xref: /linux/drivers/char/mem.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/drivers/char/mem.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  Added devfs support.
7  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/backing-dev.h>
25 #include <linux/splice.h>
26 #include <linux/pfn.h>
27 #include <linux/export.h>
28 #include <linux/io.h>
29 #include <linux/uio.h>
30 
31 #include <linux/uaccess.h>
32 
33 #ifdef CONFIG_IA64
34 # include <linux/efi.h>
35 #endif
36 
37 #define DEVPORT_MINOR	4
38 
39 static inline unsigned long size_inside_page(unsigned long start,
40 					     unsigned long size)
41 {
42 	unsigned long sz;
43 
44 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
45 
46 	return min(sz, size);
47 }
48 
49 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
50 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
51 {
52 	return addr + count <= __pa(high_memory);
53 }
54 
55 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
56 {
57 	return 1;
58 }
59 #endif
60 
61 #ifdef CONFIG_STRICT_DEVMEM
62 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
63 {
64 	u64 from = ((u64)pfn) << PAGE_SHIFT;
65 	u64 to = from + size;
66 	u64 cursor = from;
67 
68 	while (cursor < to) {
69 		if (!devmem_is_allowed(pfn)) {
70 			printk(KERN_INFO
71 		"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
72 				current->comm, from, to);
73 			return 0;
74 		}
75 		cursor += PAGE_SIZE;
76 		pfn++;
77 	}
78 	return 1;
79 }
80 #else
81 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
82 {
83 	return 1;
84 }
85 #endif
86 
87 #ifndef unxlate_dev_mem_ptr
88 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
89 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
90 {
91 }
92 #endif
93 
94 /*
95  * This funcion reads the *physical* memory. The f_pos points directly to the
96  * memory location.
97  */
98 static ssize_t read_mem(struct file *file, char __user *buf,
99 			size_t count, loff_t *ppos)
100 {
101 	phys_addr_t p = *ppos;
102 	ssize_t read, sz;
103 	void *ptr;
104 
105 	if (p != *ppos)
106 		return 0;
107 
108 	if (!valid_phys_addr_range(p, count))
109 		return -EFAULT;
110 	read = 0;
111 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
112 	/* we don't have page 0 mapped on sparc and m68k.. */
113 	if (p < PAGE_SIZE) {
114 		sz = size_inside_page(p, count);
115 		if (sz > 0) {
116 			if (clear_user(buf, sz))
117 				return -EFAULT;
118 			buf += sz;
119 			p += sz;
120 			count -= sz;
121 			read += sz;
122 		}
123 	}
124 #endif
125 
126 	while (count > 0) {
127 		unsigned long remaining;
128 
129 		sz = size_inside_page(p, count);
130 
131 		if (!range_is_allowed(p >> PAGE_SHIFT, count))
132 			return -EPERM;
133 
134 		/*
135 		 * On ia64 if a page has been mapped somewhere as uncached, then
136 		 * it must also be accessed uncached by the kernel or data
137 		 * corruption may occur.
138 		 */
139 		ptr = xlate_dev_mem_ptr(p);
140 		if (!ptr)
141 			return -EFAULT;
142 
143 		remaining = copy_to_user(buf, ptr, sz);
144 		unxlate_dev_mem_ptr(p, ptr);
145 		if (remaining)
146 			return -EFAULT;
147 
148 		buf += sz;
149 		p += sz;
150 		count -= sz;
151 		read += sz;
152 	}
153 
154 	*ppos += read;
155 	return read;
156 }
157 
158 static ssize_t write_mem(struct file *file, const char __user *buf,
159 			 size_t count, loff_t *ppos)
160 {
161 	phys_addr_t p = *ppos;
162 	ssize_t written, sz;
163 	unsigned long copied;
164 	void *ptr;
165 
166 	if (p != *ppos)
167 		return -EFBIG;
168 
169 	if (!valid_phys_addr_range(p, count))
170 		return -EFAULT;
171 
172 	written = 0;
173 
174 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
175 	/* we don't have page 0 mapped on sparc and m68k.. */
176 	if (p < PAGE_SIZE) {
177 		sz = size_inside_page(p, count);
178 		/* Hmm. Do something? */
179 		buf += sz;
180 		p += sz;
181 		count -= sz;
182 		written += sz;
183 	}
184 #endif
185 
186 	while (count > 0) {
187 		sz = size_inside_page(p, count);
188 
189 		if (!range_is_allowed(p >> PAGE_SHIFT, sz))
190 			return -EPERM;
191 
192 		/*
193 		 * On ia64 if a page has been mapped somewhere as uncached, then
194 		 * it must also be accessed uncached by the kernel or data
195 		 * corruption may occur.
196 		 */
197 		ptr = xlate_dev_mem_ptr(p);
198 		if (!ptr) {
199 			if (written)
200 				break;
201 			return -EFAULT;
202 		}
203 
204 		copied = copy_from_user(ptr, buf, sz);
205 		unxlate_dev_mem_ptr(p, ptr);
206 		if (copied) {
207 			written += sz - copied;
208 			if (written)
209 				break;
210 			return -EFAULT;
211 		}
212 
213 		buf += sz;
214 		p += sz;
215 		count -= sz;
216 		written += sz;
217 	}
218 
219 	*ppos += written;
220 	return written;
221 }
222 
223 int __weak phys_mem_access_prot_allowed(struct file *file,
224 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
225 {
226 	return 1;
227 }
228 
229 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
230 
231 /*
232  * Architectures vary in how they handle caching for addresses
233  * outside of main memory.
234  *
235  */
236 #ifdef pgprot_noncached
237 static int uncached_access(struct file *file, phys_addr_t addr)
238 {
239 #if defined(CONFIG_IA64)
240 	/*
241 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
242 	 * attribute aliases.
243 	 */
244 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
245 #elif defined(CONFIG_MIPS)
246 	{
247 		extern int __uncached_access(struct file *file,
248 					     unsigned long addr);
249 
250 		return __uncached_access(file, addr);
251 	}
252 #else
253 	/*
254 	 * Accessing memory above the top the kernel knows about or through a
255 	 * file pointer
256 	 * that was marked O_DSYNC will be done non-cached.
257 	 */
258 	if (file->f_flags & O_DSYNC)
259 		return 1;
260 	return addr >= __pa(high_memory);
261 #endif
262 }
263 #endif
264 
265 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
266 				     unsigned long size, pgprot_t vma_prot)
267 {
268 #ifdef pgprot_noncached
269 	phys_addr_t offset = pfn << PAGE_SHIFT;
270 
271 	if (uncached_access(file, offset))
272 		return pgprot_noncached(vma_prot);
273 #endif
274 	return vma_prot;
275 }
276 #endif
277 
278 #ifndef CONFIG_MMU
279 static unsigned long get_unmapped_area_mem(struct file *file,
280 					   unsigned long addr,
281 					   unsigned long len,
282 					   unsigned long pgoff,
283 					   unsigned long flags)
284 {
285 	if (!valid_mmap_phys_addr_range(pgoff, len))
286 		return (unsigned long) -EINVAL;
287 	return pgoff << PAGE_SHIFT;
288 }
289 
290 /* permit direct mmap, for read, write or exec */
291 static unsigned memory_mmap_capabilities(struct file *file)
292 {
293 	return NOMMU_MAP_DIRECT |
294 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
295 }
296 
297 static unsigned zero_mmap_capabilities(struct file *file)
298 {
299 	return NOMMU_MAP_COPY;
300 }
301 
302 /* can't do an in-place private mapping if there's no MMU */
303 static inline int private_mapping_ok(struct vm_area_struct *vma)
304 {
305 	return vma->vm_flags & VM_MAYSHARE;
306 }
307 #else
308 
309 static inline int private_mapping_ok(struct vm_area_struct *vma)
310 {
311 	return 1;
312 }
313 #endif
314 
315 static const struct vm_operations_struct mmap_mem_ops = {
316 #ifdef CONFIG_HAVE_IOREMAP_PROT
317 	.access = generic_access_phys
318 #endif
319 };
320 
321 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
322 {
323 	size_t size = vma->vm_end - vma->vm_start;
324 
325 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
326 		return -EINVAL;
327 
328 	if (!private_mapping_ok(vma))
329 		return -ENOSYS;
330 
331 	if (!range_is_allowed(vma->vm_pgoff, size))
332 		return -EPERM;
333 
334 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
335 						&vma->vm_page_prot))
336 		return -EINVAL;
337 
338 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
339 						 size,
340 						 vma->vm_page_prot);
341 
342 	vma->vm_ops = &mmap_mem_ops;
343 
344 	/* Remap-pfn-range will mark the range VM_IO */
345 	if (remap_pfn_range(vma,
346 			    vma->vm_start,
347 			    vma->vm_pgoff,
348 			    size,
349 			    vma->vm_page_prot)) {
350 		return -EAGAIN;
351 	}
352 	return 0;
353 }
354 
355 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
356 {
357 	unsigned long pfn;
358 
359 	/* Turn a kernel-virtual address into a physical page frame */
360 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
361 
362 	/*
363 	 * RED-PEN: on some architectures there is more mapped memory than
364 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
365 	 * new macro here.
366 	 *
367 	 * RED-PEN: vmalloc is not supported right now.
368 	 */
369 	if (!pfn_valid(pfn))
370 		return -EIO;
371 
372 	vma->vm_pgoff = pfn;
373 	return mmap_mem(file, vma);
374 }
375 
376 /*
377  * This function reads the *virtual* memory as seen by the kernel.
378  */
379 static ssize_t read_kmem(struct file *file, char __user *buf,
380 			 size_t count, loff_t *ppos)
381 {
382 	unsigned long p = *ppos;
383 	ssize_t low_count, read, sz;
384 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
385 	int err = 0;
386 
387 	read = 0;
388 	if (p < (unsigned long) high_memory) {
389 		low_count = count;
390 		if (count > (unsigned long)high_memory - p)
391 			low_count = (unsigned long)high_memory - p;
392 
393 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
394 		/* we don't have page 0 mapped on sparc and m68k.. */
395 		if (p < PAGE_SIZE && low_count > 0) {
396 			sz = size_inside_page(p, low_count);
397 			if (clear_user(buf, sz))
398 				return -EFAULT;
399 			buf += sz;
400 			p += sz;
401 			read += sz;
402 			low_count -= sz;
403 			count -= sz;
404 		}
405 #endif
406 		while (low_count > 0) {
407 			sz = size_inside_page(p, low_count);
408 
409 			/*
410 			 * On ia64 if a page has been mapped somewhere as
411 			 * uncached, then it must also be accessed uncached
412 			 * by the kernel or data corruption may occur
413 			 */
414 			kbuf = xlate_dev_kmem_ptr((void *)p);
415 
416 			if (copy_to_user(buf, kbuf, sz))
417 				return -EFAULT;
418 			buf += sz;
419 			p += sz;
420 			read += sz;
421 			low_count -= sz;
422 			count -= sz;
423 		}
424 	}
425 
426 	if (count > 0) {
427 		kbuf = (char *)__get_free_page(GFP_KERNEL);
428 		if (!kbuf)
429 			return -ENOMEM;
430 		while (count > 0) {
431 			sz = size_inside_page(p, count);
432 			if (!is_vmalloc_or_module_addr((void *)p)) {
433 				err = -ENXIO;
434 				break;
435 			}
436 			sz = vread(kbuf, (char *)p, sz);
437 			if (!sz)
438 				break;
439 			if (copy_to_user(buf, kbuf, sz)) {
440 				err = -EFAULT;
441 				break;
442 			}
443 			count -= sz;
444 			buf += sz;
445 			read += sz;
446 			p += sz;
447 		}
448 		free_page((unsigned long)kbuf);
449 	}
450 	*ppos = p;
451 	return read ? read : err;
452 }
453 
454 
455 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
456 				size_t count, loff_t *ppos)
457 {
458 	ssize_t written, sz;
459 	unsigned long copied;
460 
461 	written = 0;
462 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
463 	/* we don't have page 0 mapped on sparc and m68k.. */
464 	if (p < PAGE_SIZE) {
465 		sz = size_inside_page(p, count);
466 		/* Hmm. Do something? */
467 		buf += sz;
468 		p += sz;
469 		count -= sz;
470 		written += sz;
471 	}
472 #endif
473 
474 	while (count > 0) {
475 		void *ptr;
476 
477 		sz = size_inside_page(p, count);
478 
479 		/*
480 		 * On ia64 if a page has been mapped somewhere as uncached, then
481 		 * it must also be accessed uncached by the kernel or data
482 		 * corruption may occur.
483 		 */
484 		ptr = xlate_dev_kmem_ptr((void *)p);
485 
486 		copied = copy_from_user(ptr, buf, sz);
487 		if (copied) {
488 			written += sz - copied;
489 			if (written)
490 				break;
491 			return -EFAULT;
492 		}
493 		buf += sz;
494 		p += sz;
495 		count -= sz;
496 		written += sz;
497 	}
498 
499 	*ppos += written;
500 	return written;
501 }
502 
503 /*
504  * This function writes to the *virtual* memory as seen by the kernel.
505  */
506 static ssize_t write_kmem(struct file *file, const char __user *buf,
507 			  size_t count, loff_t *ppos)
508 {
509 	unsigned long p = *ppos;
510 	ssize_t wrote = 0;
511 	ssize_t virtr = 0;
512 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
513 	int err = 0;
514 
515 	if (p < (unsigned long) high_memory) {
516 		unsigned long to_write = min_t(unsigned long, count,
517 					       (unsigned long)high_memory - p);
518 		wrote = do_write_kmem(p, buf, to_write, ppos);
519 		if (wrote != to_write)
520 			return wrote;
521 		p += wrote;
522 		buf += wrote;
523 		count -= wrote;
524 	}
525 
526 	if (count > 0) {
527 		kbuf = (char *)__get_free_page(GFP_KERNEL);
528 		if (!kbuf)
529 			return wrote ? wrote : -ENOMEM;
530 		while (count > 0) {
531 			unsigned long sz = size_inside_page(p, count);
532 			unsigned long n;
533 
534 			if (!is_vmalloc_or_module_addr((void *)p)) {
535 				err = -ENXIO;
536 				break;
537 			}
538 			n = copy_from_user(kbuf, buf, sz);
539 			if (n) {
540 				err = -EFAULT;
541 				break;
542 			}
543 			vwrite(kbuf, (char *)p, sz);
544 			count -= sz;
545 			buf += sz;
546 			virtr += sz;
547 			p += sz;
548 		}
549 		free_page((unsigned long)kbuf);
550 	}
551 
552 	*ppos = p;
553 	return virtr + wrote ? : err;
554 }
555 
556 static ssize_t read_port(struct file *file, char __user *buf,
557 			 size_t count, loff_t *ppos)
558 {
559 	unsigned long i = *ppos;
560 	char __user *tmp = buf;
561 
562 	if (!access_ok(VERIFY_WRITE, buf, count))
563 		return -EFAULT;
564 	while (count-- > 0 && i < 65536) {
565 		if (__put_user(inb(i), tmp) < 0)
566 			return -EFAULT;
567 		i++;
568 		tmp++;
569 	}
570 	*ppos = i;
571 	return tmp-buf;
572 }
573 
574 static ssize_t write_port(struct file *file, const char __user *buf,
575 			  size_t count, loff_t *ppos)
576 {
577 	unsigned long i = *ppos;
578 	const char __user *tmp = buf;
579 
580 	if (!access_ok(VERIFY_READ, buf, count))
581 		return -EFAULT;
582 	while (count-- > 0 && i < 65536) {
583 		char c;
584 
585 		if (__get_user(c, tmp)) {
586 			if (tmp > buf)
587 				break;
588 			return -EFAULT;
589 		}
590 		outb(c, i);
591 		i++;
592 		tmp++;
593 	}
594 	*ppos = i;
595 	return tmp-buf;
596 }
597 
598 static ssize_t read_null(struct file *file, char __user *buf,
599 			 size_t count, loff_t *ppos)
600 {
601 	return 0;
602 }
603 
604 static ssize_t write_null(struct file *file, const char __user *buf,
605 			  size_t count, loff_t *ppos)
606 {
607 	return count;
608 }
609 
610 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
611 {
612 	return 0;
613 }
614 
615 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
616 {
617 	size_t count = iov_iter_count(from);
618 	iov_iter_advance(from, count);
619 	return count;
620 }
621 
622 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
623 			struct splice_desc *sd)
624 {
625 	return sd->len;
626 }
627 
628 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
629 				 loff_t *ppos, size_t len, unsigned int flags)
630 {
631 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
632 }
633 
634 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
635 {
636 	size_t written = 0;
637 
638 	while (iov_iter_count(iter)) {
639 		size_t chunk = iov_iter_count(iter), n;
640 
641 		if (chunk > PAGE_SIZE)
642 			chunk = PAGE_SIZE;	/* Just for latency reasons */
643 		n = iov_iter_zero(chunk, iter);
644 		if (!n && iov_iter_count(iter))
645 			return written ? written : -EFAULT;
646 		written += n;
647 		if (signal_pending(current))
648 			return written ? written : -ERESTARTSYS;
649 		cond_resched();
650 	}
651 	return written;
652 }
653 
654 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
655 {
656 #ifndef CONFIG_MMU
657 	return -ENOSYS;
658 #endif
659 	if (vma->vm_flags & VM_SHARED)
660 		return shmem_zero_setup(vma);
661 	return 0;
662 }
663 
664 static ssize_t write_full(struct file *file, const char __user *buf,
665 			  size_t count, loff_t *ppos)
666 {
667 	return -ENOSPC;
668 }
669 
670 /*
671  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
672  * can fopen() both devices with "a" now.  This was previously impossible.
673  * -- SRB.
674  */
675 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
676 {
677 	return file->f_pos = 0;
678 }
679 
680 /*
681  * The memory devices use the full 32/64 bits of the offset, and so we cannot
682  * check against negative addresses: they are ok. The return value is weird,
683  * though, in that case (0).
684  *
685  * also note that seeking relative to the "end of file" isn't supported:
686  * it has no meaning, so it returns -EINVAL.
687  */
688 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
689 {
690 	loff_t ret;
691 
692 	inode_lock(file_inode(file));
693 	switch (orig) {
694 	case SEEK_CUR:
695 		offset += file->f_pos;
696 	case SEEK_SET:
697 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
698 		if ((unsigned long long)offset >= -MAX_ERRNO) {
699 			ret = -EOVERFLOW;
700 			break;
701 		}
702 		file->f_pos = offset;
703 		ret = file->f_pos;
704 		force_successful_syscall_return();
705 		break;
706 	default:
707 		ret = -EINVAL;
708 	}
709 	inode_unlock(file_inode(file));
710 	return ret;
711 }
712 
713 static int open_port(struct inode *inode, struct file *filp)
714 {
715 	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
716 }
717 
718 #define zero_lseek	null_lseek
719 #define full_lseek      null_lseek
720 #define write_zero	write_null
721 #define write_iter_zero	write_iter_null
722 #define open_mem	open_port
723 #define open_kmem	open_mem
724 
725 static const struct file_operations __maybe_unused mem_fops = {
726 	.llseek		= memory_lseek,
727 	.read		= read_mem,
728 	.write		= write_mem,
729 	.mmap		= mmap_mem,
730 	.open		= open_mem,
731 #ifndef CONFIG_MMU
732 	.get_unmapped_area = get_unmapped_area_mem,
733 	.mmap_capabilities = memory_mmap_capabilities,
734 #endif
735 };
736 
737 static const struct file_operations __maybe_unused kmem_fops = {
738 	.llseek		= memory_lseek,
739 	.read		= read_kmem,
740 	.write		= write_kmem,
741 	.mmap		= mmap_kmem,
742 	.open		= open_kmem,
743 #ifndef CONFIG_MMU
744 	.get_unmapped_area = get_unmapped_area_mem,
745 	.mmap_capabilities = memory_mmap_capabilities,
746 #endif
747 };
748 
749 static const struct file_operations null_fops = {
750 	.llseek		= null_lseek,
751 	.read		= read_null,
752 	.write		= write_null,
753 	.read_iter	= read_iter_null,
754 	.write_iter	= write_iter_null,
755 	.splice_write	= splice_write_null,
756 };
757 
758 static const struct file_operations __maybe_unused port_fops = {
759 	.llseek		= memory_lseek,
760 	.read		= read_port,
761 	.write		= write_port,
762 	.open		= open_port,
763 };
764 
765 static const struct file_operations zero_fops = {
766 	.llseek		= zero_lseek,
767 	.write		= write_zero,
768 	.read_iter	= read_iter_zero,
769 	.write_iter	= write_iter_zero,
770 	.mmap		= mmap_zero,
771 #ifndef CONFIG_MMU
772 	.mmap_capabilities = zero_mmap_capabilities,
773 #endif
774 };
775 
776 static const struct file_operations full_fops = {
777 	.llseek		= full_lseek,
778 	.read_iter	= read_iter_zero,
779 	.write		= write_full,
780 };
781 
782 static const struct memdev {
783 	const char *name;
784 	umode_t mode;
785 	const struct file_operations *fops;
786 	fmode_t fmode;
787 } devlist[] = {
788 #ifdef CONFIG_DEVMEM
789 	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
790 #endif
791 #ifdef CONFIG_DEVKMEM
792 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
793 #endif
794 	 [3] = { "null", 0666, &null_fops, 0 },
795 #ifdef CONFIG_DEVPORT
796 	 [4] = { "port", 0, &port_fops, 0 },
797 #endif
798 	 [5] = { "zero", 0666, &zero_fops, 0 },
799 	 [7] = { "full", 0666, &full_fops, 0 },
800 	 [8] = { "random", 0666, &random_fops, 0 },
801 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
802 #ifdef CONFIG_PRINTK
803 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
804 #endif
805 };
806 
807 static int memory_open(struct inode *inode, struct file *filp)
808 {
809 	int minor;
810 	const struct memdev *dev;
811 
812 	minor = iminor(inode);
813 	if (minor >= ARRAY_SIZE(devlist))
814 		return -ENXIO;
815 
816 	dev = &devlist[minor];
817 	if (!dev->fops)
818 		return -ENXIO;
819 
820 	filp->f_op = dev->fops;
821 	filp->f_mode |= dev->fmode;
822 
823 	if (dev->fops->open)
824 		return dev->fops->open(inode, filp);
825 
826 	return 0;
827 }
828 
829 static const struct file_operations memory_fops = {
830 	.open = memory_open,
831 	.llseek = noop_llseek,
832 };
833 
834 static char *mem_devnode(struct device *dev, umode_t *mode)
835 {
836 	if (mode && devlist[MINOR(dev->devt)].mode)
837 		*mode = devlist[MINOR(dev->devt)].mode;
838 	return NULL;
839 }
840 
841 static struct class *mem_class;
842 
843 static int __init chr_dev_init(void)
844 {
845 	int minor;
846 
847 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
848 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
849 
850 	mem_class = class_create(THIS_MODULE, "mem");
851 	if (IS_ERR(mem_class))
852 		return PTR_ERR(mem_class);
853 
854 	mem_class->devnode = mem_devnode;
855 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
856 		if (!devlist[minor].name)
857 			continue;
858 
859 		/*
860 		 * Create /dev/port?
861 		 */
862 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
863 			continue;
864 
865 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
866 			      NULL, devlist[minor].name);
867 	}
868 
869 	return tty_init();
870 }
871 
872 fs_initcall(chr_dev_init);
873