1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/of_device.h> 68 #include <linux/of_platform.h> 69 #include <linux/of_address.h> 70 #include <linux/of_irq.h> 71 #include <linux/acpi.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_GETTING_MESSAGES, 96 SI_CHECKING_ENABLES, 97 SI_SETTING_ENABLES 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 110 static const char * const si_to_str[] = { "kcs", "smic", "bt" }; 111 112 #define DEVICE_NAME "ipmi_si" 113 114 static struct platform_driver ipmi_driver; 115 116 /* 117 * Indexes into stats[] in smi_info below. 118 */ 119 enum si_stat_indexes { 120 /* 121 * Number of times the driver requested a timer while an operation 122 * was in progress. 123 */ 124 SI_STAT_short_timeouts = 0, 125 126 /* 127 * Number of times the driver requested a timer while nothing was in 128 * progress. 129 */ 130 SI_STAT_long_timeouts, 131 132 /* Number of times the interface was idle while being polled. */ 133 SI_STAT_idles, 134 135 /* Number of interrupts the driver handled. */ 136 SI_STAT_interrupts, 137 138 /* Number of time the driver got an ATTN from the hardware. */ 139 SI_STAT_attentions, 140 141 /* Number of times the driver requested flags from the hardware. */ 142 SI_STAT_flag_fetches, 143 144 /* Number of times the hardware didn't follow the state machine. */ 145 SI_STAT_hosed_count, 146 147 /* Number of completed messages. */ 148 SI_STAT_complete_transactions, 149 150 /* Number of IPMI events received from the hardware. */ 151 SI_STAT_events, 152 153 /* Number of watchdog pretimeouts. */ 154 SI_STAT_watchdog_pretimeouts, 155 156 /* Number of asynchronous messages received. */ 157 SI_STAT_incoming_messages, 158 159 160 /* This *must* remain last, add new values above this. */ 161 SI_NUM_STATS 162 }; 163 164 struct smi_info { 165 int intf_num; 166 ipmi_smi_t intf; 167 struct si_sm_data *si_sm; 168 const struct si_sm_handlers *handlers; 169 enum si_type si_type; 170 spinlock_t si_lock; 171 struct ipmi_smi_msg *waiting_msg; 172 struct ipmi_smi_msg *curr_msg; 173 enum si_intf_state si_state; 174 175 /* 176 * Used to handle the various types of I/O that can occur with 177 * IPMI 178 */ 179 struct si_sm_io io; 180 int (*io_setup)(struct smi_info *info); 181 void (*io_cleanup)(struct smi_info *info); 182 int (*irq_setup)(struct smi_info *info); 183 void (*irq_cleanup)(struct smi_info *info); 184 unsigned int io_size; 185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 186 void (*addr_source_cleanup)(struct smi_info *info); 187 void *addr_source_data; 188 189 /* 190 * Per-OEM handler, called from handle_flags(). Returns 1 191 * when handle_flags() needs to be re-run or 0 indicating it 192 * set si_state itself. 193 */ 194 int (*oem_data_avail_handler)(struct smi_info *smi_info); 195 196 /* 197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 198 * is set to hold the flags until we are done handling everything 199 * from the flags. 200 */ 201 #define RECEIVE_MSG_AVAIL 0x01 202 #define EVENT_MSG_BUFFER_FULL 0x02 203 #define WDT_PRE_TIMEOUT_INT 0x08 204 #define OEM0_DATA_AVAIL 0x20 205 #define OEM1_DATA_AVAIL 0x40 206 #define OEM2_DATA_AVAIL 0x80 207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 208 OEM1_DATA_AVAIL | \ 209 OEM2_DATA_AVAIL) 210 unsigned char msg_flags; 211 212 /* Does the BMC have an event buffer? */ 213 bool has_event_buffer; 214 215 /* 216 * If set to true, this will request events the next time the 217 * state machine is idle. 218 */ 219 atomic_t req_events; 220 221 /* 222 * If true, run the state machine to completion on every send 223 * call. Generally used after a panic to make sure stuff goes 224 * out. 225 */ 226 bool run_to_completion; 227 228 /* The I/O port of an SI interface. */ 229 int port; 230 231 /* 232 * The space between start addresses of the two ports. For 233 * instance, if the first port is 0xca2 and the spacing is 4, then 234 * the second port is 0xca6. 235 */ 236 unsigned int spacing; 237 238 /* zero if no irq; */ 239 int irq; 240 241 /* The timer for this si. */ 242 struct timer_list si_timer; 243 244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 245 bool timer_running; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Are we waiting for the events, pretimeouts, received msgs? */ 251 atomic_t need_watch; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 bool interrupt_disabled; 260 261 /* 262 * Does the BMC support events? 263 */ 264 bool supports_event_msg_buff; 265 266 /* 267 * Can we disable interrupts the global enables receive irq 268 * bit? There are currently two forms of brokenness, some 269 * systems cannot disable the bit (which is technically within 270 * the spec but a bad idea) and some systems have the bit 271 * forced to zero even though interrupts work (which is 272 * clearly outside the spec). The next bool tells which form 273 * of brokenness is present. 274 */ 275 bool cannot_disable_irq; 276 277 /* 278 * Some systems are broken and cannot set the irq enable 279 * bit, even if they support interrupts. 280 */ 281 bool irq_enable_broken; 282 283 /* 284 * Did we get an attention that we did not handle? 285 */ 286 bool got_attn; 287 288 /* From the get device id response... */ 289 struct ipmi_device_id device_id; 290 291 /* Driver model stuff. */ 292 struct device *dev; 293 struct platform_device *pdev; 294 295 /* 296 * True if we allocated the device, false if it came from 297 * someplace else (like PCI). 298 */ 299 bool dev_registered; 300 301 /* Slave address, could be reported from DMI. */ 302 unsigned char slave_addr; 303 304 /* Counters and things for the proc filesystem. */ 305 atomic_t stats[SI_NUM_STATS]; 306 307 struct task_struct *thread; 308 309 struct list_head link; 310 union ipmi_smi_info_union addr_info; 311 }; 312 313 #define smi_inc_stat(smi, stat) \ 314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 315 #define smi_get_stat(smi, stat) \ 316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 317 318 #define SI_MAX_PARMS 4 319 320 static int force_kipmid[SI_MAX_PARMS]; 321 static int num_force_kipmid; 322 #ifdef CONFIG_PCI 323 static bool pci_registered; 324 #endif 325 #ifdef CONFIG_PARISC 326 static bool parisc_registered; 327 #endif 328 329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 330 static int num_max_busy_us; 331 332 static bool unload_when_empty = true; 333 334 static int add_smi(struct smi_info *smi); 335 static int try_smi_init(struct smi_info *smi); 336 static void cleanup_one_si(struct smi_info *to_clean); 337 static void cleanup_ipmi_si(void); 338 339 #ifdef DEBUG_TIMING 340 void debug_timestamp(char *msg) 341 { 342 struct timespec64 t; 343 344 getnstimeofday64(&t); 345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 346 } 347 #else 348 #define debug_timestamp(x) 349 #endif 350 351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 352 static int register_xaction_notifier(struct notifier_block *nb) 353 { 354 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 355 } 356 357 static void deliver_recv_msg(struct smi_info *smi_info, 358 struct ipmi_smi_msg *msg) 359 { 360 /* Deliver the message to the upper layer. */ 361 if (smi_info->intf) 362 ipmi_smi_msg_received(smi_info->intf, msg); 363 else 364 ipmi_free_smi_msg(msg); 365 } 366 367 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 368 { 369 struct ipmi_smi_msg *msg = smi_info->curr_msg; 370 371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 372 cCode = IPMI_ERR_UNSPECIFIED; 373 /* else use it as is */ 374 375 /* Make it a response */ 376 msg->rsp[0] = msg->data[0] | 4; 377 msg->rsp[1] = msg->data[1]; 378 msg->rsp[2] = cCode; 379 msg->rsp_size = 3; 380 381 smi_info->curr_msg = NULL; 382 deliver_recv_msg(smi_info, msg); 383 } 384 385 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 386 { 387 int rv; 388 389 if (!smi_info->waiting_msg) { 390 smi_info->curr_msg = NULL; 391 rv = SI_SM_IDLE; 392 } else { 393 int err; 394 395 smi_info->curr_msg = smi_info->waiting_msg; 396 smi_info->waiting_msg = NULL; 397 debug_timestamp("Start2"); 398 err = atomic_notifier_call_chain(&xaction_notifier_list, 399 0, smi_info); 400 if (err & NOTIFY_STOP_MASK) { 401 rv = SI_SM_CALL_WITHOUT_DELAY; 402 goto out; 403 } 404 err = smi_info->handlers->start_transaction( 405 smi_info->si_sm, 406 smi_info->curr_msg->data, 407 smi_info->curr_msg->data_size); 408 if (err) 409 return_hosed_msg(smi_info, err); 410 411 rv = SI_SM_CALL_WITHOUT_DELAY; 412 } 413 out: 414 return rv; 415 } 416 417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 418 { 419 smi_info->last_timeout_jiffies = jiffies; 420 mod_timer(&smi_info->si_timer, new_val); 421 smi_info->timer_running = true; 422 } 423 424 /* 425 * Start a new message and (re)start the timer and thread. 426 */ 427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 428 unsigned int size) 429 { 430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 431 432 if (smi_info->thread) 433 wake_up_process(smi_info->thread); 434 435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 436 } 437 438 static void start_check_enables(struct smi_info *smi_info, bool start_timer) 439 { 440 unsigned char msg[2]; 441 442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 444 445 if (start_timer) 446 start_new_msg(smi_info, msg, 2); 447 else 448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 449 smi_info->si_state = SI_CHECKING_ENABLES; 450 } 451 452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer) 453 { 454 unsigned char msg[3]; 455 456 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 459 msg[2] = WDT_PRE_TIMEOUT_INT; 460 461 if (start_timer) 462 start_new_msg(smi_info, msg, 3); 463 else 464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 465 smi_info->si_state = SI_CLEARING_FLAGS; 466 } 467 468 static void start_getting_msg_queue(struct smi_info *smi_info) 469 { 470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 472 smi_info->curr_msg->data_size = 2; 473 474 start_new_msg(smi_info, smi_info->curr_msg->data, 475 smi_info->curr_msg->data_size); 476 smi_info->si_state = SI_GETTING_MESSAGES; 477 } 478 479 static void start_getting_events(struct smi_info *smi_info) 480 { 481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 483 smi_info->curr_msg->data_size = 2; 484 485 start_new_msg(smi_info, smi_info->curr_msg->data, 486 smi_info->curr_msg->data_size); 487 smi_info->si_state = SI_GETTING_EVENTS; 488 } 489 490 /* 491 * When we have a situtaion where we run out of memory and cannot 492 * allocate messages, we just leave them in the BMC and run the system 493 * polled until we can allocate some memory. Once we have some 494 * memory, we will re-enable the interrupt. 495 * 496 * Note that we cannot just use disable_irq(), since the interrupt may 497 * be shared. 498 */ 499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) 500 { 501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 502 smi_info->interrupt_disabled = true; 503 start_check_enables(smi_info, start_timer); 504 return true; 505 } 506 return false; 507 } 508 509 static inline bool enable_si_irq(struct smi_info *smi_info) 510 { 511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 512 smi_info->interrupt_disabled = false; 513 start_check_enables(smi_info, true); 514 return true; 515 } 516 return false; 517 } 518 519 /* 520 * Allocate a message. If unable to allocate, start the interrupt 521 * disable process and return NULL. If able to allocate but 522 * interrupts are disabled, free the message and return NULL after 523 * starting the interrupt enable process. 524 */ 525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 526 { 527 struct ipmi_smi_msg *msg; 528 529 msg = ipmi_alloc_smi_msg(); 530 if (!msg) { 531 if (!disable_si_irq(smi_info, true)) 532 smi_info->si_state = SI_NORMAL; 533 } else if (enable_si_irq(smi_info)) { 534 ipmi_free_smi_msg(msg); 535 msg = NULL; 536 } 537 return msg; 538 } 539 540 static void handle_flags(struct smi_info *smi_info) 541 { 542 retry: 543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 544 /* Watchdog pre-timeout */ 545 smi_inc_stat(smi_info, watchdog_pretimeouts); 546 547 start_clear_flags(smi_info, true); 548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 549 if (smi_info->intf) 550 ipmi_smi_watchdog_pretimeout(smi_info->intf); 551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 552 /* Messages available. */ 553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 554 if (!smi_info->curr_msg) 555 return; 556 557 start_getting_msg_queue(smi_info); 558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 559 /* Events available. */ 560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 561 if (!smi_info->curr_msg) 562 return; 563 564 start_getting_events(smi_info); 565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 566 smi_info->oem_data_avail_handler) { 567 if (smi_info->oem_data_avail_handler(smi_info)) 568 goto retry; 569 } else 570 smi_info->si_state = SI_NORMAL; 571 } 572 573 /* 574 * Global enables we care about. 575 */ 576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 577 IPMI_BMC_EVT_MSG_INTR) 578 579 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 580 bool *irq_on) 581 { 582 u8 enables = 0; 583 584 if (smi_info->supports_event_msg_buff) 585 enables |= IPMI_BMC_EVT_MSG_BUFF; 586 587 if (((smi_info->irq && !smi_info->interrupt_disabled) || 588 smi_info->cannot_disable_irq) && 589 !smi_info->irq_enable_broken) 590 enables |= IPMI_BMC_RCV_MSG_INTR; 591 592 if (smi_info->supports_event_msg_buff && 593 smi_info->irq && !smi_info->interrupt_disabled && 594 !smi_info->irq_enable_broken) 595 enables |= IPMI_BMC_EVT_MSG_INTR; 596 597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 598 599 return enables; 600 } 601 602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 603 { 604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 605 606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 607 608 if ((bool)irqstate == irq_on) 609 return; 610 611 if (irq_on) 612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 614 else 615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 616 } 617 618 static void handle_transaction_done(struct smi_info *smi_info) 619 { 620 struct ipmi_smi_msg *msg; 621 622 debug_timestamp("Done"); 623 switch (smi_info->si_state) { 624 case SI_NORMAL: 625 if (!smi_info->curr_msg) 626 break; 627 628 smi_info->curr_msg->rsp_size 629 = smi_info->handlers->get_result( 630 smi_info->si_sm, 631 smi_info->curr_msg->rsp, 632 IPMI_MAX_MSG_LENGTH); 633 634 /* 635 * Do this here becase deliver_recv_msg() releases the 636 * lock, and a new message can be put in during the 637 * time the lock is released. 638 */ 639 msg = smi_info->curr_msg; 640 smi_info->curr_msg = NULL; 641 deliver_recv_msg(smi_info, msg); 642 break; 643 644 case SI_GETTING_FLAGS: 645 { 646 unsigned char msg[4]; 647 unsigned int len; 648 649 /* We got the flags from the SMI, now handle them. */ 650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 651 if (msg[2] != 0) { 652 /* Error fetching flags, just give up for now. */ 653 smi_info->si_state = SI_NORMAL; 654 } else if (len < 4) { 655 /* 656 * Hmm, no flags. That's technically illegal, but 657 * don't use uninitialized data. 658 */ 659 smi_info->si_state = SI_NORMAL; 660 } else { 661 smi_info->msg_flags = msg[3]; 662 handle_flags(smi_info); 663 } 664 break; 665 } 666 667 case SI_CLEARING_FLAGS: 668 { 669 unsigned char msg[3]; 670 671 /* We cleared the flags. */ 672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 673 if (msg[2] != 0) { 674 /* Error clearing flags */ 675 dev_warn(smi_info->dev, 676 "Error clearing flags: %2.2x\n", msg[2]); 677 } 678 smi_info->si_state = SI_NORMAL; 679 break; 680 } 681 682 case SI_GETTING_EVENTS: 683 { 684 smi_info->curr_msg->rsp_size 685 = smi_info->handlers->get_result( 686 smi_info->si_sm, 687 smi_info->curr_msg->rsp, 688 IPMI_MAX_MSG_LENGTH); 689 690 /* 691 * Do this here becase deliver_recv_msg() releases the 692 * lock, and a new message can be put in during the 693 * time the lock is released. 694 */ 695 msg = smi_info->curr_msg; 696 smi_info->curr_msg = NULL; 697 if (msg->rsp[2] != 0) { 698 /* Error getting event, probably done. */ 699 msg->done(msg); 700 701 /* Take off the event flag. */ 702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 703 handle_flags(smi_info); 704 } else { 705 smi_inc_stat(smi_info, events); 706 707 /* 708 * Do this before we deliver the message 709 * because delivering the message releases the 710 * lock and something else can mess with the 711 * state. 712 */ 713 handle_flags(smi_info); 714 715 deliver_recv_msg(smi_info, msg); 716 } 717 break; 718 } 719 720 case SI_GETTING_MESSAGES: 721 { 722 smi_info->curr_msg->rsp_size 723 = smi_info->handlers->get_result( 724 smi_info->si_sm, 725 smi_info->curr_msg->rsp, 726 IPMI_MAX_MSG_LENGTH); 727 728 /* 729 * Do this here becase deliver_recv_msg() releases the 730 * lock, and a new message can be put in during the 731 * time the lock is released. 732 */ 733 msg = smi_info->curr_msg; 734 smi_info->curr_msg = NULL; 735 if (msg->rsp[2] != 0) { 736 /* Error getting event, probably done. */ 737 msg->done(msg); 738 739 /* Take off the msg flag. */ 740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 741 handle_flags(smi_info); 742 } else { 743 smi_inc_stat(smi_info, incoming_messages); 744 745 /* 746 * Do this before we deliver the message 747 * because delivering the message releases the 748 * lock and something else can mess with the 749 * state. 750 */ 751 handle_flags(smi_info); 752 753 deliver_recv_msg(smi_info, msg); 754 } 755 break; 756 } 757 758 case SI_CHECKING_ENABLES: 759 { 760 unsigned char msg[4]; 761 u8 enables; 762 bool irq_on; 763 764 /* We got the flags from the SMI, now handle them. */ 765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 766 if (msg[2] != 0) { 767 dev_warn(smi_info->dev, 768 "Couldn't get irq info: %x.\n", msg[2]); 769 dev_warn(smi_info->dev, 770 "Maybe ok, but ipmi might run very slowly.\n"); 771 smi_info->si_state = SI_NORMAL; 772 break; 773 } 774 enables = current_global_enables(smi_info, 0, &irq_on); 775 if (smi_info->si_type == SI_BT) 776 /* BT has its own interrupt enable bit. */ 777 check_bt_irq(smi_info, irq_on); 778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 779 /* Enables are not correct, fix them. */ 780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 783 smi_info->handlers->start_transaction( 784 smi_info->si_sm, msg, 3); 785 smi_info->si_state = SI_SETTING_ENABLES; 786 } else if (smi_info->supports_event_msg_buff) { 787 smi_info->curr_msg = ipmi_alloc_smi_msg(); 788 if (!smi_info->curr_msg) { 789 smi_info->si_state = SI_NORMAL; 790 break; 791 } 792 start_getting_msg_queue(smi_info); 793 } else { 794 smi_info->si_state = SI_NORMAL; 795 } 796 break; 797 } 798 799 case SI_SETTING_ENABLES: 800 { 801 unsigned char msg[4]; 802 803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 804 if (msg[2] != 0) 805 dev_warn(smi_info->dev, 806 "Could not set the global enables: 0x%x.\n", 807 msg[2]); 808 809 if (smi_info->supports_event_msg_buff) { 810 smi_info->curr_msg = ipmi_alloc_smi_msg(); 811 if (!smi_info->curr_msg) { 812 smi_info->si_state = SI_NORMAL; 813 break; 814 } 815 start_getting_msg_queue(smi_info); 816 } else { 817 smi_info->si_state = SI_NORMAL; 818 } 819 break; 820 } 821 } 822 } 823 824 /* 825 * Called on timeouts and events. Timeouts should pass the elapsed 826 * time, interrupts should pass in zero. Must be called with 827 * si_lock held and interrupts disabled. 828 */ 829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 830 int time) 831 { 832 enum si_sm_result si_sm_result; 833 834 restart: 835 /* 836 * There used to be a loop here that waited a little while 837 * (around 25us) before giving up. That turned out to be 838 * pointless, the minimum delays I was seeing were in the 300us 839 * range, which is far too long to wait in an interrupt. So 840 * we just run until the state machine tells us something 841 * happened or it needs a delay. 842 */ 843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 844 time = 0; 845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 847 848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 849 smi_inc_stat(smi_info, complete_transactions); 850 851 handle_transaction_done(smi_info); 852 goto restart; 853 } else if (si_sm_result == SI_SM_HOSED) { 854 smi_inc_stat(smi_info, hosed_count); 855 856 /* 857 * Do the before return_hosed_msg, because that 858 * releases the lock. 859 */ 860 smi_info->si_state = SI_NORMAL; 861 if (smi_info->curr_msg != NULL) { 862 /* 863 * If we were handling a user message, format 864 * a response to send to the upper layer to 865 * tell it about the error. 866 */ 867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 868 } 869 goto restart; 870 } 871 872 /* 873 * We prefer handling attn over new messages. But don't do 874 * this if there is not yet an upper layer to handle anything. 875 */ 876 if (likely(smi_info->intf) && 877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 878 unsigned char msg[2]; 879 880 if (smi_info->si_state != SI_NORMAL) { 881 /* 882 * We got an ATTN, but we are doing something else. 883 * Handle the ATTN later. 884 */ 885 smi_info->got_attn = true; 886 } else { 887 smi_info->got_attn = false; 888 smi_inc_stat(smi_info, attentions); 889 890 /* 891 * Got a attn, send down a get message flags to see 892 * what's causing it. It would be better to handle 893 * this in the upper layer, but due to the way 894 * interrupts work with the SMI, that's not really 895 * possible. 896 */ 897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 898 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 899 900 start_new_msg(smi_info, msg, 2); 901 smi_info->si_state = SI_GETTING_FLAGS; 902 goto restart; 903 } 904 } 905 906 /* If we are currently idle, try to start the next message. */ 907 if (si_sm_result == SI_SM_IDLE) { 908 smi_inc_stat(smi_info, idles); 909 910 si_sm_result = start_next_msg(smi_info); 911 if (si_sm_result != SI_SM_IDLE) 912 goto restart; 913 } 914 915 if ((si_sm_result == SI_SM_IDLE) 916 && (atomic_read(&smi_info->req_events))) { 917 /* 918 * We are idle and the upper layer requested that I fetch 919 * events, so do so. 920 */ 921 atomic_set(&smi_info->req_events, 0); 922 923 /* 924 * Take this opportunity to check the interrupt and 925 * message enable state for the BMC. The BMC can be 926 * asynchronously reset, and may thus get interrupts 927 * disable and messages disabled. 928 */ 929 if (smi_info->supports_event_msg_buff || smi_info->irq) { 930 start_check_enables(smi_info, true); 931 } else { 932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 933 if (!smi_info->curr_msg) 934 goto out; 935 936 start_getting_events(smi_info); 937 } 938 goto restart; 939 } 940 941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 942 /* Ok it if fails, the timer will just go off. */ 943 if (del_timer(&smi_info->si_timer)) 944 smi_info->timer_running = false; 945 } 946 947 out: 948 return si_sm_result; 949 } 950 951 static void check_start_timer_thread(struct smi_info *smi_info) 952 { 953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 955 956 if (smi_info->thread) 957 wake_up_process(smi_info->thread); 958 959 start_next_msg(smi_info); 960 smi_event_handler(smi_info, 0); 961 } 962 } 963 964 static void flush_messages(void *send_info) 965 { 966 struct smi_info *smi_info = send_info; 967 enum si_sm_result result; 968 969 /* 970 * Currently, this function is called only in run-to-completion 971 * mode. This means we are single-threaded, no need for locks. 972 */ 973 result = smi_event_handler(smi_info, 0); 974 while (result != SI_SM_IDLE) { 975 udelay(SI_SHORT_TIMEOUT_USEC); 976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 977 } 978 } 979 980 static void sender(void *send_info, 981 struct ipmi_smi_msg *msg) 982 { 983 struct smi_info *smi_info = send_info; 984 unsigned long flags; 985 986 debug_timestamp("Enqueue"); 987 988 if (smi_info->run_to_completion) { 989 /* 990 * If we are running to completion, start it. Upper 991 * layer will call flush_messages to clear it out. 992 */ 993 smi_info->waiting_msg = msg; 994 return; 995 } 996 997 spin_lock_irqsave(&smi_info->si_lock, flags); 998 /* 999 * The following two lines don't need to be under the lock for 1000 * the lock's sake, but they do need SMP memory barriers to 1001 * avoid getting things out of order. We are already claiming 1002 * the lock, anyway, so just do it under the lock to avoid the 1003 * ordering problem. 1004 */ 1005 BUG_ON(smi_info->waiting_msg); 1006 smi_info->waiting_msg = msg; 1007 check_start_timer_thread(smi_info); 1008 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1009 } 1010 1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 1012 { 1013 struct smi_info *smi_info = send_info; 1014 1015 smi_info->run_to_completion = i_run_to_completion; 1016 if (i_run_to_completion) 1017 flush_messages(smi_info); 1018 } 1019 1020 /* 1021 * Use -1 in the nsec value of the busy waiting timespec to tell that 1022 * we are spinning in kipmid looking for something and not delaying 1023 * between checks 1024 */ 1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 1026 { 1027 ts->tv_nsec = -1; 1028 } 1029 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1030 { 1031 return ts->tv_nsec != -1; 1032 } 1033 1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1035 const struct smi_info *smi_info, 1036 struct timespec64 *busy_until) 1037 { 1038 unsigned int max_busy_us = 0; 1039 1040 if (smi_info->intf_num < num_max_busy_us) 1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1043 ipmi_si_set_not_busy(busy_until); 1044 else if (!ipmi_si_is_busy(busy_until)) { 1045 getnstimeofday64(busy_until); 1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1047 } else { 1048 struct timespec64 now; 1049 1050 getnstimeofday64(&now); 1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1052 ipmi_si_set_not_busy(busy_until); 1053 return 0; 1054 } 1055 } 1056 return 1; 1057 } 1058 1059 1060 /* 1061 * A busy-waiting loop for speeding up IPMI operation. 1062 * 1063 * Lousy hardware makes this hard. This is only enabled for systems 1064 * that are not BT and do not have interrupts. It starts spinning 1065 * when an operation is complete or until max_busy tells it to stop 1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1067 * Documentation/IPMI.txt for details. 1068 */ 1069 static int ipmi_thread(void *data) 1070 { 1071 struct smi_info *smi_info = data; 1072 unsigned long flags; 1073 enum si_sm_result smi_result; 1074 struct timespec64 busy_until; 1075 1076 ipmi_si_set_not_busy(&busy_until); 1077 set_user_nice(current, MAX_NICE); 1078 while (!kthread_should_stop()) { 1079 int busy_wait; 1080 1081 spin_lock_irqsave(&(smi_info->si_lock), flags); 1082 smi_result = smi_event_handler(smi_info, 0); 1083 1084 /* 1085 * If the driver is doing something, there is a possible 1086 * race with the timer. If the timer handler see idle, 1087 * and the thread here sees something else, the timer 1088 * handler won't restart the timer even though it is 1089 * required. So start it here if necessary. 1090 */ 1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1093 1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1096 &busy_until); 1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1098 ; /* do nothing */ 1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1100 schedule(); 1101 else if (smi_result == SI_SM_IDLE) { 1102 if (atomic_read(&smi_info->need_watch)) { 1103 schedule_timeout_interruptible(100); 1104 } else { 1105 /* Wait to be woken up when we are needed. */ 1106 __set_current_state(TASK_INTERRUPTIBLE); 1107 schedule(); 1108 } 1109 } else 1110 schedule_timeout_interruptible(1); 1111 } 1112 return 0; 1113 } 1114 1115 1116 static void poll(void *send_info) 1117 { 1118 struct smi_info *smi_info = send_info; 1119 unsigned long flags = 0; 1120 bool run_to_completion = smi_info->run_to_completion; 1121 1122 /* 1123 * Make sure there is some delay in the poll loop so we can 1124 * drive time forward and timeout things. 1125 */ 1126 udelay(10); 1127 if (!run_to_completion) 1128 spin_lock_irqsave(&smi_info->si_lock, flags); 1129 smi_event_handler(smi_info, 10); 1130 if (!run_to_completion) 1131 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1132 } 1133 1134 static void request_events(void *send_info) 1135 { 1136 struct smi_info *smi_info = send_info; 1137 1138 if (!smi_info->has_event_buffer) 1139 return; 1140 1141 atomic_set(&smi_info->req_events, 1); 1142 } 1143 1144 static void set_need_watch(void *send_info, bool enable) 1145 { 1146 struct smi_info *smi_info = send_info; 1147 unsigned long flags; 1148 1149 atomic_set(&smi_info->need_watch, enable); 1150 spin_lock_irqsave(&smi_info->si_lock, flags); 1151 check_start_timer_thread(smi_info); 1152 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1153 } 1154 1155 static int initialized; 1156 1157 static void smi_timeout(unsigned long data) 1158 { 1159 struct smi_info *smi_info = (struct smi_info *) data; 1160 enum si_sm_result smi_result; 1161 unsigned long flags; 1162 unsigned long jiffies_now; 1163 long time_diff; 1164 long timeout; 1165 1166 spin_lock_irqsave(&(smi_info->si_lock), flags); 1167 debug_timestamp("Timer"); 1168 1169 jiffies_now = jiffies; 1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1171 * SI_USEC_PER_JIFFY); 1172 smi_result = smi_event_handler(smi_info, time_diff); 1173 1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1175 /* Running with interrupts, only do long timeouts. */ 1176 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1177 smi_inc_stat(smi_info, long_timeouts); 1178 goto do_mod_timer; 1179 } 1180 1181 /* 1182 * If the state machine asks for a short delay, then shorten 1183 * the timer timeout. 1184 */ 1185 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1186 smi_inc_stat(smi_info, short_timeouts); 1187 timeout = jiffies + 1; 1188 } else { 1189 smi_inc_stat(smi_info, long_timeouts); 1190 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1191 } 1192 1193 do_mod_timer: 1194 if (smi_result != SI_SM_IDLE) 1195 smi_mod_timer(smi_info, timeout); 1196 else 1197 smi_info->timer_running = false; 1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1199 } 1200 1201 static irqreturn_t si_irq_handler(int irq, void *data) 1202 { 1203 struct smi_info *smi_info = data; 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&(smi_info->si_lock), flags); 1207 1208 smi_inc_stat(smi_info, interrupts); 1209 1210 debug_timestamp("Interrupt"); 1211 1212 smi_event_handler(smi_info, 0); 1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1214 return IRQ_HANDLED; 1215 } 1216 1217 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1218 { 1219 struct smi_info *smi_info = data; 1220 /* We need to clear the IRQ flag for the BT interface. */ 1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1224 return si_irq_handler(irq, data); 1225 } 1226 1227 static int smi_start_processing(void *send_info, 1228 ipmi_smi_t intf) 1229 { 1230 struct smi_info *new_smi = send_info; 1231 int enable = 0; 1232 1233 new_smi->intf = intf; 1234 1235 /* Set up the timer that drives the interface. */ 1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1238 1239 /* Try to claim any interrupts. */ 1240 if (new_smi->irq_setup) 1241 new_smi->irq_setup(new_smi); 1242 1243 /* 1244 * Check if the user forcefully enabled the daemon. 1245 */ 1246 if (new_smi->intf_num < num_force_kipmid) 1247 enable = force_kipmid[new_smi->intf_num]; 1248 /* 1249 * The BT interface is efficient enough to not need a thread, 1250 * and there is no need for a thread if we have interrupts. 1251 */ 1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1253 enable = 1; 1254 1255 if (enable) { 1256 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1257 "kipmi%d", new_smi->intf_num); 1258 if (IS_ERR(new_smi->thread)) { 1259 dev_notice(new_smi->dev, "Could not start" 1260 " kernel thread due to error %ld, only using" 1261 " timers to drive the interface\n", 1262 PTR_ERR(new_smi->thread)); 1263 new_smi->thread = NULL; 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1271 { 1272 struct smi_info *smi = send_info; 1273 1274 data->addr_src = smi->addr_source; 1275 data->dev = smi->dev; 1276 data->addr_info = smi->addr_info; 1277 get_device(smi->dev); 1278 1279 return 0; 1280 } 1281 1282 static void set_maintenance_mode(void *send_info, bool enable) 1283 { 1284 struct smi_info *smi_info = send_info; 1285 1286 if (!enable) 1287 atomic_set(&smi_info->req_events, 0); 1288 } 1289 1290 static const struct ipmi_smi_handlers handlers = { 1291 .owner = THIS_MODULE, 1292 .start_processing = smi_start_processing, 1293 .get_smi_info = get_smi_info, 1294 .sender = sender, 1295 .request_events = request_events, 1296 .set_need_watch = set_need_watch, 1297 .set_maintenance_mode = set_maintenance_mode, 1298 .set_run_to_completion = set_run_to_completion, 1299 .flush_messages = flush_messages, 1300 .poll = poll, 1301 }; 1302 1303 /* 1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1306 */ 1307 1308 static LIST_HEAD(smi_infos); 1309 static DEFINE_MUTEX(smi_infos_lock); 1310 static int smi_num; /* Used to sequence the SMIs */ 1311 1312 #define DEFAULT_REGSPACING 1 1313 #define DEFAULT_REGSIZE 1 1314 1315 #ifdef CONFIG_ACPI 1316 static bool si_tryacpi = true; 1317 #endif 1318 #ifdef CONFIG_DMI 1319 static bool si_trydmi = true; 1320 #endif 1321 static bool si_tryplatform = true; 1322 #ifdef CONFIG_PCI 1323 static bool si_trypci = true; 1324 #endif 1325 static char *si_type[SI_MAX_PARMS]; 1326 #define MAX_SI_TYPE_STR 30 1327 static char si_type_str[MAX_SI_TYPE_STR]; 1328 static unsigned long addrs[SI_MAX_PARMS]; 1329 static unsigned int num_addrs; 1330 static unsigned int ports[SI_MAX_PARMS]; 1331 static unsigned int num_ports; 1332 static int irqs[SI_MAX_PARMS]; 1333 static unsigned int num_irqs; 1334 static int regspacings[SI_MAX_PARMS]; 1335 static unsigned int num_regspacings; 1336 static int regsizes[SI_MAX_PARMS]; 1337 static unsigned int num_regsizes; 1338 static int regshifts[SI_MAX_PARMS]; 1339 static unsigned int num_regshifts; 1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1341 static unsigned int num_slave_addrs; 1342 1343 #define IPMI_IO_ADDR_SPACE 0 1344 #define IPMI_MEM_ADDR_SPACE 1 1345 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1346 1347 static int hotmod_handler(const char *val, struct kernel_param *kp); 1348 1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1351 " Documentation/IPMI.txt in the kernel sources for the" 1352 " gory details."); 1353 1354 #ifdef CONFIG_ACPI 1355 module_param_named(tryacpi, si_tryacpi, bool, 0); 1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1357 " default scan of the interfaces identified via ACPI"); 1358 #endif 1359 #ifdef CONFIG_DMI 1360 module_param_named(trydmi, si_trydmi, bool, 0); 1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1362 " default scan of the interfaces identified via DMI"); 1363 #endif 1364 module_param_named(tryplatform, si_tryplatform, bool, 0); 1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the" 1366 " default scan of the interfaces identified via platform" 1367 " interfaces like openfirmware"); 1368 #ifdef CONFIG_PCI 1369 module_param_named(trypci, si_trypci, bool, 0); 1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the" 1371 " default scan of the interfaces identified via pci"); 1372 #endif 1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1375 " interface separated by commas. The types are 'kcs'," 1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1377 " the first interface to kcs and the second to bt"); 1378 module_param_array(addrs, ulong, &num_addrs, 0); 1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1380 " addresses separated by commas. Only use if an interface" 1381 " is in memory. Otherwise, set it to zero or leave" 1382 " it blank."); 1383 module_param_array(ports, uint, &num_ports, 0); 1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1385 " addresses separated by commas. Only use if an interface" 1386 " is a port. Otherwise, set it to zero or leave" 1387 " it blank."); 1388 module_param_array(irqs, int, &num_irqs, 0); 1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1390 " addresses separated by commas. Only use if an interface" 1391 " has an interrupt. Otherwise, set it to zero or leave" 1392 " it blank."); 1393 module_param_array(regspacings, int, &num_regspacings, 0); 1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1395 " and each successive register used by the interface. For" 1396 " instance, if the start address is 0xca2 and the spacing" 1397 " is 2, then the second address is at 0xca4. Defaults" 1398 " to 1."); 1399 module_param_array(regsizes, int, &num_regsizes, 0); 1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1401 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1402 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1403 " the 8-bit IPMI register has to be read from a larger" 1404 " register."); 1405 module_param_array(regshifts, int, &num_regshifts, 0); 1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1407 " IPMI register, in bits. For instance, if the data" 1408 " is read from a 32-bit word and the IPMI data is in" 1409 " bit 8-15, then the shift would be 8"); 1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1412 " the controller. Normally this is 0x20, but can be" 1413 " overridden by this parm. This is an array indexed" 1414 " by interface number."); 1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1417 " disabled(0). Normally the IPMI driver auto-detects" 1418 " this, but the value may be overridden by this parm."); 1419 module_param(unload_when_empty, bool, 0); 1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1421 " specified or found, default is 1. Setting to 0" 1422 " is useful for hot add of devices using hotmod."); 1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1424 MODULE_PARM_DESC(kipmid_max_busy_us, 1425 "Max time (in microseconds) to busy-wait for IPMI data before" 1426 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1427 " if kipmid is using up a lot of CPU time."); 1428 1429 1430 static void std_irq_cleanup(struct smi_info *info) 1431 { 1432 if (info->si_type == SI_BT) 1433 /* Disable the interrupt in the BT interface. */ 1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1435 free_irq(info->irq, info); 1436 } 1437 1438 static int std_irq_setup(struct smi_info *info) 1439 { 1440 int rv; 1441 1442 if (!info->irq) 1443 return 0; 1444 1445 if (info->si_type == SI_BT) { 1446 rv = request_irq(info->irq, 1447 si_bt_irq_handler, 1448 IRQF_SHARED, 1449 DEVICE_NAME, 1450 info); 1451 if (!rv) 1452 /* Enable the interrupt in the BT interface. */ 1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1455 } else 1456 rv = request_irq(info->irq, 1457 si_irq_handler, 1458 IRQF_SHARED, 1459 DEVICE_NAME, 1460 info); 1461 if (rv) { 1462 dev_warn(info->dev, "%s unable to claim interrupt %d," 1463 " running polled\n", 1464 DEVICE_NAME, info->irq); 1465 info->irq = 0; 1466 } else { 1467 info->irq_cleanup = std_irq_cleanup; 1468 dev_info(info->dev, "Using irq %d\n", info->irq); 1469 } 1470 1471 return rv; 1472 } 1473 1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) 1475 { 1476 unsigned int addr = io->addr_data; 1477 1478 return inb(addr + (offset * io->regspacing)); 1479 } 1480 1481 static void port_outb(const struct si_sm_io *io, unsigned int offset, 1482 unsigned char b) 1483 { 1484 unsigned int addr = io->addr_data; 1485 1486 outb(b, addr + (offset * io->regspacing)); 1487 } 1488 1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) 1490 { 1491 unsigned int addr = io->addr_data; 1492 1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1494 } 1495 1496 static void port_outw(const struct si_sm_io *io, unsigned int offset, 1497 unsigned char b) 1498 { 1499 unsigned int addr = io->addr_data; 1500 1501 outw(b << io->regshift, addr + (offset * io->regspacing)); 1502 } 1503 1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) 1505 { 1506 unsigned int addr = io->addr_data; 1507 1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1509 } 1510 1511 static void port_outl(const struct si_sm_io *io, unsigned int offset, 1512 unsigned char b) 1513 { 1514 unsigned int addr = io->addr_data; 1515 1516 outl(b << io->regshift, addr+(offset * io->regspacing)); 1517 } 1518 1519 static void port_cleanup(struct smi_info *info) 1520 { 1521 unsigned int addr = info->io.addr_data; 1522 int idx; 1523 1524 if (addr) { 1525 for (idx = 0; idx < info->io_size; idx++) 1526 release_region(addr + idx * info->io.regspacing, 1527 info->io.regsize); 1528 } 1529 } 1530 1531 static int port_setup(struct smi_info *info) 1532 { 1533 unsigned int addr = info->io.addr_data; 1534 int idx; 1535 1536 if (!addr) 1537 return -ENODEV; 1538 1539 info->io_cleanup = port_cleanup; 1540 1541 /* 1542 * Figure out the actual inb/inw/inl/etc routine to use based 1543 * upon the register size. 1544 */ 1545 switch (info->io.regsize) { 1546 case 1: 1547 info->io.inputb = port_inb; 1548 info->io.outputb = port_outb; 1549 break; 1550 case 2: 1551 info->io.inputb = port_inw; 1552 info->io.outputb = port_outw; 1553 break; 1554 case 4: 1555 info->io.inputb = port_inl; 1556 info->io.outputb = port_outl; 1557 break; 1558 default: 1559 dev_warn(info->dev, "Invalid register size: %d\n", 1560 info->io.regsize); 1561 return -EINVAL; 1562 } 1563 1564 /* 1565 * Some BIOSes reserve disjoint I/O regions in their ACPI 1566 * tables. This causes problems when trying to register the 1567 * entire I/O region. Therefore we must register each I/O 1568 * port separately. 1569 */ 1570 for (idx = 0; idx < info->io_size; idx++) { 1571 if (request_region(addr + idx * info->io.regspacing, 1572 info->io.regsize, DEVICE_NAME) == NULL) { 1573 /* Undo allocations */ 1574 while (idx--) 1575 release_region(addr + idx * info->io.regspacing, 1576 info->io.regsize); 1577 return -EIO; 1578 } 1579 } 1580 return 0; 1581 } 1582 1583 static unsigned char intf_mem_inb(const struct si_sm_io *io, 1584 unsigned int offset) 1585 { 1586 return readb((io->addr)+(offset * io->regspacing)); 1587 } 1588 1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, 1590 unsigned char b) 1591 { 1592 writeb(b, (io->addr)+(offset * io->regspacing)); 1593 } 1594 1595 static unsigned char intf_mem_inw(const struct si_sm_io *io, 1596 unsigned int offset) 1597 { 1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1599 & 0xff; 1600 } 1601 1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, 1603 unsigned char b) 1604 { 1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1606 } 1607 1608 static unsigned char intf_mem_inl(const struct si_sm_io *io, 1609 unsigned int offset) 1610 { 1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1612 & 0xff; 1613 } 1614 1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, 1616 unsigned char b) 1617 { 1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1619 } 1620 1621 #ifdef readq 1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) 1623 { 1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1625 & 0xff; 1626 } 1627 1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset, 1629 unsigned char b) 1630 { 1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1632 } 1633 #endif 1634 1635 static void mem_region_cleanup(struct smi_info *info, int num) 1636 { 1637 unsigned long addr = info->io.addr_data; 1638 int idx; 1639 1640 for (idx = 0; idx < num; idx++) 1641 release_mem_region(addr + idx * info->io.regspacing, 1642 info->io.regsize); 1643 } 1644 1645 static void mem_cleanup(struct smi_info *info) 1646 { 1647 if (info->io.addr) { 1648 iounmap(info->io.addr); 1649 mem_region_cleanup(info, info->io_size); 1650 } 1651 } 1652 1653 static int mem_setup(struct smi_info *info) 1654 { 1655 unsigned long addr = info->io.addr_data; 1656 int mapsize, idx; 1657 1658 if (!addr) 1659 return -ENODEV; 1660 1661 info->io_cleanup = mem_cleanup; 1662 1663 /* 1664 * Figure out the actual readb/readw/readl/etc routine to use based 1665 * upon the register size. 1666 */ 1667 switch (info->io.regsize) { 1668 case 1: 1669 info->io.inputb = intf_mem_inb; 1670 info->io.outputb = intf_mem_outb; 1671 break; 1672 case 2: 1673 info->io.inputb = intf_mem_inw; 1674 info->io.outputb = intf_mem_outw; 1675 break; 1676 case 4: 1677 info->io.inputb = intf_mem_inl; 1678 info->io.outputb = intf_mem_outl; 1679 break; 1680 #ifdef readq 1681 case 8: 1682 info->io.inputb = mem_inq; 1683 info->io.outputb = mem_outq; 1684 break; 1685 #endif 1686 default: 1687 dev_warn(info->dev, "Invalid register size: %d\n", 1688 info->io.regsize); 1689 return -EINVAL; 1690 } 1691 1692 /* 1693 * Some BIOSes reserve disjoint memory regions in their ACPI 1694 * tables. This causes problems when trying to request the 1695 * entire region. Therefore we must request each register 1696 * separately. 1697 */ 1698 for (idx = 0; idx < info->io_size; idx++) { 1699 if (request_mem_region(addr + idx * info->io.regspacing, 1700 info->io.regsize, DEVICE_NAME) == NULL) { 1701 /* Undo allocations */ 1702 mem_region_cleanup(info, idx); 1703 return -EIO; 1704 } 1705 } 1706 1707 /* 1708 * Calculate the total amount of memory to claim. This is an 1709 * unusual looking calculation, but it avoids claiming any 1710 * more memory than it has to. It will claim everything 1711 * between the first address to the end of the last full 1712 * register. 1713 */ 1714 mapsize = ((info->io_size * info->io.regspacing) 1715 - (info->io.regspacing - info->io.regsize)); 1716 info->io.addr = ioremap(addr, mapsize); 1717 if (info->io.addr == NULL) { 1718 mem_region_cleanup(info, info->io_size); 1719 return -EIO; 1720 } 1721 return 0; 1722 } 1723 1724 /* 1725 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1727 * Options are: 1728 * rsp=<regspacing> 1729 * rsi=<regsize> 1730 * rsh=<regshift> 1731 * irq=<irq> 1732 * ipmb=<ipmb addr> 1733 */ 1734 enum hotmod_op { HM_ADD, HM_REMOVE }; 1735 struct hotmod_vals { 1736 const char *name; 1737 const int val; 1738 }; 1739 1740 static const struct hotmod_vals hotmod_ops[] = { 1741 { "add", HM_ADD }, 1742 { "remove", HM_REMOVE }, 1743 { NULL } 1744 }; 1745 1746 static const struct hotmod_vals hotmod_si[] = { 1747 { "kcs", SI_KCS }, 1748 { "smic", SI_SMIC }, 1749 { "bt", SI_BT }, 1750 { NULL } 1751 }; 1752 1753 static const struct hotmod_vals hotmod_as[] = { 1754 { "mem", IPMI_MEM_ADDR_SPACE }, 1755 { "i/o", IPMI_IO_ADDR_SPACE }, 1756 { NULL } 1757 }; 1758 1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name, 1760 char **curr) 1761 { 1762 char *s; 1763 int i; 1764 1765 s = strchr(*curr, ','); 1766 if (!s) { 1767 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1768 return -EINVAL; 1769 } 1770 *s = '\0'; 1771 s++; 1772 for (i = 0; v[i].name; i++) { 1773 if (strcmp(*curr, v[i].name) == 0) { 1774 *val = v[i].val; 1775 *curr = s; 1776 return 0; 1777 } 1778 } 1779 1780 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1781 return -EINVAL; 1782 } 1783 1784 static int check_hotmod_int_op(const char *curr, const char *option, 1785 const char *name, int *val) 1786 { 1787 char *n; 1788 1789 if (strcmp(curr, name) == 0) { 1790 if (!option) { 1791 printk(KERN_WARNING PFX 1792 "No option given for '%s'\n", 1793 curr); 1794 return -EINVAL; 1795 } 1796 *val = simple_strtoul(option, &n, 0); 1797 if ((*n != '\0') || (*option == '\0')) { 1798 printk(KERN_WARNING PFX 1799 "Bad option given for '%s'\n", 1800 curr); 1801 return -EINVAL; 1802 } 1803 return 1; 1804 } 1805 return 0; 1806 } 1807 1808 static struct smi_info *smi_info_alloc(void) 1809 { 1810 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1811 1812 if (info) 1813 spin_lock_init(&info->si_lock); 1814 return info; 1815 } 1816 1817 static int hotmod_handler(const char *val, struct kernel_param *kp) 1818 { 1819 char *str = kstrdup(val, GFP_KERNEL); 1820 int rv; 1821 char *next, *curr, *s, *n, *o; 1822 enum hotmod_op op; 1823 enum si_type si_type; 1824 int addr_space; 1825 unsigned long addr; 1826 int regspacing; 1827 int regsize; 1828 int regshift; 1829 int irq; 1830 int ipmb; 1831 int ival; 1832 int len; 1833 struct smi_info *info; 1834 1835 if (!str) 1836 return -ENOMEM; 1837 1838 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1839 len = strlen(str); 1840 ival = len - 1; 1841 while ((ival >= 0) && isspace(str[ival])) { 1842 str[ival] = '\0'; 1843 ival--; 1844 } 1845 1846 for (curr = str; curr; curr = next) { 1847 regspacing = 1; 1848 regsize = 1; 1849 regshift = 0; 1850 irq = 0; 1851 ipmb = 0; /* Choose the default if not specified */ 1852 1853 next = strchr(curr, ':'); 1854 if (next) { 1855 *next = '\0'; 1856 next++; 1857 } 1858 1859 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1860 if (rv) 1861 break; 1862 op = ival; 1863 1864 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1865 if (rv) 1866 break; 1867 si_type = ival; 1868 1869 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1870 if (rv) 1871 break; 1872 1873 s = strchr(curr, ','); 1874 if (s) { 1875 *s = '\0'; 1876 s++; 1877 } 1878 addr = simple_strtoul(curr, &n, 0); 1879 if ((*n != '\0') || (*curr == '\0')) { 1880 printk(KERN_WARNING PFX "Invalid hotmod address" 1881 " '%s'\n", curr); 1882 break; 1883 } 1884 1885 while (s) { 1886 curr = s; 1887 s = strchr(curr, ','); 1888 if (s) { 1889 *s = '\0'; 1890 s++; 1891 } 1892 o = strchr(curr, '='); 1893 if (o) { 1894 *o = '\0'; 1895 o++; 1896 } 1897 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1898 if (rv < 0) 1899 goto out; 1900 else if (rv) 1901 continue; 1902 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1903 if (rv < 0) 1904 goto out; 1905 else if (rv) 1906 continue; 1907 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1908 if (rv < 0) 1909 goto out; 1910 else if (rv) 1911 continue; 1912 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1913 if (rv < 0) 1914 goto out; 1915 else if (rv) 1916 continue; 1917 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1918 if (rv < 0) 1919 goto out; 1920 else if (rv) 1921 continue; 1922 1923 rv = -EINVAL; 1924 printk(KERN_WARNING PFX 1925 "Invalid hotmod option '%s'\n", 1926 curr); 1927 goto out; 1928 } 1929 1930 if (op == HM_ADD) { 1931 info = smi_info_alloc(); 1932 if (!info) { 1933 rv = -ENOMEM; 1934 goto out; 1935 } 1936 1937 info->addr_source = SI_HOTMOD; 1938 info->si_type = si_type; 1939 info->io.addr_data = addr; 1940 info->io.addr_type = addr_space; 1941 if (addr_space == IPMI_MEM_ADDR_SPACE) 1942 info->io_setup = mem_setup; 1943 else 1944 info->io_setup = port_setup; 1945 1946 info->io.addr = NULL; 1947 info->io.regspacing = regspacing; 1948 if (!info->io.regspacing) 1949 info->io.regspacing = DEFAULT_REGSPACING; 1950 info->io.regsize = regsize; 1951 if (!info->io.regsize) 1952 info->io.regsize = DEFAULT_REGSPACING; 1953 info->io.regshift = regshift; 1954 info->irq = irq; 1955 if (info->irq) 1956 info->irq_setup = std_irq_setup; 1957 info->slave_addr = ipmb; 1958 1959 rv = add_smi(info); 1960 if (rv) { 1961 kfree(info); 1962 goto out; 1963 } 1964 rv = try_smi_init(info); 1965 if (rv) { 1966 cleanup_one_si(info); 1967 goto out; 1968 } 1969 } else { 1970 /* remove */ 1971 struct smi_info *e, *tmp_e; 1972 1973 mutex_lock(&smi_infos_lock); 1974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1975 if (e->io.addr_type != addr_space) 1976 continue; 1977 if (e->si_type != si_type) 1978 continue; 1979 if (e->io.addr_data == addr) 1980 cleanup_one_si(e); 1981 } 1982 mutex_unlock(&smi_infos_lock); 1983 } 1984 } 1985 rv = len; 1986 out: 1987 kfree(str); 1988 return rv; 1989 } 1990 1991 static int hardcode_find_bmc(void) 1992 { 1993 int ret = -ENODEV; 1994 int i; 1995 struct smi_info *info; 1996 1997 for (i = 0; i < SI_MAX_PARMS; i++) { 1998 if (!ports[i] && !addrs[i]) 1999 continue; 2000 2001 info = smi_info_alloc(); 2002 if (!info) 2003 return -ENOMEM; 2004 2005 info->addr_source = SI_HARDCODED; 2006 printk(KERN_INFO PFX "probing via hardcoded address\n"); 2007 2008 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 2009 info->si_type = SI_KCS; 2010 } else if (strcmp(si_type[i], "smic") == 0) { 2011 info->si_type = SI_SMIC; 2012 } else if (strcmp(si_type[i], "bt") == 0) { 2013 info->si_type = SI_BT; 2014 } else { 2015 printk(KERN_WARNING PFX "Interface type specified " 2016 "for interface %d, was invalid: %s\n", 2017 i, si_type[i]); 2018 kfree(info); 2019 continue; 2020 } 2021 2022 if (ports[i]) { 2023 /* An I/O port */ 2024 info->io_setup = port_setup; 2025 info->io.addr_data = ports[i]; 2026 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2027 } else if (addrs[i]) { 2028 /* A memory port */ 2029 info->io_setup = mem_setup; 2030 info->io.addr_data = addrs[i]; 2031 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2032 } else { 2033 printk(KERN_WARNING PFX "Interface type specified " 2034 "for interface %d, but port and address were " 2035 "not set or set to zero.\n", i); 2036 kfree(info); 2037 continue; 2038 } 2039 2040 info->io.addr = NULL; 2041 info->io.regspacing = regspacings[i]; 2042 if (!info->io.regspacing) 2043 info->io.regspacing = DEFAULT_REGSPACING; 2044 info->io.regsize = regsizes[i]; 2045 if (!info->io.regsize) 2046 info->io.regsize = DEFAULT_REGSPACING; 2047 info->io.regshift = regshifts[i]; 2048 info->irq = irqs[i]; 2049 if (info->irq) 2050 info->irq_setup = std_irq_setup; 2051 info->slave_addr = slave_addrs[i]; 2052 2053 if (!add_smi(info)) { 2054 if (try_smi_init(info)) 2055 cleanup_one_si(info); 2056 ret = 0; 2057 } else { 2058 kfree(info); 2059 } 2060 } 2061 return ret; 2062 } 2063 2064 #ifdef CONFIG_ACPI 2065 2066 /* 2067 * Once we get an ACPI failure, we don't try any more, because we go 2068 * through the tables sequentially. Once we don't find a table, there 2069 * are no more. 2070 */ 2071 static int acpi_failure; 2072 2073 /* For GPE-type interrupts. */ 2074 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2075 u32 gpe_number, void *context) 2076 { 2077 struct smi_info *smi_info = context; 2078 unsigned long flags; 2079 2080 spin_lock_irqsave(&(smi_info->si_lock), flags); 2081 2082 smi_inc_stat(smi_info, interrupts); 2083 2084 debug_timestamp("ACPI_GPE"); 2085 2086 smi_event_handler(smi_info, 0); 2087 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2088 2089 return ACPI_INTERRUPT_HANDLED; 2090 } 2091 2092 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2093 { 2094 if (!info->irq) 2095 return; 2096 2097 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2098 } 2099 2100 static int acpi_gpe_irq_setup(struct smi_info *info) 2101 { 2102 acpi_status status; 2103 2104 if (!info->irq) 2105 return 0; 2106 2107 status = acpi_install_gpe_handler(NULL, 2108 info->irq, 2109 ACPI_GPE_LEVEL_TRIGGERED, 2110 &ipmi_acpi_gpe, 2111 info); 2112 if (status != AE_OK) { 2113 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2114 " running polled\n", DEVICE_NAME, info->irq); 2115 info->irq = 0; 2116 return -EINVAL; 2117 } else { 2118 info->irq_cleanup = acpi_gpe_irq_cleanup; 2119 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2120 return 0; 2121 } 2122 } 2123 2124 /* 2125 * Defined at 2126 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2127 */ 2128 struct SPMITable { 2129 s8 Signature[4]; 2130 u32 Length; 2131 u8 Revision; 2132 u8 Checksum; 2133 s8 OEMID[6]; 2134 s8 OEMTableID[8]; 2135 s8 OEMRevision[4]; 2136 s8 CreatorID[4]; 2137 s8 CreatorRevision[4]; 2138 u8 InterfaceType; 2139 u8 IPMIlegacy; 2140 s16 SpecificationRevision; 2141 2142 /* 2143 * Bit 0 - SCI interrupt supported 2144 * Bit 1 - I/O APIC/SAPIC 2145 */ 2146 u8 InterruptType; 2147 2148 /* 2149 * If bit 0 of InterruptType is set, then this is the SCI 2150 * interrupt in the GPEx_STS register. 2151 */ 2152 u8 GPE; 2153 2154 s16 Reserved; 2155 2156 /* 2157 * If bit 1 of InterruptType is set, then this is the I/O 2158 * APIC/SAPIC interrupt. 2159 */ 2160 u32 GlobalSystemInterrupt; 2161 2162 /* The actual register address. */ 2163 struct acpi_generic_address addr; 2164 2165 u8 UID[4]; 2166 2167 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2168 }; 2169 2170 static int try_init_spmi(struct SPMITable *spmi) 2171 { 2172 struct smi_info *info; 2173 int rv; 2174 2175 if (spmi->IPMIlegacy != 1) { 2176 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2177 return -ENODEV; 2178 } 2179 2180 info = smi_info_alloc(); 2181 if (!info) { 2182 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2183 return -ENOMEM; 2184 } 2185 2186 info->addr_source = SI_SPMI; 2187 printk(KERN_INFO PFX "probing via SPMI\n"); 2188 2189 /* Figure out the interface type. */ 2190 switch (spmi->InterfaceType) { 2191 case 1: /* KCS */ 2192 info->si_type = SI_KCS; 2193 break; 2194 case 2: /* SMIC */ 2195 info->si_type = SI_SMIC; 2196 break; 2197 case 3: /* BT */ 2198 info->si_type = SI_BT; 2199 break; 2200 case 4: /* SSIF, just ignore */ 2201 kfree(info); 2202 return -EIO; 2203 default: 2204 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2205 spmi->InterfaceType); 2206 kfree(info); 2207 return -EIO; 2208 } 2209 2210 if (spmi->InterruptType & 1) { 2211 /* We've got a GPE interrupt. */ 2212 info->irq = spmi->GPE; 2213 info->irq_setup = acpi_gpe_irq_setup; 2214 } else if (spmi->InterruptType & 2) { 2215 /* We've got an APIC/SAPIC interrupt. */ 2216 info->irq = spmi->GlobalSystemInterrupt; 2217 info->irq_setup = std_irq_setup; 2218 } else { 2219 /* Use the default interrupt setting. */ 2220 info->irq = 0; 2221 info->irq_setup = NULL; 2222 } 2223 2224 if (spmi->addr.bit_width) { 2225 /* A (hopefully) properly formed register bit width. */ 2226 info->io.regspacing = spmi->addr.bit_width / 8; 2227 } else { 2228 info->io.regspacing = DEFAULT_REGSPACING; 2229 } 2230 info->io.regsize = info->io.regspacing; 2231 info->io.regshift = spmi->addr.bit_offset; 2232 2233 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2234 info->io_setup = mem_setup; 2235 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2236 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2237 info->io_setup = port_setup; 2238 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2239 } else { 2240 kfree(info); 2241 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2242 return -EIO; 2243 } 2244 info->io.addr_data = spmi->addr.address; 2245 2246 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2247 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2248 info->io.addr_data, info->io.regsize, info->io.regspacing, 2249 info->irq); 2250 2251 rv = add_smi(info); 2252 if (rv) 2253 kfree(info); 2254 2255 return rv; 2256 } 2257 2258 static void spmi_find_bmc(void) 2259 { 2260 acpi_status status; 2261 struct SPMITable *spmi; 2262 int i; 2263 2264 if (acpi_disabled) 2265 return; 2266 2267 if (acpi_failure) 2268 return; 2269 2270 for (i = 0; ; i++) { 2271 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2272 (struct acpi_table_header **)&spmi); 2273 if (status != AE_OK) 2274 return; 2275 2276 try_init_spmi(spmi); 2277 } 2278 } 2279 #endif 2280 2281 #ifdef CONFIG_DMI 2282 struct dmi_ipmi_data { 2283 u8 type; 2284 u8 addr_space; 2285 unsigned long base_addr; 2286 u8 irq; 2287 u8 offset; 2288 u8 slave_addr; 2289 }; 2290 2291 static int decode_dmi(const struct dmi_header *dm, 2292 struct dmi_ipmi_data *dmi) 2293 { 2294 const u8 *data = (const u8 *)dm; 2295 unsigned long base_addr; 2296 u8 reg_spacing; 2297 u8 len = dm->length; 2298 2299 dmi->type = data[4]; 2300 2301 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2302 if (len >= 0x11) { 2303 if (base_addr & 1) { 2304 /* I/O */ 2305 base_addr &= 0xFFFE; 2306 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2307 } else 2308 /* Memory */ 2309 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2310 2311 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2312 is odd. */ 2313 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2314 2315 dmi->irq = data[0x11]; 2316 2317 /* The top two bits of byte 0x10 hold the register spacing. */ 2318 reg_spacing = (data[0x10] & 0xC0) >> 6; 2319 switch (reg_spacing) { 2320 case 0x00: /* Byte boundaries */ 2321 dmi->offset = 1; 2322 break; 2323 case 0x01: /* 32-bit boundaries */ 2324 dmi->offset = 4; 2325 break; 2326 case 0x02: /* 16-byte boundaries */ 2327 dmi->offset = 16; 2328 break; 2329 default: 2330 /* Some other interface, just ignore it. */ 2331 return -EIO; 2332 } 2333 } else { 2334 /* Old DMI spec. */ 2335 /* 2336 * Note that technically, the lower bit of the base 2337 * address should be 1 if the address is I/O and 0 if 2338 * the address is in memory. So many systems get that 2339 * wrong (and all that I have seen are I/O) so we just 2340 * ignore that bit and assume I/O. Systems that use 2341 * memory should use the newer spec, anyway. 2342 */ 2343 dmi->base_addr = base_addr & 0xfffe; 2344 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2345 dmi->offset = 1; 2346 } 2347 2348 dmi->slave_addr = data[6]; 2349 2350 return 0; 2351 } 2352 2353 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2354 { 2355 struct smi_info *info; 2356 2357 info = smi_info_alloc(); 2358 if (!info) { 2359 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2360 return; 2361 } 2362 2363 info->addr_source = SI_SMBIOS; 2364 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2365 2366 switch (ipmi_data->type) { 2367 case 0x01: /* KCS */ 2368 info->si_type = SI_KCS; 2369 break; 2370 case 0x02: /* SMIC */ 2371 info->si_type = SI_SMIC; 2372 break; 2373 case 0x03: /* BT */ 2374 info->si_type = SI_BT; 2375 break; 2376 default: 2377 kfree(info); 2378 return; 2379 } 2380 2381 switch (ipmi_data->addr_space) { 2382 case IPMI_MEM_ADDR_SPACE: 2383 info->io_setup = mem_setup; 2384 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2385 break; 2386 2387 case IPMI_IO_ADDR_SPACE: 2388 info->io_setup = port_setup; 2389 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2390 break; 2391 2392 default: 2393 kfree(info); 2394 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2395 ipmi_data->addr_space); 2396 return; 2397 } 2398 info->io.addr_data = ipmi_data->base_addr; 2399 2400 info->io.regspacing = ipmi_data->offset; 2401 if (!info->io.regspacing) 2402 info->io.regspacing = DEFAULT_REGSPACING; 2403 info->io.regsize = DEFAULT_REGSPACING; 2404 info->io.regshift = 0; 2405 2406 info->slave_addr = ipmi_data->slave_addr; 2407 2408 info->irq = ipmi_data->irq; 2409 if (info->irq) 2410 info->irq_setup = std_irq_setup; 2411 2412 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2413 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2414 info->io.addr_data, info->io.regsize, info->io.regspacing, 2415 info->irq); 2416 2417 if (add_smi(info)) 2418 kfree(info); 2419 } 2420 2421 static void dmi_find_bmc(void) 2422 { 2423 const struct dmi_device *dev = NULL; 2424 struct dmi_ipmi_data data; 2425 int rv; 2426 2427 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2428 memset(&data, 0, sizeof(data)); 2429 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2430 &data); 2431 if (!rv) 2432 try_init_dmi(&data); 2433 } 2434 } 2435 #endif /* CONFIG_DMI */ 2436 2437 #ifdef CONFIG_PCI 2438 2439 #define PCI_ERMC_CLASSCODE 0x0C0700 2440 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2441 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2442 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2443 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2444 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2445 2446 #define PCI_HP_VENDOR_ID 0x103C 2447 #define PCI_MMC_DEVICE_ID 0x121A 2448 #define PCI_MMC_ADDR_CW 0x10 2449 2450 static void ipmi_pci_cleanup(struct smi_info *info) 2451 { 2452 struct pci_dev *pdev = info->addr_source_data; 2453 2454 pci_disable_device(pdev); 2455 } 2456 2457 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2458 { 2459 if (info->si_type == SI_KCS) { 2460 unsigned char status; 2461 int regspacing; 2462 2463 info->io.regsize = DEFAULT_REGSIZE; 2464 info->io.regshift = 0; 2465 info->io_size = 2; 2466 info->handlers = &kcs_smi_handlers; 2467 2468 /* detect 1, 4, 16byte spacing */ 2469 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2470 info->io.regspacing = regspacing; 2471 if (info->io_setup(info)) { 2472 dev_err(info->dev, 2473 "Could not setup I/O space\n"); 2474 return DEFAULT_REGSPACING; 2475 } 2476 /* write invalid cmd */ 2477 info->io.outputb(&info->io, 1, 0x10); 2478 /* read status back */ 2479 status = info->io.inputb(&info->io, 1); 2480 info->io_cleanup(info); 2481 if (status) 2482 return regspacing; 2483 regspacing *= 4; 2484 } 2485 } 2486 return DEFAULT_REGSPACING; 2487 } 2488 2489 static int ipmi_pci_probe(struct pci_dev *pdev, 2490 const struct pci_device_id *ent) 2491 { 2492 int rv; 2493 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2494 struct smi_info *info; 2495 2496 info = smi_info_alloc(); 2497 if (!info) 2498 return -ENOMEM; 2499 2500 info->addr_source = SI_PCI; 2501 dev_info(&pdev->dev, "probing via PCI"); 2502 2503 switch (class_type) { 2504 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2505 info->si_type = SI_SMIC; 2506 break; 2507 2508 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2509 info->si_type = SI_KCS; 2510 break; 2511 2512 case PCI_ERMC_CLASSCODE_TYPE_BT: 2513 info->si_type = SI_BT; 2514 break; 2515 2516 default: 2517 kfree(info); 2518 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2519 return -ENOMEM; 2520 } 2521 2522 rv = pci_enable_device(pdev); 2523 if (rv) { 2524 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2525 kfree(info); 2526 return rv; 2527 } 2528 2529 info->addr_source_cleanup = ipmi_pci_cleanup; 2530 info->addr_source_data = pdev; 2531 2532 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2533 info->io_setup = port_setup; 2534 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2535 } else { 2536 info->io_setup = mem_setup; 2537 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2538 } 2539 info->io.addr_data = pci_resource_start(pdev, 0); 2540 2541 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2542 info->io.regsize = DEFAULT_REGSIZE; 2543 info->io.regshift = 0; 2544 2545 info->irq = pdev->irq; 2546 if (info->irq) 2547 info->irq_setup = std_irq_setup; 2548 2549 info->dev = &pdev->dev; 2550 pci_set_drvdata(pdev, info); 2551 2552 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2553 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2554 info->irq); 2555 2556 rv = add_smi(info); 2557 if (rv) { 2558 kfree(info); 2559 pci_disable_device(pdev); 2560 } 2561 2562 return rv; 2563 } 2564 2565 static void ipmi_pci_remove(struct pci_dev *pdev) 2566 { 2567 struct smi_info *info = pci_get_drvdata(pdev); 2568 cleanup_one_si(info); 2569 } 2570 2571 static const struct pci_device_id ipmi_pci_devices[] = { 2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2574 { 0, } 2575 }; 2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2577 2578 static struct pci_driver ipmi_pci_driver = { 2579 .name = DEVICE_NAME, 2580 .id_table = ipmi_pci_devices, 2581 .probe = ipmi_pci_probe, 2582 .remove = ipmi_pci_remove, 2583 }; 2584 #endif /* CONFIG_PCI */ 2585 2586 #ifdef CONFIG_OF 2587 static const struct of_device_id of_ipmi_match[] = { 2588 { .type = "ipmi", .compatible = "ipmi-kcs", 2589 .data = (void *)(unsigned long) SI_KCS }, 2590 { .type = "ipmi", .compatible = "ipmi-smic", 2591 .data = (void *)(unsigned long) SI_SMIC }, 2592 { .type = "ipmi", .compatible = "ipmi-bt", 2593 .data = (void *)(unsigned long) SI_BT }, 2594 {}, 2595 }; 2596 MODULE_DEVICE_TABLE(of, of_ipmi_match); 2597 2598 static int of_ipmi_probe(struct platform_device *dev) 2599 { 2600 const struct of_device_id *match; 2601 struct smi_info *info; 2602 struct resource resource; 2603 const __be32 *regsize, *regspacing, *regshift; 2604 struct device_node *np = dev->dev.of_node; 2605 int ret; 2606 int proplen; 2607 2608 dev_info(&dev->dev, "probing via device tree\n"); 2609 2610 match = of_match_device(of_ipmi_match, &dev->dev); 2611 if (!match) 2612 return -ENODEV; 2613 2614 if (!of_device_is_available(np)) 2615 return -EINVAL; 2616 2617 ret = of_address_to_resource(np, 0, &resource); 2618 if (ret) { 2619 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2620 return ret; 2621 } 2622 2623 regsize = of_get_property(np, "reg-size", &proplen); 2624 if (regsize && proplen != 4) { 2625 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2626 return -EINVAL; 2627 } 2628 2629 regspacing = of_get_property(np, "reg-spacing", &proplen); 2630 if (regspacing && proplen != 4) { 2631 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2632 return -EINVAL; 2633 } 2634 2635 regshift = of_get_property(np, "reg-shift", &proplen); 2636 if (regshift && proplen != 4) { 2637 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2638 return -EINVAL; 2639 } 2640 2641 info = smi_info_alloc(); 2642 2643 if (!info) { 2644 dev_err(&dev->dev, 2645 "could not allocate memory for OF probe\n"); 2646 return -ENOMEM; 2647 } 2648 2649 info->si_type = (enum si_type) match->data; 2650 info->addr_source = SI_DEVICETREE; 2651 info->irq_setup = std_irq_setup; 2652 2653 if (resource.flags & IORESOURCE_IO) { 2654 info->io_setup = port_setup; 2655 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2656 } else { 2657 info->io_setup = mem_setup; 2658 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2659 } 2660 2661 info->io.addr_data = resource.start; 2662 2663 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2664 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2665 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2666 2667 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2668 info->dev = &dev->dev; 2669 2670 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2671 info->io.addr_data, info->io.regsize, info->io.regspacing, 2672 info->irq); 2673 2674 dev_set_drvdata(&dev->dev, info); 2675 2676 ret = add_smi(info); 2677 if (ret) { 2678 kfree(info); 2679 return ret; 2680 } 2681 return 0; 2682 } 2683 #else 2684 #define of_ipmi_match NULL 2685 static int of_ipmi_probe(struct platform_device *dev) 2686 { 2687 return -ENODEV; 2688 } 2689 #endif 2690 2691 #ifdef CONFIG_ACPI 2692 static int acpi_ipmi_probe(struct platform_device *dev) 2693 { 2694 struct smi_info *info; 2695 struct resource *res, *res_second; 2696 acpi_handle handle; 2697 acpi_status status; 2698 unsigned long long tmp; 2699 int rv = -EINVAL; 2700 2701 if (!si_tryacpi) 2702 return 0; 2703 2704 handle = ACPI_HANDLE(&dev->dev); 2705 if (!handle) 2706 return -ENODEV; 2707 2708 info = smi_info_alloc(); 2709 if (!info) 2710 return -ENOMEM; 2711 2712 info->addr_source = SI_ACPI; 2713 dev_info(&dev->dev, PFX "probing via ACPI\n"); 2714 2715 info->addr_info.acpi_info.acpi_handle = handle; 2716 2717 /* _IFT tells us the interface type: KCS, BT, etc */ 2718 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2719 if (ACPI_FAILURE(status)) { 2720 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2721 goto err_free; 2722 } 2723 2724 switch (tmp) { 2725 case 1: 2726 info->si_type = SI_KCS; 2727 break; 2728 case 2: 2729 info->si_type = SI_SMIC; 2730 break; 2731 case 3: 2732 info->si_type = SI_BT; 2733 break; 2734 case 4: /* SSIF, just ignore */ 2735 rv = -ENODEV; 2736 goto err_free; 2737 default: 2738 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2739 goto err_free; 2740 } 2741 2742 res = platform_get_resource(dev, IORESOURCE_IO, 0); 2743 if (res) { 2744 info->io_setup = port_setup; 2745 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2746 } else { 2747 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2748 if (res) { 2749 info->io_setup = mem_setup; 2750 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2751 } 2752 } 2753 if (!res) { 2754 dev_err(&dev->dev, "no I/O or memory address\n"); 2755 goto err_free; 2756 } 2757 info->io.addr_data = res->start; 2758 2759 info->io.regspacing = DEFAULT_REGSPACING; 2760 res_second = platform_get_resource(dev, 2761 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2762 IORESOURCE_IO : IORESOURCE_MEM, 2763 1); 2764 if (res_second) { 2765 if (res_second->start > info->io.addr_data) 2766 info->io.regspacing = 2767 res_second->start - info->io.addr_data; 2768 } 2769 info->io.regsize = DEFAULT_REGSPACING; 2770 info->io.regshift = 0; 2771 2772 /* If _GPE exists, use it; otherwise use standard interrupts */ 2773 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2774 if (ACPI_SUCCESS(status)) { 2775 info->irq = tmp; 2776 info->irq_setup = acpi_gpe_irq_setup; 2777 } else { 2778 int irq = platform_get_irq(dev, 0); 2779 2780 if (irq > 0) { 2781 info->irq = irq; 2782 info->irq_setup = std_irq_setup; 2783 } 2784 } 2785 2786 info->dev = &dev->dev; 2787 platform_set_drvdata(dev, info); 2788 2789 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2790 res, info->io.regsize, info->io.regspacing, 2791 info->irq); 2792 2793 rv = add_smi(info); 2794 if (rv) 2795 kfree(info); 2796 2797 return rv; 2798 2799 err_free: 2800 kfree(info); 2801 return rv; 2802 } 2803 2804 static const struct acpi_device_id acpi_ipmi_match[] = { 2805 { "IPI0001", 0 }, 2806 { }, 2807 }; 2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); 2809 #else 2810 static int acpi_ipmi_probe(struct platform_device *dev) 2811 { 2812 return -ENODEV; 2813 } 2814 #endif 2815 2816 static int ipmi_probe(struct platform_device *dev) 2817 { 2818 if (of_ipmi_probe(dev) == 0) 2819 return 0; 2820 2821 return acpi_ipmi_probe(dev); 2822 } 2823 2824 static int ipmi_remove(struct platform_device *dev) 2825 { 2826 struct smi_info *info = dev_get_drvdata(&dev->dev); 2827 2828 cleanup_one_si(info); 2829 return 0; 2830 } 2831 2832 static struct platform_driver ipmi_driver = { 2833 .driver = { 2834 .name = DEVICE_NAME, 2835 .of_match_table = of_ipmi_match, 2836 .acpi_match_table = ACPI_PTR(acpi_ipmi_match), 2837 }, 2838 .probe = ipmi_probe, 2839 .remove = ipmi_remove, 2840 }; 2841 2842 #ifdef CONFIG_PARISC 2843 static int ipmi_parisc_probe(struct parisc_device *dev) 2844 { 2845 struct smi_info *info; 2846 int rv; 2847 2848 info = smi_info_alloc(); 2849 2850 if (!info) { 2851 dev_err(&dev->dev, 2852 "could not allocate memory for PARISC probe\n"); 2853 return -ENOMEM; 2854 } 2855 2856 info->si_type = SI_KCS; 2857 info->addr_source = SI_DEVICETREE; 2858 info->io_setup = mem_setup; 2859 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2860 info->io.addr_data = dev->hpa.start; 2861 info->io.regsize = 1; 2862 info->io.regspacing = 1; 2863 info->io.regshift = 0; 2864 info->irq = 0; /* no interrupt */ 2865 info->irq_setup = NULL; 2866 info->dev = &dev->dev; 2867 2868 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2869 2870 dev_set_drvdata(&dev->dev, info); 2871 2872 rv = add_smi(info); 2873 if (rv) { 2874 kfree(info); 2875 return rv; 2876 } 2877 2878 return 0; 2879 } 2880 2881 static int ipmi_parisc_remove(struct parisc_device *dev) 2882 { 2883 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2884 return 0; 2885 } 2886 2887 static const struct parisc_device_id ipmi_parisc_tbl[] = { 2888 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2889 { 0, } 2890 }; 2891 2892 static struct parisc_driver ipmi_parisc_driver = { 2893 .name = "ipmi", 2894 .id_table = ipmi_parisc_tbl, 2895 .probe = ipmi_parisc_probe, 2896 .remove = ipmi_parisc_remove, 2897 }; 2898 #endif /* CONFIG_PARISC */ 2899 2900 static int wait_for_msg_done(struct smi_info *smi_info) 2901 { 2902 enum si_sm_result smi_result; 2903 2904 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2905 for (;;) { 2906 if (smi_result == SI_SM_CALL_WITH_DELAY || 2907 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2908 schedule_timeout_uninterruptible(1); 2909 smi_result = smi_info->handlers->event( 2910 smi_info->si_sm, jiffies_to_usecs(1)); 2911 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2912 smi_result = smi_info->handlers->event( 2913 smi_info->si_sm, 0); 2914 } else 2915 break; 2916 } 2917 if (smi_result == SI_SM_HOSED) 2918 /* 2919 * We couldn't get the state machine to run, so whatever's at 2920 * the port is probably not an IPMI SMI interface. 2921 */ 2922 return -ENODEV; 2923 2924 return 0; 2925 } 2926 2927 static int try_get_dev_id(struct smi_info *smi_info) 2928 { 2929 unsigned char msg[2]; 2930 unsigned char *resp; 2931 unsigned long resp_len; 2932 int rv = 0; 2933 2934 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2935 if (!resp) 2936 return -ENOMEM; 2937 2938 /* 2939 * Do a Get Device ID command, since it comes back with some 2940 * useful info. 2941 */ 2942 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2943 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2944 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2945 2946 rv = wait_for_msg_done(smi_info); 2947 if (rv) 2948 goto out; 2949 2950 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2951 resp, IPMI_MAX_MSG_LENGTH); 2952 2953 /* Check and record info from the get device id, in case we need it. */ 2954 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2955 2956 out: 2957 kfree(resp); 2958 return rv; 2959 } 2960 2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 2962 { 2963 unsigned char msg[3]; 2964 unsigned char *resp; 2965 unsigned long resp_len; 2966 int rv; 2967 2968 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2969 if (!resp) 2970 return -ENOMEM; 2971 2972 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2973 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2974 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2975 2976 rv = wait_for_msg_done(smi_info); 2977 if (rv) { 2978 dev_warn(smi_info->dev, 2979 "Error getting response from get global enables command: %d\n", 2980 rv); 2981 goto out; 2982 } 2983 2984 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2985 resp, IPMI_MAX_MSG_LENGTH); 2986 2987 if (resp_len < 4 || 2988 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2989 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2990 resp[2] != 0) { 2991 dev_warn(smi_info->dev, 2992 "Invalid return from get global enables command: %ld %x %x %x\n", 2993 resp_len, resp[0], resp[1], resp[2]); 2994 rv = -EINVAL; 2995 goto out; 2996 } else { 2997 *enables = resp[3]; 2998 } 2999 3000 out: 3001 kfree(resp); 3002 return rv; 3003 } 3004 3005 /* 3006 * Returns 1 if it gets an error from the command. 3007 */ 3008 static int set_global_enables(struct smi_info *smi_info, u8 enables) 3009 { 3010 unsigned char msg[3]; 3011 unsigned char *resp; 3012 unsigned long resp_len; 3013 int rv; 3014 3015 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3016 if (!resp) 3017 return -ENOMEM; 3018 3019 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3020 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3021 msg[2] = enables; 3022 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3023 3024 rv = wait_for_msg_done(smi_info); 3025 if (rv) { 3026 dev_warn(smi_info->dev, 3027 "Error getting response from set global enables command: %d\n", 3028 rv); 3029 goto out; 3030 } 3031 3032 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3033 resp, IPMI_MAX_MSG_LENGTH); 3034 3035 if (resp_len < 3 || 3036 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3037 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3038 dev_warn(smi_info->dev, 3039 "Invalid return from set global enables command: %ld %x %x\n", 3040 resp_len, resp[0], resp[1]); 3041 rv = -EINVAL; 3042 goto out; 3043 } 3044 3045 if (resp[2] != 0) 3046 rv = 1; 3047 3048 out: 3049 kfree(resp); 3050 return rv; 3051 } 3052 3053 /* 3054 * Some BMCs do not support clearing the receive irq bit in the global 3055 * enables (even if they don't support interrupts on the BMC). Check 3056 * for this and handle it properly. 3057 */ 3058 static void check_clr_rcv_irq(struct smi_info *smi_info) 3059 { 3060 u8 enables = 0; 3061 int rv; 3062 3063 rv = get_global_enables(smi_info, &enables); 3064 if (!rv) { 3065 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 3066 /* Already clear, should work ok. */ 3067 return; 3068 3069 enables &= ~IPMI_BMC_RCV_MSG_INTR; 3070 rv = set_global_enables(smi_info, enables); 3071 } 3072 3073 if (rv < 0) { 3074 dev_err(smi_info->dev, 3075 "Cannot check clearing the rcv irq: %d\n", rv); 3076 return; 3077 } 3078 3079 if (rv) { 3080 /* 3081 * An error when setting the event buffer bit means 3082 * clearing the bit is not supported. 3083 */ 3084 dev_warn(smi_info->dev, 3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3086 smi_info->cannot_disable_irq = true; 3087 } 3088 } 3089 3090 /* 3091 * Some BMCs do not support setting the interrupt bits in the global 3092 * enables even if they support interrupts. Clearly bad, but we can 3093 * compensate. 3094 */ 3095 static void check_set_rcv_irq(struct smi_info *smi_info) 3096 { 3097 u8 enables = 0; 3098 int rv; 3099 3100 if (!smi_info->irq) 3101 return; 3102 3103 rv = get_global_enables(smi_info, &enables); 3104 if (!rv) { 3105 enables |= IPMI_BMC_RCV_MSG_INTR; 3106 rv = set_global_enables(smi_info, enables); 3107 } 3108 3109 if (rv < 0) { 3110 dev_err(smi_info->dev, 3111 "Cannot check setting the rcv irq: %d\n", rv); 3112 return; 3113 } 3114 3115 if (rv) { 3116 /* 3117 * An error when setting the event buffer bit means 3118 * setting the bit is not supported. 3119 */ 3120 dev_warn(smi_info->dev, 3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3122 smi_info->cannot_disable_irq = true; 3123 smi_info->irq_enable_broken = true; 3124 } 3125 } 3126 3127 static int try_enable_event_buffer(struct smi_info *smi_info) 3128 { 3129 unsigned char msg[3]; 3130 unsigned char *resp; 3131 unsigned long resp_len; 3132 int rv = 0; 3133 3134 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3135 if (!resp) 3136 return -ENOMEM; 3137 3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3139 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3140 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3141 3142 rv = wait_for_msg_done(smi_info); 3143 if (rv) { 3144 printk(KERN_WARNING PFX "Error getting response from get" 3145 " global enables command, the event buffer is not" 3146 " enabled.\n"); 3147 goto out; 3148 } 3149 3150 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3151 resp, IPMI_MAX_MSG_LENGTH); 3152 3153 if (resp_len < 4 || 3154 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3155 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3156 resp[2] != 0) { 3157 printk(KERN_WARNING PFX "Invalid return from get global" 3158 " enables command, cannot enable the event buffer.\n"); 3159 rv = -EINVAL; 3160 goto out; 3161 } 3162 3163 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3164 /* buffer is already enabled, nothing to do. */ 3165 smi_info->supports_event_msg_buff = true; 3166 goto out; 3167 } 3168 3169 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3170 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3171 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3172 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3173 3174 rv = wait_for_msg_done(smi_info); 3175 if (rv) { 3176 printk(KERN_WARNING PFX "Error getting response from set" 3177 " global, enables command, the event buffer is not" 3178 " enabled.\n"); 3179 goto out; 3180 } 3181 3182 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3183 resp, IPMI_MAX_MSG_LENGTH); 3184 3185 if (resp_len < 3 || 3186 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3187 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3188 printk(KERN_WARNING PFX "Invalid return from get global," 3189 "enables command, not enable the event buffer.\n"); 3190 rv = -EINVAL; 3191 goto out; 3192 } 3193 3194 if (resp[2] != 0) 3195 /* 3196 * An error when setting the event buffer bit means 3197 * that the event buffer is not supported. 3198 */ 3199 rv = -ENOENT; 3200 else 3201 smi_info->supports_event_msg_buff = true; 3202 3203 out: 3204 kfree(resp); 3205 return rv; 3206 } 3207 3208 static int smi_type_proc_show(struct seq_file *m, void *v) 3209 { 3210 struct smi_info *smi = m->private; 3211 3212 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3213 3214 return 0; 3215 } 3216 3217 static int smi_type_proc_open(struct inode *inode, struct file *file) 3218 { 3219 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3220 } 3221 3222 static const struct file_operations smi_type_proc_ops = { 3223 .open = smi_type_proc_open, 3224 .read = seq_read, 3225 .llseek = seq_lseek, 3226 .release = single_release, 3227 }; 3228 3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3230 { 3231 struct smi_info *smi = m->private; 3232 3233 seq_printf(m, "interrupts_enabled: %d\n", 3234 smi->irq && !smi->interrupt_disabled); 3235 seq_printf(m, "short_timeouts: %u\n", 3236 smi_get_stat(smi, short_timeouts)); 3237 seq_printf(m, "long_timeouts: %u\n", 3238 smi_get_stat(smi, long_timeouts)); 3239 seq_printf(m, "idles: %u\n", 3240 smi_get_stat(smi, idles)); 3241 seq_printf(m, "interrupts: %u\n", 3242 smi_get_stat(smi, interrupts)); 3243 seq_printf(m, "attentions: %u\n", 3244 smi_get_stat(smi, attentions)); 3245 seq_printf(m, "flag_fetches: %u\n", 3246 smi_get_stat(smi, flag_fetches)); 3247 seq_printf(m, "hosed_count: %u\n", 3248 smi_get_stat(smi, hosed_count)); 3249 seq_printf(m, "complete_transactions: %u\n", 3250 smi_get_stat(smi, complete_transactions)); 3251 seq_printf(m, "events: %u\n", 3252 smi_get_stat(smi, events)); 3253 seq_printf(m, "watchdog_pretimeouts: %u\n", 3254 smi_get_stat(smi, watchdog_pretimeouts)); 3255 seq_printf(m, "incoming_messages: %u\n", 3256 smi_get_stat(smi, incoming_messages)); 3257 return 0; 3258 } 3259 3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3261 { 3262 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3263 } 3264 3265 static const struct file_operations smi_si_stats_proc_ops = { 3266 .open = smi_si_stats_proc_open, 3267 .read = seq_read, 3268 .llseek = seq_lseek, 3269 .release = single_release, 3270 }; 3271 3272 static int smi_params_proc_show(struct seq_file *m, void *v) 3273 { 3274 struct smi_info *smi = m->private; 3275 3276 seq_printf(m, 3277 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3278 si_to_str[smi->si_type], 3279 addr_space_to_str[smi->io.addr_type], 3280 smi->io.addr_data, 3281 smi->io.regspacing, 3282 smi->io.regsize, 3283 smi->io.regshift, 3284 smi->irq, 3285 smi->slave_addr); 3286 3287 return 0; 3288 } 3289 3290 static int smi_params_proc_open(struct inode *inode, struct file *file) 3291 { 3292 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3293 } 3294 3295 static const struct file_operations smi_params_proc_ops = { 3296 .open = smi_params_proc_open, 3297 .read = seq_read, 3298 .llseek = seq_lseek, 3299 .release = single_release, 3300 }; 3301 3302 /* 3303 * oem_data_avail_to_receive_msg_avail 3304 * @info - smi_info structure with msg_flags set 3305 * 3306 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3307 * Returns 1 indicating need to re-run handle_flags(). 3308 */ 3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3310 { 3311 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3312 RECEIVE_MSG_AVAIL); 3313 return 1; 3314 } 3315 3316 /* 3317 * setup_dell_poweredge_oem_data_handler 3318 * @info - smi_info.device_id must be populated 3319 * 3320 * Systems that match, but have firmware version < 1.40 may assert 3321 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3322 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3323 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3324 * as RECEIVE_MSG_AVAIL instead. 3325 * 3326 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3327 * assert the OEM[012] bits, and if it did, the driver would have to 3328 * change to handle that properly, we don't actually check for the 3329 * firmware version. 3330 * Device ID = 0x20 BMC on PowerEdge 8G servers 3331 * Device Revision = 0x80 3332 * Firmware Revision1 = 0x01 BMC version 1.40 3333 * Firmware Revision2 = 0x40 BCD encoded 3334 * IPMI Version = 0x51 IPMI 1.5 3335 * Manufacturer ID = A2 02 00 Dell IANA 3336 * 3337 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3338 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3339 * 3340 */ 3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3344 #define DELL_IANA_MFR_ID 0x0002a2 3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3346 { 3347 struct ipmi_device_id *id = &smi_info->device_id; 3348 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3349 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3350 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3351 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3352 smi_info->oem_data_avail_handler = 3353 oem_data_avail_to_receive_msg_avail; 3354 } else if (ipmi_version_major(id) < 1 || 3355 (ipmi_version_major(id) == 1 && 3356 ipmi_version_minor(id) < 5)) { 3357 smi_info->oem_data_avail_handler = 3358 oem_data_avail_to_receive_msg_avail; 3359 } 3360 } 3361 } 3362 3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3364 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3365 { 3366 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3367 3368 /* Make it a response */ 3369 msg->rsp[0] = msg->data[0] | 4; 3370 msg->rsp[1] = msg->data[1]; 3371 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3372 msg->rsp_size = 3; 3373 smi_info->curr_msg = NULL; 3374 deliver_recv_msg(smi_info, msg); 3375 } 3376 3377 /* 3378 * dell_poweredge_bt_xaction_handler 3379 * @info - smi_info.device_id must be populated 3380 * 3381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3382 * not respond to a Get SDR command if the length of the data 3383 * requested is exactly 0x3A, which leads to command timeouts and no 3384 * data returned. This intercepts such commands, and causes userspace 3385 * callers to try again with a different-sized buffer, which succeeds. 3386 */ 3387 3388 #define STORAGE_NETFN 0x0A 3389 #define STORAGE_CMD_GET_SDR 0x23 3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3391 unsigned long unused, 3392 void *in) 3393 { 3394 struct smi_info *smi_info = in; 3395 unsigned char *data = smi_info->curr_msg->data; 3396 unsigned int size = smi_info->curr_msg->data_size; 3397 if (size >= 8 && 3398 (data[0]>>2) == STORAGE_NETFN && 3399 data[1] == STORAGE_CMD_GET_SDR && 3400 data[7] == 0x3A) { 3401 return_hosed_msg_badsize(smi_info); 3402 return NOTIFY_STOP; 3403 } 3404 return NOTIFY_DONE; 3405 } 3406 3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3408 .notifier_call = dell_poweredge_bt_xaction_handler, 3409 }; 3410 3411 /* 3412 * setup_dell_poweredge_bt_xaction_handler 3413 * @info - smi_info.device_id must be filled in already 3414 * 3415 * Fills in smi_info.device_id.start_transaction_pre_hook 3416 * when we know what function to use there. 3417 */ 3418 static void 3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3420 { 3421 struct ipmi_device_id *id = &smi_info->device_id; 3422 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3423 smi_info->si_type == SI_BT) 3424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3425 } 3426 3427 /* 3428 * setup_oem_data_handler 3429 * @info - smi_info.device_id must be filled in already 3430 * 3431 * Fills in smi_info.device_id.oem_data_available_handler 3432 * when we know what function to use there. 3433 */ 3434 3435 static void setup_oem_data_handler(struct smi_info *smi_info) 3436 { 3437 setup_dell_poweredge_oem_data_handler(smi_info); 3438 } 3439 3440 static void setup_xaction_handlers(struct smi_info *smi_info) 3441 { 3442 setup_dell_poweredge_bt_xaction_handler(smi_info); 3443 } 3444 3445 static void check_for_broken_irqs(struct smi_info *smi_info) 3446 { 3447 check_clr_rcv_irq(smi_info); 3448 check_set_rcv_irq(smi_info); 3449 } 3450 3451 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3452 { 3453 if (smi_info->thread != NULL) 3454 kthread_stop(smi_info->thread); 3455 if (smi_info->timer_running) 3456 del_timer_sync(&smi_info->si_timer); 3457 } 3458 3459 static int is_new_interface(struct smi_info *info) 3460 { 3461 struct smi_info *e; 3462 3463 list_for_each_entry(e, &smi_infos, link) { 3464 if (e->io.addr_type != info->io.addr_type) 3465 continue; 3466 if (e->io.addr_data == info->io.addr_data) 3467 return 0; 3468 } 3469 3470 return 1; 3471 } 3472 3473 static int add_smi(struct smi_info *new_smi) 3474 { 3475 int rv = 0; 3476 3477 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3478 ipmi_addr_src_to_str(new_smi->addr_source), 3479 si_to_str[new_smi->si_type]); 3480 mutex_lock(&smi_infos_lock); 3481 if (!is_new_interface(new_smi)) { 3482 printk(KERN_CONT " duplicate interface\n"); 3483 rv = -EBUSY; 3484 goto out_err; 3485 } 3486 3487 printk(KERN_CONT "\n"); 3488 3489 /* So we know not to free it unless we have allocated one. */ 3490 new_smi->intf = NULL; 3491 new_smi->si_sm = NULL; 3492 new_smi->handlers = NULL; 3493 3494 list_add_tail(&new_smi->link, &smi_infos); 3495 3496 out_err: 3497 mutex_unlock(&smi_infos_lock); 3498 return rv; 3499 } 3500 3501 static int try_smi_init(struct smi_info *new_smi) 3502 { 3503 int rv = 0; 3504 int i; 3505 3506 printk(KERN_INFO PFX "Trying %s-specified %s state" 3507 " machine at %s address 0x%lx, slave address 0x%x," 3508 " irq %d\n", 3509 ipmi_addr_src_to_str(new_smi->addr_source), 3510 si_to_str[new_smi->si_type], 3511 addr_space_to_str[new_smi->io.addr_type], 3512 new_smi->io.addr_data, 3513 new_smi->slave_addr, new_smi->irq); 3514 3515 switch (new_smi->si_type) { 3516 case SI_KCS: 3517 new_smi->handlers = &kcs_smi_handlers; 3518 break; 3519 3520 case SI_SMIC: 3521 new_smi->handlers = &smic_smi_handlers; 3522 break; 3523 3524 case SI_BT: 3525 new_smi->handlers = &bt_smi_handlers; 3526 break; 3527 3528 default: 3529 /* No support for anything else yet. */ 3530 rv = -EIO; 3531 goto out_err; 3532 } 3533 3534 /* Allocate the state machine's data and initialize it. */ 3535 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3536 if (!new_smi->si_sm) { 3537 printk(KERN_ERR PFX 3538 "Could not allocate state machine memory\n"); 3539 rv = -ENOMEM; 3540 goto out_err; 3541 } 3542 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3543 &new_smi->io); 3544 3545 /* Now that we know the I/O size, we can set up the I/O. */ 3546 rv = new_smi->io_setup(new_smi); 3547 if (rv) { 3548 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3549 goto out_err; 3550 } 3551 3552 /* Do low-level detection first. */ 3553 if (new_smi->handlers->detect(new_smi->si_sm)) { 3554 if (new_smi->addr_source) 3555 printk(KERN_INFO PFX "Interface detection failed\n"); 3556 rv = -ENODEV; 3557 goto out_err; 3558 } 3559 3560 /* 3561 * Attempt a get device id command. If it fails, we probably 3562 * don't have a BMC here. 3563 */ 3564 rv = try_get_dev_id(new_smi); 3565 if (rv) { 3566 if (new_smi->addr_source) 3567 printk(KERN_INFO PFX "There appears to be no BMC" 3568 " at this location\n"); 3569 goto out_err; 3570 } 3571 3572 setup_oem_data_handler(new_smi); 3573 setup_xaction_handlers(new_smi); 3574 check_for_broken_irqs(new_smi); 3575 3576 new_smi->waiting_msg = NULL; 3577 new_smi->curr_msg = NULL; 3578 atomic_set(&new_smi->req_events, 0); 3579 new_smi->run_to_completion = false; 3580 for (i = 0; i < SI_NUM_STATS; i++) 3581 atomic_set(&new_smi->stats[i], 0); 3582 3583 new_smi->interrupt_disabled = true; 3584 atomic_set(&new_smi->need_watch, 0); 3585 new_smi->intf_num = smi_num; 3586 smi_num++; 3587 3588 rv = try_enable_event_buffer(new_smi); 3589 if (rv == 0) 3590 new_smi->has_event_buffer = true; 3591 3592 /* 3593 * Start clearing the flags before we enable interrupts or the 3594 * timer to avoid racing with the timer. 3595 */ 3596 start_clear_flags(new_smi, false); 3597 3598 /* 3599 * IRQ is defined to be set when non-zero. req_events will 3600 * cause a global flags check that will enable interrupts. 3601 */ 3602 if (new_smi->irq) { 3603 new_smi->interrupt_disabled = false; 3604 atomic_set(&new_smi->req_events, 1); 3605 } 3606 3607 if (!new_smi->dev) { 3608 /* 3609 * If we don't already have a device from something 3610 * else (like PCI), then register a new one. 3611 */ 3612 new_smi->pdev = platform_device_alloc("ipmi_si", 3613 new_smi->intf_num); 3614 if (!new_smi->pdev) { 3615 printk(KERN_ERR PFX 3616 "Unable to allocate platform device\n"); 3617 goto out_err; 3618 } 3619 new_smi->dev = &new_smi->pdev->dev; 3620 new_smi->dev->driver = &ipmi_driver.driver; 3621 3622 rv = platform_device_add(new_smi->pdev); 3623 if (rv) { 3624 printk(KERN_ERR PFX 3625 "Unable to register system interface device:" 3626 " %d\n", 3627 rv); 3628 goto out_err; 3629 } 3630 new_smi->dev_registered = true; 3631 } 3632 3633 rv = ipmi_register_smi(&handlers, 3634 new_smi, 3635 &new_smi->device_id, 3636 new_smi->dev, 3637 new_smi->slave_addr); 3638 if (rv) { 3639 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3640 rv); 3641 goto out_err_stop_timer; 3642 } 3643 3644 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3645 &smi_type_proc_ops, 3646 new_smi); 3647 if (rv) { 3648 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3649 goto out_err_stop_timer; 3650 } 3651 3652 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3653 &smi_si_stats_proc_ops, 3654 new_smi); 3655 if (rv) { 3656 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3657 goto out_err_stop_timer; 3658 } 3659 3660 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3661 &smi_params_proc_ops, 3662 new_smi); 3663 if (rv) { 3664 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3665 goto out_err_stop_timer; 3666 } 3667 3668 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3669 si_to_str[new_smi->si_type]); 3670 3671 return 0; 3672 3673 out_err_stop_timer: 3674 wait_for_timer_and_thread(new_smi); 3675 3676 out_err: 3677 new_smi->interrupt_disabled = true; 3678 3679 if (new_smi->intf) { 3680 ipmi_smi_t intf = new_smi->intf; 3681 new_smi->intf = NULL; 3682 ipmi_unregister_smi(intf); 3683 } 3684 3685 if (new_smi->irq_cleanup) { 3686 new_smi->irq_cleanup(new_smi); 3687 new_smi->irq_cleanup = NULL; 3688 } 3689 3690 /* 3691 * Wait until we know that we are out of any interrupt 3692 * handlers might have been running before we freed the 3693 * interrupt. 3694 */ 3695 synchronize_sched(); 3696 3697 if (new_smi->si_sm) { 3698 if (new_smi->handlers) 3699 new_smi->handlers->cleanup(new_smi->si_sm); 3700 kfree(new_smi->si_sm); 3701 new_smi->si_sm = NULL; 3702 } 3703 if (new_smi->addr_source_cleanup) { 3704 new_smi->addr_source_cleanup(new_smi); 3705 new_smi->addr_source_cleanup = NULL; 3706 } 3707 if (new_smi->io_cleanup) { 3708 new_smi->io_cleanup(new_smi); 3709 new_smi->io_cleanup = NULL; 3710 } 3711 3712 if (new_smi->dev_registered) { 3713 platform_device_unregister(new_smi->pdev); 3714 new_smi->dev_registered = false; 3715 } 3716 3717 return rv; 3718 } 3719 3720 static int init_ipmi_si(void) 3721 { 3722 int i; 3723 char *str; 3724 int rv; 3725 struct smi_info *e; 3726 enum ipmi_addr_src type = SI_INVALID; 3727 3728 if (initialized) 3729 return 0; 3730 initialized = 1; 3731 3732 if (si_tryplatform) { 3733 rv = platform_driver_register(&ipmi_driver); 3734 if (rv) { 3735 printk(KERN_ERR PFX "Unable to register " 3736 "driver: %d\n", rv); 3737 return rv; 3738 } 3739 } 3740 3741 /* Parse out the si_type string into its components. */ 3742 str = si_type_str; 3743 if (*str != '\0') { 3744 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3745 si_type[i] = str; 3746 str = strchr(str, ','); 3747 if (str) { 3748 *str = '\0'; 3749 str++; 3750 } else { 3751 break; 3752 } 3753 } 3754 } 3755 3756 printk(KERN_INFO "IPMI System Interface driver.\n"); 3757 3758 /* If the user gave us a device, they presumably want us to use it */ 3759 if (!hardcode_find_bmc()) 3760 return 0; 3761 3762 #ifdef CONFIG_PCI 3763 if (si_trypci) { 3764 rv = pci_register_driver(&ipmi_pci_driver); 3765 if (rv) 3766 printk(KERN_ERR PFX "Unable to register " 3767 "PCI driver: %d\n", rv); 3768 else 3769 pci_registered = true; 3770 } 3771 #endif 3772 3773 #ifdef CONFIG_DMI 3774 if (si_trydmi) 3775 dmi_find_bmc(); 3776 #endif 3777 3778 #ifdef CONFIG_ACPI 3779 if (si_tryacpi) 3780 spmi_find_bmc(); 3781 #endif 3782 3783 #ifdef CONFIG_PARISC 3784 register_parisc_driver(&ipmi_parisc_driver); 3785 parisc_registered = true; 3786 #endif 3787 3788 /* We prefer devices with interrupts, but in the case of a machine 3789 with multiple BMCs we assume that there will be several instances 3790 of a given type so if we succeed in registering a type then also 3791 try to register everything else of the same type */ 3792 3793 mutex_lock(&smi_infos_lock); 3794 list_for_each_entry(e, &smi_infos, link) { 3795 /* Try to register a device if it has an IRQ and we either 3796 haven't successfully registered a device yet or this 3797 device has the same type as one we successfully registered */ 3798 if (e->irq && (!type || e->addr_source == type)) { 3799 if (!try_smi_init(e)) { 3800 type = e->addr_source; 3801 } 3802 } 3803 } 3804 3805 /* type will only have been set if we successfully registered an si */ 3806 if (type) { 3807 mutex_unlock(&smi_infos_lock); 3808 return 0; 3809 } 3810 3811 /* Fall back to the preferred device */ 3812 3813 list_for_each_entry(e, &smi_infos, link) { 3814 if (!e->irq && (!type || e->addr_source == type)) { 3815 if (!try_smi_init(e)) { 3816 type = e->addr_source; 3817 } 3818 } 3819 } 3820 mutex_unlock(&smi_infos_lock); 3821 3822 if (type) 3823 return 0; 3824 3825 mutex_lock(&smi_infos_lock); 3826 if (unload_when_empty && list_empty(&smi_infos)) { 3827 mutex_unlock(&smi_infos_lock); 3828 cleanup_ipmi_si(); 3829 printk(KERN_WARNING PFX 3830 "Unable to find any System Interface(s)\n"); 3831 return -ENODEV; 3832 } else { 3833 mutex_unlock(&smi_infos_lock); 3834 return 0; 3835 } 3836 } 3837 module_init(init_ipmi_si); 3838 3839 static void cleanup_one_si(struct smi_info *to_clean) 3840 { 3841 int rv = 0; 3842 3843 if (!to_clean) 3844 return; 3845 3846 if (to_clean->intf) { 3847 ipmi_smi_t intf = to_clean->intf; 3848 3849 to_clean->intf = NULL; 3850 rv = ipmi_unregister_smi(intf); 3851 if (rv) { 3852 pr_err(PFX "Unable to unregister device: errno=%d\n", 3853 rv); 3854 } 3855 } 3856 3857 if (to_clean->dev) 3858 dev_set_drvdata(to_clean->dev, NULL); 3859 3860 list_del(&to_clean->link); 3861 3862 /* 3863 * Make sure that interrupts, the timer and the thread are 3864 * stopped and will not run again. 3865 */ 3866 if (to_clean->irq_cleanup) 3867 to_clean->irq_cleanup(to_clean); 3868 wait_for_timer_and_thread(to_clean); 3869 3870 /* 3871 * Timeouts are stopped, now make sure the interrupts are off 3872 * in the BMC. Note that timers and CPU interrupts are off, 3873 * so no need for locks. 3874 */ 3875 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3876 poll(to_clean); 3877 schedule_timeout_uninterruptible(1); 3878 } 3879 disable_si_irq(to_clean, false); 3880 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3881 poll(to_clean); 3882 schedule_timeout_uninterruptible(1); 3883 } 3884 3885 if (to_clean->handlers) 3886 to_clean->handlers->cleanup(to_clean->si_sm); 3887 3888 kfree(to_clean->si_sm); 3889 3890 if (to_clean->addr_source_cleanup) 3891 to_clean->addr_source_cleanup(to_clean); 3892 if (to_clean->io_cleanup) 3893 to_clean->io_cleanup(to_clean); 3894 3895 if (to_clean->dev_registered) 3896 platform_device_unregister(to_clean->pdev); 3897 3898 kfree(to_clean); 3899 } 3900 3901 static void cleanup_ipmi_si(void) 3902 { 3903 struct smi_info *e, *tmp_e; 3904 3905 if (!initialized) 3906 return; 3907 3908 #ifdef CONFIG_PCI 3909 if (pci_registered) 3910 pci_unregister_driver(&ipmi_pci_driver); 3911 #endif 3912 #ifdef CONFIG_PARISC 3913 if (parisc_registered) 3914 unregister_parisc_driver(&ipmi_parisc_driver); 3915 #endif 3916 3917 platform_driver_unregister(&ipmi_driver); 3918 3919 mutex_lock(&smi_infos_lock); 3920 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3921 cleanup_one_si(e); 3922 mutex_unlock(&smi_infos_lock); 3923 } 3924 module_exit(cleanup_ipmi_si); 3925 3926 MODULE_LICENSE("GPL"); 3927 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3928 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3929 " system interfaces."); 3930