xref: /linux/drivers/char/random.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  *	void add_device_randomness(const void *buf, unsigned int size);
129  * 	void add_input_randomness(unsigned int type, unsigned int code,
130  *                                unsigned int value);
131  *	void add_interrupt_randomness(int irq, int irq_flags);
132  * 	void add_disk_randomness(struct gendisk *disk);
133  *
134  * add_device_randomness() is for adding data to the random pool that
135  * is likely to differ between two devices (or possibly even per boot).
136  * This would be things like MAC addresses or serial numbers, or the
137  * read-out of the RTC. This does *not* add any actual entropy to the
138  * pool, but it initializes the pool to different values for devices
139  * that might otherwise be identical and have very little entropy
140  * available to them (particularly common in the embedded world).
141  *
142  * add_input_randomness() uses the input layer interrupt timing, as well as
143  * the event type information from the hardware.
144  *
145  * add_interrupt_randomness() uses the interrupt timing as random
146  * inputs to the entropy pool. Using the cycle counters and the irq source
147  * as inputs, it feeds the randomness roughly once a second.
148  *
149  * add_disk_randomness() uses what amounts to the seek time of block
150  * layer request events, on a per-disk_devt basis, as input to the
151  * entropy pool. Note that high-speed solid state drives with very low
152  * seek times do not make for good sources of entropy, as their seek
153  * times are usually fairly consistent.
154  *
155  * All of these routines try to estimate how many bits of randomness a
156  * particular randomness source.  They do this by keeping track of the
157  * first and second order deltas of the event timings.
158  *
159  * Ensuring unpredictability at system startup
160  * ============================================
161  *
162  * When any operating system starts up, it will go through a sequence
163  * of actions that are fairly predictable by an adversary, especially
164  * if the start-up does not involve interaction with a human operator.
165  * This reduces the actual number of bits of unpredictability in the
166  * entropy pool below the value in entropy_count.  In order to
167  * counteract this effect, it helps to carry information in the
168  * entropy pool across shut-downs and start-ups.  To do this, put the
169  * following lines an appropriate script which is run during the boot
170  * sequence:
171  *
172  *	echo "Initializing random number generator..."
173  *	random_seed=/var/run/random-seed
174  *	# Carry a random seed from start-up to start-up
175  *	# Load and then save the whole entropy pool
176  *	if [ -f $random_seed ]; then
177  *		cat $random_seed >/dev/urandom
178  *	else
179  *		touch $random_seed
180  *	fi
181  *	chmod 600 $random_seed
182  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
183  *
184  * and the following lines in an appropriate script which is run as
185  * the system is shutdown:
186  *
187  *	# Carry a random seed from shut-down to start-up
188  *	# Save the whole entropy pool
189  *	echo "Saving random seed..."
190  *	random_seed=/var/run/random-seed
191  *	touch $random_seed
192  *	chmod 600 $random_seed
193  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
194  *
195  * For example, on most modern systems using the System V init
196  * scripts, such code fragments would be found in
197  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
198  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199  *
200  * Effectively, these commands cause the contents of the entropy pool
201  * to be saved at shut-down time and reloaded into the entropy pool at
202  * start-up.  (The 'dd' in the addition to the bootup script is to
203  * make sure that /etc/random-seed is different for every start-up,
204  * even if the system crashes without executing rc.0.)  Even with
205  * complete knowledge of the start-up activities, predicting the state
206  * of the entropy pool requires knowledge of the previous history of
207  * the system.
208  *
209  * Configuring the /dev/random driver under Linux
210  * ==============================================
211  *
212  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213  * the /dev/mem major number (#1).  So if your system does not have
214  * /dev/random and /dev/urandom created already, they can be created
215  * by using the commands:
216  *
217  * 	mknod /dev/random c 1 8
218  * 	mknod /dev/urandom c 1 9
219  *
220  * Acknowledgements:
221  * =================
222  *
223  * Ideas for constructing this random number generator were derived
224  * from Pretty Good Privacy's random number generator, and from private
225  * discussions with Phil Karn.  Colin Plumb provided a faster random
226  * number generator, which speed up the mixing function of the entropy
227  * pool, taken from PGPfone.  Dale Worley has also contributed many
228  * useful ideas and suggestions to improve this driver.
229  *
230  * Any flaws in the design are solely my responsibility, and should
231  * not be attributed to the Phil, Colin, or any of authors of PGP.
232  *
233  * Further background information on this topic may be obtained from
234  * RFC 1750, "Randomness Recommendations for Security", by Donald
235  * Eastlake, Steve Crocker, and Jeff Schiller.
236  */
237 
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 
259 #ifdef CONFIG_GENERIC_HARDIRQS
260 # include <linux/irq.h>
261 #endif
262 
263 #include <asm/processor.h>
264 #include <asm/uaccess.h>
265 #include <asm/irq.h>
266 #include <asm/irq_regs.h>
267 #include <asm/io.h>
268 
269 #define CREATE_TRACE_POINTS
270 #include <trace/events/random.h>
271 
272 /*
273  * Configuration information
274  */
275 #define INPUT_POOL_WORDS 128
276 #define OUTPUT_POOL_WORDS 32
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
279 
280 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
281 
282 /*
283  * The minimum number of bits of entropy before we wake up a read on
284  * /dev/random.  Should be enough to do a significant reseed.
285  */
286 static int random_read_wakeup_thresh = 64;
287 
288 /*
289  * If the entropy count falls under this number of bits, then we
290  * should wake up processes which are selecting or polling on write
291  * access to /dev/random.
292  */
293 static int random_write_wakeup_thresh = 128;
294 
295 /*
296  * When the input pool goes over trickle_thresh, start dropping most
297  * samples to avoid wasting CPU time and reduce lock contention.
298  */
299 
300 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
301 
302 static DEFINE_PER_CPU(int, trickle_count);
303 
304 /*
305  * A pool of size .poolwords is stirred with a primitive polynomial
306  * of degree .poolwords over GF(2).  The taps for various sizes are
307  * defined below.  They are chosen to be evenly spaced (minimum RMS
308  * distance from evenly spaced; the numbers in the comments are a
309  * scaled squared error sum) except for the last tap, which is 1 to
310  * get the twisting happening as fast as possible.
311  */
312 static struct poolinfo {
313 	int poolwords;
314 	int tap1, tap2, tap3, tap4, tap5;
315 } poolinfo_table[] = {
316 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
317 	{ 128,	103,	76,	51,	25,	1 },
318 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
319 	{ 32,	26,	20,	14,	7,	1 },
320 #if 0
321 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
322 	{ 2048,	1638,	1231,	819,	411,	1 },
323 
324 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
325 	{ 1024,	817,	615,	412,	204,	1 },
326 
327 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
328 	{ 1024,	819,	616,	410,	207,	2 },
329 
330 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
331 	{ 512,	411,	308,	208,	104,	1 },
332 
333 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
334 	{ 512,	409,	307,	206,	102,	2 },
335 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
336 	{ 512,	409,	309,	205,	103,	2 },
337 
338 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
339 	{ 256,	205,	155,	101,	52,	1 },
340 
341 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
342 	{ 128,	103,	78,	51,	27,	2 },
343 
344 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
345 	{ 64,	52,	39,	26,	14,	1 },
346 #endif
347 };
348 
349 #define POOLBITS	poolwords*32
350 #define POOLBYTES	poolwords*4
351 
352 /*
353  * For the purposes of better mixing, we use the CRC-32 polynomial as
354  * well to make a twisted Generalized Feedback Shift Reigster
355  *
356  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
357  * Transactions on Modeling and Computer Simulation 2(3):179-194.
358  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
359  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
360  *
361  * Thanks to Colin Plumb for suggesting this.
362  *
363  * We have not analyzed the resultant polynomial to prove it primitive;
364  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
365  * of a random large-degree polynomial over GF(2) are more than large enough
366  * that periodicity is not a concern.
367  *
368  * The input hash is much less sensitive than the output hash.  All
369  * that we want of it is that it be a good non-cryptographic hash;
370  * i.e. it not produce collisions when fed "random" data of the sort
371  * we expect to see.  As long as the pool state differs for different
372  * inputs, we have preserved the input entropy and done a good job.
373  * The fact that an intelligent attacker can construct inputs that
374  * will produce controlled alterations to the pool's state is not
375  * important because we don't consider such inputs to contribute any
376  * randomness.  The only property we need with respect to them is that
377  * the attacker can't increase his/her knowledge of the pool's state.
378  * Since all additions are reversible (knowing the final state and the
379  * input, you can reconstruct the initial state), if an attacker has
380  * any uncertainty about the initial state, he/she can only shuffle
381  * that uncertainty about, but never cause any collisions (which would
382  * decrease the uncertainty).
383  *
384  * The chosen system lets the state of the pool be (essentially) the input
385  * modulo the generator polymnomial.  Now, for random primitive polynomials,
386  * this is a universal class of hash functions, meaning that the chance
387  * of a collision is limited by the attacker's knowledge of the generator
388  * polynomail, so if it is chosen at random, an attacker can never force
389  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
390  * ###--> it is unknown to the processes generating the input entropy. <-###
391  * Because of this important property, this is a good, collision-resistant
392  * hash; hash collisions will occur no more often than chance.
393  */
394 
395 /*
396  * Static global variables
397  */
398 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
399 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
400 static struct fasync_struct *fasync;
401 
402 static bool debug;
403 module_param(debug, bool, 0644);
404 #define DEBUG_ENT(fmt, arg...) do { \
405 	if (debug) \
406 		printk(KERN_DEBUG "random %04d %04d %04d: " \
407 		fmt,\
408 		input_pool.entropy_count,\
409 		blocking_pool.entropy_count,\
410 		nonblocking_pool.entropy_count,\
411 		## arg); } while (0)
412 
413 /**********************************************************************
414  *
415  * OS independent entropy store.   Here are the functions which handle
416  * storing entropy in an entropy pool.
417  *
418  **********************************************************************/
419 
420 struct entropy_store;
421 struct entropy_store {
422 	/* read-only data: */
423 	struct poolinfo *poolinfo;
424 	__u32 *pool;
425 	const char *name;
426 	struct entropy_store *pull;
427 	int limit;
428 
429 	/* read-write data: */
430 	spinlock_t lock;
431 	unsigned add_ptr;
432 	unsigned input_rotate;
433 	int entropy_count;
434 	int entropy_total;
435 	unsigned int initialized:1;
436 	bool last_data_init;
437 	__u8 last_data[EXTRACT_SIZE];
438 };
439 
440 static __u32 input_pool_data[INPUT_POOL_WORDS];
441 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
442 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
443 
444 static struct entropy_store input_pool = {
445 	.poolinfo = &poolinfo_table[0],
446 	.name = "input",
447 	.limit = 1,
448 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
449 	.pool = input_pool_data
450 };
451 
452 static struct entropy_store blocking_pool = {
453 	.poolinfo = &poolinfo_table[1],
454 	.name = "blocking",
455 	.limit = 1,
456 	.pull = &input_pool,
457 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
458 	.pool = blocking_pool_data
459 };
460 
461 static struct entropy_store nonblocking_pool = {
462 	.poolinfo = &poolinfo_table[1],
463 	.name = "nonblocking",
464 	.pull = &input_pool,
465 	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
466 	.pool = nonblocking_pool_data
467 };
468 
469 static __u32 const twist_table[8] = {
470 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
472 
473 /*
474  * This function adds bytes into the entropy "pool".  It does not
475  * update the entropy estimate.  The caller should call
476  * credit_entropy_bits if this is appropriate.
477  *
478  * The pool is stirred with a primitive polynomial of the appropriate
479  * degree, and then twisted.  We twist by three bits at a time because
480  * it's cheap to do so and helps slightly in the expected case where
481  * the entropy is concentrated in the low-order bits.
482  */
483 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
484 			    int nbytes, __u8 out[64])
485 {
486 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
487 	int input_rotate;
488 	int wordmask = r->poolinfo->poolwords - 1;
489 	const char *bytes = in;
490 	__u32 w;
491 
492 	tap1 = r->poolinfo->tap1;
493 	tap2 = r->poolinfo->tap2;
494 	tap3 = r->poolinfo->tap3;
495 	tap4 = r->poolinfo->tap4;
496 	tap5 = r->poolinfo->tap5;
497 
498 	smp_rmb();
499 	input_rotate = ACCESS_ONCE(r->input_rotate);
500 	i = ACCESS_ONCE(r->add_ptr);
501 
502 	/* mix one byte at a time to simplify size handling and churn faster */
503 	while (nbytes--) {
504 		w = rol32(*bytes++, input_rotate & 31);
505 		i = (i - 1) & wordmask;
506 
507 		/* XOR in the various taps */
508 		w ^= r->pool[i];
509 		w ^= r->pool[(i + tap1) & wordmask];
510 		w ^= r->pool[(i + tap2) & wordmask];
511 		w ^= r->pool[(i + tap3) & wordmask];
512 		w ^= r->pool[(i + tap4) & wordmask];
513 		w ^= r->pool[(i + tap5) & wordmask];
514 
515 		/* Mix the result back in with a twist */
516 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
517 
518 		/*
519 		 * Normally, we add 7 bits of rotation to the pool.
520 		 * At the beginning of the pool, add an extra 7 bits
521 		 * rotation, so that successive passes spread the
522 		 * input bits across the pool evenly.
523 		 */
524 		input_rotate += i ? 7 : 14;
525 	}
526 
527 	ACCESS_ONCE(r->input_rotate) = input_rotate;
528 	ACCESS_ONCE(r->add_ptr) = i;
529 	smp_wmb();
530 
531 	if (out)
532 		for (j = 0; j < 16; j++)
533 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
534 }
535 
536 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
537 			     int nbytes, __u8 out[64])
538 {
539 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
540 	_mix_pool_bytes(r, in, nbytes, out);
541 }
542 
543 static void mix_pool_bytes(struct entropy_store *r, const void *in,
544 			   int nbytes, __u8 out[64])
545 {
546 	unsigned long flags;
547 
548 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
549 	spin_lock_irqsave(&r->lock, flags);
550 	_mix_pool_bytes(r, in, nbytes, out);
551 	spin_unlock_irqrestore(&r->lock, flags);
552 }
553 
554 struct fast_pool {
555 	__u32		pool[4];
556 	unsigned long	last;
557 	unsigned short	count;
558 	unsigned char	rotate;
559 	unsigned char	last_timer_intr;
560 };
561 
562 /*
563  * This is a fast mixing routine used by the interrupt randomness
564  * collector.  It's hardcoded for an 128 bit pool and assumes that any
565  * locks that might be needed are taken by the caller.
566  */
567 static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
568 {
569 	const char	*bytes = in;
570 	__u32		w;
571 	unsigned	i = f->count;
572 	unsigned	input_rotate = f->rotate;
573 
574 	while (nbytes--) {
575 		w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
576 			f->pool[(i + 1) & 3];
577 		f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
578 		input_rotate += (i++ & 3) ? 7 : 14;
579 	}
580 	f->count = i;
581 	f->rotate = input_rotate;
582 }
583 
584 /*
585  * Credit (or debit) the entropy store with n bits of entropy
586  */
587 static void credit_entropy_bits(struct entropy_store *r, int nbits)
588 {
589 	int entropy_count, orig;
590 
591 	if (!nbits)
592 		return;
593 
594 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
595 retry:
596 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
597 	entropy_count += nbits;
598 
599 	if (entropy_count < 0) {
600 		DEBUG_ENT("negative entropy/overflow\n");
601 		entropy_count = 0;
602 	} else if (entropy_count > r->poolinfo->POOLBITS)
603 		entropy_count = r->poolinfo->POOLBITS;
604 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
605 		goto retry;
606 
607 	if (!r->initialized && nbits > 0) {
608 		r->entropy_total += nbits;
609 		if (r->entropy_total > 128)
610 			r->initialized = 1;
611 	}
612 
613 	trace_credit_entropy_bits(r->name, nbits, entropy_count,
614 				  r->entropy_total, _RET_IP_);
615 
616 	/* should we wake readers? */
617 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
618 		wake_up_interruptible(&random_read_wait);
619 		kill_fasync(&fasync, SIGIO, POLL_IN);
620 	}
621 }
622 
623 /*********************************************************************
624  *
625  * Entropy input management
626  *
627  *********************************************************************/
628 
629 /* There is one of these per entropy source */
630 struct timer_rand_state {
631 	cycles_t last_time;
632 	long last_delta, last_delta2;
633 	unsigned dont_count_entropy:1;
634 };
635 
636 /*
637  * Add device- or boot-specific data to the input and nonblocking
638  * pools to help initialize them to unique values.
639  *
640  * None of this adds any entropy, it is meant to avoid the
641  * problem of the nonblocking pool having similar initial state
642  * across largely identical devices.
643  */
644 void add_device_randomness(const void *buf, unsigned int size)
645 {
646 	unsigned long time = get_cycles() ^ jiffies;
647 
648 	mix_pool_bytes(&input_pool, buf, size, NULL);
649 	mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
650 	mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
651 	mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
652 }
653 EXPORT_SYMBOL(add_device_randomness);
654 
655 static struct timer_rand_state input_timer_state;
656 
657 /*
658  * This function adds entropy to the entropy "pool" by using timing
659  * delays.  It uses the timer_rand_state structure to make an estimate
660  * of how many bits of entropy this call has added to the pool.
661  *
662  * The number "num" is also added to the pool - it should somehow describe
663  * the type of event which just happened.  This is currently 0-255 for
664  * keyboard scan codes, and 256 upwards for interrupts.
665  *
666  */
667 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
668 {
669 	struct {
670 		long jiffies;
671 		unsigned cycles;
672 		unsigned num;
673 	} sample;
674 	long delta, delta2, delta3;
675 
676 	preempt_disable();
677 	/* if over the trickle threshold, use only 1 in 4096 samples */
678 	if (input_pool.entropy_count > trickle_thresh &&
679 	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
680 		goto out;
681 
682 	sample.jiffies = jiffies;
683 	sample.cycles = get_cycles();
684 	sample.num = num;
685 	mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
686 
687 	/*
688 	 * Calculate number of bits of randomness we probably added.
689 	 * We take into account the first, second and third-order deltas
690 	 * in order to make our estimate.
691 	 */
692 
693 	if (!state->dont_count_entropy) {
694 		delta = sample.jiffies - state->last_time;
695 		state->last_time = sample.jiffies;
696 
697 		delta2 = delta - state->last_delta;
698 		state->last_delta = delta;
699 
700 		delta3 = delta2 - state->last_delta2;
701 		state->last_delta2 = delta2;
702 
703 		if (delta < 0)
704 			delta = -delta;
705 		if (delta2 < 0)
706 			delta2 = -delta2;
707 		if (delta3 < 0)
708 			delta3 = -delta3;
709 		if (delta > delta2)
710 			delta = delta2;
711 		if (delta > delta3)
712 			delta = delta3;
713 
714 		/*
715 		 * delta is now minimum absolute delta.
716 		 * Round down by 1 bit on general principles,
717 		 * and limit entropy entimate to 12 bits.
718 		 */
719 		credit_entropy_bits(&input_pool,
720 				    min_t(int, fls(delta>>1), 11));
721 	}
722 out:
723 	preempt_enable();
724 }
725 
726 void add_input_randomness(unsigned int type, unsigned int code,
727 				 unsigned int value)
728 {
729 	static unsigned char last_value;
730 
731 	/* ignore autorepeat and the like */
732 	if (value == last_value)
733 		return;
734 
735 	DEBUG_ENT("input event\n");
736 	last_value = value;
737 	add_timer_randomness(&input_timer_state,
738 			     (type << 4) ^ code ^ (code >> 4) ^ value);
739 }
740 EXPORT_SYMBOL_GPL(add_input_randomness);
741 
742 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
743 
744 void add_interrupt_randomness(int irq, int irq_flags)
745 {
746 	struct entropy_store	*r;
747 	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
748 	struct pt_regs		*regs = get_irq_regs();
749 	unsigned long		now = jiffies;
750 	__u32			input[4], cycles = get_cycles();
751 
752 	input[0] = cycles ^ jiffies;
753 	input[1] = irq;
754 	if (regs) {
755 		__u64 ip = instruction_pointer(regs);
756 		input[2] = ip;
757 		input[3] = ip >> 32;
758 	}
759 
760 	fast_mix(fast_pool, input, sizeof(input));
761 
762 	if ((fast_pool->count & 1023) &&
763 	    !time_after(now, fast_pool->last + HZ))
764 		return;
765 
766 	fast_pool->last = now;
767 
768 	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
769 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
770 	/*
771 	 * If we don't have a valid cycle counter, and we see
772 	 * back-to-back timer interrupts, then skip giving credit for
773 	 * any entropy.
774 	 */
775 	if (cycles == 0) {
776 		if (irq_flags & __IRQF_TIMER) {
777 			if (fast_pool->last_timer_intr)
778 				return;
779 			fast_pool->last_timer_intr = 1;
780 		} else
781 			fast_pool->last_timer_intr = 0;
782 	}
783 	credit_entropy_bits(r, 1);
784 }
785 
786 #ifdef CONFIG_BLOCK
787 void add_disk_randomness(struct gendisk *disk)
788 {
789 	if (!disk || !disk->random)
790 		return;
791 	/* first major is 1, so we get >= 0x200 here */
792 	DEBUG_ENT("disk event %d:%d\n",
793 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
794 
795 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
796 }
797 #endif
798 
799 /*********************************************************************
800  *
801  * Entropy extraction routines
802  *
803  *********************************************************************/
804 
805 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
806 			       size_t nbytes, int min, int rsvd);
807 
808 /*
809  * This utility inline function is responsible for transferring entropy
810  * from the primary pool to the secondary extraction pool. We make
811  * sure we pull enough for a 'catastrophic reseed'.
812  */
813 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
814 {
815 	__u32	tmp[OUTPUT_POOL_WORDS];
816 
817 	if (r->pull && r->entropy_count < nbytes * 8 &&
818 	    r->entropy_count < r->poolinfo->POOLBITS) {
819 		/* If we're limited, always leave two wakeup worth's BITS */
820 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
821 		int bytes = nbytes;
822 
823 		/* pull at least as many as BYTES as wakeup BITS */
824 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
825 		/* but never more than the buffer size */
826 		bytes = min_t(int, bytes, sizeof(tmp));
827 
828 		DEBUG_ENT("going to reseed %s with %d bits "
829 			  "(%zu of %d requested)\n",
830 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
831 
832 		bytes = extract_entropy(r->pull, tmp, bytes,
833 					random_read_wakeup_thresh / 8, rsvd);
834 		mix_pool_bytes(r, tmp, bytes, NULL);
835 		credit_entropy_bits(r, bytes*8);
836 	}
837 }
838 
839 /*
840  * These functions extracts randomness from the "entropy pool", and
841  * returns it in a buffer.
842  *
843  * The min parameter specifies the minimum amount we can pull before
844  * failing to avoid races that defeat catastrophic reseeding while the
845  * reserved parameter indicates how much entropy we must leave in the
846  * pool after each pull to avoid starving other readers.
847  *
848  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
849  */
850 
851 static size_t account(struct entropy_store *r, size_t nbytes, int min,
852 		      int reserved)
853 {
854 	unsigned long flags;
855 	int wakeup_write = 0;
856 
857 	/* Hold lock while accounting */
858 	spin_lock_irqsave(&r->lock, flags);
859 
860 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
861 	DEBUG_ENT("trying to extract %zu bits from %s\n",
862 		  nbytes * 8, r->name);
863 
864 	/* Can we pull enough? */
865 	if (r->entropy_count / 8 < min + reserved) {
866 		nbytes = 0;
867 	} else {
868 		int entropy_count, orig;
869 retry:
870 		entropy_count = orig = ACCESS_ONCE(r->entropy_count);
871 		/* If limited, never pull more than available */
872 		if (r->limit && nbytes + reserved >= entropy_count / 8)
873 			nbytes = entropy_count/8 - reserved;
874 
875 		if (entropy_count / 8 >= nbytes + reserved) {
876 			entropy_count -= nbytes*8;
877 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
878 				goto retry;
879 		} else {
880 			entropy_count = reserved;
881 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
882 				goto retry;
883 		}
884 
885 		if (entropy_count < random_write_wakeup_thresh)
886 			wakeup_write = 1;
887 	}
888 
889 	DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
890 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
891 
892 	spin_unlock_irqrestore(&r->lock, flags);
893 
894 	if (wakeup_write) {
895 		wake_up_interruptible(&random_write_wait);
896 		kill_fasync(&fasync, SIGIO, POLL_OUT);
897 	}
898 
899 	return nbytes;
900 }
901 
902 static void extract_buf(struct entropy_store *r, __u8 *out)
903 {
904 	int i;
905 	union {
906 		__u32 w[5];
907 		unsigned long l[LONGS(EXTRACT_SIZE)];
908 	} hash;
909 	__u32 workspace[SHA_WORKSPACE_WORDS];
910 	__u8 extract[64];
911 	unsigned long flags;
912 
913 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
914 	sha_init(hash.w);
915 	spin_lock_irqsave(&r->lock, flags);
916 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
917 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
918 
919 	/*
920 	 * We mix the hash back into the pool to prevent backtracking
921 	 * attacks (where the attacker knows the state of the pool
922 	 * plus the current outputs, and attempts to find previous
923 	 * ouputs), unless the hash function can be inverted. By
924 	 * mixing at least a SHA1 worth of hash data back, we make
925 	 * brute-forcing the feedback as hard as brute-forcing the
926 	 * hash.
927 	 */
928 	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
929 	spin_unlock_irqrestore(&r->lock, flags);
930 
931 	/*
932 	 * To avoid duplicates, we atomically extract a portion of the
933 	 * pool while mixing, and hash one final time.
934 	 */
935 	sha_transform(hash.w, extract, workspace);
936 	memset(extract, 0, sizeof(extract));
937 	memset(workspace, 0, sizeof(workspace));
938 
939 	/*
940 	 * In case the hash function has some recognizable output
941 	 * pattern, we fold it in half. Thus, we always feed back
942 	 * twice as much data as we output.
943 	 */
944 	hash.w[0] ^= hash.w[3];
945 	hash.w[1] ^= hash.w[4];
946 	hash.w[2] ^= rol32(hash.w[2], 16);
947 
948 	/*
949 	 * If we have a architectural hardware random number
950 	 * generator, mix that in, too.
951 	 */
952 	for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
953 		unsigned long v;
954 		if (!arch_get_random_long(&v))
955 			break;
956 		hash.l[i] ^= v;
957 	}
958 
959 	memcpy(out, &hash, EXTRACT_SIZE);
960 	memset(&hash, 0, sizeof(hash));
961 }
962 
963 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
964 				 size_t nbytes, int min, int reserved)
965 {
966 	ssize_t ret = 0, i;
967 	__u8 tmp[EXTRACT_SIZE];
968 	unsigned long flags;
969 
970 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
971 	if (fips_enabled) {
972 		spin_lock_irqsave(&r->lock, flags);
973 		if (!r->last_data_init) {
974 			r->last_data_init = true;
975 			spin_unlock_irqrestore(&r->lock, flags);
976 			trace_extract_entropy(r->name, EXTRACT_SIZE,
977 					      r->entropy_count, _RET_IP_);
978 			xfer_secondary_pool(r, EXTRACT_SIZE);
979 			extract_buf(r, tmp);
980 			spin_lock_irqsave(&r->lock, flags);
981 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
982 		}
983 		spin_unlock_irqrestore(&r->lock, flags);
984 	}
985 
986 	trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
987 	xfer_secondary_pool(r, nbytes);
988 	nbytes = account(r, nbytes, min, reserved);
989 
990 	while (nbytes) {
991 		extract_buf(r, tmp);
992 
993 		if (fips_enabled) {
994 			spin_lock_irqsave(&r->lock, flags);
995 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
996 				panic("Hardware RNG duplicated output!\n");
997 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
998 			spin_unlock_irqrestore(&r->lock, flags);
999 		}
1000 		i = min_t(int, nbytes, EXTRACT_SIZE);
1001 		memcpy(buf, tmp, i);
1002 		nbytes -= i;
1003 		buf += i;
1004 		ret += i;
1005 	}
1006 
1007 	/* Wipe data just returned from memory */
1008 	memset(tmp, 0, sizeof(tmp));
1009 
1010 	return ret;
1011 }
1012 
1013 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1014 				    size_t nbytes)
1015 {
1016 	ssize_t ret = 0, i;
1017 	__u8 tmp[EXTRACT_SIZE];
1018 
1019 	trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
1020 	xfer_secondary_pool(r, nbytes);
1021 	nbytes = account(r, nbytes, 0, 0);
1022 
1023 	while (nbytes) {
1024 		if (need_resched()) {
1025 			if (signal_pending(current)) {
1026 				if (ret == 0)
1027 					ret = -ERESTARTSYS;
1028 				break;
1029 			}
1030 			schedule();
1031 		}
1032 
1033 		extract_buf(r, tmp);
1034 		i = min_t(int, nbytes, EXTRACT_SIZE);
1035 		if (copy_to_user(buf, tmp, i)) {
1036 			ret = -EFAULT;
1037 			break;
1038 		}
1039 
1040 		nbytes -= i;
1041 		buf += i;
1042 		ret += i;
1043 	}
1044 
1045 	/* Wipe data just returned from memory */
1046 	memset(tmp, 0, sizeof(tmp));
1047 
1048 	return ret;
1049 }
1050 
1051 /*
1052  * This function is the exported kernel interface.  It returns some
1053  * number of good random numbers, suitable for key generation, seeding
1054  * TCP sequence numbers, etc.  It does not use the hw random number
1055  * generator, if available; use get_random_bytes_arch() for that.
1056  */
1057 void get_random_bytes(void *buf, int nbytes)
1058 {
1059 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1060 }
1061 EXPORT_SYMBOL(get_random_bytes);
1062 
1063 /*
1064  * This function will use the architecture-specific hardware random
1065  * number generator if it is available.  The arch-specific hw RNG will
1066  * almost certainly be faster than what we can do in software, but it
1067  * is impossible to verify that it is implemented securely (as
1068  * opposed, to, say, the AES encryption of a sequence number using a
1069  * key known by the NSA).  So it's useful if we need the speed, but
1070  * only if we're willing to trust the hardware manufacturer not to
1071  * have put in a back door.
1072  */
1073 void get_random_bytes_arch(void *buf, int nbytes)
1074 {
1075 	char *p = buf;
1076 
1077 	trace_get_random_bytes(nbytes, _RET_IP_);
1078 	while (nbytes) {
1079 		unsigned long v;
1080 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1081 
1082 		if (!arch_get_random_long(&v))
1083 			break;
1084 
1085 		memcpy(p, &v, chunk);
1086 		p += chunk;
1087 		nbytes -= chunk;
1088 	}
1089 
1090 	if (nbytes)
1091 		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1092 }
1093 EXPORT_SYMBOL(get_random_bytes_arch);
1094 
1095 
1096 /*
1097  * init_std_data - initialize pool with system data
1098  *
1099  * @r: pool to initialize
1100  *
1101  * This function clears the pool's entropy count and mixes some system
1102  * data into the pool to prepare it for use. The pool is not cleared
1103  * as that can only decrease the entropy in the pool.
1104  */
1105 static void init_std_data(struct entropy_store *r)
1106 {
1107 	int i;
1108 	ktime_t now = ktime_get_real();
1109 	unsigned long rv;
1110 
1111 	r->entropy_count = 0;
1112 	r->entropy_total = 0;
1113 	r->last_data_init = false;
1114 	mix_pool_bytes(r, &now, sizeof(now), NULL);
1115 	for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1116 		if (!arch_get_random_long(&rv))
1117 			break;
1118 		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1119 	}
1120 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1121 }
1122 
1123 /*
1124  * Note that setup_arch() may call add_device_randomness()
1125  * long before we get here. This allows seeding of the pools
1126  * with some platform dependent data very early in the boot
1127  * process. But it limits our options here. We must use
1128  * statically allocated structures that already have all
1129  * initializations complete at compile time. We should also
1130  * take care not to overwrite the precious per platform data
1131  * we were given.
1132  */
1133 static int rand_initialize(void)
1134 {
1135 	init_std_data(&input_pool);
1136 	init_std_data(&blocking_pool);
1137 	init_std_data(&nonblocking_pool);
1138 	return 0;
1139 }
1140 module_init(rand_initialize);
1141 
1142 #ifdef CONFIG_BLOCK
1143 void rand_initialize_disk(struct gendisk *disk)
1144 {
1145 	struct timer_rand_state *state;
1146 
1147 	/*
1148 	 * If kzalloc returns null, we just won't use that entropy
1149 	 * source.
1150 	 */
1151 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1152 	if (state)
1153 		disk->random = state;
1154 }
1155 #endif
1156 
1157 static ssize_t
1158 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1159 {
1160 	ssize_t n, retval = 0, count = 0;
1161 
1162 	if (nbytes == 0)
1163 		return 0;
1164 
1165 	while (nbytes > 0) {
1166 		n = nbytes;
1167 		if (n > SEC_XFER_SIZE)
1168 			n = SEC_XFER_SIZE;
1169 
1170 		DEBUG_ENT("reading %zu bits\n", n*8);
1171 
1172 		n = extract_entropy_user(&blocking_pool, buf, n);
1173 
1174 		if (n < 0) {
1175 			retval = n;
1176 			break;
1177 		}
1178 
1179 		DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1180 			  n*8, (nbytes-n)*8);
1181 
1182 		if (n == 0) {
1183 			if (file->f_flags & O_NONBLOCK) {
1184 				retval = -EAGAIN;
1185 				break;
1186 			}
1187 
1188 			DEBUG_ENT("sleeping?\n");
1189 
1190 			wait_event_interruptible(random_read_wait,
1191 				input_pool.entropy_count >=
1192 						 random_read_wakeup_thresh);
1193 
1194 			DEBUG_ENT("awake\n");
1195 
1196 			if (signal_pending(current)) {
1197 				retval = -ERESTARTSYS;
1198 				break;
1199 			}
1200 
1201 			continue;
1202 		}
1203 
1204 		count += n;
1205 		buf += n;
1206 		nbytes -= n;
1207 		break;		/* This break makes the device work */
1208 				/* like a named pipe */
1209 	}
1210 
1211 	return (count ? count : retval);
1212 }
1213 
1214 static ssize_t
1215 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1216 {
1217 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1218 }
1219 
1220 static unsigned int
1221 random_poll(struct file *file, poll_table * wait)
1222 {
1223 	unsigned int mask;
1224 
1225 	poll_wait(file, &random_read_wait, wait);
1226 	poll_wait(file, &random_write_wait, wait);
1227 	mask = 0;
1228 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1229 		mask |= POLLIN | POLLRDNORM;
1230 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1231 		mask |= POLLOUT | POLLWRNORM;
1232 	return mask;
1233 }
1234 
1235 static int
1236 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1237 {
1238 	size_t bytes;
1239 	__u32 buf[16];
1240 	const char __user *p = buffer;
1241 
1242 	while (count > 0) {
1243 		bytes = min(count, sizeof(buf));
1244 		if (copy_from_user(&buf, p, bytes))
1245 			return -EFAULT;
1246 
1247 		count -= bytes;
1248 		p += bytes;
1249 
1250 		mix_pool_bytes(r, buf, bytes, NULL);
1251 		cond_resched();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static ssize_t random_write(struct file *file, const char __user *buffer,
1258 			    size_t count, loff_t *ppos)
1259 {
1260 	size_t ret;
1261 
1262 	ret = write_pool(&blocking_pool, buffer, count);
1263 	if (ret)
1264 		return ret;
1265 	ret = write_pool(&nonblocking_pool, buffer, count);
1266 	if (ret)
1267 		return ret;
1268 
1269 	return (ssize_t)count;
1270 }
1271 
1272 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1273 {
1274 	int size, ent_count;
1275 	int __user *p = (int __user *)arg;
1276 	int retval;
1277 
1278 	switch (cmd) {
1279 	case RNDGETENTCNT:
1280 		/* inherently racy, no point locking */
1281 		if (put_user(input_pool.entropy_count, p))
1282 			return -EFAULT;
1283 		return 0;
1284 	case RNDADDTOENTCNT:
1285 		if (!capable(CAP_SYS_ADMIN))
1286 			return -EPERM;
1287 		if (get_user(ent_count, p))
1288 			return -EFAULT;
1289 		credit_entropy_bits(&input_pool, ent_count);
1290 		return 0;
1291 	case RNDADDENTROPY:
1292 		if (!capable(CAP_SYS_ADMIN))
1293 			return -EPERM;
1294 		if (get_user(ent_count, p++))
1295 			return -EFAULT;
1296 		if (ent_count < 0)
1297 			return -EINVAL;
1298 		if (get_user(size, p++))
1299 			return -EFAULT;
1300 		retval = write_pool(&input_pool, (const char __user *)p,
1301 				    size);
1302 		if (retval < 0)
1303 			return retval;
1304 		credit_entropy_bits(&input_pool, ent_count);
1305 		return 0;
1306 	case RNDZAPENTCNT:
1307 	case RNDCLEARPOOL:
1308 		/* Clear the entropy pool counters. */
1309 		if (!capable(CAP_SYS_ADMIN))
1310 			return -EPERM;
1311 		rand_initialize();
1312 		return 0;
1313 	default:
1314 		return -EINVAL;
1315 	}
1316 }
1317 
1318 static int random_fasync(int fd, struct file *filp, int on)
1319 {
1320 	return fasync_helper(fd, filp, on, &fasync);
1321 }
1322 
1323 const struct file_operations random_fops = {
1324 	.read  = random_read,
1325 	.write = random_write,
1326 	.poll  = random_poll,
1327 	.unlocked_ioctl = random_ioctl,
1328 	.fasync = random_fasync,
1329 	.llseek = noop_llseek,
1330 };
1331 
1332 const struct file_operations urandom_fops = {
1333 	.read  = urandom_read,
1334 	.write = random_write,
1335 	.unlocked_ioctl = random_ioctl,
1336 	.fasync = random_fasync,
1337 	.llseek = noop_llseek,
1338 };
1339 
1340 /***************************************************************
1341  * Random UUID interface
1342  *
1343  * Used here for a Boot ID, but can be useful for other kernel
1344  * drivers.
1345  ***************************************************************/
1346 
1347 /*
1348  * Generate random UUID
1349  */
1350 void generate_random_uuid(unsigned char uuid_out[16])
1351 {
1352 	get_random_bytes(uuid_out, 16);
1353 	/* Set UUID version to 4 --- truly random generation */
1354 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1355 	/* Set the UUID variant to DCE */
1356 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1357 }
1358 EXPORT_SYMBOL(generate_random_uuid);
1359 
1360 /********************************************************************
1361  *
1362  * Sysctl interface
1363  *
1364  ********************************************************************/
1365 
1366 #ifdef CONFIG_SYSCTL
1367 
1368 #include <linux/sysctl.h>
1369 
1370 static int min_read_thresh = 8, min_write_thresh;
1371 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1372 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1373 static char sysctl_bootid[16];
1374 
1375 /*
1376  * These functions is used to return both the bootid UUID, and random
1377  * UUID.  The difference is in whether table->data is NULL; if it is,
1378  * then a new UUID is generated and returned to the user.
1379  *
1380  * If the user accesses this via the proc interface, it will be returned
1381  * as an ASCII string in the standard UUID format.  If accesses via the
1382  * sysctl system call, it is returned as 16 bytes of binary data.
1383  */
1384 static int proc_do_uuid(struct ctl_table *table, int write,
1385 			void __user *buffer, size_t *lenp, loff_t *ppos)
1386 {
1387 	struct ctl_table fake_table;
1388 	unsigned char buf[64], tmp_uuid[16], *uuid;
1389 
1390 	uuid = table->data;
1391 	if (!uuid) {
1392 		uuid = tmp_uuid;
1393 		generate_random_uuid(uuid);
1394 	} else {
1395 		static DEFINE_SPINLOCK(bootid_spinlock);
1396 
1397 		spin_lock(&bootid_spinlock);
1398 		if (!uuid[8])
1399 			generate_random_uuid(uuid);
1400 		spin_unlock(&bootid_spinlock);
1401 	}
1402 
1403 	sprintf(buf, "%pU", uuid);
1404 
1405 	fake_table.data = buf;
1406 	fake_table.maxlen = sizeof(buf);
1407 
1408 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1409 }
1410 
1411 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1412 extern struct ctl_table random_table[];
1413 struct ctl_table random_table[] = {
1414 	{
1415 		.procname	= "poolsize",
1416 		.data		= &sysctl_poolsize,
1417 		.maxlen		= sizeof(int),
1418 		.mode		= 0444,
1419 		.proc_handler	= proc_dointvec,
1420 	},
1421 	{
1422 		.procname	= "entropy_avail",
1423 		.maxlen		= sizeof(int),
1424 		.mode		= 0444,
1425 		.proc_handler	= proc_dointvec,
1426 		.data		= &input_pool.entropy_count,
1427 	},
1428 	{
1429 		.procname	= "read_wakeup_threshold",
1430 		.data		= &random_read_wakeup_thresh,
1431 		.maxlen		= sizeof(int),
1432 		.mode		= 0644,
1433 		.proc_handler	= proc_dointvec_minmax,
1434 		.extra1		= &min_read_thresh,
1435 		.extra2		= &max_read_thresh,
1436 	},
1437 	{
1438 		.procname	= "write_wakeup_threshold",
1439 		.data		= &random_write_wakeup_thresh,
1440 		.maxlen		= sizeof(int),
1441 		.mode		= 0644,
1442 		.proc_handler	= proc_dointvec_minmax,
1443 		.extra1		= &min_write_thresh,
1444 		.extra2		= &max_write_thresh,
1445 	},
1446 	{
1447 		.procname	= "boot_id",
1448 		.data		= &sysctl_bootid,
1449 		.maxlen		= 16,
1450 		.mode		= 0444,
1451 		.proc_handler	= proc_do_uuid,
1452 	},
1453 	{
1454 		.procname	= "uuid",
1455 		.maxlen		= 16,
1456 		.mode		= 0444,
1457 		.proc_handler	= proc_do_uuid,
1458 	},
1459 	{ }
1460 };
1461 #endif 	/* CONFIG_SYSCTL */
1462 
1463 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1464 
1465 static int __init random_int_secret_init(void)
1466 {
1467 	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1468 	return 0;
1469 }
1470 late_initcall(random_int_secret_init);
1471 
1472 /*
1473  * Get a random word for internal kernel use only. Similar to urandom but
1474  * with the goal of minimal entropy pool depletion. As a result, the random
1475  * value is not cryptographically secure but for several uses the cost of
1476  * depleting entropy is too high
1477  */
1478 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1479 unsigned int get_random_int(void)
1480 {
1481 	__u32 *hash;
1482 	unsigned int ret;
1483 
1484 	if (arch_get_random_int(&ret))
1485 		return ret;
1486 
1487 	hash = get_cpu_var(get_random_int_hash);
1488 
1489 	hash[0] += current->pid + jiffies + get_cycles();
1490 	md5_transform(hash, random_int_secret);
1491 	ret = hash[0];
1492 	put_cpu_var(get_random_int_hash);
1493 
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL(get_random_int);
1497 
1498 /*
1499  * randomize_range() returns a start address such that
1500  *
1501  *    [...... <range> .....]
1502  *  start                  end
1503  *
1504  * a <range> with size "len" starting at the return value is inside in the
1505  * area defined by [start, end], but is otherwise randomized.
1506  */
1507 unsigned long
1508 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1509 {
1510 	unsigned long range = end - len - start;
1511 
1512 	if (end <= start + len)
1513 		return 0;
1514 	return PAGE_ALIGN(get_random_int() % range + start);
1515 }
1516