1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/kthread.h> 254 #include <linux/percpu.h> 255 #include <linux/cryptohash.h> 256 #include <linux/fips.h> 257 #include <linux/ptrace.h> 258 #include <linux/kmemcheck.h> 259 #include <linux/workqueue.h> 260 #include <linux/irq.h> 261 #include <linux/syscalls.h> 262 #include <linux/completion.h> 263 #include <linux/uuid.h> 264 265 #include <asm/processor.h> 266 #include <asm/uaccess.h> 267 #include <asm/irq.h> 268 #include <asm/irq_regs.h> 269 #include <asm/io.h> 270 271 #define CREATE_TRACE_POINTS 272 #include <trace/events/random.h> 273 274 /* #define ADD_INTERRUPT_BENCH */ 275 276 /* 277 * Configuration information 278 */ 279 #define INPUT_POOL_SHIFT 12 280 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 281 #define OUTPUT_POOL_SHIFT 10 282 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 283 #define SEC_XFER_SIZE 512 284 #define EXTRACT_SIZE 10 285 286 #define DEBUG_RANDOM_BOOT 0 287 288 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 289 290 /* 291 * To allow fractional bits to be tracked, the entropy_count field is 292 * denominated in units of 1/8th bits. 293 * 294 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 295 * credit_entropy_bits() needs to be 64 bits wide. 296 */ 297 #define ENTROPY_SHIFT 3 298 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 299 300 /* 301 * The minimum number of bits of entropy before we wake up a read on 302 * /dev/random. Should be enough to do a significant reseed. 303 */ 304 static int random_read_wakeup_bits = 64; 305 306 /* 307 * If the entropy count falls under this number of bits, then we 308 * should wake up processes which are selecting or polling on write 309 * access to /dev/random. 310 */ 311 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 312 313 /* 314 * The minimum number of seconds between urandom pool reseeding. We 315 * do this to limit the amount of entropy that can be drained from the 316 * input pool even if there are heavy demands on /dev/urandom. 317 */ 318 static int random_min_urandom_seed = 60; 319 320 /* 321 * Originally, we used a primitive polynomial of degree .poolwords 322 * over GF(2). The taps for various sizes are defined below. They 323 * were chosen to be evenly spaced except for the last tap, which is 1 324 * to get the twisting happening as fast as possible. 325 * 326 * For the purposes of better mixing, we use the CRC-32 polynomial as 327 * well to make a (modified) twisted Generalized Feedback Shift 328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 329 * generators. ACM Transactions on Modeling and Computer Simulation 330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 331 * GFSR generators II. ACM Transactions on Modeling and Computer 332 * Simulation 4:254-266) 333 * 334 * Thanks to Colin Plumb for suggesting this. 335 * 336 * The mixing operation is much less sensitive than the output hash, 337 * where we use SHA-1. All that we want of mixing operation is that 338 * it be a good non-cryptographic hash; i.e. it not produce collisions 339 * when fed "random" data of the sort we expect to see. As long as 340 * the pool state differs for different inputs, we have preserved the 341 * input entropy and done a good job. The fact that an intelligent 342 * attacker can construct inputs that will produce controlled 343 * alterations to the pool's state is not important because we don't 344 * consider such inputs to contribute any randomness. The only 345 * property we need with respect to them is that the attacker can't 346 * increase his/her knowledge of the pool's state. Since all 347 * additions are reversible (knowing the final state and the input, 348 * you can reconstruct the initial state), if an attacker has any 349 * uncertainty about the initial state, he/she can only shuffle that 350 * uncertainty about, but never cause any collisions (which would 351 * decrease the uncertainty). 352 * 353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 354 * Videau in their paper, "The Linux Pseudorandom Number Generator 355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 356 * paper, they point out that we are not using a true Twisted GFSR, 357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 358 * is, with only three taps, instead of the six that we are using). 359 * As a result, the resulting polynomial is neither primitive nor 360 * irreducible, and hence does not have a maximal period over 361 * GF(2**32). They suggest a slight change to the generator 362 * polynomial which improves the resulting TGFSR polynomial to be 363 * irreducible, which we have made here. 364 */ 365 static struct poolinfo { 366 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 367 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 368 int tap1, tap2, tap3, tap4, tap5; 369 } poolinfo_table[] = { 370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 372 { S(128), 104, 76, 51, 25, 1 }, 373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 375 { S(32), 26, 19, 14, 7, 1 }, 376 #if 0 377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 378 { S(2048), 1638, 1231, 819, 411, 1 }, 379 380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 381 { S(1024), 817, 615, 412, 204, 1 }, 382 383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 384 { S(1024), 819, 616, 410, 207, 2 }, 385 386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 387 { S(512), 411, 308, 208, 104, 1 }, 388 389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 390 { S(512), 409, 307, 206, 102, 2 }, 391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 392 { S(512), 409, 309, 205, 103, 2 }, 393 394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 395 { S(256), 205, 155, 101, 52, 1 }, 396 397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 398 { S(128), 103, 78, 51, 27, 2 }, 399 400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 401 { S(64), 52, 39, 26, 14, 1 }, 402 #endif 403 }; 404 405 /* 406 * Static global variables 407 */ 408 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 409 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 410 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait); 411 static struct fasync_struct *fasync; 412 413 static DEFINE_SPINLOCK(random_ready_list_lock); 414 static LIST_HEAD(random_ready_list); 415 416 /********************************************************************** 417 * 418 * OS independent entropy store. Here are the functions which handle 419 * storing entropy in an entropy pool. 420 * 421 **********************************************************************/ 422 423 struct entropy_store; 424 struct entropy_store { 425 /* read-only data: */ 426 const struct poolinfo *poolinfo; 427 __u32 *pool; 428 const char *name; 429 struct entropy_store *pull; 430 struct work_struct push_work; 431 432 /* read-write data: */ 433 unsigned long last_pulled; 434 spinlock_t lock; 435 unsigned short add_ptr; 436 unsigned short input_rotate; 437 int entropy_count; 438 int entropy_total; 439 unsigned int initialized:1; 440 unsigned int limit:1; 441 unsigned int last_data_init:1; 442 __u8 last_data[EXTRACT_SIZE]; 443 }; 444 445 static void push_to_pool(struct work_struct *work); 446 static __u32 input_pool_data[INPUT_POOL_WORDS]; 447 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 448 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 449 450 static struct entropy_store input_pool = { 451 .poolinfo = &poolinfo_table[0], 452 .name = "input", 453 .limit = 1, 454 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 455 .pool = input_pool_data 456 }; 457 458 static struct entropy_store blocking_pool = { 459 .poolinfo = &poolinfo_table[1], 460 .name = "blocking", 461 .limit = 1, 462 .pull = &input_pool, 463 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 464 .pool = blocking_pool_data, 465 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 466 push_to_pool), 467 }; 468 469 static struct entropy_store nonblocking_pool = { 470 .poolinfo = &poolinfo_table[1], 471 .name = "nonblocking", 472 .pull = &input_pool, 473 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 474 .pool = nonblocking_pool_data, 475 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work, 476 push_to_pool), 477 }; 478 479 static __u32 const twist_table[8] = { 480 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 481 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 482 483 /* 484 * This function adds bytes into the entropy "pool". It does not 485 * update the entropy estimate. The caller should call 486 * credit_entropy_bits if this is appropriate. 487 * 488 * The pool is stirred with a primitive polynomial of the appropriate 489 * degree, and then twisted. We twist by three bits at a time because 490 * it's cheap to do so and helps slightly in the expected case where 491 * the entropy is concentrated in the low-order bits. 492 */ 493 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 494 int nbytes) 495 { 496 unsigned long i, tap1, tap2, tap3, tap4, tap5; 497 int input_rotate; 498 int wordmask = r->poolinfo->poolwords - 1; 499 const char *bytes = in; 500 __u32 w; 501 502 tap1 = r->poolinfo->tap1; 503 tap2 = r->poolinfo->tap2; 504 tap3 = r->poolinfo->tap3; 505 tap4 = r->poolinfo->tap4; 506 tap5 = r->poolinfo->tap5; 507 508 input_rotate = r->input_rotate; 509 i = r->add_ptr; 510 511 /* mix one byte at a time to simplify size handling and churn faster */ 512 while (nbytes--) { 513 w = rol32(*bytes++, input_rotate); 514 i = (i - 1) & wordmask; 515 516 /* XOR in the various taps */ 517 w ^= r->pool[i]; 518 w ^= r->pool[(i + tap1) & wordmask]; 519 w ^= r->pool[(i + tap2) & wordmask]; 520 w ^= r->pool[(i + tap3) & wordmask]; 521 w ^= r->pool[(i + tap4) & wordmask]; 522 w ^= r->pool[(i + tap5) & wordmask]; 523 524 /* Mix the result back in with a twist */ 525 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 526 527 /* 528 * Normally, we add 7 bits of rotation to the pool. 529 * At the beginning of the pool, add an extra 7 bits 530 * rotation, so that successive passes spread the 531 * input bits across the pool evenly. 532 */ 533 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 534 } 535 536 r->input_rotate = input_rotate; 537 r->add_ptr = i; 538 } 539 540 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 541 int nbytes) 542 { 543 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 544 _mix_pool_bytes(r, in, nbytes); 545 } 546 547 static void mix_pool_bytes(struct entropy_store *r, const void *in, 548 int nbytes) 549 { 550 unsigned long flags; 551 552 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 553 spin_lock_irqsave(&r->lock, flags); 554 _mix_pool_bytes(r, in, nbytes); 555 spin_unlock_irqrestore(&r->lock, flags); 556 } 557 558 struct fast_pool { 559 __u32 pool[4]; 560 unsigned long last; 561 unsigned short reg_idx; 562 unsigned char count; 563 }; 564 565 /* 566 * This is a fast mixing routine used by the interrupt randomness 567 * collector. It's hardcoded for an 128 bit pool and assumes that any 568 * locks that might be needed are taken by the caller. 569 */ 570 static void fast_mix(struct fast_pool *f) 571 { 572 __u32 a = f->pool[0], b = f->pool[1]; 573 __u32 c = f->pool[2], d = f->pool[3]; 574 575 a += b; c += d; 576 b = rol32(b, 6); d = rol32(d, 27); 577 d ^= a; b ^= c; 578 579 a += b; c += d; 580 b = rol32(b, 16); d = rol32(d, 14); 581 d ^= a; b ^= c; 582 583 a += b; c += d; 584 b = rol32(b, 6); d = rol32(d, 27); 585 d ^= a; b ^= c; 586 587 a += b; c += d; 588 b = rol32(b, 16); d = rol32(d, 14); 589 d ^= a; b ^= c; 590 591 f->pool[0] = a; f->pool[1] = b; 592 f->pool[2] = c; f->pool[3] = d; 593 f->count++; 594 } 595 596 static void process_random_ready_list(void) 597 { 598 unsigned long flags; 599 struct random_ready_callback *rdy, *tmp; 600 601 spin_lock_irqsave(&random_ready_list_lock, flags); 602 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 603 struct module *owner = rdy->owner; 604 605 list_del_init(&rdy->list); 606 rdy->func(rdy); 607 module_put(owner); 608 } 609 spin_unlock_irqrestore(&random_ready_list_lock, flags); 610 } 611 612 /* 613 * Credit (or debit) the entropy store with n bits of entropy. 614 * Use credit_entropy_bits_safe() if the value comes from userspace 615 * or otherwise should be checked for extreme values. 616 */ 617 static void credit_entropy_bits(struct entropy_store *r, int nbits) 618 { 619 int entropy_count, orig; 620 const int pool_size = r->poolinfo->poolfracbits; 621 int nfrac = nbits << ENTROPY_SHIFT; 622 623 if (!nbits) 624 return; 625 626 retry: 627 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 628 if (nfrac < 0) { 629 /* Debit */ 630 entropy_count += nfrac; 631 } else { 632 /* 633 * Credit: we have to account for the possibility of 634 * overwriting already present entropy. Even in the 635 * ideal case of pure Shannon entropy, new contributions 636 * approach the full value asymptotically: 637 * 638 * entropy <- entropy + (pool_size - entropy) * 639 * (1 - exp(-add_entropy/pool_size)) 640 * 641 * For add_entropy <= pool_size/2 then 642 * (1 - exp(-add_entropy/pool_size)) >= 643 * (add_entropy/pool_size)*0.7869... 644 * so we can approximate the exponential with 645 * 3/4*add_entropy/pool_size and still be on the 646 * safe side by adding at most pool_size/2 at a time. 647 * 648 * The use of pool_size-2 in the while statement is to 649 * prevent rounding artifacts from making the loop 650 * arbitrarily long; this limits the loop to log2(pool_size)*2 651 * turns no matter how large nbits is. 652 */ 653 int pnfrac = nfrac; 654 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 655 /* The +2 corresponds to the /4 in the denominator */ 656 657 do { 658 unsigned int anfrac = min(pnfrac, pool_size/2); 659 unsigned int add = 660 ((pool_size - entropy_count)*anfrac*3) >> s; 661 662 entropy_count += add; 663 pnfrac -= anfrac; 664 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 665 } 666 667 if (unlikely(entropy_count < 0)) { 668 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 669 r->name, entropy_count); 670 WARN_ON(1); 671 entropy_count = 0; 672 } else if (entropy_count > pool_size) 673 entropy_count = pool_size; 674 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 675 goto retry; 676 677 r->entropy_total += nbits; 678 if (!r->initialized && r->entropy_total > 128) { 679 r->initialized = 1; 680 r->entropy_total = 0; 681 if (r == &nonblocking_pool) { 682 prandom_reseed_late(); 683 process_random_ready_list(); 684 wake_up_all(&urandom_init_wait); 685 pr_notice("random: %s pool is initialized\n", r->name); 686 } 687 } 688 689 trace_credit_entropy_bits(r->name, nbits, 690 entropy_count >> ENTROPY_SHIFT, 691 r->entropy_total, _RET_IP_); 692 693 if (r == &input_pool) { 694 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 695 696 /* should we wake readers? */ 697 if (entropy_bits >= random_read_wakeup_bits) { 698 wake_up_interruptible(&random_read_wait); 699 kill_fasync(&fasync, SIGIO, POLL_IN); 700 } 701 /* If the input pool is getting full, send some 702 * entropy to the two output pools, flipping back and 703 * forth between them, until the output pools are 75% 704 * full. 705 */ 706 if (entropy_bits > random_write_wakeup_bits && 707 r->initialized && 708 r->entropy_total >= 2*random_read_wakeup_bits) { 709 static struct entropy_store *last = &blocking_pool; 710 struct entropy_store *other = &blocking_pool; 711 712 if (last == &blocking_pool) 713 other = &nonblocking_pool; 714 if (other->entropy_count <= 715 3 * other->poolinfo->poolfracbits / 4) 716 last = other; 717 if (last->entropy_count <= 718 3 * last->poolinfo->poolfracbits / 4) { 719 schedule_work(&last->push_work); 720 r->entropy_total = 0; 721 } 722 } 723 } 724 } 725 726 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits) 727 { 728 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 729 730 /* Cap the value to avoid overflows */ 731 nbits = min(nbits, nbits_max); 732 nbits = max(nbits, -nbits_max); 733 734 credit_entropy_bits(r, nbits); 735 } 736 737 /********************************************************************* 738 * 739 * Entropy input management 740 * 741 *********************************************************************/ 742 743 /* There is one of these per entropy source */ 744 struct timer_rand_state { 745 cycles_t last_time; 746 long last_delta, last_delta2; 747 unsigned dont_count_entropy:1; 748 }; 749 750 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 751 752 /* 753 * Add device- or boot-specific data to the input and nonblocking 754 * pools to help initialize them to unique values. 755 * 756 * None of this adds any entropy, it is meant to avoid the 757 * problem of the nonblocking pool having similar initial state 758 * across largely identical devices. 759 */ 760 void add_device_randomness(const void *buf, unsigned int size) 761 { 762 unsigned long time = random_get_entropy() ^ jiffies; 763 unsigned long flags; 764 765 trace_add_device_randomness(size, _RET_IP_); 766 spin_lock_irqsave(&input_pool.lock, flags); 767 _mix_pool_bytes(&input_pool, buf, size); 768 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 769 spin_unlock_irqrestore(&input_pool.lock, flags); 770 771 spin_lock_irqsave(&nonblocking_pool.lock, flags); 772 _mix_pool_bytes(&nonblocking_pool, buf, size); 773 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time)); 774 spin_unlock_irqrestore(&nonblocking_pool.lock, flags); 775 } 776 EXPORT_SYMBOL(add_device_randomness); 777 778 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 779 780 /* 781 * This function adds entropy to the entropy "pool" by using timing 782 * delays. It uses the timer_rand_state structure to make an estimate 783 * of how many bits of entropy this call has added to the pool. 784 * 785 * The number "num" is also added to the pool - it should somehow describe 786 * the type of event which just happened. This is currently 0-255 for 787 * keyboard scan codes, and 256 upwards for interrupts. 788 * 789 */ 790 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 791 { 792 struct entropy_store *r; 793 struct { 794 long jiffies; 795 unsigned cycles; 796 unsigned num; 797 } sample; 798 long delta, delta2, delta3; 799 800 preempt_disable(); 801 802 sample.jiffies = jiffies; 803 sample.cycles = random_get_entropy(); 804 sample.num = num; 805 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 806 mix_pool_bytes(r, &sample, sizeof(sample)); 807 808 /* 809 * Calculate number of bits of randomness we probably added. 810 * We take into account the first, second and third-order deltas 811 * in order to make our estimate. 812 */ 813 814 if (!state->dont_count_entropy) { 815 delta = sample.jiffies - state->last_time; 816 state->last_time = sample.jiffies; 817 818 delta2 = delta - state->last_delta; 819 state->last_delta = delta; 820 821 delta3 = delta2 - state->last_delta2; 822 state->last_delta2 = delta2; 823 824 if (delta < 0) 825 delta = -delta; 826 if (delta2 < 0) 827 delta2 = -delta2; 828 if (delta3 < 0) 829 delta3 = -delta3; 830 if (delta > delta2) 831 delta = delta2; 832 if (delta > delta3) 833 delta = delta3; 834 835 /* 836 * delta is now minimum absolute delta. 837 * Round down by 1 bit on general principles, 838 * and limit entropy entimate to 12 bits. 839 */ 840 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 841 } 842 preempt_enable(); 843 } 844 845 void add_input_randomness(unsigned int type, unsigned int code, 846 unsigned int value) 847 { 848 static unsigned char last_value; 849 850 /* ignore autorepeat and the like */ 851 if (value == last_value) 852 return; 853 854 last_value = value; 855 add_timer_randomness(&input_timer_state, 856 (type << 4) ^ code ^ (code >> 4) ^ value); 857 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 858 } 859 EXPORT_SYMBOL_GPL(add_input_randomness); 860 861 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 862 863 #ifdef ADD_INTERRUPT_BENCH 864 static unsigned long avg_cycles, avg_deviation; 865 866 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 867 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 868 869 static void add_interrupt_bench(cycles_t start) 870 { 871 long delta = random_get_entropy() - start; 872 873 /* Use a weighted moving average */ 874 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 875 avg_cycles += delta; 876 /* And average deviation */ 877 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 878 avg_deviation += delta; 879 } 880 #else 881 #define add_interrupt_bench(x) 882 #endif 883 884 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 885 { 886 __u32 *ptr = (__u32 *) regs; 887 888 if (regs == NULL) 889 return 0; 890 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32)) 891 f->reg_idx = 0; 892 return *(ptr + f->reg_idx++); 893 } 894 895 void add_interrupt_randomness(int irq, int irq_flags) 896 { 897 struct entropy_store *r; 898 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 899 struct pt_regs *regs = get_irq_regs(); 900 unsigned long now = jiffies; 901 cycles_t cycles = random_get_entropy(); 902 __u32 c_high, j_high; 903 __u64 ip; 904 unsigned long seed; 905 int credit = 0; 906 907 if (cycles == 0) 908 cycles = get_reg(fast_pool, regs); 909 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 910 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 911 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 912 fast_pool->pool[1] ^= now ^ c_high; 913 ip = regs ? instruction_pointer(regs) : _RET_IP_; 914 fast_pool->pool[2] ^= ip; 915 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 916 get_reg(fast_pool, regs); 917 918 fast_mix(fast_pool); 919 add_interrupt_bench(cycles); 920 921 if ((fast_pool->count < 64) && 922 !time_after(now, fast_pool->last + HZ)) 923 return; 924 925 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 926 if (!spin_trylock(&r->lock)) 927 return; 928 929 fast_pool->last = now; 930 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 931 932 /* 933 * If we have architectural seed generator, produce a seed and 934 * add it to the pool. For the sake of paranoia don't let the 935 * architectural seed generator dominate the input from the 936 * interrupt noise. 937 */ 938 if (arch_get_random_seed_long(&seed)) { 939 __mix_pool_bytes(r, &seed, sizeof(seed)); 940 credit = 1; 941 } 942 spin_unlock(&r->lock); 943 944 fast_pool->count = 0; 945 946 /* award one bit for the contents of the fast pool */ 947 credit_entropy_bits(r, credit + 1); 948 } 949 950 #ifdef CONFIG_BLOCK 951 void add_disk_randomness(struct gendisk *disk) 952 { 953 if (!disk || !disk->random) 954 return; 955 /* first major is 1, so we get >= 0x200 here */ 956 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 957 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 958 } 959 EXPORT_SYMBOL_GPL(add_disk_randomness); 960 #endif 961 962 /********************************************************************* 963 * 964 * Entropy extraction routines 965 * 966 *********************************************************************/ 967 968 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 969 size_t nbytes, int min, int rsvd); 970 971 /* 972 * This utility inline function is responsible for transferring entropy 973 * from the primary pool to the secondary extraction pool. We make 974 * sure we pull enough for a 'catastrophic reseed'. 975 */ 976 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 977 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 978 { 979 if (!r->pull || 980 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 981 r->entropy_count > r->poolinfo->poolfracbits) 982 return; 983 984 if (r->limit == 0 && random_min_urandom_seed) { 985 unsigned long now = jiffies; 986 987 if (time_before(now, 988 r->last_pulled + random_min_urandom_seed * HZ)) 989 return; 990 r->last_pulled = now; 991 } 992 993 _xfer_secondary_pool(r, nbytes); 994 } 995 996 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 997 { 998 __u32 tmp[OUTPUT_POOL_WORDS]; 999 1000 /* For /dev/random's pool, always leave two wakeups' worth */ 1001 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4; 1002 int bytes = nbytes; 1003 1004 /* pull at least as much as a wakeup */ 1005 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1006 /* but never more than the buffer size */ 1007 bytes = min_t(int, bytes, sizeof(tmp)); 1008 1009 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1010 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1011 bytes = extract_entropy(r->pull, tmp, bytes, 1012 random_read_wakeup_bits / 8, rsvd_bytes); 1013 mix_pool_bytes(r, tmp, bytes); 1014 credit_entropy_bits(r, bytes*8); 1015 } 1016 1017 /* 1018 * Used as a workqueue function so that when the input pool is getting 1019 * full, we can "spill over" some entropy to the output pools. That 1020 * way the output pools can store some of the excess entropy instead 1021 * of letting it go to waste. 1022 */ 1023 static void push_to_pool(struct work_struct *work) 1024 { 1025 struct entropy_store *r = container_of(work, struct entropy_store, 1026 push_work); 1027 BUG_ON(!r); 1028 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1029 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1030 r->pull->entropy_count >> ENTROPY_SHIFT); 1031 } 1032 1033 /* 1034 * This function decides how many bytes to actually take from the 1035 * given pool, and also debits the entropy count accordingly. 1036 */ 1037 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1038 int reserved) 1039 { 1040 int entropy_count, orig; 1041 size_t ibytes, nfrac; 1042 1043 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1044 1045 /* Can we pull enough? */ 1046 retry: 1047 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 1048 ibytes = nbytes; 1049 /* If limited, never pull more than available */ 1050 if (r->limit) { 1051 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1052 1053 if ((have_bytes -= reserved) < 0) 1054 have_bytes = 0; 1055 ibytes = min_t(size_t, ibytes, have_bytes); 1056 } 1057 if (ibytes < min) 1058 ibytes = 0; 1059 1060 if (unlikely(entropy_count < 0)) { 1061 pr_warn("random: negative entropy count: pool %s count %d\n", 1062 r->name, entropy_count); 1063 WARN_ON(1); 1064 entropy_count = 0; 1065 } 1066 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1067 if ((size_t) entropy_count > nfrac) 1068 entropy_count -= nfrac; 1069 else 1070 entropy_count = 0; 1071 1072 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1073 goto retry; 1074 1075 trace_debit_entropy(r->name, 8 * ibytes); 1076 if (ibytes && 1077 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1078 wake_up_interruptible(&random_write_wait); 1079 kill_fasync(&fasync, SIGIO, POLL_OUT); 1080 } 1081 1082 return ibytes; 1083 } 1084 1085 /* 1086 * This function does the actual extraction for extract_entropy and 1087 * extract_entropy_user. 1088 * 1089 * Note: we assume that .poolwords is a multiple of 16 words. 1090 */ 1091 static void extract_buf(struct entropy_store *r, __u8 *out) 1092 { 1093 int i; 1094 union { 1095 __u32 w[5]; 1096 unsigned long l[LONGS(20)]; 1097 } hash; 1098 __u32 workspace[SHA_WORKSPACE_WORDS]; 1099 unsigned long flags; 1100 1101 /* 1102 * If we have an architectural hardware random number 1103 * generator, use it for SHA's initial vector 1104 */ 1105 sha_init(hash.w); 1106 for (i = 0; i < LONGS(20); i++) { 1107 unsigned long v; 1108 if (!arch_get_random_long(&v)) 1109 break; 1110 hash.l[i] = v; 1111 } 1112 1113 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1114 spin_lock_irqsave(&r->lock, flags); 1115 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1116 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1117 1118 /* 1119 * We mix the hash back into the pool to prevent backtracking 1120 * attacks (where the attacker knows the state of the pool 1121 * plus the current outputs, and attempts to find previous 1122 * ouputs), unless the hash function can be inverted. By 1123 * mixing at least a SHA1 worth of hash data back, we make 1124 * brute-forcing the feedback as hard as brute-forcing the 1125 * hash. 1126 */ 1127 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1128 spin_unlock_irqrestore(&r->lock, flags); 1129 1130 memzero_explicit(workspace, sizeof(workspace)); 1131 1132 /* 1133 * In case the hash function has some recognizable output 1134 * pattern, we fold it in half. Thus, we always feed back 1135 * twice as much data as we output. 1136 */ 1137 hash.w[0] ^= hash.w[3]; 1138 hash.w[1] ^= hash.w[4]; 1139 hash.w[2] ^= rol32(hash.w[2], 16); 1140 1141 memcpy(out, &hash, EXTRACT_SIZE); 1142 memzero_explicit(&hash, sizeof(hash)); 1143 } 1144 1145 /* 1146 * This function extracts randomness from the "entropy pool", and 1147 * returns it in a buffer. 1148 * 1149 * The min parameter specifies the minimum amount we can pull before 1150 * failing to avoid races that defeat catastrophic reseeding while the 1151 * reserved parameter indicates how much entropy we must leave in the 1152 * pool after each pull to avoid starving other readers. 1153 */ 1154 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1155 size_t nbytes, int min, int reserved) 1156 { 1157 ssize_t ret = 0, i; 1158 __u8 tmp[EXTRACT_SIZE]; 1159 unsigned long flags; 1160 1161 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1162 if (fips_enabled) { 1163 spin_lock_irqsave(&r->lock, flags); 1164 if (!r->last_data_init) { 1165 r->last_data_init = 1; 1166 spin_unlock_irqrestore(&r->lock, flags); 1167 trace_extract_entropy(r->name, EXTRACT_SIZE, 1168 ENTROPY_BITS(r), _RET_IP_); 1169 xfer_secondary_pool(r, EXTRACT_SIZE); 1170 extract_buf(r, tmp); 1171 spin_lock_irqsave(&r->lock, flags); 1172 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1173 } 1174 spin_unlock_irqrestore(&r->lock, flags); 1175 } 1176 1177 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1178 xfer_secondary_pool(r, nbytes); 1179 nbytes = account(r, nbytes, min, reserved); 1180 1181 while (nbytes) { 1182 extract_buf(r, tmp); 1183 1184 if (fips_enabled) { 1185 spin_lock_irqsave(&r->lock, flags); 1186 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1187 panic("Hardware RNG duplicated output!\n"); 1188 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1189 spin_unlock_irqrestore(&r->lock, flags); 1190 } 1191 i = min_t(int, nbytes, EXTRACT_SIZE); 1192 memcpy(buf, tmp, i); 1193 nbytes -= i; 1194 buf += i; 1195 ret += i; 1196 } 1197 1198 /* Wipe data just returned from memory */ 1199 memzero_explicit(tmp, sizeof(tmp)); 1200 1201 return ret; 1202 } 1203 1204 /* 1205 * This function extracts randomness from the "entropy pool", and 1206 * returns it in a userspace buffer. 1207 */ 1208 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1209 size_t nbytes) 1210 { 1211 ssize_t ret = 0, i; 1212 __u8 tmp[EXTRACT_SIZE]; 1213 int large_request = (nbytes > 256); 1214 1215 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1216 xfer_secondary_pool(r, nbytes); 1217 nbytes = account(r, nbytes, 0, 0); 1218 1219 while (nbytes) { 1220 if (large_request && need_resched()) { 1221 if (signal_pending(current)) { 1222 if (ret == 0) 1223 ret = -ERESTARTSYS; 1224 break; 1225 } 1226 schedule(); 1227 } 1228 1229 extract_buf(r, tmp); 1230 i = min_t(int, nbytes, EXTRACT_SIZE); 1231 if (copy_to_user(buf, tmp, i)) { 1232 ret = -EFAULT; 1233 break; 1234 } 1235 1236 nbytes -= i; 1237 buf += i; 1238 ret += i; 1239 } 1240 1241 /* Wipe data just returned from memory */ 1242 memzero_explicit(tmp, sizeof(tmp)); 1243 1244 return ret; 1245 } 1246 1247 /* 1248 * This function is the exported kernel interface. It returns some 1249 * number of good random numbers, suitable for key generation, seeding 1250 * TCP sequence numbers, etc. It does not rely on the hardware random 1251 * number generator. For random bytes direct from the hardware RNG 1252 * (when available), use get_random_bytes_arch(). 1253 */ 1254 void get_random_bytes(void *buf, int nbytes) 1255 { 1256 #if DEBUG_RANDOM_BOOT > 0 1257 if (unlikely(nonblocking_pool.initialized == 0)) 1258 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1259 "with %d bits of entropy available\n", 1260 (void *) _RET_IP_, 1261 nonblocking_pool.entropy_total); 1262 #endif 1263 trace_get_random_bytes(nbytes, _RET_IP_); 1264 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1265 } 1266 EXPORT_SYMBOL(get_random_bytes); 1267 1268 /* 1269 * Add a callback function that will be invoked when the nonblocking 1270 * pool is initialised. 1271 * 1272 * returns: 0 if callback is successfully added 1273 * -EALREADY if pool is already initialised (callback not called) 1274 * -ENOENT if module for callback is not alive 1275 */ 1276 int add_random_ready_callback(struct random_ready_callback *rdy) 1277 { 1278 struct module *owner; 1279 unsigned long flags; 1280 int err = -EALREADY; 1281 1282 if (likely(nonblocking_pool.initialized)) 1283 return err; 1284 1285 owner = rdy->owner; 1286 if (!try_module_get(owner)) 1287 return -ENOENT; 1288 1289 spin_lock_irqsave(&random_ready_list_lock, flags); 1290 if (nonblocking_pool.initialized) 1291 goto out; 1292 1293 owner = NULL; 1294 1295 list_add(&rdy->list, &random_ready_list); 1296 err = 0; 1297 1298 out: 1299 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1300 1301 module_put(owner); 1302 1303 return err; 1304 } 1305 EXPORT_SYMBOL(add_random_ready_callback); 1306 1307 /* 1308 * Delete a previously registered readiness callback function. 1309 */ 1310 void del_random_ready_callback(struct random_ready_callback *rdy) 1311 { 1312 unsigned long flags; 1313 struct module *owner = NULL; 1314 1315 spin_lock_irqsave(&random_ready_list_lock, flags); 1316 if (!list_empty(&rdy->list)) { 1317 list_del_init(&rdy->list); 1318 owner = rdy->owner; 1319 } 1320 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1321 1322 module_put(owner); 1323 } 1324 EXPORT_SYMBOL(del_random_ready_callback); 1325 1326 /* 1327 * This function will use the architecture-specific hardware random 1328 * number generator if it is available. The arch-specific hw RNG will 1329 * almost certainly be faster than what we can do in software, but it 1330 * is impossible to verify that it is implemented securely (as 1331 * opposed, to, say, the AES encryption of a sequence number using a 1332 * key known by the NSA). So it's useful if we need the speed, but 1333 * only if we're willing to trust the hardware manufacturer not to 1334 * have put in a back door. 1335 */ 1336 void get_random_bytes_arch(void *buf, int nbytes) 1337 { 1338 char *p = buf; 1339 1340 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1341 while (nbytes) { 1342 unsigned long v; 1343 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1344 1345 if (!arch_get_random_long(&v)) 1346 break; 1347 1348 memcpy(p, &v, chunk); 1349 p += chunk; 1350 nbytes -= chunk; 1351 } 1352 1353 if (nbytes) 1354 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1355 } 1356 EXPORT_SYMBOL(get_random_bytes_arch); 1357 1358 1359 /* 1360 * init_std_data - initialize pool with system data 1361 * 1362 * @r: pool to initialize 1363 * 1364 * This function clears the pool's entropy count and mixes some system 1365 * data into the pool to prepare it for use. The pool is not cleared 1366 * as that can only decrease the entropy in the pool. 1367 */ 1368 static void init_std_data(struct entropy_store *r) 1369 { 1370 int i; 1371 ktime_t now = ktime_get_real(); 1372 unsigned long rv; 1373 1374 r->last_pulled = jiffies; 1375 mix_pool_bytes(r, &now, sizeof(now)); 1376 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1377 if (!arch_get_random_seed_long(&rv) && 1378 !arch_get_random_long(&rv)) 1379 rv = random_get_entropy(); 1380 mix_pool_bytes(r, &rv, sizeof(rv)); 1381 } 1382 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1383 } 1384 1385 /* 1386 * Note that setup_arch() may call add_device_randomness() 1387 * long before we get here. This allows seeding of the pools 1388 * with some platform dependent data very early in the boot 1389 * process. But it limits our options here. We must use 1390 * statically allocated structures that already have all 1391 * initializations complete at compile time. We should also 1392 * take care not to overwrite the precious per platform data 1393 * we were given. 1394 */ 1395 static int rand_initialize(void) 1396 { 1397 init_std_data(&input_pool); 1398 init_std_data(&blocking_pool); 1399 init_std_data(&nonblocking_pool); 1400 return 0; 1401 } 1402 early_initcall(rand_initialize); 1403 1404 #ifdef CONFIG_BLOCK 1405 void rand_initialize_disk(struct gendisk *disk) 1406 { 1407 struct timer_rand_state *state; 1408 1409 /* 1410 * If kzalloc returns null, we just won't use that entropy 1411 * source. 1412 */ 1413 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1414 if (state) { 1415 state->last_time = INITIAL_JIFFIES; 1416 disk->random = state; 1417 } 1418 } 1419 #endif 1420 1421 static ssize_t 1422 _random_read(int nonblock, char __user *buf, size_t nbytes) 1423 { 1424 ssize_t n; 1425 1426 if (nbytes == 0) 1427 return 0; 1428 1429 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1430 while (1) { 1431 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1432 if (n < 0) 1433 return n; 1434 trace_random_read(n*8, (nbytes-n)*8, 1435 ENTROPY_BITS(&blocking_pool), 1436 ENTROPY_BITS(&input_pool)); 1437 if (n > 0) 1438 return n; 1439 1440 /* Pool is (near) empty. Maybe wait and retry. */ 1441 if (nonblock) 1442 return -EAGAIN; 1443 1444 wait_event_interruptible(random_read_wait, 1445 ENTROPY_BITS(&input_pool) >= 1446 random_read_wakeup_bits); 1447 if (signal_pending(current)) 1448 return -ERESTARTSYS; 1449 } 1450 } 1451 1452 static ssize_t 1453 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1454 { 1455 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1456 } 1457 1458 static ssize_t 1459 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1460 { 1461 int ret; 1462 1463 if (unlikely(nonblocking_pool.initialized == 0)) 1464 printk_once(KERN_NOTICE "random: %s urandom read " 1465 "with %d bits of entropy available\n", 1466 current->comm, nonblocking_pool.entropy_total); 1467 1468 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1469 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes); 1470 1471 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool), 1472 ENTROPY_BITS(&input_pool)); 1473 return ret; 1474 } 1475 1476 static unsigned int 1477 random_poll(struct file *file, poll_table * wait) 1478 { 1479 unsigned int mask; 1480 1481 poll_wait(file, &random_read_wait, wait); 1482 poll_wait(file, &random_write_wait, wait); 1483 mask = 0; 1484 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1485 mask |= POLLIN | POLLRDNORM; 1486 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1487 mask |= POLLOUT | POLLWRNORM; 1488 return mask; 1489 } 1490 1491 static int 1492 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1493 { 1494 size_t bytes; 1495 __u32 buf[16]; 1496 const char __user *p = buffer; 1497 1498 while (count > 0) { 1499 bytes = min(count, sizeof(buf)); 1500 if (copy_from_user(&buf, p, bytes)) 1501 return -EFAULT; 1502 1503 count -= bytes; 1504 p += bytes; 1505 1506 mix_pool_bytes(r, buf, bytes); 1507 cond_resched(); 1508 } 1509 1510 return 0; 1511 } 1512 1513 static ssize_t random_write(struct file *file, const char __user *buffer, 1514 size_t count, loff_t *ppos) 1515 { 1516 size_t ret; 1517 1518 ret = write_pool(&blocking_pool, buffer, count); 1519 if (ret) 1520 return ret; 1521 ret = write_pool(&nonblocking_pool, buffer, count); 1522 if (ret) 1523 return ret; 1524 1525 return (ssize_t)count; 1526 } 1527 1528 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1529 { 1530 int size, ent_count; 1531 int __user *p = (int __user *)arg; 1532 int retval; 1533 1534 switch (cmd) { 1535 case RNDGETENTCNT: 1536 /* inherently racy, no point locking */ 1537 ent_count = ENTROPY_BITS(&input_pool); 1538 if (put_user(ent_count, p)) 1539 return -EFAULT; 1540 return 0; 1541 case RNDADDTOENTCNT: 1542 if (!capable(CAP_SYS_ADMIN)) 1543 return -EPERM; 1544 if (get_user(ent_count, p)) 1545 return -EFAULT; 1546 credit_entropy_bits_safe(&input_pool, ent_count); 1547 return 0; 1548 case RNDADDENTROPY: 1549 if (!capable(CAP_SYS_ADMIN)) 1550 return -EPERM; 1551 if (get_user(ent_count, p++)) 1552 return -EFAULT; 1553 if (ent_count < 0) 1554 return -EINVAL; 1555 if (get_user(size, p++)) 1556 return -EFAULT; 1557 retval = write_pool(&input_pool, (const char __user *)p, 1558 size); 1559 if (retval < 0) 1560 return retval; 1561 credit_entropy_bits_safe(&input_pool, ent_count); 1562 return 0; 1563 case RNDZAPENTCNT: 1564 case RNDCLEARPOOL: 1565 /* 1566 * Clear the entropy pool counters. We no longer clear 1567 * the entropy pool, as that's silly. 1568 */ 1569 if (!capable(CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 input_pool.entropy_count = 0; 1572 nonblocking_pool.entropy_count = 0; 1573 blocking_pool.entropy_count = 0; 1574 return 0; 1575 default: 1576 return -EINVAL; 1577 } 1578 } 1579 1580 static int random_fasync(int fd, struct file *filp, int on) 1581 { 1582 return fasync_helper(fd, filp, on, &fasync); 1583 } 1584 1585 const struct file_operations random_fops = { 1586 .read = random_read, 1587 .write = random_write, 1588 .poll = random_poll, 1589 .unlocked_ioctl = random_ioctl, 1590 .fasync = random_fasync, 1591 .llseek = noop_llseek, 1592 }; 1593 1594 const struct file_operations urandom_fops = { 1595 .read = urandom_read, 1596 .write = random_write, 1597 .unlocked_ioctl = random_ioctl, 1598 .fasync = random_fasync, 1599 .llseek = noop_llseek, 1600 }; 1601 1602 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1603 unsigned int, flags) 1604 { 1605 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 1606 return -EINVAL; 1607 1608 if (count > INT_MAX) 1609 count = INT_MAX; 1610 1611 if (flags & GRND_RANDOM) 1612 return _random_read(flags & GRND_NONBLOCK, buf, count); 1613 1614 if (unlikely(nonblocking_pool.initialized == 0)) { 1615 if (flags & GRND_NONBLOCK) 1616 return -EAGAIN; 1617 wait_event_interruptible(urandom_init_wait, 1618 nonblocking_pool.initialized); 1619 if (signal_pending(current)) 1620 return -ERESTARTSYS; 1621 } 1622 return urandom_read(NULL, buf, count, NULL); 1623 } 1624 1625 /******************************************************************** 1626 * 1627 * Sysctl interface 1628 * 1629 ********************************************************************/ 1630 1631 #ifdef CONFIG_SYSCTL 1632 1633 #include <linux/sysctl.h> 1634 1635 static int min_read_thresh = 8, min_write_thresh; 1636 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 1637 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1638 static char sysctl_bootid[16]; 1639 1640 /* 1641 * This function is used to return both the bootid UUID, and random 1642 * UUID. The difference is in whether table->data is NULL; if it is, 1643 * then a new UUID is generated and returned to the user. 1644 * 1645 * If the user accesses this via the proc interface, the UUID will be 1646 * returned as an ASCII string in the standard UUID format; if via the 1647 * sysctl system call, as 16 bytes of binary data. 1648 */ 1649 static int proc_do_uuid(struct ctl_table *table, int write, 1650 void __user *buffer, size_t *lenp, loff_t *ppos) 1651 { 1652 struct ctl_table fake_table; 1653 unsigned char buf[64], tmp_uuid[16], *uuid; 1654 1655 uuid = table->data; 1656 if (!uuid) { 1657 uuid = tmp_uuid; 1658 generate_random_uuid(uuid); 1659 } else { 1660 static DEFINE_SPINLOCK(bootid_spinlock); 1661 1662 spin_lock(&bootid_spinlock); 1663 if (!uuid[8]) 1664 generate_random_uuid(uuid); 1665 spin_unlock(&bootid_spinlock); 1666 } 1667 1668 sprintf(buf, "%pU", uuid); 1669 1670 fake_table.data = buf; 1671 fake_table.maxlen = sizeof(buf); 1672 1673 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1674 } 1675 1676 /* 1677 * Return entropy available scaled to integral bits 1678 */ 1679 static int proc_do_entropy(struct ctl_table *table, int write, 1680 void __user *buffer, size_t *lenp, loff_t *ppos) 1681 { 1682 struct ctl_table fake_table; 1683 int entropy_count; 1684 1685 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1686 1687 fake_table.data = &entropy_count; 1688 fake_table.maxlen = sizeof(entropy_count); 1689 1690 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1691 } 1692 1693 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1694 extern struct ctl_table random_table[]; 1695 struct ctl_table random_table[] = { 1696 { 1697 .procname = "poolsize", 1698 .data = &sysctl_poolsize, 1699 .maxlen = sizeof(int), 1700 .mode = 0444, 1701 .proc_handler = proc_dointvec, 1702 }, 1703 { 1704 .procname = "entropy_avail", 1705 .maxlen = sizeof(int), 1706 .mode = 0444, 1707 .proc_handler = proc_do_entropy, 1708 .data = &input_pool.entropy_count, 1709 }, 1710 { 1711 .procname = "read_wakeup_threshold", 1712 .data = &random_read_wakeup_bits, 1713 .maxlen = sizeof(int), 1714 .mode = 0644, 1715 .proc_handler = proc_dointvec_minmax, 1716 .extra1 = &min_read_thresh, 1717 .extra2 = &max_read_thresh, 1718 }, 1719 { 1720 .procname = "write_wakeup_threshold", 1721 .data = &random_write_wakeup_bits, 1722 .maxlen = sizeof(int), 1723 .mode = 0644, 1724 .proc_handler = proc_dointvec_minmax, 1725 .extra1 = &min_write_thresh, 1726 .extra2 = &max_write_thresh, 1727 }, 1728 { 1729 .procname = "urandom_min_reseed_secs", 1730 .data = &random_min_urandom_seed, 1731 .maxlen = sizeof(int), 1732 .mode = 0644, 1733 .proc_handler = proc_dointvec, 1734 }, 1735 { 1736 .procname = "boot_id", 1737 .data = &sysctl_bootid, 1738 .maxlen = 16, 1739 .mode = 0444, 1740 .proc_handler = proc_do_uuid, 1741 }, 1742 { 1743 .procname = "uuid", 1744 .maxlen = 16, 1745 .mode = 0444, 1746 .proc_handler = proc_do_uuid, 1747 }, 1748 #ifdef ADD_INTERRUPT_BENCH 1749 { 1750 .procname = "add_interrupt_avg_cycles", 1751 .data = &avg_cycles, 1752 .maxlen = sizeof(avg_cycles), 1753 .mode = 0444, 1754 .proc_handler = proc_doulongvec_minmax, 1755 }, 1756 { 1757 .procname = "add_interrupt_avg_deviation", 1758 .data = &avg_deviation, 1759 .maxlen = sizeof(avg_deviation), 1760 .mode = 0444, 1761 .proc_handler = proc_doulongvec_minmax, 1762 }, 1763 #endif 1764 { } 1765 }; 1766 #endif /* CONFIG_SYSCTL */ 1767 1768 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1769 1770 int random_int_secret_init(void) 1771 { 1772 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1773 return 0; 1774 } 1775 1776 /* 1777 * Get a random word for internal kernel use only. Similar to urandom but 1778 * with the goal of minimal entropy pool depletion. As a result, the random 1779 * value is not cryptographically secure but for several uses the cost of 1780 * depleting entropy is too high 1781 */ 1782 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1783 unsigned int get_random_int(void) 1784 { 1785 __u32 *hash; 1786 unsigned int ret; 1787 1788 if (arch_get_random_int(&ret)) 1789 return ret; 1790 1791 hash = get_cpu_var(get_random_int_hash); 1792 1793 hash[0] += current->pid + jiffies + random_get_entropy(); 1794 md5_transform(hash, random_int_secret); 1795 ret = hash[0]; 1796 put_cpu_var(get_random_int_hash); 1797 1798 return ret; 1799 } 1800 EXPORT_SYMBOL(get_random_int); 1801 1802 /* 1803 * Same as get_random_int(), but returns unsigned long. 1804 */ 1805 unsigned long get_random_long(void) 1806 { 1807 __u32 *hash; 1808 unsigned long ret; 1809 1810 if (arch_get_random_long(&ret)) 1811 return ret; 1812 1813 hash = get_cpu_var(get_random_int_hash); 1814 1815 hash[0] += current->pid + jiffies + random_get_entropy(); 1816 md5_transform(hash, random_int_secret); 1817 ret = *(unsigned long *)hash; 1818 put_cpu_var(get_random_int_hash); 1819 1820 return ret; 1821 } 1822 EXPORT_SYMBOL(get_random_long); 1823 1824 /* 1825 * randomize_range() returns a start address such that 1826 * 1827 * [...... <range> .....] 1828 * start end 1829 * 1830 * a <range> with size "len" starting at the return value is inside in the 1831 * area defined by [start, end], but is otherwise randomized. 1832 */ 1833 unsigned long 1834 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1835 { 1836 unsigned long range = end - len - start; 1837 1838 if (end <= start + len) 1839 return 0; 1840 return PAGE_ALIGN(get_random_int() % range + start); 1841 } 1842 1843 /* Interface for in-kernel drivers of true hardware RNGs. 1844 * Those devices may produce endless random bits and will be throttled 1845 * when our pool is full. 1846 */ 1847 void add_hwgenerator_randomness(const char *buffer, size_t count, 1848 size_t entropy) 1849 { 1850 struct entropy_store *poolp = &input_pool; 1851 1852 /* Suspend writing if we're above the trickle threshold. 1853 * We'll be woken up again once below random_write_wakeup_thresh, 1854 * or when the calling thread is about to terminate. 1855 */ 1856 wait_event_interruptible(random_write_wait, kthread_should_stop() || 1857 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 1858 mix_pool_bytes(poolp, buffer, count); 1859 credit_entropy_bits(poolp, entropy); 1860 } 1861 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 1862