1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/nodemask.h> 253 #include <linux/spinlock.h> 254 #include <linux/kthread.h> 255 #include <linux/percpu.h> 256 #include <linux/cryptohash.h> 257 #include <linux/fips.h> 258 #include <linux/ptrace.h> 259 #include <linux/kmemcheck.h> 260 #include <linux/workqueue.h> 261 #include <linux/irq.h> 262 #include <linux/syscalls.h> 263 #include <linux/completion.h> 264 #include <linux/uuid.h> 265 #include <crypto/chacha20.h> 266 267 #include <asm/processor.h> 268 #include <asm/uaccess.h> 269 #include <asm/irq.h> 270 #include <asm/irq_regs.h> 271 #include <asm/io.h> 272 273 #define CREATE_TRACE_POINTS 274 #include <trace/events/random.h> 275 276 /* #define ADD_INTERRUPT_BENCH */ 277 278 /* 279 * Configuration information 280 */ 281 #define INPUT_POOL_SHIFT 12 282 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 283 #define OUTPUT_POOL_SHIFT 10 284 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 285 #define SEC_XFER_SIZE 512 286 #define EXTRACT_SIZE 10 287 288 #define DEBUG_RANDOM_BOOT 0 289 290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 291 292 /* 293 * To allow fractional bits to be tracked, the entropy_count field is 294 * denominated in units of 1/8th bits. 295 * 296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 297 * credit_entropy_bits() needs to be 64 bits wide. 298 */ 299 #define ENTROPY_SHIFT 3 300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 301 302 /* 303 * The minimum number of bits of entropy before we wake up a read on 304 * /dev/random. Should be enough to do a significant reseed. 305 */ 306 static int random_read_wakeup_bits = 64; 307 308 /* 309 * If the entropy count falls under this number of bits, then we 310 * should wake up processes which are selecting or polling on write 311 * access to /dev/random. 312 */ 313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 314 315 /* 316 * The minimum number of seconds between urandom pool reseeding. We 317 * do this to limit the amount of entropy that can be drained from the 318 * input pool even if there are heavy demands on /dev/urandom. 319 */ 320 static int random_min_urandom_seed = 60; 321 322 /* 323 * Originally, we used a primitive polynomial of degree .poolwords 324 * over GF(2). The taps for various sizes are defined below. They 325 * were chosen to be evenly spaced except for the last tap, which is 1 326 * to get the twisting happening as fast as possible. 327 * 328 * For the purposes of better mixing, we use the CRC-32 polynomial as 329 * well to make a (modified) twisted Generalized Feedback Shift 330 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 331 * generators. ACM Transactions on Modeling and Computer Simulation 332 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 333 * GFSR generators II. ACM Transactions on Modeling and Computer 334 * Simulation 4:254-266) 335 * 336 * Thanks to Colin Plumb for suggesting this. 337 * 338 * The mixing operation is much less sensitive than the output hash, 339 * where we use SHA-1. All that we want of mixing operation is that 340 * it be a good non-cryptographic hash; i.e. it not produce collisions 341 * when fed "random" data of the sort we expect to see. As long as 342 * the pool state differs for different inputs, we have preserved the 343 * input entropy and done a good job. The fact that an intelligent 344 * attacker can construct inputs that will produce controlled 345 * alterations to the pool's state is not important because we don't 346 * consider such inputs to contribute any randomness. The only 347 * property we need with respect to them is that the attacker can't 348 * increase his/her knowledge of the pool's state. Since all 349 * additions are reversible (knowing the final state and the input, 350 * you can reconstruct the initial state), if an attacker has any 351 * uncertainty about the initial state, he/she can only shuffle that 352 * uncertainty about, but never cause any collisions (which would 353 * decrease the uncertainty). 354 * 355 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 356 * Videau in their paper, "The Linux Pseudorandom Number Generator 357 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 358 * paper, they point out that we are not using a true Twisted GFSR, 359 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 360 * is, with only three taps, instead of the six that we are using). 361 * As a result, the resulting polynomial is neither primitive nor 362 * irreducible, and hence does not have a maximal period over 363 * GF(2**32). They suggest a slight change to the generator 364 * polynomial which improves the resulting TGFSR polynomial to be 365 * irreducible, which we have made here. 366 */ 367 static struct poolinfo { 368 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 369 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 370 int tap1, tap2, tap3, tap4, tap5; 371 } poolinfo_table[] = { 372 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 373 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 374 { S(128), 104, 76, 51, 25, 1 }, 375 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 376 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 377 { S(32), 26, 19, 14, 7, 1 }, 378 #if 0 379 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 380 { S(2048), 1638, 1231, 819, 411, 1 }, 381 382 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 383 { S(1024), 817, 615, 412, 204, 1 }, 384 385 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 386 { S(1024), 819, 616, 410, 207, 2 }, 387 388 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 389 { S(512), 411, 308, 208, 104, 1 }, 390 391 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 392 { S(512), 409, 307, 206, 102, 2 }, 393 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 394 { S(512), 409, 309, 205, 103, 2 }, 395 396 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 397 { S(256), 205, 155, 101, 52, 1 }, 398 399 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 400 { S(128), 103, 78, 51, 27, 2 }, 401 402 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 403 { S(64), 52, 39, 26, 14, 1 }, 404 #endif 405 }; 406 407 /* 408 * Static global variables 409 */ 410 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 411 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 412 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait); 413 static struct fasync_struct *fasync; 414 415 static DEFINE_SPINLOCK(random_ready_list_lock); 416 static LIST_HEAD(random_ready_list); 417 418 struct crng_state { 419 __u32 state[16]; 420 unsigned long init_time; 421 spinlock_t lock; 422 }; 423 424 struct crng_state primary_crng = { 425 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 426 }; 427 428 /* 429 * crng_init = 0 --> Uninitialized 430 * 1 --> Initialized 431 * 2 --> Initialized from input_pool 432 * 433 * crng_init is protected by primary_crng->lock, and only increases 434 * its value (from 0->1->2). 435 */ 436 static int crng_init = 0; 437 #define crng_ready() (likely(crng_init > 0)) 438 static int crng_init_cnt = 0; 439 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE) 440 static void _extract_crng(struct crng_state *crng, 441 __u8 out[CHACHA20_BLOCK_SIZE]); 442 static void _crng_backtrack_protect(struct crng_state *crng, 443 __u8 tmp[CHACHA20_BLOCK_SIZE], int used); 444 static void process_random_ready_list(void); 445 446 /********************************************************************** 447 * 448 * OS independent entropy store. Here are the functions which handle 449 * storing entropy in an entropy pool. 450 * 451 **********************************************************************/ 452 453 struct entropy_store; 454 struct entropy_store { 455 /* read-only data: */ 456 const struct poolinfo *poolinfo; 457 __u32 *pool; 458 const char *name; 459 struct entropy_store *pull; 460 struct work_struct push_work; 461 462 /* read-write data: */ 463 unsigned long last_pulled; 464 spinlock_t lock; 465 unsigned short add_ptr; 466 unsigned short input_rotate; 467 int entropy_count; 468 int entropy_total; 469 unsigned int initialized:1; 470 unsigned int limit:1; 471 unsigned int last_data_init:1; 472 __u8 last_data[EXTRACT_SIZE]; 473 }; 474 475 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 476 size_t nbytes, int min, int rsvd); 477 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 478 size_t nbytes, int fips); 479 480 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 481 static void push_to_pool(struct work_struct *work); 482 static __u32 input_pool_data[INPUT_POOL_WORDS]; 483 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 484 485 static struct entropy_store input_pool = { 486 .poolinfo = &poolinfo_table[0], 487 .name = "input", 488 .limit = 1, 489 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 490 .pool = input_pool_data 491 }; 492 493 static struct entropy_store blocking_pool = { 494 .poolinfo = &poolinfo_table[1], 495 .name = "blocking", 496 .limit = 1, 497 .pull = &input_pool, 498 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 499 .pool = blocking_pool_data, 500 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 501 push_to_pool), 502 }; 503 504 static __u32 const twist_table[8] = { 505 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 506 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 507 508 /* 509 * This function adds bytes into the entropy "pool". It does not 510 * update the entropy estimate. The caller should call 511 * credit_entropy_bits if this is appropriate. 512 * 513 * The pool is stirred with a primitive polynomial of the appropriate 514 * degree, and then twisted. We twist by three bits at a time because 515 * it's cheap to do so and helps slightly in the expected case where 516 * the entropy is concentrated in the low-order bits. 517 */ 518 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 519 int nbytes) 520 { 521 unsigned long i, tap1, tap2, tap3, tap4, tap5; 522 int input_rotate; 523 int wordmask = r->poolinfo->poolwords - 1; 524 const char *bytes = in; 525 __u32 w; 526 527 tap1 = r->poolinfo->tap1; 528 tap2 = r->poolinfo->tap2; 529 tap3 = r->poolinfo->tap3; 530 tap4 = r->poolinfo->tap4; 531 tap5 = r->poolinfo->tap5; 532 533 input_rotate = r->input_rotate; 534 i = r->add_ptr; 535 536 /* mix one byte at a time to simplify size handling and churn faster */ 537 while (nbytes--) { 538 w = rol32(*bytes++, input_rotate); 539 i = (i - 1) & wordmask; 540 541 /* XOR in the various taps */ 542 w ^= r->pool[i]; 543 w ^= r->pool[(i + tap1) & wordmask]; 544 w ^= r->pool[(i + tap2) & wordmask]; 545 w ^= r->pool[(i + tap3) & wordmask]; 546 w ^= r->pool[(i + tap4) & wordmask]; 547 w ^= r->pool[(i + tap5) & wordmask]; 548 549 /* Mix the result back in with a twist */ 550 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 551 552 /* 553 * Normally, we add 7 bits of rotation to the pool. 554 * At the beginning of the pool, add an extra 7 bits 555 * rotation, so that successive passes spread the 556 * input bits across the pool evenly. 557 */ 558 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 559 } 560 561 r->input_rotate = input_rotate; 562 r->add_ptr = i; 563 } 564 565 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 566 int nbytes) 567 { 568 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 569 _mix_pool_bytes(r, in, nbytes); 570 } 571 572 static void mix_pool_bytes(struct entropy_store *r, const void *in, 573 int nbytes) 574 { 575 unsigned long flags; 576 577 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 578 spin_lock_irqsave(&r->lock, flags); 579 _mix_pool_bytes(r, in, nbytes); 580 spin_unlock_irqrestore(&r->lock, flags); 581 } 582 583 struct fast_pool { 584 __u32 pool[4]; 585 unsigned long last; 586 unsigned short reg_idx; 587 unsigned char count; 588 }; 589 590 /* 591 * This is a fast mixing routine used by the interrupt randomness 592 * collector. It's hardcoded for an 128 bit pool and assumes that any 593 * locks that might be needed are taken by the caller. 594 */ 595 static void fast_mix(struct fast_pool *f) 596 { 597 __u32 a = f->pool[0], b = f->pool[1]; 598 __u32 c = f->pool[2], d = f->pool[3]; 599 600 a += b; c += d; 601 b = rol32(b, 6); d = rol32(d, 27); 602 d ^= a; b ^= c; 603 604 a += b; c += d; 605 b = rol32(b, 16); d = rol32(d, 14); 606 d ^= a; b ^= c; 607 608 a += b; c += d; 609 b = rol32(b, 6); d = rol32(d, 27); 610 d ^= a; b ^= c; 611 612 a += b; c += d; 613 b = rol32(b, 16); d = rol32(d, 14); 614 d ^= a; b ^= c; 615 616 f->pool[0] = a; f->pool[1] = b; 617 f->pool[2] = c; f->pool[3] = d; 618 f->count++; 619 } 620 621 static void process_random_ready_list(void) 622 { 623 unsigned long flags; 624 struct random_ready_callback *rdy, *tmp; 625 626 spin_lock_irqsave(&random_ready_list_lock, flags); 627 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 628 struct module *owner = rdy->owner; 629 630 list_del_init(&rdy->list); 631 rdy->func(rdy); 632 module_put(owner); 633 } 634 spin_unlock_irqrestore(&random_ready_list_lock, flags); 635 } 636 637 /* 638 * Credit (or debit) the entropy store with n bits of entropy. 639 * Use credit_entropy_bits_safe() if the value comes from userspace 640 * or otherwise should be checked for extreme values. 641 */ 642 static void credit_entropy_bits(struct entropy_store *r, int nbits) 643 { 644 int entropy_count, orig; 645 const int pool_size = r->poolinfo->poolfracbits; 646 int nfrac = nbits << ENTROPY_SHIFT; 647 648 if (!nbits) 649 return; 650 651 retry: 652 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 653 if (nfrac < 0) { 654 /* Debit */ 655 entropy_count += nfrac; 656 } else { 657 /* 658 * Credit: we have to account for the possibility of 659 * overwriting already present entropy. Even in the 660 * ideal case of pure Shannon entropy, new contributions 661 * approach the full value asymptotically: 662 * 663 * entropy <- entropy + (pool_size - entropy) * 664 * (1 - exp(-add_entropy/pool_size)) 665 * 666 * For add_entropy <= pool_size/2 then 667 * (1 - exp(-add_entropy/pool_size)) >= 668 * (add_entropy/pool_size)*0.7869... 669 * so we can approximate the exponential with 670 * 3/4*add_entropy/pool_size and still be on the 671 * safe side by adding at most pool_size/2 at a time. 672 * 673 * The use of pool_size-2 in the while statement is to 674 * prevent rounding artifacts from making the loop 675 * arbitrarily long; this limits the loop to log2(pool_size)*2 676 * turns no matter how large nbits is. 677 */ 678 int pnfrac = nfrac; 679 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 680 /* The +2 corresponds to the /4 in the denominator */ 681 682 do { 683 unsigned int anfrac = min(pnfrac, pool_size/2); 684 unsigned int add = 685 ((pool_size - entropy_count)*anfrac*3) >> s; 686 687 entropy_count += add; 688 pnfrac -= anfrac; 689 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 690 } 691 692 if (unlikely(entropy_count < 0)) { 693 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 694 r->name, entropy_count); 695 WARN_ON(1); 696 entropy_count = 0; 697 } else if (entropy_count > pool_size) 698 entropy_count = pool_size; 699 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 700 goto retry; 701 702 r->entropy_total += nbits; 703 if (!r->initialized && r->entropy_total > 128) { 704 r->initialized = 1; 705 r->entropy_total = 0; 706 } 707 708 trace_credit_entropy_bits(r->name, nbits, 709 entropy_count >> ENTROPY_SHIFT, 710 r->entropy_total, _RET_IP_); 711 712 if (r == &input_pool) { 713 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 714 715 if (crng_init < 2 && entropy_bits >= 128) { 716 crng_reseed(&primary_crng, r); 717 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 718 } 719 720 /* should we wake readers? */ 721 if (entropy_bits >= random_read_wakeup_bits) { 722 wake_up_interruptible(&random_read_wait); 723 kill_fasync(&fasync, SIGIO, POLL_IN); 724 } 725 /* If the input pool is getting full, send some 726 * entropy to the blocking pool until it is 75% full. 727 */ 728 if (entropy_bits > random_write_wakeup_bits && 729 r->initialized && 730 r->entropy_total >= 2*random_read_wakeup_bits) { 731 struct entropy_store *other = &blocking_pool; 732 733 if (other->entropy_count <= 734 3 * other->poolinfo->poolfracbits / 4) { 735 schedule_work(&other->push_work); 736 r->entropy_total = 0; 737 } 738 } 739 } 740 } 741 742 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 743 { 744 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 745 746 if (nbits < 0) 747 return -EINVAL; 748 749 /* Cap the value to avoid overflows */ 750 nbits = min(nbits, nbits_max); 751 752 credit_entropy_bits(r, nbits); 753 return 0; 754 } 755 756 /********************************************************************* 757 * 758 * CRNG using CHACHA20 759 * 760 *********************************************************************/ 761 762 #define CRNG_RESEED_INTERVAL (300*HZ) 763 764 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 765 766 #ifdef CONFIG_NUMA 767 /* 768 * Hack to deal with crazy userspace progams when they are all trying 769 * to access /dev/urandom in parallel. The programs are almost 770 * certainly doing something terribly wrong, but we'll work around 771 * their brain damage. 772 */ 773 static struct crng_state **crng_node_pool __read_mostly; 774 #endif 775 776 static void crng_initialize(struct crng_state *crng) 777 { 778 int i; 779 unsigned long rv; 780 781 memcpy(&crng->state[0], "expand 32-byte k", 16); 782 if (crng == &primary_crng) 783 _extract_entropy(&input_pool, &crng->state[4], 784 sizeof(__u32) * 12, 0); 785 else 786 get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 787 for (i = 4; i < 16; i++) { 788 if (!arch_get_random_seed_long(&rv) && 789 !arch_get_random_long(&rv)) 790 rv = random_get_entropy(); 791 crng->state[i] ^= rv; 792 } 793 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 794 } 795 796 static int crng_fast_load(const char *cp, size_t len) 797 { 798 unsigned long flags; 799 char *p; 800 801 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 802 return 0; 803 if (crng_ready()) { 804 spin_unlock_irqrestore(&primary_crng.lock, flags); 805 return 0; 806 } 807 p = (unsigned char *) &primary_crng.state[4]; 808 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 809 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp; 810 cp++; crng_init_cnt++; len--; 811 } 812 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 813 crng_init = 1; 814 wake_up_interruptible(&crng_init_wait); 815 pr_notice("random: fast init done\n"); 816 } 817 spin_unlock_irqrestore(&primary_crng.lock, flags); 818 return 1; 819 } 820 821 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 822 { 823 unsigned long flags; 824 int i, num; 825 union { 826 __u8 block[CHACHA20_BLOCK_SIZE]; 827 __u32 key[8]; 828 } buf; 829 830 if (r) { 831 num = extract_entropy(r, &buf, 32, 16, 0); 832 if (num == 0) 833 return; 834 } else { 835 _extract_crng(&primary_crng, buf.block); 836 _crng_backtrack_protect(&primary_crng, buf.block, 837 CHACHA20_KEY_SIZE); 838 } 839 spin_lock_irqsave(&primary_crng.lock, flags); 840 for (i = 0; i < 8; i++) { 841 unsigned long rv; 842 if (!arch_get_random_seed_long(&rv) && 843 !arch_get_random_long(&rv)) 844 rv = random_get_entropy(); 845 crng->state[i+4] ^= buf.key[i] ^ rv; 846 } 847 memzero_explicit(&buf, sizeof(buf)); 848 crng->init_time = jiffies; 849 if (crng == &primary_crng && crng_init < 2) { 850 crng_init = 2; 851 process_random_ready_list(); 852 wake_up_interruptible(&crng_init_wait); 853 pr_notice("random: crng init done\n"); 854 } 855 spin_unlock_irqrestore(&primary_crng.lock, flags); 856 } 857 858 static inline void maybe_reseed_primary_crng(void) 859 { 860 if (crng_init > 2 && 861 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL)) 862 crng_reseed(&primary_crng, &input_pool); 863 } 864 865 static inline void crng_wait_ready(void) 866 { 867 wait_event_interruptible(crng_init_wait, crng_ready()); 868 } 869 870 static void _extract_crng(struct crng_state *crng, 871 __u8 out[CHACHA20_BLOCK_SIZE]) 872 { 873 unsigned long v, flags; 874 875 if (crng_init > 1 && 876 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)) 877 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 878 spin_lock_irqsave(&crng->lock, flags); 879 if (arch_get_random_long(&v)) 880 crng->state[14] ^= v; 881 chacha20_block(&crng->state[0], out); 882 if (crng->state[12] == 0) 883 crng->state[13]++; 884 spin_unlock_irqrestore(&crng->lock, flags); 885 } 886 887 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE]) 888 { 889 struct crng_state *crng = NULL; 890 891 #ifdef CONFIG_NUMA 892 if (crng_node_pool) 893 crng = crng_node_pool[numa_node_id()]; 894 if (crng == NULL) 895 #endif 896 crng = &primary_crng; 897 _extract_crng(crng, out); 898 } 899 900 /* 901 * Use the leftover bytes from the CRNG block output (if there is 902 * enough) to mutate the CRNG key to provide backtracking protection. 903 */ 904 static void _crng_backtrack_protect(struct crng_state *crng, 905 __u8 tmp[CHACHA20_BLOCK_SIZE], int used) 906 { 907 unsigned long flags; 908 __u32 *s, *d; 909 int i; 910 911 used = round_up(used, sizeof(__u32)); 912 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) { 913 extract_crng(tmp); 914 used = 0; 915 } 916 spin_lock_irqsave(&crng->lock, flags); 917 s = (__u32 *) &tmp[used]; 918 d = &crng->state[4]; 919 for (i=0; i < 8; i++) 920 *d++ ^= *s++; 921 spin_unlock_irqrestore(&crng->lock, flags); 922 } 923 924 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used) 925 { 926 struct crng_state *crng = NULL; 927 928 #ifdef CONFIG_NUMA 929 if (crng_node_pool) 930 crng = crng_node_pool[numa_node_id()]; 931 if (crng == NULL) 932 #endif 933 crng = &primary_crng; 934 _crng_backtrack_protect(crng, tmp, used); 935 } 936 937 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 938 { 939 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE; 940 __u8 tmp[CHACHA20_BLOCK_SIZE]; 941 int large_request = (nbytes > 256); 942 943 while (nbytes) { 944 if (large_request && need_resched()) { 945 if (signal_pending(current)) { 946 if (ret == 0) 947 ret = -ERESTARTSYS; 948 break; 949 } 950 schedule(); 951 } 952 953 extract_crng(tmp); 954 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE); 955 if (copy_to_user(buf, tmp, i)) { 956 ret = -EFAULT; 957 break; 958 } 959 960 nbytes -= i; 961 buf += i; 962 ret += i; 963 } 964 crng_backtrack_protect(tmp, i); 965 966 /* Wipe data just written to memory */ 967 memzero_explicit(tmp, sizeof(tmp)); 968 969 return ret; 970 } 971 972 973 /********************************************************************* 974 * 975 * Entropy input management 976 * 977 *********************************************************************/ 978 979 /* There is one of these per entropy source */ 980 struct timer_rand_state { 981 cycles_t last_time; 982 long last_delta, last_delta2; 983 unsigned dont_count_entropy:1; 984 }; 985 986 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 987 988 /* 989 * Add device- or boot-specific data to the input pool to help 990 * initialize it. 991 * 992 * None of this adds any entropy; it is meant to avoid the problem of 993 * the entropy pool having similar initial state across largely 994 * identical devices. 995 */ 996 void add_device_randomness(const void *buf, unsigned int size) 997 { 998 unsigned long time = random_get_entropy() ^ jiffies; 999 unsigned long flags; 1000 1001 trace_add_device_randomness(size, _RET_IP_); 1002 spin_lock_irqsave(&input_pool.lock, flags); 1003 _mix_pool_bytes(&input_pool, buf, size); 1004 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1005 spin_unlock_irqrestore(&input_pool.lock, flags); 1006 } 1007 EXPORT_SYMBOL(add_device_randomness); 1008 1009 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1010 1011 /* 1012 * This function adds entropy to the entropy "pool" by using timing 1013 * delays. It uses the timer_rand_state structure to make an estimate 1014 * of how many bits of entropy this call has added to the pool. 1015 * 1016 * The number "num" is also added to the pool - it should somehow describe 1017 * the type of event which just happened. This is currently 0-255 for 1018 * keyboard scan codes, and 256 upwards for interrupts. 1019 * 1020 */ 1021 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1022 { 1023 struct entropy_store *r; 1024 struct { 1025 long jiffies; 1026 unsigned cycles; 1027 unsigned num; 1028 } sample; 1029 long delta, delta2, delta3; 1030 1031 preempt_disable(); 1032 1033 sample.jiffies = jiffies; 1034 sample.cycles = random_get_entropy(); 1035 sample.num = num; 1036 r = &input_pool; 1037 mix_pool_bytes(r, &sample, sizeof(sample)); 1038 1039 /* 1040 * Calculate number of bits of randomness we probably added. 1041 * We take into account the first, second and third-order deltas 1042 * in order to make our estimate. 1043 */ 1044 1045 if (!state->dont_count_entropy) { 1046 delta = sample.jiffies - state->last_time; 1047 state->last_time = sample.jiffies; 1048 1049 delta2 = delta - state->last_delta; 1050 state->last_delta = delta; 1051 1052 delta3 = delta2 - state->last_delta2; 1053 state->last_delta2 = delta2; 1054 1055 if (delta < 0) 1056 delta = -delta; 1057 if (delta2 < 0) 1058 delta2 = -delta2; 1059 if (delta3 < 0) 1060 delta3 = -delta3; 1061 if (delta > delta2) 1062 delta = delta2; 1063 if (delta > delta3) 1064 delta = delta3; 1065 1066 /* 1067 * delta is now minimum absolute delta. 1068 * Round down by 1 bit on general principles, 1069 * and limit entropy entimate to 12 bits. 1070 */ 1071 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1072 } 1073 preempt_enable(); 1074 } 1075 1076 void add_input_randomness(unsigned int type, unsigned int code, 1077 unsigned int value) 1078 { 1079 static unsigned char last_value; 1080 1081 /* ignore autorepeat and the like */ 1082 if (value == last_value) 1083 return; 1084 1085 last_value = value; 1086 add_timer_randomness(&input_timer_state, 1087 (type << 4) ^ code ^ (code >> 4) ^ value); 1088 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1089 } 1090 EXPORT_SYMBOL_GPL(add_input_randomness); 1091 1092 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1093 1094 #ifdef ADD_INTERRUPT_BENCH 1095 static unsigned long avg_cycles, avg_deviation; 1096 1097 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1098 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1099 1100 static void add_interrupt_bench(cycles_t start) 1101 { 1102 long delta = random_get_entropy() - start; 1103 1104 /* Use a weighted moving average */ 1105 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1106 avg_cycles += delta; 1107 /* And average deviation */ 1108 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1109 avg_deviation += delta; 1110 } 1111 #else 1112 #define add_interrupt_bench(x) 1113 #endif 1114 1115 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1116 { 1117 __u32 *ptr = (__u32 *) regs; 1118 1119 if (regs == NULL) 1120 return 0; 1121 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1122 f->reg_idx = 0; 1123 return *(ptr + f->reg_idx++); 1124 } 1125 1126 void add_interrupt_randomness(int irq, int irq_flags) 1127 { 1128 struct entropy_store *r; 1129 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1130 struct pt_regs *regs = get_irq_regs(); 1131 unsigned long now = jiffies; 1132 cycles_t cycles = random_get_entropy(); 1133 __u32 c_high, j_high; 1134 __u64 ip; 1135 unsigned long seed; 1136 int credit = 0; 1137 1138 if (cycles == 0) 1139 cycles = get_reg(fast_pool, regs); 1140 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1141 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1142 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1143 fast_pool->pool[1] ^= now ^ c_high; 1144 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1145 fast_pool->pool[2] ^= ip; 1146 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1147 get_reg(fast_pool, regs); 1148 1149 fast_mix(fast_pool); 1150 add_interrupt_bench(cycles); 1151 1152 if (!crng_ready()) { 1153 if ((fast_pool->count >= 64) && 1154 crng_fast_load((char *) fast_pool->pool, 1155 sizeof(fast_pool->pool))) { 1156 fast_pool->count = 0; 1157 fast_pool->last = now; 1158 } 1159 return; 1160 } 1161 1162 if ((fast_pool->count < 64) && 1163 !time_after(now, fast_pool->last + HZ)) 1164 return; 1165 1166 r = &input_pool; 1167 if (!spin_trylock(&r->lock)) 1168 return; 1169 1170 fast_pool->last = now; 1171 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1172 1173 /* 1174 * If we have architectural seed generator, produce a seed and 1175 * add it to the pool. For the sake of paranoia don't let the 1176 * architectural seed generator dominate the input from the 1177 * interrupt noise. 1178 */ 1179 if (arch_get_random_seed_long(&seed)) { 1180 __mix_pool_bytes(r, &seed, sizeof(seed)); 1181 credit = 1; 1182 } 1183 spin_unlock(&r->lock); 1184 1185 fast_pool->count = 0; 1186 1187 /* award one bit for the contents of the fast pool */ 1188 credit_entropy_bits(r, credit + 1); 1189 } 1190 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1191 1192 #ifdef CONFIG_BLOCK 1193 void add_disk_randomness(struct gendisk *disk) 1194 { 1195 if (!disk || !disk->random) 1196 return; 1197 /* first major is 1, so we get >= 0x200 here */ 1198 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1199 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1200 } 1201 EXPORT_SYMBOL_GPL(add_disk_randomness); 1202 #endif 1203 1204 /********************************************************************* 1205 * 1206 * Entropy extraction routines 1207 * 1208 *********************************************************************/ 1209 1210 /* 1211 * This utility inline function is responsible for transferring entropy 1212 * from the primary pool to the secondary extraction pool. We make 1213 * sure we pull enough for a 'catastrophic reseed'. 1214 */ 1215 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1216 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1217 { 1218 if (!r->pull || 1219 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1220 r->entropy_count > r->poolinfo->poolfracbits) 1221 return; 1222 1223 if (r->limit == 0 && random_min_urandom_seed) { 1224 unsigned long now = jiffies; 1225 1226 if (time_before(now, 1227 r->last_pulled + random_min_urandom_seed * HZ)) 1228 return; 1229 r->last_pulled = now; 1230 } 1231 1232 _xfer_secondary_pool(r, nbytes); 1233 } 1234 1235 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1236 { 1237 __u32 tmp[OUTPUT_POOL_WORDS]; 1238 1239 /* For /dev/random's pool, always leave two wakeups' worth */ 1240 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4; 1241 int bytes = nbytes; 1242 1243 /* pull at least as much as a wakeup */ 1244 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1245 /* but never more than the buffer size */ 1246 bytes = min_t(int, bytes, sizeof(tmp)); 1247 1248 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1249 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1250 bytes = extract_entropy(r->pull, tmp, bytes, 1251 random_read_wakeup_bits / 8, rsvd_bytes); 1252 mix_pool_bytes(r, tmp, bytes); 1253 credit_entropy_bits(r, bytes*8); 1254 } 1255 1256 /* 1257 * Used as a workqueue function so that when the input pool is getting 1258 * full, we can "spill over" some entropy to the output pools. That 1259 * way the output pools can store some of the excess entropy instead 1260 * of letting it go to waste. 1261 */ 1262 static void push_to_pool(struct work_struct *work) 1263 { 1264 struct entropy_store *r = container_of(work, struct entropy_store, 1265 push_work); 1266 BUG_ON(!r); 1267 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1268 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1269 r->pull->entropy_count >> ENTROPY_SHIFT); 1270 } 1271 1272 /* 1273 * This function decides how many bytes to actually take from the 1274 * given pool, and also debits the entropy count accordingly. 1275 */ 1276 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1277 int reserved) 1278 { 1279 int entropy_count, orig; 1280 size_t ibytes, nfrac; 1281 1282 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1283 1284 /* Can we pull enough? */ 1285 retry: 1286 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 1287 ibytes = nbytes; 1288 /* If limited, never pull more than available */ 1289 if (r->limit) { 1290 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1291 1292 if ((have_bytes -= reserved) < 0) 1293 have_bytes = 0; 1294 ibytes = min_t(size_t, ibytes, have_bytes); 1295 } 1296 if (ibytes < min) 1297 ibytes = 0; 1298 1299 if (unlikely(entropy_count < 0)) { 1300 pr_warn("random: negative entropy count: pool %s count %d\n", 1301 r->name, entropy_count); 1302 WARN_ON(1); 1303 entropy_count = 0; 1304 } 1305 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1306 if ((size_t) entropy_count > nfrac) 1307 entropy_count -= nfrac; 1308 else 1309 entropy_count = 0; 1310 1311 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1312 goto retry; 1313 1314 trace_debit_entropy(r->name, 8 * ibytes); 1315 if (ibytes && 1316 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1317 wake_up_interruptible(&random_write_wait); 1318 kill_fasync(&fasync, SIGIO, POLL_OUT); 1319 } 1320 1321 return ibytes; 1322 } 1323 1324 /* 1325 * This function does the actual extraction for extract_entropy and 1326 * extract_entropy_user. 1327 * 1328 * Note: we assume that .poolwords is a multiple of 16 words. 1329 */ 1330 static void extract_buf(struct entropy_store *r, __u8 *out) 1331 { 1332 int i; 1333 union { 1334 __u32 w[5]; 1335 unsigned long l[LONGS(20)]; 1336 } hash; 1337 __u32 workspace[SHA_WORKSPACE_WORDS]; 1338 unsigned long flags; 1339 1340 /* 1341 * If we have an architectural hardware random number 1342 * generator, use it for SHA's initial vector 1343 */ 1344 sha_init(hash.w); 1345 for (i = 0; i < LONGS(20); i++) { 1346 unsigned long v; 1347 if (!arch_get_random_long(&v)) 1348 break; 1349 hash.l[i] = v; 1350 } 1351 1352 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1353 spin_lock_irqsave(&r->lock, flags); 1354 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1355 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1356 1357 /* 1358 * We mix the hash back into the pool to prevent backtracking 1359 * attacks (where the attacker knows the state of the pool 1360 * plus the current outputs, and attempts to find previous 1361 * ouputs), unless the hash function can be inverted. By 1362 * mixing at least a SHA1 worth of hash data back, we make 1363 * brute-forcing the feedback as hard as brute-forcing the 1364 * hash. 1365 */ 1366 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1367 spin_unlock_irqrestore(&r->lock, flags); 1368 1369 memzero_explicit(workspace, sizeof(workspace)); 1370 1371 /* 1372 * In case the hash function has some recognizable output 1373 * pattern, we fold it in half. Thus, we always feed back 1374 * twice as much data as we output. 1375 */ 1376 hash.w[0] ^= hash.w[3]; 1377 hash.w[1] ^= hash.w[4]; 1378 hash.w[2] ^= rol32(hash.w[2], 16); 1379 1380 memcpy(out, &hash, EXTRACT_SIZE); 1381 memzero_explicit(&hash, sizeof(hash)); 1382 } 1383 1384 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1385 size_t nbytes, int fips) 1386 { 1387 ssize_t ret = 0, i; 1388 __u8 tmp[EXTRACT_SIZE]; 1389 unsigned long flags; 1390 1391 while (nbytes) { 1392 extract_buf(r, tmp); 1393 1394 if (fips) { 1395 spin_lock_irqsave(&r->lock, flags); 1396 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1397 panic("Hardware RNG duplicated output!\n"); 1398 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1399 spin_unlock_irqrestore(&r->lock, flags); 1400 } 1401 i = min_t(int, nbytes, EXTRACT_SIZE); 1402 memcpy(buf, tmp, i); 1403 nbytes -= i; 1404 buf += i; 1405 ret += i; 1406 } 1407 1408 /* Wipe data just returned from memory */ 1409 memzero_explicit(tmp, sizeof(tmp)); 1410 1411 return ret; 1412 } 1413 1414 /* 1415 * This function extracts randomness from the "entropy pool", and 1416 * returns it in a buffer. 1417 * 1418 * The min parameter specifies the minimum amount we can pull before 1419 * failing to avoid races that defeat catastrophic reseeding while the 1420 * reserved parameter indicates how much entropy we must leave in the 1421 * pool after each pull to avoid starving other readers. 1422 */ 1423 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1424 size_t nbytes, int min, int reserved) 1425 { 1426 __u8 tmp[EXTRACT_SIZE]; 1427 unsigned long flags; 1428 1429 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1430 if (fips_enabled) { 1431 spin_lock_irqsave(&r->lock, flags); 1432 if (!r->last_data_init) { 1433 r->last_data_init = 1; 1434 spin_unlock_irqrestore(&r->lock, flags); 1435 trace_extract_entropy(r->name, EXTRACT_SIZE, 1436 ENTROPY_BITS(r), _RET_IP_); 1437 xfer_secondary_pool(r, EXTRACT_SIZE); 1438 extract_buf(r, tmp); 1439 spin_lock_irqsave(&r->lock, flags); 1440 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1441 } 1442 spin_unlock_irqrestore(&r->lock, flags); 1443 } 1444 1445 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1446 xfer_secondary_pool(r, nbytes); 1447 nbytes = account(r, nbytes, min, reserved); 1448 1449 return _extract_entropy(r, buf, nbytes, fips_enabled); 1450 } 1451 1452 /* 1453 * This function extracts randomness from the "entropy pool", and 1454 * returns it in a userspace buffer. 1455 */ 1456 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1457 size_t nbytes) 1458 { 1459 ssize_t ret = 0, i; 1460 __u8 tmp[EXTRACT_SIZE]; 1461 int large_request = (nbytes > 256); 1462 1463 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1464 xfer_secondary_pool(r, nbytes); 1465 nbytes = account(r, nbytes, 0, 0); 1466 1467 while (nbytes) { 1468 if (large_request && need_resched()) { 1469 if (signal_pending(current)) { 1470 if (ret == 0) 1471 ret = -ERESTARTSYS; 1472 break; 1473 } 1474 schedule(); 1475 } 1476 1477 extract_buf(r, tmp); 1478 i = min_t(int, nbytes, EXTRACT_SIZE); 1479 if (copy_to_user(buf, tmp, i)) { 1480 ret = -EFAULT; 1481 break; 1482 } 1483 1484 nbytes -= i; 1485 buf += i; 1486 ret += i; 1487 } 1488 1489 /* Wipe data just returned from memory */ 1490 memzero_explicit(tmp, sizeof(tmp)); 1491 1492 return ret; 1493 } 1494 1495 /* 1496 * This function is the exported kernel interface. It returns some 1497 * number of good random numbers, suitable for key generation, seeding 1498 * TCP sequence numbers, etc. It does not rely on the hardware random 1499 * number generator. For random bytes direct from the hardware RNG 1500 * (when available), use get_random_bytes_arch(). 1501 */ 1502 void get_random_bytes(void *buf, int nbytes) 1503 { 1504 __u8 tmp[CHACHA20_BLOCK_SIZE]; 1505 1506 #if DEBUG_RANDOM_BOOT > 0 1507 if (!crng_ready()) 1508 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1509 "with crng_init = %d\n", (void *) _RET_IP_, crng_init); 1510 #endif 1511 trace_get_random_bytes(nbytes, _RET_IP_); 1512 1513 while (nbytes >= CHACHA20_BLOCK_SIZE) { 1514 extract_crng(buf); 1515 buf += CHACHA20_BLOCK_SIZE; 1516 nbytes -= CHACHA20_BLOCK_SIZE; 1517 } 1518 1519 if (nbytes > 0) { 1520 extract_crng(tmp); 1521 memcpy(buf, tmp, nbytes); 1522 crng_backtrack_protect(tmp, nbytes); 1523 } else 1524 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE); 1525 memzero_explicit(tmp, sizeof(tmp)); 1526 } 1527 EXPORT_SYMBOL(get_random_bytes); 1528 1529 /* 1530 * Add a callback function that will be invoked when the nonblocking 1531 * pool is initialised. 1532 * 1533 * returns: 0 if callback is successfully added 1534 * -EALREADY if pool is already initialised (callback not called) 1535 * -ENOENT if module for callback is not alive 1536 */ 1537 int add_random_ready_callback(struct random_ready_callback *rdy) 1538 { 1539 struct module *owner; 1540 unsigned long flags; 1541 int err = -EALREADY; 1542 1543 if (crng_ready()) 1544 return err; 1545 1546 owner = rdy->owner; 1547 if (!try_module_get(owner)) 1548 return -ENOENT; 1549 1550 spin_lock_irqsave(&random_ready_list_lock, flags); 1551 if (crng_ready()) 1552 goto out; 1553 1554 owner = NULL; 1555 1556 list_add(&rdy->list, &random_ready_list); 1557 err = 0; 1558 1559 out: 1560 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1561 1562 module_put(owner); 1563 1564 return err; 1565 } 1566 EXPORT_SYMBOL(add_random_ready_callback); 1567 1568 /* 1569 * Delete a previously registered readiness callback function. 1570 */ 1571 void del_random_ready_callback(struct random_ready_callback *rdy) 1572 { 1573 unsigned long flags; 1574 struct module *owner = NULL; 1575 1576 spin_lock_irqsave(&random_ready_list_lock, flags); 1577 if (!list_empty(&rdy->list)) { 1578 list_del_init(&rdy->list); 1579 owner = rdy->owner; 1580 } 1581 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1582 1583 module_put(owner); 1584 } 1585 EXPORT_SYMBOL(del_random_ready_callback); 1586 1587 /* 1588 * This function will use the architecture-specific hardware random 1589 * number generator if it is available. The arch-specific hw RNG will 1590 * almost certainly be faster than what we can do in software, but it 1591 * is impossible to verify that it is implemented securely (as 1592 * opposed, to, say, the AES encryption of a sequence number using a 1593 * key known by the NSA). So it's useful if we need the speed, but 1594 * only if we're willing to trust the hardware manufacturer not to 1595 * have put in a back door. 1596 */ 1597 void get_random_bytes_arch(void *buf, int nbytes) 1598 { 1599 char *p = buf; 1600 1601 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1602 while (nbytes) { 1603 unsigned long v; 1604 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1605 1606 if (!arch_get_random_long(&v)) 1607 break; 1608 1609 memcpy(p, &v, chunk); 1610 p += chunk; 1611 nbytes -= chunk; 1612 } 1613 1614 if (nbytes) 1615 get_random_bytes(p, nbytes); 1616 } 1617 EXPORT_SYMBOL(get_random_bytes_arch); 1618 1619 1620 /* 1621 * init_std_data - initialize pool with system data 1622 * 1623 * @r: pool to initialize 1624 * 1625 * This function clears the pool's entropy count and mixes some system 1626 * data into the pool to prepare it for use. The pool is not cleared 1627 * as that can only decrease the entropy in the pool. 1628 */ 1629 static void init_std_data(struct entropy_store *r) 1630 { 1631 int i; 1632 ktime_t now = ktime_get_real(); 1633 unsigned long rv; 1634 1635 r->last_pulled = jiffies; 1636 mix_pool_bytes(r, &now, sizeof(now)); 1637 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1638 if (!arch_get_random_seed_long(&rv) && 1639 !arch_get_random_long(&rv)) 1640 rv = random_get_entropy(); 1641 mix_pool_bytes(r, &rv, sizeof(rv)); 1642 } 1643 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1644 } 1645 1646 /* 1647 * Note that setup_arch() may call add_device_randomness() 1648 * long before we get here. This allows seeding of the pools 1649 * with some platform dependent data very early in the boot 1650 * process. But it limits our options here. We must use 1651 * statically allocated structures that already have all 1652 * initializations complete at compile time. We should also 1653 * take care not to overwrite the precious per platform data 1654 * we were given. 1655 */ 1656 static int rand_initialize(void) 1657 { 1658 #ifdef CONFIG_NUMA 1659 int i; 1660 struct crng_state *crng; 1661 struct crng_state **pool; 1662 #endif 1663 1664 init_std_data(&input_pool); 1665 init_std_data(&blocking_pool); 1666 crng_initialize(&primary_crng); 1667 1668 #ifdef CONFIG_NUMA 1669 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 1670 for_each_online_node(i) { 1671 crng = kmalloc_node(sizeof(struct crng_state), 1672 GFP_KERNEL | __GFP_NOFAIL, i); 1673 spin_lock_init(&crng->lock); 1674 crng_initialize(crng); 1675 pool[i] = crng; 1676 } 1677 mb(); 1678 crng_node_pool = pool; 1679 #endif 1680 return 0; 1681 } 1682 early_initcall(rand_initialize); 1683 1684 #ifdef CONFIG_BLOCK 1685 void rand_initialize_disk(struct gendisk *disk) 1686 { 1687 struct timer_rand_state *state; 1688 1689 /* 1690 * If kzalloc returns null, we just won't use that entropy 1691 * source. 1692 */ 1693 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1694 if (state) { 1695 state->last_time = INITIAL_JIFFIES; 1696 disk->random = state; 1697 } 1698 } 1699 #endif 1700 1701 static ssize_t 1702 _random_read(int nonblock, char __user *buf, size_t nbytes) 1703 { 1704 ssize_t n; 1705 1706 if (nbytes == 0) 1707 return 0; 1708 1709 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1710 while (1) { 1711 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1712 if (n < 0) 1713 return n; 1714 trace_random_read(n*8, (nbytes-n)*8, 1715 ENTROPY_BITS(&blocking_pool), 1716 ENTROPY_BITS(&input_pool)); 1717 if (n > 0) 1718 return n; 1719 1720 /* Pool is (near) empty. Maybe wait and retry. */ 1721 if (nonblock) 1722 return -EAGAIN; 1723 1724 wait_event_interruptible(random_read_wait, 1725 ENTROPY_BITS(&input_pool) >= 1726 random_read_wakeup_bits); 1727 if (signal_pending(current)) 1728 return -ERESTARTSYS; 1729 } 1730 } 1731 1732 static ssize_t 1733 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1734 { 1735 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1736 } 1737 1738 static ssize_t 1739 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1740 { 1741 unsigned long flags; 1742 static int maxwarn = 10; 1743 int ret; 1744 1745 if (!crng_ready() && maxwarn > 0) { 1746 maxwarn--; 1747 printk(KERN_NOTICE "random: %s: uninitialized urandom read " 1748 "(%zd bytes read)\n", 1749 current->comm, nbytes); 1750 spin_lock_irqsave(&primary_crng.lock, flags); 1751 crng_init_cnt = 0; 1752 spin_unlock_irqrestore(&primary_crng.lock, flags); 1753 } 1754 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1755 ret = extract_crng_user(buf, nbytes); 1756 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1757 return ret; 1758 } 1759 1760 static unsigned int 1761 random_poll(struct file *file, poll_table * wait) 1762 { 1763 unsigned int mask; 1764 1765 poll_wait(file, &random_read_wait, wait); 1766 poll_wait(file, &random_write_wait, wait); 1767 mask = 0; 1768 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1769 mask |= POLLIN | POLLRDNORM; 1770 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1771 mask |= POLLOUT | POLLWRNORM; 1772 return mask; 1773 } 1774 1775 static int 1776 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1777 { 1778 size_t bytes; 1779 __u32 buf[16]; 1780 const char __user *p = buffer; 1781 1782 while (count > 0) { 1783 bytes = min(count, sizeof(buf)); 1784 if (copy_from_user(&buf, p, bytes)) 1785 return -EFAULT; 1786 1787 count -= bytes; 1788 p += bytes; 1789 1790 mix_pool_bytes(r, buf, bytes); 1791 cond_resched(); 1792 } 1793 1794 return 0; 1795 } 1796 1797 static ssize_t random_write(struct file *file, const char __user *buffer, 1798 size_t count, loff_t *ppos) 1799 { 1800 size_t ret; 1801 1802 ret = write_pool(&input_pool, buffer, count); 1803 if (ret) 1804 return ret; 1805 1806 return (ssize_t)count; 1807 } 1808 1809 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1810 { 1811 int size, ent_count; 1812 int __user *p = (int __user *)arg; 1813 int retval; 1814 1815 switch (cmd) { 1816 case RNDGETENTCNT: 1817 /* inherently racy, no point locking */ 1818 ent_count = ENTROPY_BITS(&input_pool); 1819 if (put_user(ent_count, p)) 1820 return -EFAULT; 1821 return 0; 1822 case RNDADDTOENTCNT: 1823 if (!capable(CAP_SYS_ADMIN)) 1824 return -EPERM; 1825 if (get_user(ent_count, p)) 1826 return -EFAULT; 1827 return credit_entropy_bits_safe(&input_pool, ent_count); 1828 case RNDADDENTROPY: 1829 if (!capable(CAP_SYS_ADMIN)) 1830 return -EPERM; 1831 if (get_user(ent_count, p++)) 1832 return -EFAULT; 1833 if (ent_count < 0) 1834 return -EINVAL; 1835 if (get_user(size, p++)) 1836 return -EFAULT; 1837 retval = write_pool(&input_pool, (const char __user *)p, 1838 size); 1839 if (retval < 0) 1840 return retval; 1841 return credit_entropy_bits_safe(&input_pool, ent_count); 1842 case RNDZAPENTCNT: 1843 case RNDCLEARPOOL: 1844 /* 1845 * Clear the entropy pool counters. We no longer clear 1846 * the entropy pool, as that's silly. 1847 */ 1848 if (!capable(CAP_SYS_ADMIN)) 1849 return -EPERM; 1850 input_pool.entropy_count = 0; 1851 blocking_pool.entropy_count = 0; 1852 return 0; 1853 default: 1854 return -EINVAL; 1855 } 1856 } 1857 1858 static int random_fasync(int fd, struct file *filp, int on) 1859 { 1860 return fasync_helper(fd, filp, on, &fasync); 1861 } 1862 1863 const struct file_operations random_fops = { 1864 .read = random_read, 1865 .write = random_write, 1866 .poll = random_poll, 1867 .unlocked_ioctl = random_ioctl, 1868 .fasync = random_fasync, 1869 .llseek = noop_llseek, 1870 }; 1871 1872 const struct file_operations urandom_fops = { 1873 .read = urandom_read, 1874 .write = random_write, 1875 .unlocked_ioctl = random_ioctl, 1876 .fasync = random_fasync, 1877 .llseek = noop_llseek, 1878 }; 1879 1880 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1881 unsigned int, flags) 1882 { 1883 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 1884 return -EINVAL; 1885 1886 if (count > INT_MAX) 1887 count = INT_MAX; 1888 1889 if (flags & GRND_RANDOM) 1890 return _random_read(flags & GRND_NONBLOCK, buf, count); 1891 1892 if (!crng_ready()) { 1893 if (flags & GRND_NONBLOCK) 1894 return -EAGAIN; 1895 crng_wait_ready(); 1896 if (signal_pending(current)) 1897 return -ERESTARTSYS; 1898 } 1899 return urandom_read(NULL, buf, count, NULL); 1900 } 1901 1902 /******************************************************************** 1903 * 1904 * Sysctl interface 1905 * 1906 ********************************************************************/ 1907 1908 #ifdef CONFIG_SYSCTL 1909 1910 #include <linux/sysctl.h> 1911 1912 static int min_read_thresh = 8, min_write_thresh; 1913 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 1914 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1915 static char sysctl_bootid[16]; 1916 1917 /* 1918 * This function is used to return both the bootid UUID, and random 1919 * UUID. The difference is in whether table->data is NULL; if it is, 1920 * then a new UUID is generated and returned to the user. 1921 * 1922 * If the user accesses this via the proc interface, the UUID will be 1923 * returned as an ASCII string in the standard UUID format; if via the 1924 * sysctl system call, as 16 bytes of binary data. 1925 */ 1926 static int proc_do_uuid(struct ctl_table *table, int write, 1927 void __user *buffer, size_t *lenp, loff_t *ppos) 1928 { 1929 struct ctl_table fake_table; 1930 unsigned char buf[64], tmp_uuid[16], *uuid; 1931 1932 uuid = table->data; 1933 if (!uuid) { 1934 uuid = tmp_uuid; 1935 generate_random_uuid(uuid); 1936 } else { 1937 static DEFINE_SPINLOCK(bootid_spinlock); 1938 1939 spin_lock(&bootid_spinlock); 1940 if (!uuid[8]) 1941 generate_random_uuid(uuid); 1942 spin_unlock(&bootid_spinlock); 1943 } 1944 1945 sprintf(buf, "%pU", uuid); 1946 1947 fake_table.data = buf; 1948 fake_table.maxlen = sizeof(buf); 1949 1950 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1951 } 1952 1953 /* 1954 * Return entropy available scaled to integral bits 1955 */ 1956 static int proc_do_entropy(struct ctl_table *table, int write, 1957 void __user *buffer, size_t *lenp, loff_t *ppos) 1958 { 1959 struct ctl_table fake_table; 1960 int entropy_count; 1961 1962 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1963 1964 fake_table.data = &entropy_count; 1965 fake_table.maxlen = sizeof(entropy_count); 1966 1967 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1968 } 1969 1970 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1971 extern struct ctl_table random_table[]; 1972 struct ctl_table random_table[] = { 1973 { 1974 .procname = "poolsize", 1975 .data = &sysctl_poolsize, 1976 .maxlen = sizeof(int), 1977 .mode = 0444, 1978 .proc_handler = proc_dointvec, 1979 }, 1980 { 1981 .procname = "entropy_avail", 1982 .maxlen = sizeof(int), 1983 .mode = 0444, 1984 .proc_handler = proc_do_entropy, 1985 .data = &input_pool.entropy_count, 1986 }, 1987 { 1988 .procname = "read_wakeup_threshold", 1989 .data = &random_read_wakeup_bits, 1990 .maxlen = sizeof(int), 1991 .mode = 0644, 1992 .proc_handler = proc_dointvec_minmax, 1993 .extra1 = &min_read_thresh, 1994 .extra2 = &max_read_thresh, 1995 }, 1996 { 1997 .procname = "write_wakeup_threshold", 1998 .data = &random_write_wakeup_bits, 1999 .maxlen = sizeof(int), 2000 .mode = 0644, 2001 .proc_handler = proc_dointvec_minmax, 2002 .extra1 = &min_write_thresh, 2003 .extra2 = &max_write_thresh, 2004 }, 2005 { 2006 .procname = "urandom_min_reseed_secs", 2007 .data = &random_min_urandom_seed, 2008 .maxlen = sizeof(int), 2009 .mode = 0644, 2010 .proc_handler = proc_dointvec, 2011 }, 2012 { 2013 .procname = "boot_id", 2014 .data = &sysctl_bootid, 2015 .maxlen = 16, 2016 .mode = 0444, 2017 .proc_handler = proc_do_uuid, 2018 }, 2019 { 2020 .procname = "uuid", 2021 .maxlen = 16, 2022 .mode = 0444, 2023 .proc_handler = proc_do_uuid, 2024 }, 2025 #ifdef ADD_INTERRUPT_BENCH 2026 { 2027 .procname = "add_interrupt_avg_cycles", 2028 .data = &avg_cycles, 2029 .maxlen = sizeof(avg_cycles), 2030 .mode = 0444, 2031 .proc_handler = proc_doulongvec_minmax, 2032 }, 2033 { 2034 .procname = "add_interrupt_avg_deviation", 2035 .data = &avg_deviation, 2036 .maxlen = sizeof(avg_deviation), 2037 .mode = 0444, 2038 .proc_handler = proc_doulongvec_minmax, 2039 }, 2040 #endif 2041 { } 2042 }; 2043 #endif /* CONFIG_SYSCTL */ 2044 2045 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 2046 2047 int random_int_secret_init(void) 2048 { 2049 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 2050 return 0; 2051 } 2052 2053 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash) 2054 __aligned(sizeof(unsigned long)); 2055 2056 /* 2057 * Get a random word for internal kernel use only. Similar to urandom but 2058 * with the goal of minimal entropy pool depletion. As a result, the random 2059 * value is not cryptographically secure but for several uses the cost of 2060 * depleting entropy is too high 2061 */ 2062 unsigned int get_random_int(void) 2063 { 2064 __u32 *hash; 2065 unsigned int ret; 2066 2067 if (arch_get_random_int(&ret)) 2068 return ret; 2069 2070 hash = get_cpu_var(get_random_int_hash); 2071 2072 hash[0] += current->pid + jiffies + random_get_entropy(); 2073 md5_transform(hash, random_int_secret); 2074 ret = hash[0]; 2075 put_cpu_var(get_random_int_hash); 2076 2077 return ret; 2078 } 2079 EXPORT_SYMBOL(get_random_int); 2080 2081 /* 2082 * Same as get_random_int(), but returns unsigned long. 2083 */ 2084 unsigned long get_random_long(void) 2085 { 2086 __u32 *hash; 2087 unsigned long ret; 2088 2089 if (arch_get_random_long(&ret)) 2090 return ret; 2091 2092 hash = get_cpu_var(get_random_int_hash); 2093 2094 hash[0] += current->pid + jiffies + random_get_entropy(); 2095 md5_transform(hash, random_int_secret); 2096 ret = *(unsigned long *)hash; 2097 put_cpu_var(get_random_int_hash); 2098 2099 return ret; 2100 } 2101 EXPORT_SYMBOL(get_random_long); 2102 2103 /* 2104 * randomize_range() returns a start address such that 2105 * 2106 * [...... <range> .....] 2107 * start end 2108 * 2109 * a <range> with size "len" starting at the return value is inside in the 2110 * area defined by [start, end], but is otherwise randomized. 2111 */ 2112 unsigned long 2113 randomize_range(unsigned long start, unsigned long end, unsigned long len) 2114 { 2115 unsigned long range = end - len - start; 2116 2117 if (end <= start + len) 2118 return 0; 2119 return PAGE_ALIGN(get_random_int() % range + start); 2120 } 2121 2122 /* Interface for in-kernel drivers of true hardware RNGs. 2123 * Those devices may produce endless random bits and will be throttled 2124 * when our pool is full. 2125 */ 2126 void add_hwgenerator_randomness(const char *buffer, size_t count, 2127 size_t entropy) 2128 { 2129 struct entropy_store *poolp = &input_pool; 2130 2131 if (!crng_ready()) { 2132 crng_fast_load(buffer, count); 2133 return; 2134 } 2135 2136 /* Suspend writing if we're above the trickle threshold. 2137 * We'll be woken up again once below random_write_wakeup_thresh, 2138 * or when the calling thread is about to terminate. 2139 */ 2140 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2141 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2142 mix_pool_bytes(poolp, buffer, count); 2143 credit_entropy_bits(poolp, entropy); 2144 } 2145 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2146