIZE); 960 memset(&hash, 0, sizeof(hash)); 961 } 962 963 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 964 size_t nbytes, int min, int reserved) 965 { 966 ssize_t ret = 0, i; 967 __u8 tmp[EXTRACT_SIZE]; 968 unsigned long flags; 969 970 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 971 if (fips_enabled) { 972 spin_lock_irqsave(&r->lock, flags); 973 if (!r->last_data_init) { 974 r->last_data_init = true; 975 spin_unlock_irqrestore(&r->lock, flags); 976 trace_extract_entropy(r->name, EXTRACT_SIZE, 977 r->entropy_count, _RET_IP_); 978 xfer_secondary_pool(r, EXTRACT_SIZE); 979 extract_buf(r, tmp); 980 spin_lock_irqsave(&r->lock, flags); 981 memcpy(r->last_data, tmp, EXTRACT_SIZE); 982 } 983 spin_unlock_irqrestore(&r->lock, flags); 984 } 985 986 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_); 987 xfer_secondary_pool(r, nbytes); 988 nbytes = account(r, nbytes, min, reserved); 989 990 while (nbytes) { 991 extract_buf(r, tmp); 992 993 if (fips_enabled) { 994 spin_lock_irqsave(&r->lock, flags); 995 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 996 panic("Hardware RNG duplicated output!\n"); 997 memcpy(r->last_data, tmp, EXTRACT_SIZE); 998 spin_unlock_irqrestore(&r->lock, flags); 999 } 1000 i = min_t(int, nbytes, EXTRACT_SIZE); 1001 memcpy(buf, tmp, i); 1002 nbytes -= i; 1003 buf += i; 1004 ret += i; 1005 } 1006 1007 /* Wipe data just returned from memory */ 1008 memset(tmp, 0, sizeof(tmp)); 1009 1010 return ret; 1011 } 1012 1013 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1014 size_t nbytes) 1015 { 1016 ssize_t ret = 0, i; 1017 __u8 tmp[EXTRACT_SIZE]; 1018 1019 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_); 1020 xfer_secondary_pool(r, nbytes); 1021 nbytes = account(r, nbytes, 0, 0); 1022 1023 while (nbytes) { 1024 if (need_resched()) { 1025 if (signal_pending(current)) { 1026 if (ret == 0) 1027 ret = -ERESTARTSYS; 1028 break; 1029 } 1030 schedule(); 1031 } 1032 1033 extract_buf(r, tmp); 1034 i = min_t(int, nbytes, EXTRACT_SIZE); 1035 if (copy_to_user(buf, tmp, i)) { 1036 ret = -EFAULT; 1037 break; 1038 } 1039 1040 nbytes -= i; 1041 buf += i; 1042 ret += i; 1043 } 1044 1045 /* Wipe data just returned from memory */ 1046 memset(tmp, 0, sizeof(tmp)); 1047 1048 return ret; 1049 } 1050 1051 /* 1052 * This function is the exported kernel interface. It returns some 1053 * number of good random numbers, suitable for key generation, seeding 1054 * TCP sequence numbers, etc. It does not use the hw random number 1055 * generator, if available; use get_random_bytes_arch() for that. 1056 */ 1057 void get_random_bytes(void *buf, int nbytes) 1058 { 1059 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1060 } 1061 EXPORT_SYMBOL(get_random_bytes); 1062 1063 /* 1064 * This function will use the architecture-specific hardware random 1065 * number generator if it is available. The arch-specific hw RNG will 1066 * almost certainly be faster than what we can do in software, but it 1067 * is impossible to verify that it is implemented securely (as 1068 * opposed, to, say, the AES encryption of a sequence number using a 1069 * key known by the NSA). So it's useful if we need the speed, but 1070 * only if we're willing to trust the hardware manufacturer not to 1071 * have put in a back door. 1072 */ 1073 void get_random_bytes_arch(void *buf, int nbytes) 1074 { 1075 char *p = buf; 1076 1077 trace_get_random_bytes(nbytes, _RET_IP_); 1078 while (nbytes) { 1079 unsigned long v; 1080 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1081 1082 if (!arch_get_random_long(&v)) 1083 break; 1084 1085 memcpy(p, &v, chunk); 1086 p += chunk; 1087 nbytes -= chunk; 1088 } 1089 1090 if (nbytes) 1091 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1092 } 1093 EXPORT_SYMBOL(get_random_bytes_arch); 1094 1095 1096 /* 1097 * init_std_data - initialize pool with system data 1098 * 1099 * @r: pool to initialize 1100 * 1101 * This function clears the pool's entropy count and mixes some system 1102 * data into the pool to prepare it for use. The pool is not cleared 1103 * as that can only decrease the entropy in the pool. 1104 */ 1105 static void init_std_data(struct entropy_store *r) 1106 { 1107 int i; 1108 ktime_t now = ktime_get_real(); 1109 unsigned long rv; 1110 1111 r->entropy_count = 0; 1112 r->entropy_total = 0; 1113 r->last_data_init = false; 1114 mix_pool_bytes(r, &now, sizeof(now), NULL); 1115 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) { 1116 if (!arch_get_random_long(&rv)) 1117 break; 1118 mix_pool_bytes(r, &rv, sizeof(rv), NULL); 1119 } 1120 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); 1121 } 1122 1123 /* 1124 * Note that setup_arch() may call add_device_randomness() 1125 * long before we get here. This allows seeding of the pools 1126 * with some platform dependent data very early in the boot 1127 * process. But it limits our options here. We must use 1128 * statically allocated structures that already have all 1129 * initializations complete at compile time. We should also 1130 * take care not to overwrite the precious per platform data 1131 * we were given. 1132 */ 1133 static int rand_initialize(void) 1134 { 1135 init_std_data(&input_pool); 1136 init_std_data(&blocking_pool); 1137 init_std_data(&nonblocking_pool); 1138 return 0; 1139 } 1140 module_init(rand_initialize); 1141 1142 #ifdef CONFIG_BLOCK 1143 void rand_initialize_disk(struct gendisk *disk) 1144 { 1145 struct timer_rand_state *state; 1146 1147 /* 1148 * If kzalloc returns null, we just won't use that entropy 1149 * source. 1150 */ 1151 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1152 if (state) 1153 disk->random = state; 1154 } 1155 #endif 1156 1157 static ssize_t 1158 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1159 { 1160 ssize_t n, retval = 0, count = 0; 1161 1162 if (nbytes == 0) 1163 return 0; 1164 1165 while (nbytes > 0) { 1166 n = nbytes; 1167 if (n > SEC_XFER_SIZE) 1168 n = SEC_XFER_SIZE; 1169 1170 DEBUG_ENT("reading %zu bits\n", n*8); 1171 1172 n = extract_entropy_user(&blocking_pool, buf, n); 1173 1174 if (n < 0) { 1175 retval = n; 1176 break; 1177 } 1178 1179 DEBUG_ENT("read got %zd bits (%zd still needed)\n", 1180 n*8, (nbytes-n)*8); 1181 1182 if (n == 0) { 1183 if (file->f_flags & O_NONBLOCK) { 1184 retval = -EAGAIN; 1185 break; 1186 } 1187 1188 DEBUG_ENT("sleeping?\n"); 1189 1190 wait_event_interruptible(random_read_wait, 1191 input_pool.entropy_count >= 1192 random_read_wakeup_thresh); 1193 1194 DEBUG_ENT("awake\n"); 1195 1196 if (signal_pending(current)) { 1197 retval = -ERESTARTSYS; 1198 break; 1199 } 1200 1201 continue; 1202 } 1203 1204 count += n; 1205 buf += n; 1206 nbytes -= n; 1207 break; /* This break makes the device work */ 1208 /* like a named pipe */ 1209 } 1210 1211 return (count ? count : retval); 1212 } 1213 1214 static ssize_t 1215 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1216 { 1217 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1218 } 1219 1220 static unsigned int 1221 random_poll(struct file *file, poll_table * wait) 1222 { 1223 unsigned int mask; 1224 1225 poll_wait(file, &random_read_wait, wait); 1226 poll_wait(file, &random_write_wait, wait); 1227 mask = 0; 1228 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1229 mask |= POLLIN | POLLRDNORM; 1230 if (input_pool.entropy_count < random_write_wakeup_thresh) 1231 mask |= POLLOUT | POLLWRNORM; 1232 return mask; 1233 } 1234 1235 static int 1236 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1237 { 1238 size_t bytes; 1239 __u32 buf[16]; 1240 const char __user *p = buffer; 1241 1242 while (count > 0) { 1243 bytes = min(count, sizeof(buf)); 1244 if (copy_from_user(&buf, p, bytes)) 1245 return -EFAULT; 1246 1247 count -= bytes; 1248 p += bytes; 1249 1250 mix_pool_bytes(r, buf, bytes, NULL); 1251 cond_resched(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static ssize_t random_write(struct file *file, const char __user *buffer, 1258 size_t count, loff_t *ppos) 1259 { 1260 size_t ret; 1261 1262 ret = write_pool(&blocking_pool, buffer, count); 1263 if (ret) 1264 return ret; 1265 ret = write_pool(&nonblocking_pool, buffer, count); 1266 if (ret) 1267 return ret; 1268 1269 return (ssize_t)count; 1270 } 1271 1272 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1273 { 1274 int size, ent_count; 1275 int __user *p = (int __user *)arg; 1276 int retval; 1277 1278 switch (cmd) { 1279 case RNDGETENTCNT: 1280 /* inherently racy, no point locking */ 1281 if (put_user(input_pool.entropy_count, p)) 1282 return -EFAULT; 1283 return 0; 1284 case RNDADDTOENTCNT: 1285 if (!capable(CAP_SYS_ADMIN)) 1286 return -EPERM; 1287 if (get_user(ent_count, p)) 1288 return -EFAULT; 1289 credit_entropy_bits(&input_pool, ent_count); 1290 return 0; 1291 case RNDADDENTROPY: 1292 if (!capable(CAP_SYS_ADMIN)) 1293 return -EPERM; 1294 if (get_user(ent_count, p++)) 1295 return -EFAULT; 1296 if (ent_count < 0) 1297 return -EINVAL; 1298 if (get_user(size, p++)) 1299 return -EFAULT; 1300 retval = write_pool(&input_pool, (const char __user *)p, 1301 size); 1302 if (retval < 0) 1303 return retval; 1304 credit_entropy_bits(&input_pool, ent_count); 1305 return 0; 1306 case RNDZAPENTCNT: 1307 case RNDCLEARPOOL: 1308 /* Clear the entropy pool counters. */ 1309 if (!capable(CAP_SYS_ADMIN)) 1310 return -EPERM; 1311 rand_initialize(); 1312 return 0; 1313 default: 1314 return -EINVAL; 1315 } 1316 } 1317 1318 static int random_fasync(int fd, struct file *filp, int on) 1319 { 1320 return fasync_helper(fd, filp, on, &fasync); 1321 } 1322 1323 const struct file_operations random_fops = { 1324 .read = random_read, 1325 .write = random_write, 1326 .poll = random_poll, 1327 .unlocked_ioctl = random_ioctl, 1328 .fasync = random_fasync, 1329 .llseek = noop_llseek, 1330 }; 1331 1332 const struct file_operations urandom_fops = { 1333 .read = urandom_read, 1334 .write = random_write, 1335 .unlocked_ioctl = random_ioctl, 1336 .fasync = random_fasync, 1337 .llseek = noop_llseek, 1338 }; 1339 1340 /*************************************************************** 1341 * Random UUID interface 1342 * 1343 * Used here for a Boot ID, but can be useful for other kernel 1344 * drivers. 1345 ***************************************************************/ 1346 1347 /* 1348 * Generate random UUID 1349 */ 1350 void generate_random_uuid(unsigned char uuid_out[16]) 1351 { 1352 get_random_bytes(uuid_out, 16); 1353 /* Set UUID version to 4 --- truly random generation */ 1354 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1355 /* Set the UUID variant to DCE */ 1356 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1357 } 1358 EXPORT_SYMBOL(generate_random_uuid); 1359 1360 /******************************************************************** 1361 * 1362 * Sysctl interface 1363 * 1364 ********************************************************************/ 1365 1366 #ifdef CONFIG_SYSCTL 1367 1368 #include <linux/sysctl.h> 1369 1370 static int min_read_thresh = 8, min_write_thresh; 1371 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1372 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1373 static char sysctl_bootid[16]; 1374 1375 /* 1376 * These functions is used to return both the bootid UUID, and random 1377 * UUID. The difference is in whether table->data is NULL; if it is, 1378 * then a new UUID is generated and returned to the user. 1379 * 1380 * If the user accesses this via the proc interface, it will be returned 1381 * as an ASCII string in the standard UUID format. If accesses via the 1382 * sysctl system call, it is returned as 16 bytes of binary data. 1383 */ 1384 static int proc_do_uuid(struct ctl_table *table, int write, 1385 void __user *buffer, size_t *lenp, loff_t *ppos) 1386 { 1387 struct ctl_table fake_table; 1388 unsigned char buf[64], tmp_uuid[16], *uuid; 1389 1390 uuid = table->data; 1391 if (!uuid) { 1392 uuid = tmp_uuid; 1393 generate_random_uuid(uuid); 1394 } else { 1395 static DEFINE_SPINLOCK(bootid_spinlock); 1396 1397 spin_lock(&bootid_spinlock); 1398 if (!uuid[8]) 1399 generate_random_uuid(uuid); 1400 spin_unlock(&bootid_spinlock); 1401 } 1402 1403 sprintf(buf, "%pU", uuid); 1404 1405 fake_table.data = buf; 1406 fake_table.maxlen = sizeof(buf); 1407 1408 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1409 } 1410 1411 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1412 extern struct ctl_table random_table[]; 1413 struct ctl_table random_table[] = { 1414 { 1415 .procname = "poolsize", 1416 .data = &sysctl_poolsize, 1417 .maxlen = sizeof(int), 1418 .mode = 0444, 1419 .proc_handler = proc_dointvec, 1420 }, 1421 { 1422 .procname = "entropy_avail", 1423 .maxlen = sizeof(int), 1424 .mode = 0444, 1425 .proc_handler = proc_dointvec, 1426 .data = &input_pool.entropy_count, 1427 }, 1428 { 1429 .procname = "read_wakeup_threshold", 1430 .data = &random_read_wakeup_thresh, 1431 .maxlen = sizeof(int), 1432 .mode = 0644, 1433 .proc_handler = proc_dointvec_minmax, 1434 .extra1 = &min_read_thresh, 1435 .extra2 = &max_read_thresh, 1436 }, 1437 { 1438 .procname = "write_wakeup_threshold", 1439 .data = &random_write_wakeup_thresh, 1440 .maxlen = sizeof(int), 1441 .mode = 0644, 1442 .proc_handler = proc_dointvec_minmax, 1443 .extra1 = &min_write_thresh, 1444 .extra2 = &max_write_thresh, 1445 }, 1446 { 1447 .procname = "boot_id", 1448 .data = &sysctl_bootid, 1449 .maxlen = 16, 1450 .mode = 0444, 1451 .proc_handler = proc_do_uuid, 1452 }, 1453 { 1454 .procname = "uuid", 1455 .maxlen = 16, 1456 .mode = 0444, 1457 .proc_handler = proc_do_uuid, 1458 }, 1459 { } 1460 }; 1461 #endif /* CONFIG_SYSCTL */ 1462 1463 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1464 1465 static int __init random_int_secret_init(void) 1466 { 1467 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1468 return 0; 1469 } 1470 late_initcall(random_int_secret_init); 1471 1472 /* 1473 * Get a random word for internal kernel use only. Similar to urandom but 1474 * with the goal of minimal entropy pool depletion. As a result, the random 1475 * value is not cryptographically secure but for several uses the cost of 1476 * depleting entropy is too high 1477 */ 1478 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1479 unsigned int get_random_int(void) 1480 { 1481 __u32 *hash; 1482 unsigned int ret; 1483 1484 if (arch_get_random_int(&ret)) 1485 return ret; 1486 1487 hash = get_cpu_var(get_random_int_hash); 1488 1489 hash[0] += current->pid + jiffies + get_cycles(); 1490 md5_transform(hash, random_int_secret); 1491 ret = hash[0]; 1492 put_cpu_var(get_random_int_hash); 1493 1494 return ret; 1495 } 1496 EXPORT_SYMBOL(get_random_int); 1497 1498 /* 1499 * randomize_range() returns a start address such that 1500 * 1501 * [...... <range> .....] 1502 * start end 1503 * 1504 * a <range> with size "len" starting at the return value is inside in the 1505 * area defined by [start, end], but is otherwise randomized. 1506 */ 1507 unsigned long 1508 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1509 { 1510 unsigned long range = end - len - start; 1511 1512 if (end <= start + len) 1513 return 0; 1514 return PAGE_ALIGN(get_random_int() % range + start); 1515 } 1516