1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/init.h> 65 #include <linux/dmi.h> 66 #include <linux/string.h> 67 #include <linux/ctype.h> 68 #include <linux/pnp.h> 69 #include <linux/of_device.h> 70 #include <linux/of_platform.h> 71 #include <linux/of_address.h> 72 #include <linux/of_irq.h> 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 111 "ACPI", "SMBIOS", "PCI", 112 "device-tree", "default" }; 113 114 #define DEVICE_NAME "ipmi_si" 115 116 static struct platform_driver ipmi_driver; 117 118 /* 119 * Indexes into stats[] in smi_info below. 120 */ 121 enum si_stat_indexes { 122 /* 123 * Number of times the driver requested a timer while an operation 124 * was in progress. 125 */ 126 SI_STAT_short_timeouts = 0, 127 128 /* 129 * Number of times the driver requested a timer while nothing was in 130 * progress. 131 */ 132 SI_STAT_long_timeouts, 133 134 /* Number of times the interface was idle while being polled. */ 135 SI_STAT_idles, 136 137 /* Number of interrupts the driver handled. */ 138 SI_STAT_interrupts, 139 140 /* Number of time the driver got an ATTN from the hardware. */ 141 SI_STAT_attentions, 142 143 /* Number of times the driver requested flags from the hardware. */ 144 SI_STAT_flag_fetches, 145 146 /* Number of times the hardware didn't follow the state machine. */ 147 SI_STAT_hosed_count, 148 149 /* Number of completed messages. */ 150 SI_STAT_complete_transactions, 151 152 /* Number of IPMI events received from the hardware. */ 153 SI_STAT_events, 154 155 /* Number of watchdog pretimeouts. */ 156 SI_STAT_watchdog_pretimeouts, 157 158 /* Number of asynchronous messages received. */ 159 SI_STAT_incoming_messages, 160 161 162 /* This *must* remain last, add new values above this. */ 163 SI_NUM_STATS 164 }; 165 166 struct smi_info { 167 int intf_num; 168 ipmi_smi_t intf; 169 struct si_sm_data *si_sm; 170 struct si_sm_handlers *handlers; 171 enum si_type si_type; 172 spinlock_t si_lock; 173 struct list_head xmit_msgs; 174 struct list_head hp_xmit_msgs; 175 struct ipmi_smi_msg *curr_msg; 176 enum si_intf_state si_state; 177 178 /* 179 * Used to handle the various types of I/O that can occur with 180 * IPMI 181 */ 182 struct si_sm_io io; 183 int (*io_setup)(struct smi_info *info); 184 void (*io_cleanup)(struct smi_info *info); 185 int (*irq_setup)(struct smi_info *info); 186 void (*irq_cleanup)(struct smi_info *info); 187 unsigned int io_size; 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 189 void (*addr_source_cleanup)(struct smi_info *info); 190 void *addr_source_data; 191 192 /* 193 * Per-OEM handler, called from handle_flags(). Returns 1 194 * when handle_flags() needs to be re-run or 0 indicating it 195 * set si_state itself. 196 */ 197 int (*oem_data_avail_handler)(struct smi_info *smi_info); 198 199 /* 200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 201 * is set to hold the flags until we are done handling everything 202 * from the flags. 203 */ 204 #define RECEIVE_MSG_AVAIL 0x01 205 #define EVENT_MSG_BUFFER_FULL 0x02 206 #define WDT_PRE_TIMEOUT_INT 0x08 207 #define OEM0_DATA_AVAIL 0x20 208 #define OEM1_DATA_AVAIL 0x40 209 #define OEM2_DATA_AVAIL 0x80 210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 211 OEM1_DATA_AVAIL | \ 212 OEM2_DATA_AVAIL) 213 unsigned char msg_flags; 214 215 /* Does the BMC have an event buffer? */ 216 char has_event_buffer; 217 218 /* 219 * If set to true, this will request events the next time the 220 * state machine is idle. 221 */ 222 atomic_t req_events; 223 224 /* 225 * If true, run the state machine to completion on every send 226 * call. Generally used after a panic to make sure stuff goes 227 * out. 228 */ 229 int run_to_completion; 230 231 /* The I/O port of an SI interface. */ 232 int port; 233 234 /* 235 * The space between start addresses of the two ports. For 236 * instance, if the first port is 0xca2 and the spacing is 4, then 237 * the second port is 0xca6. 238 */ 239 unsigned int spacing; 240 241 /* zero if no irq; */ 242 int irq; 243 244 /* The timer for this si. */ 245 struct timer_list si_timer; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Used to gracefully stop the timer without race conditions. */ 251 atomic_t stop_operation; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 int interrupt_disabled; 260 261 /* From the get device id response... */ 262 struct ipmi_device_id device_id; 263 264 /* Driver model stuff. */ 265 struct device *dev; 266 struct platform_device *pdev; 267 268 /* 269 * True if we allocated the device, false if it came from 270 * someplace else (like PCI). 271 */ 272 int dev_registered; 273 274 /* Slave address, could be reported from DMI. */ 275 unsigned char slave_addr; 276 277 /* Counters and things for the proc filesystem. */ 278 atomic_t stats[SI_NUM_STATS]; 279 280 struct task_struct *thread; 281 282 struct list_head link; 283 union ipmi_smi_info_union addr_info; 284 }; 285 286 #define smi_inc_stat(smi, stat) \ 287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 288 #define smi_get_stat(smi, stat) \ 289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 290 291 #define SI_MAX_PARMS 4 292 293 static int force_kipmid[SI_MAX_PARMS]; 294 static int num_force_kipmid; 295 #ifdef CONFIG_PCI 296 static int pci_registered; 297 #endif 298 #ifdef CONFIG_ACPI 299 static int pnp_registered; 300 #endif 301 302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 303 static int num_max_busy_us; 304 305 static int unload_when_empty = 1; 306 307 static int add_smi(struct smi_info *smi); 308 static int try_smi_init(struct smi_info *smi); 309 static void cleanup_one_si(struct smi_info *to_clean); 310 static void cleanup_ipmi_si(void); 311 312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 313 static int register_xaction_notifier(struct notifier_block *nb) 314 { 315 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 316 } 317 318 static void deliver_recv_msg(struct smi_info *smi_info, 319 struct ipmi_smi_msg *msg) 320 { 321 /* Deliver the message to the upper layer. */ 322 ipmi_smi_msg_received(smi_info->intf, msg); 323 } 324 325 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 326 { 327 struct ipmi_smi_msg *msg = smi_info->curr_msg; 328 329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 330 cCode = IPMI_ERR_UNSPECIFIED; 331 /* else use it as is */ 332 333 /* Make it a response */ 334 msg->rsp[0] = msg->data[0] | 4; 335 msg->rsp[1] = msg->data[1]; 336 msg->rsp[2] = cCode; 337 msg->rsp_size = 3; 338 339 smi_info->curr_msg = NULL; 340 deliver_recv_msg(smi_info, msg); 341 } 342 343 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 344 { 345 int rv; 346 struct list_head *entry = NULL; 347 #ifdef DEBUG_TIMING 348 struct timeval t; 349 #endif 350 351 /* Pick the high priority queue first. */ 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 353 entry = smi_info->hp_xmit_msgs.next; 354 } else if (!list_empty(&(smi_info->xmit_msgs))) { 355 entry = smi_info->xmit_msgs.next; 356 } 357 358 if (!entry) { 359 smi_info->curr_msg = NULL; 360 rv = SI_SM_IDLE; 361 } else { 362 int err; 363 364 list_del(entry); 365 smi_info->curr_msg = list_entry(entry, 366 struct ipmi_smi_msg, 367 link); 368 #ifdef DEBUG_TIMING 369 do_gettimeofday(&t); 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 371 #endif 372 err = atomic_notifier_call_chain(&xaction_notifier_list, 373 0, smi_info); 374 if (err & NOTIFY_STOP_MASK) { 375 rv = SI_SM_CALL_WITHOUT_DELAY; 376 goto out; 377 } 378 err = smi_info->handlers->start_transaction( 379 smi_info->si_sm, 380 smi_info->curr_msg->data, 381 smi_info->curr_msg->data_size); 382 if (err) 383 return_hosed_msg(smi_info, err); 384 385 rv = SI_SM_CALL_WITHOUT_DELAY; 386 } 387 out: 388 return rv; 389 } 390 391 static void start_enable_irq(struct smi_info *smi_info) 392 { 393 unsigned char msg[2]; 394 395 /* 396 * If we are enabling interrupts, we have to tell the 397 * BMC to use them. 398 */ 399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 401 402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 403 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 404 } 405 406 static void start_disable_irq(struct smi_info *smi_info) 407 { 408 unsigned char msg[2]; 409 410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 412 413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 414 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 415 } 416 417 static void start_clear_flags(struct smi_info *smi_info) 418 { 419 unsigned char msg[3]; 420 421 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 424 msg[2] = WDT_PRE_TIMEOUT_INT; 425 426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 427 smi_info->si_state = SI_CLEARING_FLAGS; 428 } 429 430 /* 431 * When we have a situtaion where we run out of memory and cannot 432 * allocate messages, we just leave them in the BMC and run the system 433 * polled until we can allocate some memory. Once we have some 434 * memory, we will re-enable the interrupt. 435 */ 436 static inline void disable_si_irq(struct smi_info *smi_info) 437 { 438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 439 start_disable_irq(smi_info); 440 smi_info->interrupt_disabled = 1; 441 if (!atomic_read(&smi_info->stop_operation)) 442 mod_timer(&smi_info->si_timer, 443 jiffies + SI_TIMEOUT_JIFFIES); 444 } 445 } 446 447 static inline void enable_si_irq(struct smi_info *smi_info) 448 { 449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 450 start_enable_irq(smi_info); 451 smi_info->interrupt_disabled = 0; 452 } 453 } 454 455 static void handle_flags(struct smi_info *smi_info) 456 { 457 retry: 458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 /* Watchdog pre-timeout */ 460 smi_inc_stat(smi_info, watchdog_pretimeouts); 461 462 start_clear_flags(smi_info); 463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 464 ipmi_smi_watchdog_pretimeout(smi_info->intf); 465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 466 /* Messages available. */ 467 smi_info->curr_msg = ipmi_alloc_smi_msg(); 468 if (!smi_info->curr_msg) { 469 disable_si_irq(smi_info); 470 smi_info->si_state = SI_NORMAL; 471 return; 472 } 473 enable_si_irq(smi_info); 474 475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 477 smi_info->curr_msg->data_size = 2; 478 479 smi_info->handlers->start_transaction( 480 smi_info->si_sm, 481 smi_info->curr_msg->data, 482 smi_info->curr_msg->data_size); 483 smi_info->si_state = SI_GETTING_MESSAGES; 484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 485 /* Events available. */ 486 smi_info->curr_msg = ipmi_alloc_smi_msg(); 487 if (!smi_info->curr_msg) { 488 disable_si_irq(smi_info); 489 smi_info->si_state = SI_NORMAL; 490 return; 491 } 492 enable_si_irq(smi_info); 493 494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 496 smi_info->curr_msg->data_size = 2; 497 498 smi_info->handlers->start_transaction( 499 smi_info->si_sm, 500 smi_info->curr_msg->data, 501 smi_info->curr_msg->data_size); 502 smi_info->si_state = SI_GETTING_EVENTS; 503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 504 smi_info->oem_data_avail_handler) { 505 if (smi_info->oem_data_avail_handler(smi_info)) 506 goto retry; 507 } else 508 smi_info->si_state = SI_NORMAL; 509 } 510 511 static void handle_transaction_done(struct smi_info *smi_info) 512 { 513 struct ipmi_smi_msg *msg; 514 #ifdef DEBUG_TIMING 515 struct timeval t; 516 517 do_gettimeofday(&t); 518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 519 #endif 520 switch (smi_info->si_state) { 521 case SI_NORMAL: 522 if (!smi_info->curr_msg) 523 break; 524 525 smi_info->curr_msg->rsp_size 526 = smi_info->handlers->get_result( 527 smi_info->si_sm, 528 smi_info->curr_msg->rsp, 529 IPMI_MAX_MSG_LENGTH); 530 531 /* 532 * Do this here becase deliver_recv_msg() releases the 533 * lock, and a new message can be put in during the 534 * time the lock is released. 535 */ 536 msg = smi_info->curr_msg; 537 smi_info->curr_msg = NULL; 538 deliver_recv_msg(smi_info, msg); 539 break; 540 541 case SI_GETTING_FLAGS: 542 { 543 unsigned char msg[4]; 544 unsigned int len; 545 546 /* We got the flags from the SMI, now handle them. */ 547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 548 if (msg[2] != 0) { 549 /* Error fetching flags, just give up for now. */ 550 smi_info->si_state = SI_NORMAL; 551 } else if (len < 4) { 552 /* 553 * Hmm, no flags. That's technically illegal, but 554 * don't use uninitialized data. 555 */ 556 smi_info->si_state = SI_NORMAL; 557 } else { 558 smi_info->msg_flags = msg[3]; 559 handle_flags(smi_info); 560 } 561 break; 562 } 563 564 case SI_CLEARING_FLAGS: 565 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 566 { 567 unsigned char msg[3]; 568 569 /* We cleared the flags. */ 570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 571 if (msg[2] != 0) { 572 /* Error clearing flags */ 573 dev_warn(smi_info->dev, 574 "Error clearing flags: %2.2x\n", msg[2]); 575 } 576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 577 start_enable_irq(smi_info); 578 else 579 smi_info->si_state = SI_NORMAL; 580 break; 581 } 582 583 case SI_GETTING_EVENTS: 584 { 585 smi_info->curr_msg->rsp_size 586 = smi_info->handlers->get_result( 587 smi_info->si_sm, 588 smi_info->curr_msg->rsp, 589 IPMI_MAX_MSG_LENGTH); 590 591 /* 592 * Do this here becase deliver_recv_msg() releases the 593 * lock, and a new message can be put in during the 594 * time the lock is released. 595 */ 596 msg = smi_info->curr_msg; 597 smi_info->curr_msg = NULL; 598 if (msg->rsp[2] != 0) { 599 /* Error getting event, probably done. */ 600 msg->done(msg); 601 602 /* Take off the event flag. */ 603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 604 handle_flags(smi_info); 605 } else { 606 smi_inc_stat(smi_info, events); 607 608 /* 609 * Do this before we deliver the message 610 * because delivering the message releases the 611 * lock and something else can mess with the 612 * state. 613 */ 614 handle_flags(smi_info); 615 616 deliver_recv_msg(smi_info, msg); 617 } 618 break; 619 } 620 621 case SI_GETTING_MESSAGES: 622 { 623 smi_info->curr_msg->rsp_size 624 = smi_info->handlers->get_result( 625 smi_info->si_sm, 626 smi_info->curr_msg->rsp, 627 IPMI_MAX_MSG_LENGTH); 628 629 /* 630 * Do this here becase deliver_recv_msg() releases the 631 * lock, and a new message can be put in during the 632 * time the lock is released. 633 */ 634 msg = smi_info->curr_msg; 635 smi_info->curr_msg = NULL; 636 if (msg->rsp[2] != 0) { 637 /* Error getting event, probably done. */ 638 msg->done(msg); 639 640 /* Take off the msg flag. */ 641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 642 handle_flags(smi_info); 643 } else { 644 smi_inc_stat(smi_info, incoming_messages); 645 646 /* 647 * Do this before we deliver the message 648 * because delivering the message releases the 649 * lock and something else can mess with the 650 * state. 651 */ 652 handle_flags(smi_info); 653 654 deliver_recv_msg(smi_info, msg); 655 } 656 break; 657 } 658 659 case SI_ENABLE_INTERRUPTS1: 660 { 661 unsigned char msg[4]; 662 663 /* We got the flags from the SMI, now handle them. */ 664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 665 if (msg[2] != 0) { 666 dev_warn(smi_info->dev, "Could not enable interrupts" 667 ", failed get, using polled mode.\n"); 668 smi_info->si_state = SI_NORMAL; 669 } else { 670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 672 msg[2] = (msg[3] | 673 IPMI_BMC_RCV_MSG_INTR | 674 IPMI_BMC_EVT_MSG_INTR); 675 smi_info->handlers->start_transaction( 676 smi_info->si_sm, msg, 3); 677 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 678 } 679 break; 680 } 681 682 case SI_ENABLE_INTERRUPTS2: 683 { 684 unsigned char msg[4]; 685 686 /* We got the flags from the SMI, now handle them. */ 687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 688 if (msg[2] != 0) 689 dev_warn(smi_info->dev, "Could not enable interrupts" 690 ", failed set, using polled mode.\n"); 691 else 692 smi_info->interrupt_disabled = 0; 693 smi_info->si_state = SI_NORMAL; 694 break; 695 } 696 697 case SI_DISABLE_INTERRUPTS1: 698 { 699 unsigned char msg[4]; 700 701 /* We got the flags from the SMI, now handle them. */ 702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 703 if (msg[2] != 0) { 704 dev_warn(smi_info->dev, "Could not disable interrupts" 705 ", failed get.\n"); 706 smi_info->si_state = SI_NORMAL; 707 } else { 708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 710 msg[2] = (msg[3] & 711 ~(IPMI_BMC_RCV_MSG_INTR | 712 IPMI_BMC_EVT_MSG_INTR)); 713 smi_info->handlers->start_transaction( 714 smi_info->si_sm, msg, 3); 715 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 716 } 717 break; 718 } 719 720 case SI_DISABLE_INTERRUPTS2: 721 { 722 unsigned char msg[4]; 723 724 /* We got the flags from the SMI, now handle them. */ 725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 726 if (msg[2] != 0) { 727 dev_warn(smi_info->dev, "Could not disable interrupts" 728 ", failed set.\n"); 729 } 730 smi_info->si_state = SI_NORMAL; 731 break; 732 } 733 } 734 } 735 736 /* 737 * Called on timeouts and events. Timeouts should pass the elapsed 738 * time, interrupts should pass in zero. Must be called with 739 * si_lock held and interrupts disabled. 740 */ 741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 742 int time) 743 { 744 enum si_sm_result si_sm_result; 745 746 restart: 747 /* 748 * There used to be a loop here that waited a little while 749 * (around 25us) before giving up. That turned out to be 750 * pointless, the minimum delays I was seeing were in the 300us 751 * range, which is far too long to wait in an interrupt. So 752 * we just run until the state machine tells us something 753 * happened or it needs a delay. 754 */ 755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 756 time = 0; 757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 759 760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 761 smi_inc_stat(smi_info, complete_transactions); 762 763 handle_transaction_done(smi_info); 764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 765 } else if (si_sm_result == SI_SM_HOSED) { 766 smi_inc_stat(smi_info, hosed_count); 767 768 /* 769 * Do the before return_hosed_msg, because that 770 * releases the lock. 771 */ 772 smi_info->si_state = SI_NORMAL; 773 if (smi_info->curr_msg != NULL) { 774 /* 775 * If we were handling a user message, format 776 * a response to send to the upper layer to 777 * tell it about the error. 778 */ 779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 780 } 781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 782 } 783 784 /* 785 * We prefer handling attn over new messages. But don't do 786 * this if there is not yet an upper layer to handle anything. 787 */ 788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 789 unsigned char msg[2]; 790 791 smi_inc_stat(smi_info, attentions); 792 793 /* 794 * Got a attn, send down a get message flags to see 795 * what's causing it. It would be better to handle 796 * this in the upper layer, but due to the way 797 * interrupts work with the SMI, that's not really 798 * possible. 799 */ 800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 801 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 802 803 smi_info->handlers->start_transaction( 804 smi_info->si_sm, msg, 2); 805 smi_info->si_state = SI_GETTING_FLAGS; 806 goto restart; 807 } 808 809 /* If we are currently idle, try to start the next message. */ 810 if (si_sm_result == SI_SM_IDLE) { 811 smi_inc_stat(smi_info, idles); 812 813 si_sm_result = start_next_msg(smi_info); 814 if (si_sm_result != SI_SM_IDLE) 815 goto restart; 816 } 817 818 if ((si_sm_result == SI_SM_IDLE) 819 && (atomic_read(&smi_info->req_events))) { 820 /* 821 * We are idle and the upper layer requested that I fetch 822 * events, so do so. 823 */ 824 atomic_set(&smi_info->req_events, 0); 825 826 smi_info->curr_msg = ipmi_alloc_smi_msg(); 827 if (!smi_info->curr_msg) 828 goto out; 829 830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 832 smi_info->curr_msg->data_size = 2; 833 834 smi_info->handlers->start_transaction( 835 smi_info->si_sm, 836 smi_info->curr_msg->data, 837 smi_info->curr_msg->data_size); 838 smi_info->si_state = SI_GETTING_EVENTS; 839 goto restart; 840 } 841 out: 842 return si_sm_result; 843 } 844 845 static void sender(void *send_info, 846 struct ipmi_smi_msg *msg, 847 int priority) 848 { 849 struct smi_info *smi_info = send_info; 850 enum si_sm_result result; 851 unsigned long flags; 852 #ifdef DEBUG_TIMING 853 struct timeval t; 854 #endif 855 856 if (atomic_read(&smi_info->stop_operation)) { 857 msg->rsp[0] = msg->data[0] | 4; 858 msg->rsp[1] = msg->data[1]; 859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 860 msg->rsp_size = 3; 861 deliver_recv_msg(smi_info, msg); 862 return; 863 } 864 865 #ifdef DEBUG_TIMING 866 do_gettimeofday(&t); 867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 868 #endif 869 870 if (smi_info->run_to_completion) { 871 /* 872 * If we are running to completion, then throw it in 873 * the list and run transactions until everything is 874 * clear. Priority doesn't matter here. 875 */ 876 877 /* 878 * Run to completion means we are single-threaded, no 879 * need for locks. 880 */ 881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 882 883 result = smi_event_handler(smi_info, 0); 884 while (result != SI_SM_IDLE) { 885 udelay(SI_SHORT_TIMEOUT_USEC); 886 result = smi_event_handler(smi_info, 887 SI_SHORT_TIMEOUT_USEC); 888 } 889 return; 890 } 891 892 spin_lock_irqsave(&smi_info->si_lock, flags); 893 if (priority > 0) 894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 895 else 896 list_add_tail(&msg->link, &smi_info->xmit_msgs); 897 898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 899 /* 900 * last_timeout_jiffies is updated here to avoid 901 * smi_timeout() handler passing very large time_diff 902 * value to smi_event_handler() that causes 903 * the send command to abort. 904 */ 905 smi_info->last_timeout_jiffies = jiffies; 906 907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 908 909 if (smi_info->thread) 910 wake_up_process(smi_info->thread); 911 912 start_next_msg(smi_info); 913 smi_event_handler(smi_info, 0); 914 } 915 spin_unlock_irqrestore(&smi_info->si_lock, flags); 916 } 917 918 static void set_run_to_completion(void *send_info, int i_run_to_completion) 919 { 920 struct smi_info *smi_info = send_info; 921 enum si_sm_result result; 922 923 smi_info->run_to_completion = i_run_to_completion; 924 if (i_run_to_completion) { 925 result = smi_event_handler(smi_info, 0); 926 while (result != SI_SM_IDLE) { 927 udelay(SI_SHORT_TIMEOUT_USEC); 928 result = smi_event_handler(smi_info, 929 SI_SHORT_TIMEOUT_USEC); 930 } 931 } 932 } 933 934 /* 935 * Use -1 in the nsec value of the busy waiting timespec to tell that 936 * we are spinning in kipmid looking for something and not delaying 937 * between checks 938 */ 939 static inline void ipmi_si_set_not_busy(struct timespec *ts) 940 { 941 ts->tv_nsec = -1; 942 } 943 static inline int ipmi_si_is_busy(struct timespec *ts) 944 { 945 return ts->tv_nsec != -1; 946 } 947 948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 949 const struct smi_info *smi_info, 950 struct timespec *busy_until) 951 { 952 unsigned int max_busy_us = 0; 953 954 if (smi_info->intf_num < num_max_busy_us) 955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 957 ipmi_si_set_not_busy(busy_until); 958 else if (!ipmi_si_is_busy(busy_until)) { 959 getnstimeofday(busy_until); 960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 961 } else { 962 struct timespec now; 963 getnstimeofday(&now); 964 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 965 ipmi_si_set_not_busy(busy_until); 966 return 0; 967 } 968 } 969 return 1; 970 } 971 972 973 /* 974 * A busy-waiting loop for speeding up IPMI operation. 975 * 976 * Lousy hardware makes this hard. This is only enabled for systems 977 * that are not BT and do not have interrupts. It starts spinning 978 * when an operation is complete or until max_busy tells it to stop 979 * (if that is enabled). See the paragraph on kimid_max_busy_us in 980 * Documentation/IPMI.txt for details. 981 */ 982 static int ipmi_thread(void *data) 983 { 984 struct smi_info *smi_info = data; 985 unsigned long flags; 986 enum si_sm_result smi_result; 987 struct timespec busy_until; 988 989 ipmi_si_set_not_busy(&busy_until); 990 set_user_nice(current, 19); 991 while (!kthread_should_stop()) { 992 int busy_wait; 993 994 spin_lock_irqsave(&(smi_info->si_lock), flags); 995 smi_result = smi_event_handler(smi_info, 0); 996 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 998 &busy_until); 999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1000 ; /* do nothing */ 1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1002 schedule(); 1003 else if (smi_result == SI_SM_IDLE) 1004 schedule_timeout_interruptible(100); 1005 else 1006 schedule_timeout_interruptible(1); 1007 } 1008 return 0; 1009 } 1010 1011 1012 static void poll(void *send_info) 1013 { 1014 struct smi_info *smi_info = send_info; 1015 unsigned long flags = 0; 1016 int run_to_completion = smi_info->run_to_completion; 1017 1018 /* 1019 * Make sure there is some delay in the poll loop so we can 1020 * drive time forward and timeout things. 1021 */ 1022 udelay(10); 1023 if (!run_to_completion) 1024 spin_lock_irqsave(&smi_info->si_lock, flags); 1025 smi_event_handler(smi_info, 10); 1026 if (!run_to_completion) 1027 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1028 } 1029 1030 static void request_events(void *send_info) 1031 { 1032 struct smi_info *smi_info = send_info; 1033 1034 if (atomic_read(&smi_info->stop_operation) || 1035 !smi_info->has_event_buffer) 1036 return; 1037 1038 atomic_set(&smi_info->req_events, 1); 1039 } 1040 1041 static int initialized; 1042 1043 static void smi_timeout(unsigned long data) 1044 { 1045 struct smi_info *smi_info = (struct smi_info *) data; 1046 enum si_sm_result smi_result; 1047 unsigned long flags; 1048 unsigned long jiffies_now; 1049 long time_diff; 1050 long timeout; 1051 #ifdef DEBUG_TIMING 1052 struct timeval t; 1053 #endif 1054 1055 spin_lock_irqsave(&(smi_info->si_lock), flags); 1056 #ifdef DEBUG_TIMING 1057 do_gettimeofday(&t); 1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1059 #endif 1060 jiffies_now = jiffies; 1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1062 * SI_USEC_PER_JIFFY); 1063 smi_result = smi_event_handler(smi_info, time_diff); 1064 1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1066 1067 smi_info->last_timeout_jiffies = jiffies_now; 1068 1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1070 /* Running with interrupts, only do long timeouts. */ 1071 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1072 smi_inc_stat(smi_info, long_timeouts); 1073 goto do_mod_timer; 1074 } 1075 1076 /* 1077 * If the state machine asks for a short delay, then shorten 1078 * the timer timeout. 1079 */ 1080 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1081 smi_inc_stat(smi_info, short_timeouts); 1082 timeout = jiffies + 1; 1083 } else { 1084 smi_inc_stat(smi_info, long_timeouts); 1085 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1086 } 1087 1088 do_mod_timer: 1089 if (smi_result != SI_SM_IDLE) 1090 mod_timer(&(smi_info->si_timer), timeout); 1091 } 1092 1093 static irqreturn_t si_irq_handler(int irq, void *data) 1094 { 1095 struct smi_info *smi_info = data; 1096 unsigned long flags; 1097 #ifdef DEBUG_TIMING 1098 struct timeval t; 1099 #endif 1100 1101 spin_lock_irqsave(&(smi_info->si_lock), flags); 1102 1103 smi_inc_stat(smi_info, interrupts); 1104 1105 #ifdef DEBUG_TIMING 1106 do_gettimeofday(&t); 1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1108 #endif 1109 smi_event_handler(smi_info, 0); 1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1111 return IRQ_HANDLED; 1112 } 1113 1114 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1115 { 1116 struct smi_info *smi_info = data; 1117 /* We need to clear the IRQ flag for the BT interface. */ 1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1121 return si_irq_handler(irq, data); 1122 } 1123 1124 static int smi_start_processing(void *send_info, 1125 ipmi_smi_t intf) 1126 { 1127 struct smi_info *new_smi = send_info; 1128 int enable = 0; 1129 1130 new_smi->intf = intf; 1131 1132 /* Try to claim any interrupts. */ 1133 if (new_smi->irq_setup) 1134 new_smi->irq_setup(new_smi); 1135 1136 /* Set up the timer that drives the interface. */ 1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1138 new_smi->last_timeout_jiffies = jiffies; 1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1140 1141 /* 1142 * Check if the user forcefully enabled the daemon. 1143 */ 1144 if (new_smi->intf_num < num_force_kipmid) 1145 enable = force_kipmid[new_smi->intf_num]; 1146 /* 1147 * The BT interface is efficient enough to not need a thread, 1148 * and there is no need for a thread if we have interrupts. 1149 */ 1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1151 enable = 1; 1152 1153 if (enable) { 1154 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1155 "kipmi%d", new_smi->intf_num); 1156 if (IS_ERR(new_smi->thread)) { 1157 dev_notice(new_smi->dev, "Could not start" 1158 " kernel thread due to error %ld, only using" 1159 " timers to drive the interface\n", 1160 PTR_ERR(new_smi->thread)); 1161 new_smi->thread = NULL; 1162 } 1163 } 1164 1165 return 0; 1166 } 1167 1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1169 { 1170 struct smi_info *smi = send_info; 1171 1172 data->addr_src = smi->addr_source; 1173 data->dev = smi->dev; 1174 data->addr_info = smi->addr_info; 1175 get_device(smi->dev); 1176 1177 return 0; 1178 } 1179 1180 static void set_maintenance_mode(void *send_info, int enable) 1181 { 1182 struct smi_info *smi_info = send_info; 1183 1184 if (!enable) 1185 atomic_set(&smi_info->req_events, 0); 1186 } 1187 1188 static struct ipmi_smi_handlers handlers = { 1189 .owner = THIS_MODULE, 1190 .start_processing = smi_start_processing, 1191 .get_smi_info = get_smi_info, 1192 .sender = sender, 1193 .request_events = request_events, 1194 .set_maintenance_mode = set_maintenance_mode, 1195 .set_run_to_completion = set_run_to_completion, 1196 .poll = poll, 1197 }; 1198 1199 /* 1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1202 */ 1203 1204 static LIST_HEAD(smi_infos); 1205 static DEFINE_MUTEX(smi_infos_lock); 1206 static int smi_num; /* Used to sequence the SMIs */ 1207 1208 #define DEFAULT_REGSPACING 1 1209 #define DEFAULT_REGSIZE 1 1210 1211 #ifdef CONFIG_ACPI 1212 static bool si_tryacpi = 1; 1213 #endif 1214 #ifdef CONFIG_DMI 1215 static bool si_trydmi = 1; 1216 #endif 1217 static bool si_tryplatform = 1; 1218 #ifdef CONFIG_PCI 1219 static bool si_trypci = 1; 1220 #endif 1221 static bool si_trydefaults = 1; 1222 static char *si_type[SI_MAX_PARMS]; 1223 #define MAX_SI_TYPE_STR 30 1224 static char si_type_str[MAX_SI_TYPE_STR]; 1225 static unsigned long addrs[SI_MAX_PARMS]; 1226 static unsigned int num_addrs; 1227 static unsigned int ports[SI_MAX_PARMS]; 1228 static unsigned int num_ports; 1229 static int irqs[SI_MAX_PARMS]; 1230 static unsigned int num_irqs; 1231 static int regspacings[SI_MAX_PARMS]; 1232 static unsigned int num_regspacings; 1233 static int regsizes[SI_MAX_PARMS]; 1234 static unsigned int num_regsizes; 1235 static int regshifts[SI_MAX_PARMS]; 1236 static unsigned int num_regshifts; 1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1238 static unsigned int num_slave_addrs; 1239 1240 #define IPMI_IO_ADDR_SPACE 0 1241 #define IPMI_MEM_ADDR_SPACE 1 1242 static char *addr_space_to_str[] = { "i/o", "mem" }; 1243 1244 static int hotmod_handler(const char *val, struct kernel_param *kp); 1245 1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1248 " Documentation/IPMI.txt in the kernel sources for the" 1249 " gory details."); 1250 1251 #ifdef CONFIG_ACPI 1252 module_param_named(tryacpi, si_tryacpi, bool, 0); 1253 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1254 " default scan of the interfaces identified via ACPI"); 1255 #endif 1256 #ifdef CONFIG_DMI 1257 module_param_named(trydmi, si_trydmi, bool, 0); 1258 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1259 " default scan of the interfaces identified via DMI"); 1260 #endif 1261 module_param_named(tryplatform, si_tryplatform, bool, 0); 1262 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1263 " default scan of the interfaces identified via platform" 1264 " interfaces like openfirmware"); 1265 #ifdef CONFIG_PCI 1266 module_param_named(trypci, si_trypci, bool, 0); 1267 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1268 " default scan of the interfaces identified via pci"); 1269 #endif 1270 module_param_named(trydefaults, si_trydefaults, bool, 0); 1271 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1272 " default scan of the KCS and SMIC interface at the standard" 1273 " address"); 1274 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1275 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1276 " interface separated by commas. The types are 'kcs'," 1277 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1278 " the first interface to kcs and the second to bt"); 1279 module_param_array(addrs, ulong, &num_addrs, 0); 1280 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1281 " addresses separated by commas. Only use if an interface" 1282 " is in memory. Otherwise, set it to zero or leave" 1283 " it blank."); 1284 module_param_array(ports, uint, &num_ports, 0); 1285 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1286 " addresses separated by commas. Only use if an interface" 1287 " is a port. Otherwise, set it to zero or leave" 1288 " it blank."); 1289 module_param_array(irqs, int, &num_irqs, 0); 1290 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1291 " addresses separated by commas. Only use if an interface" 1292 " has an interrupt. Otherwise, set it to zero or leave" 1293 " it blank."); 1294 module_param_array(regspacings, int, &num_regspacings, 0); 1295 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1296 " and each successive register used by the interface. For" 1297 " instance, if the start address is 0xca2 and the spacing" 1298 " is 2, then the second address is at 0xca4. Defaults" 1299 " to 1."); 1300 module_param_array(regsizes, int, &num_regsizes, 0); 1301 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1302 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1303 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1304 " the 8-bit IPMI register has to be read from a larger" 1305 " register."); 1306 module_param_array(regshifts, int, &num_regshifts, 0); 1307 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1308 " IPMI register, in bits. For instance, if the data" 1309 " is read from a 32-bit word and the IPMI data is in" 1310 " bit 8-15, then the shift would be 8"); 1311 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1312 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1313 " the controller. Normally this is 0x20, but can be" 1314 " overridden by this parm. This is an array indexed" 1315 " by interface number."); 1316 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1317 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1318 " disabled(0). Normally the IPMI driver auto-detects" 1319 " this, but the value may be overridden by this parm."); 1320 module_param(unload_when_empty, int, 0); 1321 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1322 " specified or found, default is 1. Setting to 0" 1323 " is useful for hot add of devices using hotmod."); 1324 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1325 MODULE_PARM_DESC(kipmid_max_busy_us, 1326 "Max time (in microseconds) to busy-wait for IPMI data before" 1327 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1328 " if kipmid is using up a lot of CPU time."); 1329 1330 1331 static void std_irq_cleanup(struct smi_info *info) 1332 { 1333 if (info->si_type == SI_BT) 1334 /* Disable the interrupt in the BT interface. */ 1335 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1336 free_irq(info->irq, info); 1337 } 1338 1339 static int std_irq_setup(struct smi_info *info) 1340 { 1341 int rv; 1342 1343 if (!info->irq) 1344 return 0; 1345 1346 if (info->si_type == SI_BT) { 1347 rv = request_irq(info->irq, 1348 si_bt_irq_handler, 1349 IRQF_SHARED | IRQF_DISABLED, 1350 DEVICE_NAME, 1351 info); 1352 if (!rv) 1353 /* Enable the interrupt in the BT interface. */ 1354 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1355 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1356 } else 1357 rv = request_irq(info->irq, 1358 si_irq_handler, 1359 IRQF_SHARED | IRQF_DISABLED, 1360 DEVICE_NAME, 1361 info); 1362 if (rv) { 1363 dev_warn(info->dev, "%s unable to claim interrupt %d," 1364 " running polled\n", 1365 DEVICE_NAME, info->irq); 1366 info->irq = 0; 1367 } else { 1368 info->irq_cleanup = std_irq_cleanup; 1369 dev_info(info->dev, "Using irq %d\n", info->irq); 1370 } 1371 1372 return rv; 1373 } 1374 1375 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1376 { 1377 unsigned int addr = io->addr_data; 1378 1379 return inb(addr + (offset * io->regspacing)); 1380 } 1381 1382 static void port_outb(struct si_sm_io *io, unsigned int offset, 1383 unsigned char b) 1384 { 1385 unsigned int addr = io->addr_data; 1386 1387 outb(b, addr + (offset * io->regspacing)); 1388 } 1389 1390 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1391 { 1392 unsigned int addr = io->addr_data; 1393 1394 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1395 } 1396 1397 static void port_outw(struct si_sm_io *io, unsigned int offset, 1398 unsigned char b) 1399 { 1400 unsigned int addr = io->addr_data; 1401 1402 outw(b << io->regshift, addr + (offset * io->regspacing)); 1403 } 1404 1405 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1406 { 1407 unsigned int addr = io->addr_data; 1408 1409 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1410 } 1411 1412 static void port_outl(struct si_sm_io *io, unsigned int offset, 1413 unsigned char b) 1414 { 1415 unsigned int addr = io->addr_data; 1416 1417 outl(b << io->regshift, addr+(offset * io->regspacing)); 1418 } 1419 1420 static void port_cleanup(struct smi_info *info) 1421 { 1422 unsigned int addr = info->io.addr_data; 1423 int idx; 1424 1425 if (addr) { 1426 for (idx = 0; idx < info->io_size; idx++) 1427 release_region(addr + idx * info->io.regspacing, 1428 info->io.regsize); 1429 } 1430 } 1431 1432 static int port_setup(struct smi_info *info) 1433 { 1434 unsigned int addr = info->io.addr_data; 1435 int idx; 1436 1437 if (!addr) 1438 return -ENODEV; 1439 1440 info->io_cleanup = port_cleanup; 1441 1442 /* 1443 * Figure out the actual inb/inw/inl/etc routine to use based 1444 * upon the register size. 1445 */ 1446 switch (info->io.regsize) { 1447 case 1: 1448 info->io.inputb = port_inb; 1449 info->io.outputb = port_outb; 1450 break; 1451 case 2: 1452 info->io.inputb = port_inw; 1453 info->io.outputb = port_outw; 1454 break; 1455 case 4: 1456 info->io.inputb = port_inl; 1457 info->io.outputb = port_outl; 1458 break; 1459 default: 1460 dev_warn(info->dev, "Invalid register size: %d\n", 1461 info->io.regsize); 1462 return -EINVAL; 1463 } 1464 1465 /* 1466 * Some BIOSes reserve disjoint I/O regions in their ACPI 1467 * tables. This causes problems when trying to register the 1468 * entire I/O region. Therefore we must register each I/O 1469 * port separately. 1470 */ 1471 for (idx = 0; idx < info->io_size; idx++) { 1472 if (request_region(addr + idx * info->io.regspacing, 1473 info->io.regsize, DEVICE_NAME) == NULL) { 1474 /* Undo allocations */ 1475 while (idx--) { 1476 release_region(addr + idx * info->io.regspacing, 1477 info->io.regsize); 1478 } 1479 return -EIO; 1480 } 1481 } 1482 return 0; 1483 } 1484 1485 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1486 { 1487 return readb((io->addr)+(offset * io->regspacing)); 1488 } 1489 1490 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1491 unsigned char b) 1492 { 1493 writeb(b, (io->addr)+(offset * io->regspacing)); 1494 } 1495 1496 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1497 { 1498 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1499 & 0xff; 1500 } 1501 1502 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1503 unsigned char b) 1504 { 1505 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1506 } 1507 1508 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1509 { 1510 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1511 & 0xff; 1512 } 1513 1514 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1515 unsigned char b) 1516 { 1517 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1518 } 1519 1520 #ifdef readq 1521 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1522 { 1523 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1524 & 0xff; 1525 } 1526 1527 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1528 unsigned char b) 1529 { 1530 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1531 } 1532 #endif 1533 1534 static void mem_cleanup(struct smi_info *info) 1535 { 1536 unsigned long addr = info->io.addr_data; 1537 int mapsize; 1538 1539 if (info->io.addr) { 1540 iounmap(info->io.addr); 1541 1542 mapsize = ((info->io_size * info->io.regspacing) 1543 - (info->io.regspacing - info->io.regsize)); 1544 1545 release_mem_region(addr, mapsize); 1546 } 1547 } 1548 1549 static int mem_setup(struct smi_info *info) 1550 { 1551 unsigned long addr = info->io.addr_data; 1552 int mapsize; 1553 1554 if (!addr) 1555 return -ENODEV; 1556 1557 info->io_cleanup = mem_cleanup; 1558 1559 /* 1560 * Figure out the actual readb/readw/readl/etc routine to use based 1561 * upon the register size. 1562 */ 1563 switch (info->io.regsize) { 1564 case 1: 1565 info->io.inputb = intf_mem_inb; 1566 info->io.outputb = intf_mem_outb; 1567 break; 1568 case 2: 1569 info->io.inputb = intf_mem_inw; 1570 info->io.outputb = intf_mem_outw; 1571 break; 1572 case 4: 1573 info->io.inputb = intf_mem_inl; 1574 info->io.outputb = intf_mem_outl; 1575 break; 1576 #ifdef readq 1577 case 8: 1578 info->io.inputb = mem_inq; 1579 info->io.outputb = mem_outq; 1580 break; 1581 #endif 1582 default: 1583 dev_warn(info->dev, "Invalid register size: %d\n", 1584 info->io.regsize); 1585 return -EINVAL; 1586 } 1587 1588 /* 1589 * Calculate the total amount of memory to claim. This is an 1590 * unusual looking calculation, but it avoids claiming any 1591 * more memory than it has to. It will claim everything 1592 * between the first address to the end of the last full 1593 * register. 1594 */ 1595 mapsize = ((info->io_size * info->io.regspacing) 1596 - (info->io.regspacing - info->io.regsize)); 1597 1598 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1599 return -EIO; 1600 1601 info->io.addr = ioremap(addr, mapsize); 1602 if (info->io.addr == NULL) { 1603 release_mem_region(addr, mapsize); 1604 return -EIO; 1605 } 1606 return 0; 1607 } 1608 1609 /* 1610 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1611 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1612 * Options are: 1613 * rsp=<regspacing> 1614 * rsi=<regsize> 1615 * rsh=<regshift> 1616 * irq=<irq> 1617 * ipmb=<ipmb addr> 1618 */ 1619 enum hotmod_op { HM_ADD, HM_REMOVE }; 1620 struct hotmod_vals { 1621 char *name; 1622 int val; 1623 }; 1624 static struct hotmod_vals hotmod_ops[] = { 1625 { "add", HM_ADD }, 1626 { "remove", HM_REMOVE }, 1627 { NULL } 1628 }; 1629 static struct hotmod_vals hotmod_si[] = { 1630 { "kcs", SI_KCS }, 1631 { "smic", SI_SMIC }, 1632 { "bt", SI_BT }, 1633 { NULL } 1634 }; 1635 static struct hotmod_vals hotmod_as[] = { 1636 { "mem", IPMI_MEM_ADDR_SPACE }, 1637 { "i/o", IPMI_IO_ADDR_SPACE }, 1638 { NULL } 1639 }; 1640 1641 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1642 { 1643 char *s; 1644 int i; 1645 1646 s = strchr(*curr, ','); 1647 if (!s) { 1648 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1649 return -EINVAL; 1650 } 1651 *s = '\0'; 1652 s++; 1653 for (i = 0; hotmod_ops[i].name; i++) { 1654 if (strcmp(*curr, v[i].name) == 0) { 1655 *val = v[i].val; 1656 *curr = s; 1657 return 0; 1658 } 1659 } 1660 1661 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1662 return -EINVAL; 1663 } 1664 1665 static int check_hotmod_int_op(const char *curr, const char *option, 1666 const char *name, int *val) 1667 { 1668 char *n; 1669 1670 if (strcmp(curr, name) == 0) { 1671 if (!option) { 1672 printk(KERN_WARNING PFX 1673 "No option given for '%s'\n", 1674 curr); 1675 return -EINVAL; 1676 } 1677 *val = simple_strtoul(option, &n, 0); 1678 if ((*n != '\0') || (*option == '\0')) { 1679 printk(KERN_WARNING PFX 1680 "Bad option given for '%s'\n", 1681 curr); 1682 return -EINVAL; 1683 } 1684 return 1; 1685 } 1686 return 0; 1687 } 1688 1689 static struct smi_info *smi_info_alloc(void) 1690 { 1691 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1692 1693 if (info) 1694 spin_lock_init(&info->si_lock); 1695 return info; 1696 } 1697 1698 static int hotmod_handler(const char *val, struct kernel_param *kp) 1699 { 1700 char *str = kstrdup(val, GFP_KERNEL); 1701 int rv; 1702 char *next, *curr, *s, *n, *o; 1703 enum hotmod_op op; 1704 enum si_type si_type; 1705 int addr_space; 1706 unsigned long addr; 1707 int regspacing; 1708 int regsize; 1709 int regshift; 1710 int irq; 1711 int ipmb; 1712 int ival; 1713 int len; 1714 struct smi_info *info; 1715 1716 if (!str) 1717 return -ENOMEM; 1718 1719 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1720 len = strlen(str); 1721 ival = len - 1; 1722 while ((ival >= 0) && isspace(str[ival])) { 1723 str[ival] = '\0'; 1724 ival--; 1725 } 1726 1727 for (curr = str; curr; curr = next) { 1728 regspacing = 1; 1729 regsize = 1; 1730 regshift = 0; 1731 irq = 0; 1732 ipmb = 0; /* Choose the default if not specified */ 1733 1734 next = strchr(curr, ':'); 1735 if (next) { 1736 *next = '\0'; 1737 next++; 1738 } 1739 1740 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1741 if (rv) 1742 break; 1743 op = ival; 1744 1745 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1746 if (rv) 1747 break; 1748 si_type = ival; 1749 1750 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1751 if (rv) 1752 break; 1753 1754 s = strchr(curr, ','); 1755 if (s) { 1756 *s = '\0'; 1757 s++; 1758 } 1759 addr = simple_strtoul(curr, &n, 0); 1760 if ((*n != '\0') || (*curr == '\0')) { 1761 printk(KERN_WARNING PFX "Invalid hotmod address" 1762 " '%s'\n", curr); 1763 break; 1764 } 1765 1766 while (s) { 1767 curr = s; 1768 s = strchr(curr, ','); 1769 if (s) { 1770 *s = '\0'; 1771 s++; 1772 } 1773 o = strchr(curr, '='); 1774 if (o) { 1775 *o = '\0'; 1776 o++; 1777 } 1778 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1779 if (rv < 0) 1780 goto out; 1781 else if (rv) 1782 continue; 1783 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1784 if (rv < 0) 1785 goto out; 1786 else if (rv) 1787 continue; 1788 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1789 if (rv < 0) 1790 goto out; 1791 else if (rv) 1792 continue; 1793 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1794 if (rv < 0) 1795 goto out; 1796 else if (rv) 1797 continue; 1798 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1799 if (rv < 0) 1800 goto out; 1801 else if (rv) 1802 continue; 1803 1804 rv = -EINVAL; 1805 printk(KERN_WARNING PFX 1806 "Invalid hotmod option '%s'\n", 1807 curr); 1808 goto out; 1809 } 1810 1811 if (op == HM_ADD) { 1812 info = smi_info_alloc(); 1813 if (!info) { 1814 rv = -ENOMEM; 1815 goto out; 1816 } 1817 1818 info->addr_source = SI_HOTMOD; 1819 info->si_type = si_type; 1820 info->io.addr_data = addr; 1821 info->io.addr_type = addr_space; 1822 if (addr_space == IPMI_MEM_ADDR_SPACE) 1823 info->io_setup = mem_setup; 1824 else 1825 info->io_setup = port_setup; 1826 1827 info->io.addr = NULL; 1828 info->io.regspacing = regspacing; 1829 if (!info->io.regspacing) 1830 info->io.regspacing = DEFAULT_REGSPACING; 1831 info->io.regsize = regsize; 1832 if (!info->io.regsize) 1833 info->io.regsize = DEFAULT_REGSPACING; 1834 info->io.regshift = regshift; 1835 info->irq = irq; 1836 if (info->irq) 1837 info->irq_setup = std_irq_setup; 1838 info->slave_addr = ipmb; 1839 1840 if (!add_smi(info)) { 1841 if (try_smi_init(info)) 1842 cleanup_one_si(info); 1843 } else { 1844 kfree(info); 1845 } 1846 } else { 1847 /* remove */ 1848 struct smi_info *e, *tmp_e; 1849 1850 mutex_lock(&smi_infos_lock); 1851 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1852 if (e->io.addr_type != addr_space) 1853 continue; 1854 if (e->si_type != si_type) 1855 continue; 1856 if (e->io.addr_data == addr) 1857 cleanup_one_si(e); 1858 } 1859 mutex_unlock(&smi_infos_lock); 1860 } 1861 } 1862 rv = len; 1863 out: 1864 kfree(str); 1865 return rv; 1866 } 1867 1868 static int hardcode_find_bmc(void) 1869 { 1870 int ret = -ENODEV; 1871 int i; 1872 struct smi_info *info; 1873 1874 for (i = 0; i < SI_MAX_PARMS; i++) { 1875 if (!ports[i] && !addrs[i]) 1876 continue; 1877 1878 info = smi_info_alloc(); 1879 if (!info) 1880 return -ENOMEM; 1881 1882 info->addr_source = SI_HARDCODED; 1883 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1884 1885 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1886 info->si_type = SI_KCS; 1887 } else if (strcmp(si_type[i], "smic") == 0) { 1888 info->si_type = SI_SMIC; 1889 } else if (strcmp(si_type[i], "bt") == 0) { 1890 info->si_type = SI_BT; 1891 } else { 1892 printk(KERN_WARNING PFX "Interface type specified " 1893 "for interface %d, was invalid: %s\n", 1894 i, si_type[i]); 1895 kfree(info); 1896 continue; 1897 } 1898 1899 if (ports[i]) { 1900 /* An I/O port */ 1901 info->io_setup = port_setup; 1902 info->io.addr_data = ports[i]; 1903 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1904 } else if (addrs[i]) { 1905 /* A memory port */ 1906 info->io_setup = mem_setup; 1907 info->io.addr_data = addrs[i]; 1908 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1909 } else { 1910 printk(KERN_WARNING PFX "Interface type specified " 1911 "for interface %d, but port and address were " 1912 "not set or set to zero.\n", i); 1913 kfree(info); 1914 continue; 1915 } 1916 1917 info->io.addr = NULL; 1918 info->io.regspacing = regspacings[i]; 1919 if (!info->io.regspacing) 1920 info->io.regspacing = DEFAULT_REGSPACING; 1921 info->io.regsize = regsizes[i]; 1922 if (!info->io.regsize) 1923 info->io.regsize = DEFAULT_REGSPACING; 1924 info->io.regshift = regshifts[i]; 1925 info->irq = irqs[i]; 1926 if (info->irq) 1927 info->irq_setup = std_irq_setup; 1928 info->slave_addr = slave_addrs[i]; 1929 1930 if (!add_smi(info)) { 1931 if (try_smi_init(info)) 1932 cleanup_one_si(info); 1933 ret = 0; 1934 } else { 1935 kfree(info); 1936 } 1937 } 1938 return ret; 1939 } 1940 1941 #ifdef CONFIG_ACPI 1942 1943 #include <linux/acpi.h> 1944 1945 /* 1946 * Once we get an ACPI failure, we don't try any more, because we go 1947 * through the tables sequentially. Once we don't find a table, there 1948 * are no more. 1949 */ 1950 static int acpi_failure; 1951 1952 /* For GPE-type interrupts. */ 1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1954 u32 gpe_number, void *context) 1955 { 1956 struct smi_info *smi_info = context; 1957 unsigned long flags; 1958 #ifdef DEBUG_TIMING 1959 struct timeval t; 1960 #endif 1961 1962 spin_lock_irqsave(&(smi_info->si_lock), flags); 1963 1964 smi_inc_stat(smi_info, interrupts); 1965 1966 #ifdef DEBUG_TIMING 1967 do_gettimeofday(&t); 1968 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1969 #endif 1970 smi_event_handler(smi_info, 0); 1971 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1972 1973 return ACPI_INTERRUPT_HANDLED; 1974 } 1975 1976 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1977 { 1978 if (!info->irq) 1979 return; 1980 1981 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1982 } 1983 1984 static int acpi_gpe_irq_setup(struct smi_info *info) 1985 { 1986 acpi_status status; 1987 1988 if (!info->irq) 1989 return 0; 1990 1991 /* FIXME - is level triggered right? */ 1992 status = acpi_install_gpe_handler(NULL, 1993 info->irq, 1994 ACPI_GPE_LEVEL_TRIGGERED, 1995 &ipmi_acpi_gpe, 1996 info); 1997 if (status != AE_OK) { 1998 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1999 " running polled\n", DEVICE_NAME, info->irq); 2000 info->irq = 0; 2001 return -EINVAL; 2002 } else { 2003 info->irq_cleanup = acpi_gpe_irq_cleanup; 2004 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2005 return 0; 2006 } 2007 } 2008 2009 /* 2010 * Defined at 2011 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2012 */ 2013 struct SPMITable { 2014 s8 Signature[4]; 2015 u32 Length; 2016 u8 Revision; 2017 u8 Checksum; 2018 s8 OEMID[6]; 2019 s8 OEMTableID[8]; 2020 s8 OEMRevision[4]; 2021 s8 CreatorID[4]; 2022 s8 CreatorRevision[4]; 2023 u8 InterfaceType; 2024 u8 IPMIlegacy; 2025 s16 SpecificationRevision; 2026 2027 /* 2028 * Bit 0 - SCI interrupt supported 2029 * Bit 1 - I/O APIC/SAPIC 2030 */ 2031 u8 InterruptType; 2032 2033 /* 2034 * If bit 0 of InterruptType is set, then this is the SCI 2035 * interrupt in the GPEx_STS register. 2036 */ 2037 u8 GPE; 2038 2039 s16 Reserved; 2040 2041 /* 2042 * If bit 1 of InterruptType is set, then this is the I/O 2043 * APIC/SAPIC interrupt. 2044 */ 2045 u32 GlobalSystemInterrupt; 2046 2047 /* The actual register address. */ 2048 struct acpi_generic_address addr; 2049 2050 u8 UID[4]; 2051 2052 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2053 }; 2054 2055 static int try_init_spmi(struct SPMITable *spmi) 2056 { 2057 struct smi_info *info; 2058 2059 if (spmi->IPMIlegacy != 1) { 2060 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2061 return -ENODEV; 2062 } 2063 2064 info = smi_info_alloc(); 2065 if (!info) { 2066 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2067 return -ENOMEM; 2068 } 2069 2070 info->addr_source = SI_SPMI; 2071 printk(KERN_INFO PFX "probing via SPMI\n"); 2072 2073 /* Figure out the interface type. */ 2074 switch (spmi->InterfaceType) { 2075 case 1: /* KCS */ 2076 info->si_type = SI_KCS; 2077 break; 2078 case 2: /* SMIC */ 2079 info->si_type = SI_SMIC; 2080 break; 2081 case 3: /* BT */ 2082 info->si_type = SI_BT; 2083 break; 2084 default: 2085 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2086 spmi->InterfaceType); 2087 kfree(info); 2088 return -EIO; 2089 } 2090 2091 if (spmi->InterruptType & 1) { 2092 /* We've got a GPE interrupt. */ 2093 info->irq = spmi->GPE; 2094 info->irq_setup = acpi_gpe_irq_setup; 2095 } else if (spmi->InterruptType & 2) { 2096 /* We've got an APIC/SAPIC interrupt. */ 2097 info->irq = spmi->GlobalSystemInterrupt; 2098 info->irq_setup = std_irq_setup; 2099 } else { 2100 /* Use the default interrupt setting. */ 2101 info->irq = 0; 2102 info->irq_setup = NULL; 2103 } 2104 2105 if (spmi->addr.bit_width) { 2106 /* A (hopefully) properly formed register bit width. */ 2107 info->io.regspacing = spmi->addr.bit_width / 8; 2108 } else { 2109 info->io.regspacing = DEFAULT_REGSPACING; 2110 } 2111 info->io.regsize = info->io.regspacing; 2112 info->io.regshift = spmi->addr.bit_offset; 2113 2114 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2115 info->io_setup = mem_setup; 2116 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2117 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2118 info->io_setup = port_setup; 2119 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2120 } else { 2121 kfree(info); 2122 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2123 return -EIO; 2124 } 2125 info->io.addr_data = spmi->addr.address; 2126 2127 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2128 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2129 info->io.addr_data, info->io.regsize, info->io.regspacing, 2130 info->irq); 2131 2132 if (add_smi(info)) 2133 kfree(info); 2134 2135 return 0; 2136 } 2137 2138 static void spmi_find_bmc(void) 2139 { 2140 acpi_status status; 2141 struct SPMITable *spmi; 2142 int i; 2143 2144 if (acpi_disabled) 2145 return; 2146 2147 if (acpi_failure) 2148 return; 2149 2150 for (i = 0; ; i++) { 2151 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2152 (struct acpi_table_header **)&spmi); 2153 if (status != AE_OK) 2154 return; 2155 2156 try_init_spmi(spmi); 2157 } 2158 } 2159 2160 static int ipmi_pnp_probe(struct pnp_dev *dev, 2161 const struct pnp_device_id *dev_id) 2162 { 2163 struct acpi_device *acpi_dev; 2164 struct smi_info *info; 2165 struct resource *res, *res_second; 2166 acpi_handle handle; 2167 acpi_status status; 2168 unsigned long long tmp; 2169 2170 acpi_dev = pnp_acpi_device(dev); 2171 if (!acpi_dev) 2172 return -ENODEV; 2173 2174 info = smi_info_alloc(); 2175 if (!info) 2176 return -ENOMEM; 2177 2178 info->addr_source = SI_ACPI; 2179 printk(KERN_INFO PFX "probing via ACPI\n"); 2180 2181 handle = acpi_dev->handle; 2182 info->addr_info.acpi_info.acpi_handle = handle; 2183 2184 /* _IFT tells us the interface type: KCS, BT, etc */ 2185 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2186 if (ACPI_FAILURE(status)) 2187 goto err_free; 2188 2189 switch (tmp) { 2190 case 1: 2191 info->si_type = SI_KCS; 2192 break; 2193 case 2: 2194 info->si_type = SI_SMIC; 2195 break; 2196 case 3: 2197 info->si_type = SI_BT; 2198 break; 2199 default: 2200 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2201 goto err_free; 2202 } 2203 2204 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2205 if (res) { 2206 info->io_setup = port_setup; 2207 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2208 } else { 2209 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2210 if (res) { 2211 info->io_setup = mem_setup; 2212 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2213 } 2214 } 2215 if (!res) { 2216 dev_err(&dev->dev, "no I/O or memory address\n"); 2217 goto err_free; 2218 } 2219 info->io.addr_data = res->start; 2220 2221 info->io.regspacing = DEFAULT_REGSPACING; 2222 res_second = pnp_get_resource(dev, 2223 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2224 IORESOURCE_IO : IORESOURCE_MEM, 2225 1); 2226 if (res_second) { 2227 if (res_second->start > info->io.addr_data) 2228 info->io.regspacing = res_second->start - info->io.addr_data; 2229 } 2230 info->io.regsize = DEFAULT_REGSPACING; 2231 info->io.regshift = 0; 2232 2233 /* If _GPE exists, use it; otherwise use standard interrupts */ 2234 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2235 if (ACPI_SUCCESS(status)) { 2236 info->irq = tmp; 2237 info->irq_setup = acpi_gpe_irq_setup; 2238 } else if (pnp_irq_valid(dev, 0)) { 2239 info->irq = pnp_irq(dev, 0); 2240 info->irq_setup = std_irq_setup; 2241 } 2242 2243 info->dev = &dev->dev; 2244 pnp_set_drvdata(dev, info); 2245 2246 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2247 res, info->io.regsize, info->io.regspacing, 2248 info->irq); 2249 2250 if (add_smi(info)) 2251 goto err_free; 2252 2253 return 0; 2254 2255 err_free: 2256 kfree(info); 2257 return -EINVAL; 2258 } 2259 2260 static void ipmi_pnp_remove(struct pnp_dev *dev) 2261 { 2262 struct smi_info *info = pnp_get_drvdata(dev); 2263 2264 cleanup_one_si(info); 2265 } 2266 2267 static const struct pnp_device_id pnp_dev_table[] = { 2268 {"IPI0001", 0}, 2269 {"", 0}, 2270 }; 2271 2272 static struct pnp_driver ipmi_pnp_driver = { 2273 .name = DEVICE_NAME, 2274 .probe = ipmi_pnp_probe, 2275 .remove = ipmi_pnp_remove, 2276 .id_table = pnp_dev_table, 2277 }; 2278 #endif 2279 2280 #ifdef CONFIG_DMI 2281 struct dmi_ipmi_data { 2282 u8 type; 2283 u8 addr_space; 2284 unsigned long base_addr; 2285 u8 irq; 2286 u8 offset; 2287 u8 slave_addr; 2288 }; 2289 2290 static int decode_dmi(const struct dmi_header *dm, 2291 struct dmi_ipmi_data *dmi) 2292 { 2293 const u8 *data = (const u8 *)dm; 2294 unsigned long base_addr; 2295 u8 reg_spacing; 2296 u8 len = dm->length; 2297 2298 dmi->type = data[4]; 2299 2300 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2301 if (len >= 0x11) { 2302 if (base_addr & 1) { 2303 /* I/O */ 2304 base_addr &= 0xFFFE; 2305 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2306 } else 2307 /* Memory */ 2308 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2309 2310 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2311 is odd. */ 2312 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2313 2314 dmi->irq = data[0x11]; 2315 2316 /* The top two bits of byte 0x10 hold the register spacing. */ 2317 reg_spacing = (data[0x10] & 0xC0) >> 6; 2318 switch (reg_spacing) { 2319 case 0x00: /* Byte boundaries */ 2320 dmi->offset = 1; 2321 break; 2322 case 0x01: /* 32-bit boundaries */ 2323 dmi->offset = 4; 2324 break; 2325 case 0x02: /* 16-byte boundaries */ 2326 dmi->offset = 16; 2327 break; 2328 default: 2329 /* Some other interface, just ignore it. */ 2330 return -EIO; 2331 } 2332 } else { 2333 /* Old DMI spec. */ 2334 /* 2335 * Note that technically, the lower bit of the base 2336 * address should be 1 if the address is I/O and 0 if 2337 * the address is in memory. So many systems get that 2338 * wrong (and all that I have seen are I/O) so we just 2339 * ignore that bit and assume I/O. Systems that use 2340 * memory should use the newer spec, anyway. 2341 */ 2342 dmi->base_addr = base_addr & 0xfffe; 2343 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2344 dmi->offset = 1; 2345 } 2346 2347 dmi->slave_addr = data[6]; 2348 2349 return 0; 2350 } 2351 2352 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2353 { 2354 struct smi_info *info; 2355 2356 info = smi_info_alloc(); 2357 if (!info) { 2358 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2359 return; 2360 } 2361 2362 info->addr_source = SI_SMBIOS; 2363 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2364 2365 switch (ipmi_data->type) { 2366 case 0x01: /* KCS */ 2367 info->si_type = SI_KCS; 2368 break; 2369 case 0x02: /* SMIC */ 2370 info->si_type = SI_SMIC; 2371 break; 2372 case 0x03: /* BT */ 2373 info->si_type = SI_BT; 2374 break; 2375 default: 2376 kfree(info); 2377 return; 2378 } 2379 2380 switch (ipmi_data->addr_space) { 2381 case IPMI_MEM_ADDR_SPACE: 2382 info->io_setup = mem_setup; 2383 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2384 break; 2385 2386 case IPMI_IO_ADDR_SPACE: 2387 info->io_setup = port_setup; 2388 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2389 break; 2390 2391 default: 2392 kfree(info); 2393 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2394 ipmi_data->addr_space); 2395 return; 2396 } 2397 info->io.addr_data = ipmi_data->base_addr; 2398 2399 info->io.regspacing = ipmi_data->offset; 2400 if (!info->io.regspacing) 2401 info->io.regspacing = DEFAULT_REGSPACING; 2402 info->io.regsize = DEFAULT_REGSPACING; 2403 info->io.regshift = 0; 2404 2405 info->slave_addr = ipmi_data->slave_addr; 2406 2407 info->irq = ipmi_data->irq; 2408 if (info->irq) 2409 info->irq_setup = std_irq_setup; 2410 2411 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2412 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2413 info->io.addr_data, info->io.regsize, info->io.regspacing, 2414 info->irq); 2415 2416 if (add_smi(info)) 2417 kfree(info); 2418 } 2419 2420 static void dmi_find_bmc(void) 2421 { 2422 const struct dmi_device *dev = NULL; 2423 struct dmi_ipmi_data data; 2424 int rv; 2425 2426 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2427 memset(&data, 0, sizeof(data)); 2428 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2429 &data); 2430 if (!rv) 2431 try_init_dmi(&data); 2432 } 2433 } 2434 #endif /* CONFIG_DMI */ 2435 2436 #ifdef CONFIG_PCI 2437 2438 #define PCI_ERMC_CLASSCODE 0x0C0700 2439 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2443 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2444 2445 #define PCI_HP_VENDOR_ID 0x103C 2446 #define PCI_MMC_DEVICE_ID 0x121A 2447 #define PCI_MMC_ADDR_CW 0x10 2448 2449 static void ipmi_pci_cleanup(struct smi_info *info) 2450 { 2451 struct pci_dev *pdev = info->addr_source_data; 2452 2453 pci_disable_device(pdev); 2454 } 2455 2456 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2457 { 2458 if (info->si_type == SI_KCS) { 2459 unsigned char status; 2460 int regspacing; 2461 2462 info->io.regsize = DEFAULT_REGSIZE; 2463 info->io.regshift = 0; 2464 info->io_size = 2; 2465 info->handlers = &kcs_smi_handlers; 2466 2467 /* detect 1, 4, 16byte spacing */ 2468 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2469 info->io.regspacing = regspacing; 2470 if (info->io_setup(info)) { 2471 dev_err(info->dev, 2472 "Could not setup I/O space\n"); 2473 return DEFAULT_REGSPACING; 2474 } 2475 /* write invalid cmd */ 2476 info->io.outputb(&info->io, 1, 0x10); 2477 /* read status back */ 2478 status = info->io.inputb(&info->io, 1); 2479 info->io_cleanup(info); 2480 if (status) 2481 return regspacing; 2482 regspacing *= 4; 2483 } 2484 } 2485 return DEFAULT_REGSPACING; 2486 } 2487 2488 static int ipmi_pci_probe(struct pci_dev *pdev, 2489 const struct pci_device_id *ent) 2490 { 2491 int rv; 2492 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2493 struct smi_info *info; 2494 2495 info = smi_info_alloc(); 2496 if (!info) 2497 return -ENOMEM; 2498 2499 info->addr_source = SI_PCI; 2500 dev_info(&pdev->dev, "probing via PCI"); 2501 2502 switch (class_type) { 2503 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2504 info->si_type = SI_SMIC; 2505 break; 2506 2507 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2508 info->si_type = SI_KCS; 2509 break; 2510 2511 case PCI_ERMC_CLASSCODE_TYPE_BT: 2512 info->si_type = SI_BT; 2513 break; 2514 2515 default: 2516 kfree(info); 2517 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2518 return -ENOMEM; 2519 } 2520 2521 rv = pci_enable_device(pdev); 2522 if (rv) { 2523 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2524 kfree(info); 2525 return rv; 2526 } 2527 2528 info->addr_source_cleanup = ipmi_pci_cleanup; 2529 info->addr_source_data = pdev; 2530 2531 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2532 info->io_setup = port_setup; 2533 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2534 } else { 2535 info->io_setup = mem_setup; 2536 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2537 } 2538 info->io.addr_data = pci_resource_start(pdev, 0); 2539 2540 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2541 info->io.regsize = DEFAULT_REGSIZE; 2542 info->io.regshift = 0; 2543 2544 info->irq = pdev->irq; 2545 if (info->irq) 2546 info->irq_setup = std_irq_setup; 2547 2548 info->dev = &pdev->dev; 2549 pci_set_drvdata(pdev, info); 2550 2551 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2552 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2553 info->irq); 2554 2555 if (add_smi(info)) 2556 kfree(info); 2557 2558 return 0; 2559 } 2560 2561 static void ipmi_pci_remove(struct pci_dev *pdev) 2562 { 2563 struct smi_info *info = pci_get_drvdata(pdev); 2564 cleanup_one_si(info); 2565 } 2566 2567 static struct pci_device_id ipmi_pci_devices[] = { 2568 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2569 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2570 { 0, } 2571 }; 2572 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2573 2574 static struct pci_driver ipmi_pci_driver = { 2575 .name = DEVICE_NAME, 2576 .id_table = ipmi_pci_devices, 2577 .probe = ipmi_pci_probe, 2578 .remove = ipmi_pci_remove, 2579 }; 2580 #endif /* CONFIG_PCI */ 2581 2582 static struct of_device_id ipmi_match[]; 2583 static int ipmi_probe(struct platform_device *dev) 2584 { 2585 #ifdef CONFIG_OF 2586 const struct of_device_id *match; 2587 struct smi_info *info; 2588 struct resource resource; 2589 const __be32 *regsize, *regspacing, *regshift; 2590 struct device_node *np = dev->dev.of_node; 2591 int ret; 2592 int proplen; 2593 2594 dev_info(&dev->dev, "probing via device tree\n"); 2595 2596 match = of_match_device(ipmi_match, &dev->dev); 2597 if (!match) 2598 return -EINVAL; 2599 2600 ret = of_address_to_resource(np, 0, &resource); 2601 if (ret) { 2602 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2603 return ret; 2604 } 2605 2606 regsize = of_get_property(np, "reg-size", &proplen); 2607 if (regsize && proplen != 4) { 2608 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2609 return -EINVAL; 2610 } 2611 2612 regspacing = of_get_property(np, "reg-spacing", &proplen); 2613 if (regspacing && proplen != 4) { 2614 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2615 return -EINVAL; 2616 } 2617 2618 regshift = of_get_property(np, "reg-shift", &proplen); 2619 if (regshift && proplen != 4) { 2620 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2621 return -EINVAL; 2622 } 2623 2624 info = smi_info_alloc(); 2625 2626 if (!info) { 2627 dev_err(&dev->dev, 2628 "could not allocate memory for OF probe\n"); 2629 return -ENOMEM; 2630 } 2631 2632 info->si_type = (enum si_type) match->data; 2633 info->addr_source = SI_DEVICETREE; 2634 info->irq_setup = std_irq_setup; 2635 2636 if (resource.flags & IORESOURCE_IO) { 2637 info->io_setup = port_setup; 2638 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2639 } else { 2640 info->io_setup = mem_setup; 2641 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2642 } 2643 2644 info->io.addr_data = resource.start; 2645 2646 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2647 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2648 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2649 2650 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2651 info->dev = &dev->dev; 2652 2653 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2654 info->io.addr_data, info->io.regsize, info->io.regspacing, 2655 info->irq); 2656 2657 dev_set_drvdata(&dev->dev, info); 2658 2659 if (add_smi(info)) { 2660 kfree(info); 2661 return -EBUSY; 2662 } 2663 #endif 2664 return 0; 2665 } 2666 2667 static int ipmi_remove(struct platform_device *dev) 2668 { 2669 #ifdef CONFIG_OF 2670 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2671 #endif 2672 return 0; 2673 } 2674 2675 static struct of_device_id ipmi_match[] = 2676 { 2677 { .type = "ipmi", .compatible = "ipmi-kcs", 2678 .data = (void *)(unsigned long) SI_KCS }, 2679 { .type = "ipmi", .compatible = "ipmi-smic", 2680 .data = (void *)(unsigned long) SI_SMIC }, 2681 { .type = "ipmi", .compatible = "ipmi-bt", 2682 .data = (void *)(unsigned long) SI_BT }, 2683 {}, 2684 }; 2685 2686 static struct platform_driver ipmi_driver = { 2687 .driver = { 2688 .name = DEVICE_NAME, 2689 .owner = THIS_MODULE, 2690 .of_match_table = ipmi_match, 2691 }, 2692 .probe = ipmi_probe, 2693 .remove = ipmi_remove, 2694 }; 2695 2696 static int wait_for_msg_done(struct smi_info *smi_info) 2697 { 2698 enum si_sm_result smi_result; 2699 2700 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2701 for (;;) { 2702 if (smi_result == SI_SM_CALL_WITH_DELAY || 2703 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2704 schedule_timeout_uninterruptible(1); 2705 smi_result = smi_info->handlers->event( 2706 smi_info->si_sm, 100); 2707 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2708 smi_result = smi_info->handlers->event( 2709 smi_info->si_sm, 0); 2710 } else 2711 break; 2712 } 2713 if (smi_result == SI_SM_HOSED) 2714 /* 2715 * We couldn't get the state machine to run, so whatever's at 2716 * the port is probably not an IPMI SMI interface. 2717 */ 2718 return -ENODEV; 2719 2720 return 0; 2721 } 2722 2723 static int try_get_dev_id(struct smi_info *smi_info) 2724 { 2725 unsigned char msg[2]; 2726 unsigned char *resp; 2727 unsigned long resp_len; 2728 int rv = 0; 2729 2730 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2731 if (!resp) 2732 return -ENOMEM; 2733 2734 /* 2735 * Do a Get Device ID command, since it comes back with some 2736 * useful info. 2737 */ 2738 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2739 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2740 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2741 2742 rv = wait_for_msg_done(smi_info); 2743 if (rv) 2744 goto out; 2745 2746 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2747 resp, IPMI_MAX_MSG_LENGTH); 2748 2749 /* Check and record info from the get device id, in case we need it. */ 2750 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2751 2752 out: 2753 kfree(resp); 2754 return rv; 2755 } 2756 2757 static int try_enable_event_buffer(struct smi_info *smi_info) 2758 { 2759 unsigned char msg[3]; 2760 unsigned char *resp; 2761 unsigned long resp_len; 2762 int rv = 0; 2763 2764 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2765 if (!resp) 2766 return -ENOMEM; 2767 2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2769 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2770 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2771 2772 rv = wait_for_msg_done(smi_info); 2773 if (rv) { 2774 printk(KERN_WARNING PFX "Error getting response from get" 2775 " global enables command, the event buffer is not" 2776 " enabled.\n"); 2777 goto out; 2778 } 2779 2780 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2781 resp, IPMI_MAX_MSG_LENGTH); 2782 2783 if (resp_len < 4 || 2784 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2785 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2786 resp[2] != 0) { 2787 printk(KERN_WARNING PFX "Invalid return from get global" 2788 " enables command, cannot enable the event buffer.\n"); 2789 rv = -EINVAL; 2790 goto out; 2791 } 2792 2793 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2794 /* buffer is already enabled, nothing to do. */ 2795 goto out; 2796 2797 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2798 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2799 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2800 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2801 2802 rv = wait_for_msg_done(smi_info); 2803 if (rv) { 2804 printk(KERN_WARNING PFX "Error getting response from set" 2805 " global, enables command, the event buffer is not" 2806 " enabled.\n"); 2807 goto out; 2808 } 2809 2810 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2811 resp, IPMI_MAX_MSG_LENGTH); 2812 2813 if (resp_len < 3 || 2814 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2815 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2816 printk(KERN_WARNING PFX "Invalid return from get global," 2817 "enables command, not enable the event buffer.\n"); 2818 rv = -EINVAL; 2819 goto out; 2820 } 2821 2822 if (resp[2] != 0) 2823 /* 2824 * An error when setting the event buffer bit means 2825 * that the event buffer is not supported. 2826 */ 2827 rv = -ENOENT; 2828 out: 2829 kfree(resp); 2830 return rv; 2831 } 2832 2833 static int smi_type_proc_show(struct seq_file *m, void *v) 2834 { 2835 struct smi_info *smi = m->private; 2836 2837 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2838 } 2839 2840 static int smi_type_proc_open(struct inode *inode, struct file *file) 2841 { 2842 return single_open(file, smi_type_proc_show, PDE(inode)->data); 2843 } 2844 2845 static const struct file_operations smi_type_proc_ops = { 2846 .open = smi_type_proc_open, 2847 .read = seq_read, 2848 .llseek = seq_lseek, 2849 .release = single_release, 2850 }; 2851 2852 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2853 { 2854 struct smi_info *smi = m->private; 2855 2856 seq_printf(m, "interrupts_enabled: %d\n", 2857 smi->irq && !smi->interrupt_disabled); 2858 seq_printf(m, "short_timeouts: %u\n", 2859 smi_get_stat(smi, short_timeouts)); 2860 seq_printf(m, "long_timeouts: %u\n", 2861 smi_get_stat(smi, long_timeouts)); 2862 seq_printf(m, "idles: %u\n", 2863 smi_get_stat(smi, idles)); 2864 seq_printf(m, "interrupts: %u\n", 2865 smi_get_stat(smi, interrupts)); 2866 seq_printf(m, "attentions: %u\n", 2867 smi_get_stat(smi, attentions)); 2868 seq_printf(m, "flag_fetches: %u\n", 2869 smi_get_stat(smi, flag_fetches)); 2870 seq_printf(m, "hosed_count: %u\n", 2871 smi_get_stat(smi, hosed_count)); 2872 seq_printf(m, "complete_transactions: %u\n", 2873 smi_get_stat(smi, complete_transactions)); 2874 seq_printf(m, "events: %u\n", 2875 smi_get_stat(smi, events)); 2876 seq_printf(m, "watchdog_pretimeouts: %u\n", 2877 smi_get_stat(smi, watchdog_pretimeouts)); 2878 seq_printf(m, "incoming_messages: %u\n", 2879 smi_get_stat(smi, incoming_messages)); 2880 return 0; 2881 } 2882 2883 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 2884 { 2885 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data); 2886 } 2887 2888 static const struct file_operations smi_si_stats_proc_ops = { 2889 .open = smi_si_stats_proc_open, 2890 .read = seq_read, 2891 .llseek = seq_lseek, 2892 .release = single_release, 2893 }; 2894 2895 static int smi_params_proc_show(struct seq_file *m, void *v) 2896 { 2897 struct smi_info *smi = m->private; 2898 2899 return seq_printf(m, 2900 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2901 si_to_str[smi->si_type], 2902 addr_space_to_str[smi->io.addr_type], 2903 smi->io.addr_data, 2904 smi->io.regspacing, 2905 smi->io.regsize, 2906 smi->io.regshift, 2907 smi->irq, 2908 smi->slave_addr); 2909 } 2910 2911 static int smi_params_proc_open(struct inode *inode, struct file *file) 2912 { 2913 return single_open(file, smi_params_proc_show, PDE(inode)->data); 2914 } 2915 2916 static const struct file_operations smi_params_proc_ops = { 2917 .open = smi_params_proc_open, 2918 .read = seq_read, 2919 .llseek = seq_lseek, 2920 .release = single_release, 2921 }; 2922 2923 /* 2924 * oem_data_avail_to_receive_msg_avail 2925 * @info - smi_info structure with msg_flags set 2926 * 2927 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2928 * Returns 1 indicating need to re-run handle_flags(). 2929 */ 2930 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2931 { 2932 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2933 RECEIVE_MSG_AVAIL); 2934 return 1; 2935 } 2936 2937 /* 2938 * setup_dell_poweredge_oem_data_handler 2939 * @info - smi_info.device_id must be populated 2940 * 2941 * Systems that match, but have firmware version < 1.40 may assert 2942 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2943 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2944 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2945 * as RECEIVE_MSG_AVAIL instead. 2946 * 2947 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2948 * assert the OEM[012] bits, and if it did, the driver would have to 2949 * change to handle that properly, we don't actually check for the 2950 * firmware version. 2951 * Device ID = 0x20 BMC on PowerEdge 8G servers 2952 * Device Revision = 0x80 2953 * Firmware Revision1 = 0x01 BMC version 1.40 2954 * Firmware Revision2 = 0x40 BCD encoded 2955 * IPMI Version = 0x51 IPMI 1.5 2956 * Manufacturer ID = A2 02 00 Dell IANA 2957 * 2958 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2959 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2960 * 2961 */ 2962 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2963 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2964 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2965 #define DELL_IANA_MFR_ID 0x0002a2 2966 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2967 { 2968 struct ipmi_device_id *id = &smi_info->device_id; 2969 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2970 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2971 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2972 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2973 smi_info->oem_data_avail_handler = 2974 oem_data_avail_to_receive_msg_avail; 2975 } else if (ipmi_version_major(id) < 1 || 2976 (ipmi_version_major(id) == 1 && 2977 ipmi_version_minor(id) < 5)) { 2978 smi_info->oem_data_avail_handler = 2979 oem_data_avail_to_receive_msg_avail; 2980 } 2981 } 2982 } 2983 2984 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2985 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2986 { 2987 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2988 2989 /* Make it a response */ 2990 msg->rsp[0] = msg->data[0] | 4; 2991 msg->rsp[1] = msg->data[1]; 2992 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2993 msg->rsp_size = 3; 2994 smi_info->curr_msg = NULL; 2995 deliver_recv_msg(smi_info, msg); 2996 } 2997 2998 /* 2999 * dell_poweredge_bt_xaction_handler 3000 * @info - smi_info.device_id must be populated 3001 * 3002 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3003 * not respond to a Get SDR command if the length of the data 3004 * requested is exactly 0x3A, which leads to command timeouts and no 3005 * data returned. This intercepts such commands, and causes userspace 3006 * callers to try again with a different-sized buffer, which succeeds. 3007 */ 3008 3009 #define STORAGE_NETFN 0x0A 3010 #define STORAGE_CMD_GET_SDR 0x23 3011 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3012 unsigned long unused, 3013 void *in) 3014 { 3015 struct smi_info *smi_info = in; 3016 unsigned char *data = smi_info->curr_msg->data; 3017 unsigned int size = smi_info->curr_msg->data_size; 3018 if (size >= 8 && 3019 (data[0]>>2) == STORAGE_NETFN && 3020 data[1] == STORAGE_CMD_GET_SDR && 3021 data[7] == 0x3A) { 3022 return_hosed_msg_badsize(smi_info); 3023 return NOTIFY_STOP; 3024 } 3025 return NOTIFY_DONE; 3026 } 3027 3028 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3029 .notifier_call = dell_poweredge_bt_xaction_handler, 3030 }; 3031 3032 /* 3033 * setup_dell_poweredge_bt_xaction_handler 3034 * @info - smi_info.device_id must be filled in already 3035 * 3036 * Fills in smi_info.device_id.start_transaction_pre_hook 3037 * when we know what function to use there. 3038 */ 3039 static void 3040 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3041 { 3042 struct ipmi_device_id *id = &smi_info->device_id; 3043 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3044 smi_info->si_type == SI_BT) 3045 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3046 } 3047 3048 /* 3049 * setup_oem_data_handler 3050 * @info - smi_info.device_id must be filled in already 3051 * 3052 * Fills in smi_info.device_id.oem_data_available_handler 3053 * when we know what function to use there. 3054 */ 3055 3056 static void setup_oem_data_handler(struct smi_info *smi_info) 3057 { 3058 setup_dell_poweredge_oem_data_handler(smi_info); 3059 } 3060 3061 static void setup_xaction_handlers(struct smi_info *smi_info) 3062 { 3063 setup_dell_poweredge_bt_xaction_handler(smi_info); 3064 } 3065 3066 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3067 { 3068 if (smi_info->intf) { 3069 /* 3070 * The timer and thread are only running if the 3071 * interface has been started up and registered. 3072 */ 3073 if (smi_info->thread != NULL) 3074 kthread_stop(smi_info->thread); 3075 del_timer_sync(&smi_info->si_timer); 3076 } 3077 } 3078 3079 static struct ipmi_default_vals 3080 { 3081 int type; 3082 int port; 3083 } ipmi_defaults[] = 3084 { 3085 { .type = SI_KCS, .port = 0xca2 }, 3086 { .type = SI_SMIC, .port = 0xca9 }, 3087 { .type = SI_BT, .port = 0xe4 }, 3088 { .port = 0 } 3089 }; 3090 3091 static void default_find_bmc(void) 3092 { 3093 struct smi_info *info; 3094 int i; 3095 3096 for (i = 0; ; i++) { 3097 if (!ipmi_defaults[i].port) 3098 break; 3099 #ifdef CONFIG_PPC 3100 if (check_legacy_ioport(ipmi_defaults[i].port)) 3101 continue; 3102 #endif 3103 info = smi_info_alloc(); 3104 if (!info) 3105 return; 3106 3107 info->addr_source = SI_DEFAULT; 3108 3109 info->si_type = ipmi_defaults[i].type; 3110 info->io_setup = port_setup; 3111 info->io.addr_data = ipmi_defaults[i].port; 3112 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3113 3114 info->io.addr = NULL; 3115 info->io.regspacing = DEFAULT_REGSPACING; 3116 info->io.regsize = DEFAULT_REGSPACING; 3117 info->io.regshift = 0; 3118 3119 if (add_smi(info) == 0) { 3120 if ((try_smi_init(info)) == 0) { 3121 /* Found one... */ 3122 printk(KERN_INFO PFX "Found default %s" 3123 " state machine at %s address 0x%lx\n", 3124 si_to_str[info->si_type], 3125 addr_space_to_str[info->io.addr_type], 3126 info->io.addr_data); 3127 } else 3128 cleanup_one_si(info); 3129 } else { 3130 kfree(info); 3131 } 3132 } 3133 } 3134 3135 static int is_new_interface(struct smi_info *info) 3136 { 3137 struct smi_info *e; 3138 3139 list_for_each_entry(e, &smi_infos, link) { 3140 if (e->io.addr_type != info->io.addr_type) 3141 continue; 3142 if (e->io.addr_data == info->io.addr_data) 3143 return 0; 3144 } 3145 3146 return 1; 3147 } 3148 3149 static int add_smi(struct smi_info *new_smi) 3150 { 3151 int rv = 0; 3152 3153 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3154 ipmi_addr_src_to_str[new_smi->addr_source], 3155 si_to_str[new_smi->si_type]); 3156 mutex_lock(&smi_infos_lock); 3157 if (!is_new_interface(new_smi)) { 3158 printk(KERN_CONT " duplicate interface\n"); 3159 rv = -EBUSY; 3160 goto out_err; 3161 } 3162 3163 printk(KERN_CONT "\n"); 3164 3165 /* So we know not to free it unless we have allocated one. */ 3166 new_smi->intf = NULL; 3167 new_smi->si_sm = NULL; 3168 new_smi->handlers = NULL; 3169 3170 list_add_tail(&new_smi->link, &smi_infos); 3171 3172 out_err: 3173 mutex_unlock(&smi_infos_lock); 3174 return rv; 3175 } 3176 3177 static int try_smi_init(struct smi_info *new_smi) 3178 { 3179 int rv = 0; 3180 int i; 3181 3182 printk(KERN_INFO PFX "Trying %s-specified %s state" 3183 " machine at %s address 0x%lx, slave address 0x%x," 3184 " irq %d\n", 3185 ipmi_addr_src_to_str[new_smi->addr_source], 3186 si_to_str[new_smi->si_type], 3187 addr_space_to_str[new_smi->io.addr_type], 3188 new_smi->io.addr_data, 3189 new_smi->slave_addr, new_smi->irq); 3190 3191 switch (new_smi->si_type) { 3192 case SI_KCS: 3193 new_smi->handlers = &kcs_smi_handlers; 3194 break; 3195 3196 case SI_SMIC: 3197 new_smi->handlers = &smic_smi_handlers; 3198 break; 3199 3200 case SI_BT: 3201 new_smi->handlers = &bt_smi_handlers; 3202 break; 3203 3204 default: 3205 /* No support for anything else yet. */ 3206 rv = -EIO; 3207 goto out_err; 3208 } 3209 3210 /* Allocate the state machine's data and initialize it. */ 3211 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3212 if (!new_smi->si_sm) { 3213 printk(KERN_ERR PFX 3214 "Could not allocate state machine memory\n"); 3215 rv = -ENOMEM; 3216 goto out_err; 3217 } 3218 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3219 &new_smi->io); 3220 3221 /* Now that we know the I/O size, we can set up the I/O. */ 3222 rv = new_smi->io_setup(new_smi); 3223 if (rv) { 3224 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3225 goto out_err; 3226 } 3227 3228 /* Do low-level detection first. */ 3229 if (new_smi->handlers->detect(new_smi->si_sm)) { 3230 if (new_smi->addr_source) 3231 printk(KERN_INFO PFX "Interface detection failed\n"); 3232 rv = -ENODEV; 3233 goto out_err; 3234 } 3235 3236 /* 3237 * Attempt a get device id command. If it fails, we probably 3238 * don't have a BMC here. 3239 */ 3240 rv = try_get_dev_id(new_smi); 3241 if (rv) { 3242 if (new_smi->addr_source) 3243 printk(KERN_INFO PFX "There appears to be no BMC" 3244 " at this location\n"); 3245 goto out_err; 3246 } 3247 3248 setup_oem_data_handler(new_smi); 3249 setup_xaction_handlers(new_smi); 3250 3251 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3252 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3253 new_smi->curr_msg = NULL; 3254 atomic_set(&new_smi->req_events, 0); 3255 new_smi->run_to_completion = 0; 3256 for (i = 0; i < SI_NUM_STATS; i++) 3257 atomic_set(&new_smi->stats[i], 0); 3258 3259 new_smi->interrupt_disabled = 1; 3260 atomic_set(&new_smi->stop_operation, 0); 3261 new_smi->intf_num = smi_num; 3262 smi_num++; 3263 3264 rv = try_enable_event_buffer(new_smi); 3265 if (rv == 0) 3266 new_smi->has_event_buffer = 1; 3267 3268 /* 3269 * Start clearing the flags before we enable interrupts or the 3270 * timer to avoid racing with the timer. 3271 */ 3272 start_clear_flags(new_smi); 3273 /* IRQ is defined to be set when non-zero. */ 3274 if (new_smi->irq) 3275 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3276 3277 if (!new_smi->dev) { 3278 /* 3279 * If we don't already have a device from something 3280 * else (like PCI), then register a new one. 3281 */ 3282 new_smi->pdev = platform_device_alloc("ipmi_si", 3283 new_smi->intf_num); 3284 if (!new_smi->pdev) { 3285 printk(KERN_ERR PFX 3286 "Unable to allocate platform device\n"); 3287 goto out_err; 3288 } 3289 new_smi->dev = &new_smi->pdev->dev; 3290 new_smi->dev->driver = &ipmi_driver.driver; 3291 3292 rv = platform_device_add(new_smi->pdev); 3293 if (rv) { 3294 printk(KERN_ERR PFX 3295 "Unable to register system interface device:" 3296 " %d\n", 3297 rv); 3298 goto out_err; 3299 } 3300 new_smi->dev_registered = 1; 3301 } 3302 3303 rv = ipmi_register_smi(&handlers, 3304 new_smi, 3305 &new_smi->device_id, 3306 new_smi->dev, 3307 "bmc", 3308 new_smi->slave_addr); 3309 if (rv) { 3310 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3311 rv); 3312 goto out_err_stop_timer; 3313 } 3314 3315 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3316 &smi_type_proc_ops, 3317 new_smi); 3318 if (rv) { 3319 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3320 goto out_err_stop_timer; 3321 } 3322 3323 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3324 &smi_si_stats_proc_ops, 3325 new_smi); 3326 if (rv) { 3327 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3328 goto out_err_stop_timer; 3329 } 3330 3331 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3332 &smi_params_proc_ops, 3333 new_smi); 3334 if (rv) { 3335 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3336 goto out_err_stop_timer; 3337 } 3338 3339 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3340 si_to_str[new_smi->si_type]); 3341 3342 return 0; 3343 3344 out_err_stop_timer: 3345 atomic_inc(&new_smi->stop_operation); 3346 wait_for_timer_and_thread(new_smi); 3347 3348 out_err: 3349 new_smi->interrupt_disabled = 1; 3350 3351 if (new_smi->intf) { 3352 ipmi_unregister_smi(new_smi->intf); 3353 new_smi->intf = NULL; 3354 } 3355 3356 if (new_smi->irq_cleanup) { 3357 new_smi->irq_cleanup(new_smi); 3358 new_smi->irq_cleanup = NULL; 3359 } 3360 3361 /* 3362 * Wait until we know that we are out of any interrupt 3363 * handlers might have been running before we freed the 3364 * interrupt. 3365 */ 3366 synchronize_sched(); 3367 3368 if (new_smi->si_sm) { 3369 if (new_smi->handlers) 3370 new_smi->handlers->cleanup(new_smi->si_sm); 3371 kfree(new_smi->si_sm); 3372 new_smi->si_sm = NULL; 3373 } 3374 if (new_smi->addr_source_cleanup) { 3375 new_smi->addr_source_cleanup(new_smi); 3376 new_smi->addr_source_cleanup = NULL; 3377 } 3378 if (new_smi->io_cleanup) { 3379 new_smi->io_cleanup(new_smi); 3380 new_smi->io_cleanup = NULL; 3381 } 3382 3383 if (new_smi->dev_registered) { 3384 platform_device_unregister(new_smi->pdev); 3385 new_smi->dev_registered = 0; 3386 } 3387 3388 return rv; 3389 } 3390 3391 static int init_ipmi_si(void) 3392 { 3393 int i; 3394 char *str; 3395 int rv; 3396 struct smi_info *e; 3397 enum ipmi_addr_src type = SI_INVALID; 3398 3399 if (initialized) 3400 return 0; 3401 initialized = 1; 3402 3403 if (si_tryplatform) { 3404 rv = platform_driver_register(&ipmi_driver); 3405 if (rv) { 3406 printk(KERN_ERR PFX "Unable to register " 3407 "driver: %d\n", rv); 3408 return rv; 3409 } 3410 } 3411 3412 /* Parse out the si_type string into its components. */ 3413 str = si_type_str; 3414 if (*str != '\0') { 3415 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3416 si_type[i] = str; 3417 str = strchr(str, ','); 3418 if (str) { 3419 *str = '\0'; 3420 str++; 3421 } else { 3422 break; 3423 } 3424 } 3425 } 3426 3427 printk(KERN_INFO "IPMI System Interface driver.\n"); 3428 3429 /* If the user gave us a device, they presumably want us to use it */ 3430 if (!hardcode_find_bmc()) 3431 return 0; 3432 3433 #ifdef CONFIG_PCI 3434 if (si_trypci) { 3435 rv = pci_register_driver(&ipmi_pci_driver); 3436 if (rv) 3437 printk(KERN_ERR PFX "Unable to register " 3438 "PCI driver: %d\n", rv); 3439 else 3440 pci_registered = 1; 3441 } 3442 #endif 3443 3444 #ifdef CONFIG_ACPI 3445 if (si_tryacpi) { 3446 pnp_register_driver(&ipmi_pnp_driver); 3447 pnp_registered = 1; 3448 } 3449 #endif 3450 3451 #ifdef CONFIG_DMI 3452 if (si_trydmi) 3453 dmi_find_bmc(); 3454 #endif 3455 3456 #ifdef CONFIG_ACPI 3457 if (si_tryacpi) 3458 spmi_find_bmc(); 3459 #endif 3460 3461 /* We prefer devices with interrupts, but in the case of a machine 3462 with multiple BMCs we assume that there will be several instances 3463 of a given type so if we succeed in registering a type then also 3464 try to register everything else of the same type */ 3465 3466 mutex_lock(&smi_infos_lock); 3467 list_for_each_entry(e, &smi_infos, link) { 3468 /* Try to register a device if it has an IRQ and we either 3469 haven't successfully registered a device yet or this 3470 device has the same type as one we successfully registered */ 3471 if (e->irq && (!type || e->addr_source == type)) { 3472 if (!try_smi_init(e)) { 3473 type = e->addr_source; 3474 } 3475 } 3476 } 3477 3478 /* type will only have been set if we successfully registered an si */ 3479 if (type) { 3480 mutex_unlock(&smi_infos_lock); 3481 return 0; 3482 } 3483 3484 /* Fall back to the preferred device */ 3485 3486 list_for_each_entry(e, &smi_infos, link) { 3487 if (!e->irq && (!type || e->addr_source == type)) { 3488 if (!try_smi_init(e)) { 3489 type = e->addr_source; 3490 } 3491 } 3492 } 3493 mutex_unlock(&smi_infos_lock); 3494 3495 if (type) 3496 return 0; 3497 3498 if (si_trydefaults) { 3499 mutex_lock(&smi_infos_lock); 3500 if (list_empty(&smi_infos)) { 3501 /* No BMC was found, try defaults. */ 3502 mutex_unlock(&smi_infos_lock); 3503 default_find_bmc(); 3504 } else 3505 mutex_unlock(&smi_infos_lock); 3506 } 3507 3508 mutex_lock(&smi_infos_lock); 3509 if (unload_when_empty && list_empty(&smi_infos)) { 3510 mutex_unlock(&smi_infos_lock); 3511 cleanup_ipmi_si(); 3512 printk(KERN_WARNING PFX 3513 "Unable to find any System Interface(s)\n"); 3514 return -ENODEV; 3515 } else { 3516 mutex_unlock(&smi_infos_lock); 3517 return 0; 3518 } 3519 } 3520 module_init(init_ipmi_si); 3521 3522 static void cleanup_one_si(struct smi_info *to_clean) 3523 { 3524 int rv = 0; 3525 unsigned long flags; 3526 3527 if (!to_clean) 3528 return; 3529 3530 list_del(&to_clean->link); 3531 3532 /* Tell the driver that we are shutting down. */ 3533 atomic_inc(&to_clean->stop_operation); 3534 3535 /* 3536 * Make sure the timer and thread are stopped and will not run 3537 * again. 3538 */ 3539 wait_for_timer_and_thread(to_clean); 3540 3541 /* 3542 * Timeouts are stopped, now make sure the interrupts are off 3543 * for the device. A little tricky with locks to make sure 3544 * there are no races. 3545 */ 3546 spin_lock_irqsave(&to_clean->si_lock, flags); 3547 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3548 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3549 poll(to_clean); 3550 schedule_timeout_uninterruptible(1); 3551 spin_lock_irqsave(&to_clean->si_lock, flags); 3552 } 3553 disable_si_irq(to_clean); 3554 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3555 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3556 poll(to_clean); 3557 schedule_timeout_uninterruptible(1); 3558 } 3559 3560 /* Clean up interrupts and make sure that everything is done. */ 3561 if (to_clean->irq_cleanup) 3562 to_clean->irq_cleanup(to_clean); 3563 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3564 poll(to_clean); 3565 schedule_timeout_uninterruptible(1); 3566 } 3567 3568 if (to_clean->intf) 3569 rv = ipmi_unregister_smi(to_clean->intf); 3570 3571 if (rv) { 3572 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3573 rv); 3574 } 3575 3576 if (to_clean->handlers) 3577 to_clean->handlers->cleanup(to_clean->si_sm); 3578 3579 kfree(to_clean->si_sm); 3580 3581 if (to_clean->addr_source_cleanup) 3582 to_clean->addr_source_cleanup(to_clean); 3583 if (to_clean->io_cleanup) 3584 to_clean->io_cleanup(to_clean); 3585 3586 if (to_clean->dev_registered) 3587 platform_device_unregister(to_clean->pdev); 3588 3589 kfree(to_clean); 3590 } 3591 3592 static void cleanup_ipmi_si(void) 3593 { 3594 struct smi_info *e, *tmp_e; 3595 3596 if (!initialized) 3597 return; 3598 3599 #ifdef CONFIG_PCI 3600 if (pci_registered) 3601 pci_unregister_driver(&ipmi_pci_driver); 3602 #endif 3603 #ifdef CONFIG_ACPI 3604 if (pnp_registered) 3605 pnp_unregister_driver(&ipmi_pnp_driver); 3606 #endif 3607 3608 platform_driver_unregister(&ipmi_driver); 3609 3610 mutex_lock(&smi_infos_lock); 3611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3612 cleanup_one_si(e); 3613 mutex_unlock(&smi_infos_lock); 3614 } 3615 module_exit(cleanup_ipmi_si); 3616 3617 MODULE_LICENSE("GPL"); 3618 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3619 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3620 " system interfaces."); 3621