xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 					"ACPI", "SMBIOS", "PCI",
112 					"device-tree", "default" };
113 
114 #define DEVICE_NAME "ipmi_si"
115 
116 static struct platform_driver ipmi_driver;
117 
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122 	/*
123 	 * Number of times the driver requested a timer while an operation
124 	 * was in progress.
125 	 */
126 	SI_STAT_short_timeouts = 0,
127 
128 	/*
129 	 * Number of times the driver requested a timer while nothing was in
130 	 * progress.
131 	 */
132 	SI_STAT_long_timeouts,
133 
134 	/* Number of times the interface was idle while being polled. */
135 	SI_STAT_idles,
136 
137 	/* Number of interrupts the driver handled. */
138 	SI_STAT_interrupts,
139 
140 	/* Number of time the driver got an ATTN from the hardware. */
141 	SI_STAT_attentions,
142 
143 	/* Number of times the driver requested flags from the hardware. */
144 	SI_STAT_flag_fetches,
145 
146 	/* Number of times the hardware didn't follow the state machine. */
147 	SI_STAT_hosed_count,
148 
149 	/* Number of completed messages. */
150 	SI_STAT_complete_transactions,
151 
152 	/* Number of IPMI events received from the hardware. */
153 	SI_STAT_events,
154 
155 	/* Number of watchdog pretimeouts. */
156 	SI_STAT_watchdog_pretimeouts,
157 
158 	/* Number of asynchronous messages received. */
159 	SI_STAT_incoming_messages,
160 
161 
162 	/* This *must* remain last, add new values above this. */
163 	SI_NUM_STATS
164 };
165 
166 struct smi_info {
167 	int                    intf_num;
168 	ipmi_smi_t             intf;
169 	struct si_sm_data      *si_sm;
170 	struct si_sm_handlers  *handlers;
171 	enum si_type           si_type;
172 	spinlock_t             si_lock;
173 	struct list_head       xmit_msgs;
174 	struct list_head       hp_xmit_msgs;
175 	struct ipmi_smi_msg    *curr_msg;
176 	enum si_intf_state     si_state;
177 
178 	/*
179 	 * Used to handle the various types of I/O that can occur with
180 	 * IPMI
181 	 */
182 	struct si_sm_io io;
183 	int (*io_setup)(struct smi_info *info);
184 	void (*io_cleanup)(struct smi_info *info);
185 	int (*irq_setup)(struct smi_info *info);
186 	void (*irq_cleanup)(struct smi_info *info);
187 	unsigned int io_size;
188 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 	void (*addr_source_cleanup)(struct smi_info *info);
190 	void *addr_source_data;
191 
192 	/*
193 	 * Per-OEM handler, called from handle_flags().  Returns 1
194 	 * when handle_flags() needs to be re-run or 0 indicating it
195 	 * set si_state itself.
196 	 */
197 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
198 
199 	/*
200 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 	 * is set to hold the flags until we are done handling everything
202 	 * from the flags.
203 	 */
204 #define RECEIVE_MSG_AVAIL	0x01
205 #define EVENT_MSG_BUFFER_FULL	0x02
206 #define WDT_PRE_TIMEOUT_INT	0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211 			     OEM1_DATA_AVAIL | \
212 			     OEM2_DATA_AVAIL)
213 	unsigned char       msg_flags;
214 
215 	/* Does the BMC have an event buffer? */
216 	char		    has_event_buffer;
217 
218 	/*
219 	 * If set to true, this will request events the next time the
220 	 * state machine is idle.
221 	 */
222 	atomic_t            req_events;
223 
224 	/*
225 	 * If true, run the state machine to completion on every send
226 	 * call.  Generally used after a panic to make sure stuff goes
227 	 * out.
228 	 */
229 	int                 run_to_completion;
230 
231 	/* The I/O port of an SI interface. */
232 	int                 port;
233 
234 	/*
235 	 * The space between start addresses of the two ports.  For
236 	 * instance, if the first port is 0xca2 and the spacing is 4, then
237 	 * the second port is 0xca6.
238 	 */
239 	unsigned int        spacing;
240 
241 	/* zero if no irq; */
242 	int                 irq;
243 
244 	/* The timer for this si. */
245 	struct timer_list   si_timer;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Used to gracefully stop the timer without race conditions. */
251 	atomic_t            stop_operation;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	int interrupt_disabled;
260 
261 	/* From the get device id response... */
262 	struct ipmi_device_id device_id;
263 
264 	/* Driver model stuff. */
265 	struct device *dev;
266 	struct platform_device *pdev;
267 
268 	/*
269 	 * True if we allocated the device, false if it came from
270 	 * someplace else (like PCI).
271 	 */
272 	int dev_registered;
273 
274 	/* Slave address, could be reported from DMI. */
275 	unsigned char slave_addr;
276 
277 	/* Counters and things for the proc filesystem. */
278 	atomic_t stats[SI_NUM_STATS];
279 
280 	struct task_struct *thread;
281 
282 	struct list_head link;
283 	union ipmi_smi_info_union addr_info;
284 };
285 
286 #define smi_inc_stat(smi, stat) \
287 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290 
291 #define SI_MAX_PARMS 4
292 
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301 
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304 
305 static int unload_when_empty = 1;
306 
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311 
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317 
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 			     struct ipmi_smi_msg *msg)
320 {
321 	/* Deliver the message to the upper layer. */
322 	ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324 
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
328 
329 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 		cCode = IPMI_ERR_UNSPECIFIED;
331 	/* else use it as is */
332 
333 	/* Make it a response */
334 	msg->rsp[0] = msg->data[0] | 4;
335 	msg->rsp[1] = msg->data[1];
336 	msg->rsp[2] = cCode;
337 	msg->rsp_size = 3;
338 
339 	smi_info->curr_msg = NULL;
340 	deliver_recv_msg(smi_info, msg);
341 }
342 
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 	int              rv;
346 	struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 	struct timeval t;
349 #endif
350 
351 	/* Pick the high priority queue first. */
352 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 		entry = smi_info->hp_xmit_msgs.next;
354 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
355 		entry = smi_info->xmit_msgs.next;
356 	}
357 
358 	if (!entry) {
359 		smi_info->curr_msg = NULL;
360 		rv = SI_SM_IDLE;
361 	} else {
362 		int err;
363 
364 		list_del(entry);
365 		smi_info->curr_msg = list_entry(entry,
366 						struct ipmi_smi_msg,
367 						link);
368 #ifdef DEBUG_TIMING
369 		do_gettimeofday(&t);
370 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 		err = atomic_notifier_call_chain(&xaction_notifier_list,
373 				0, smi_info);
374 		if (err & NOTIFY_STOP_MASK) {
375 			rv = SI_SM_CALL_WITHOUT_DELAY;
376 			goto out;
377 		}
378 		err = smi_info->handlers->start_transaction(
379 			smi_info->si_sm,
380 			smi_info->curr_msg->data,
381 			smi_info->curr_msg->data_size);
382 		if (err)
383 			return_hosed_msg(smi_info, err);
384 
385 		rv = SI_SM_CALL_WITHOUT_DELAY;
386 	}
387  out:
388 	return rv;
389 }
390 
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 	unsigned char msg[2];
394 
395 	/*
396 	 * If we are enabling interrupts, we have to tell the
397 	 * BMC to use them.
398 	 */
399 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401 
402 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405 
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 	unsigned char msg[2];
409 
410 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412 
413 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416 
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 	unsigned char msg[3];
420 
421 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
422 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 	msg[2] = WDT_PRE_TIMEOUT_INT;
425 
426 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 	smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429 
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 		start_disable_irq(smi_info);
440 		smi_info->interrupt_disabled = 1;
441 		if (!atomic_read(&smi_info->stop_operation))
442 			mod_timer(&smi_info->si_timer,
443 				  jiffies + SI_TIMEOUT_JIFFIES);
444 	}
445 }
446 
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 		start_enable_irq(smi_info);
451 		smi_info->interrupt_disabled = 0;
452 	}
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 		/* Watchdog pre-timeout */
460 		smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462 		start_clear_flags(smi_info);
463 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 		/* Messages available. */
467 		smi_info->curr_msg = ipmi_alloc_smi_msg();
468 		if (!smi_info->curr_msg) {
469 			disable_si_irq(smi_info);
470 			smi_info->si_state = SI_NORMAL;
471 			return;
472 		}
473 		enable_si_irq(smi_info);
474 
475 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 		smi_info->curr_msg->data_size = 2;
478 
479 		smi_info->handlers->start_transaction(
480 			smi_info->si_sm,
481 			smi_info->curr_msg->data,
482 			smi_info->curr_msg->data_size);
483 		smi_info->si_state = SI_GETTING_MESSAGES;
484 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 		/* Events available. */
486 		smi_info->curr_msg = ipmi_alloc_smi_msg();
487 		if (!smi_info->curr_msg) {
488 			disable_si_irq(smi_info);
489 			smi_info->si_state = SI_NORMAL;
490 			return;
491 		}
492 		enable_si_irq(smi_info);
493 
494 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 		smi_info->curr_msg->data_size = 2;
497 
498 		smi_info->handlers->start_transaction(
499 			smi_info->si_sm,
500 			smi_info->curr_msg->data,
501 			smi_info->curr_msg->data_size);
502 		smi_info->si_state = SI_GETTING_EVENTS;
503 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 		   smi_info->oem_data_avail_handler) {
505 		if (smi_info->oem_data_avail_handler(smi_info))
506 			goto retry;
507 	} else
508 		smi_info->si_state = SI_NORMAL;
509 }
510 
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 	struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 	struct timeval t;
516 
517 	do_gettimeofday(&t);
518 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 	switch (smi_info->si_state) {
521 	case SI_NORMAL:
522 		if (!smi_info->curr_msg)
523 			break;
524 
525 		smi_info->curr_msg->rsp_size
526 			= smi_info->handlers->get_result(
527 				smi_info->si_sm,
528 				smi_info->curr_msg->rsp,
529 				IPMI_MAX_MSG_LENGTH);
530 
531 		/*
532 		 * Do this here becase deliver_recv_msg() releases the
533 		 * lock, and a new message can be put in during the
534 		 * time the lock is released.
535 		 */
536 		msg = smi_info->curr_msg;
537 		smi_info->curr_msg = NULL;
538 		deliver_recv_msg(smi_info, msg);
539 		break;
540 
541 	case SI_GETTING_FLAGS:
542 	{
543 		unsigned char msg[4];
544 		unsigned int  len;
545 
546 		/* We got the flags from the SMI, now handle them. */
547 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 		if (msg[2] != 0) {
549 			/* Error fetching flags, just give up for now. */
550 			smi_info->si_state = SI_NORMAL;
551 		} else if (len < 4) {
552 			/*
553 			 * Hmm, no flags.  That's technically illegal, but
554 			 * don't use uninitialized data.
555 			 */
556 			smi_info->si_state = SI_NORMAL;
557 		} else {
558 			smi_info->msg_flags = msg[3];
559 			handle_flags(smi_info);
560 		}
561 		break;
562 	}
563 
564 	case SI_CLEARING_FLAGS:
565 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 	{
567 		unsigned char msg[3];
568 
569 		/* We cleared the flags. */
570 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 		if (msg[2] != 0) {
572 			/* Error clearing flags */
573 			dev_warn(smi_info->dev,
574 				 "Error clearing flags: %2.2x\n", msg[2]);
575 		}
576 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 			start_enable_irq(smi_info);
578 		else
579 			smi_info->si_state = SI_NORMAL;
580 		break;
581 	}
582 
583 	case SI_GETTING_EVENTS:
584 	{
585 		smi_info->curr_msg->rsp_size
586 			= smi_info->handlers->get_result(
587 				smi_info->si_sm,
588 				smi_info->curr_msg->rsp,
589 				IPMI_MAX_MSG_LENGTH);
590 
591 		/*
592 		 * Do this here becase deliver_recv_msg() releases the
593 		 * lock, and a new message can be put in during the
594 		 * time the lock is released.
595 		 */
596 		msg = smi_info->curr_msg;
597 		smi_info->curr_msg = NULL;
598 		if (msg->rsp[2] != 0) {
599 			/* Error getting event, probably done. */
600 			msg->done(msg);
601 
602 			/* Take off the event flag. */
603 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 			handle_flags(smi_info);
605 		} else {
606 			smi_inc_stat(smi_info, events);
607 
608 			/*
609 			 * Do this before we deliver the message
610 			 * because delivering the message releases the
611 			 * lock and something else can mess with the
612 			 * state.
613 			 */
614 			handle_flags(smi_info);
615 
616 			deliver_recv_msg(smi_info, msg);
617 		}
618 		break;
619 	}
620 
621 	case SI_GETTING_MESSAGES:
622 	{
623 		smi_info->curr_msg->rsp_size
624 			= smi_info->handlers->get_result(
625 				smi_info->si_sm,
626 				smi_info->curr_msg->rsp,
627 				IPMI_MAX_MSG_LENGTH);
628 
629 		/*
630 		 * Do this here becase deliver_recv_msg() releases the
631 		 * lock, and a new message can be put in during the
632 		 * time the lock is released.
633 		 */
634 		msg = smi_info->curr_msg;
635 		smi_info->curr_msg = NULL;
636 		if (msg->rsp[2] != 0) {
637 			/* Error getting event, probably done. */
638 			msg->done(msg);
639 
640 			/* Take off the msg flag. */
641 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 			handle_flags(smi_info);
643 		} else {
644 			smi_inc_stat(smi_info, incoming_messages);
645 
646 			/*
647 			 * Do this before we deliver the message
648 			 * because delivering the message releases the
649 			 * lock and something else can mess with the
650 			 * state.
651 			 */
652 			handle_flags(smi_info);
653 
654 			deliver_recv_msg(smi_info, msg);
655 		}
656 		break;
657 	}
658 
659 	case SI_ENABLE_INTERRUPTS1:
660 	{
661 		unsigned char msg[4];
662 
663 		/* We got the flags from the SMI, now handle them. */
664 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 		if (msg[2] != 0) {
666 			dev_warn(smi_info->dev, "Could not enable interrupts"
667 				 ", failed get, using polled mode.\n");
668 			smi_info->si_state = SI_NORMAL;
669 		} else {
670 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672 			msg[2] = (msg[3] |
673 				  IPMI_BMC_RCV_MSG_INTR |
674 				  IPMI_BMC_EVT_MSG_INTR);
675 			smi_info->handlers->start_transaction(
676 				smi_info->si_sm, msg, 3);
677 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 		}
679 		break;
680 	}
681 
682 	case SI_ENABLE_INTERRUPTS2:
683 	{
684 		unsigned char msg[4];
685 
686 		/* We got the flags from the SMI, now handle them. */
687 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 		if (msg[2] != 0)
689 			dev_warn(smi_info->dev, "Could not enable interrupts"
690 				 ", failed set, using polled mode.\n");
691 		else
692 			smi_info->interrupt_disabled = 0;
693 		smi_info->si_state = SI_NORMAL;
694 		break;
695 	}
696 
697 	case SI_DISABLE_INTERRUPTS1:
698 	{
699 		unsigned char msg[4];
700 
701 		/* We got the flags from the SMI, now handle them. */
702 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 		if (msg[2] != 0) {
704 			dev_warn(smi_info->dev, "Could not disable interrupts"
705 				 ", failed get.\n");
706 			smi_info->si_state = SI_NORMAL;
707 		} else {
708 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 			msg[2] = (msg[3] &
711 				  ~(IPMI_BMC_RCV_MSG_INTR |
712 				    IPMI_BMC_EVT_MSG_INTR));
713 			smi_info->handlers->start_transaction(
714 				smi_info->si_sm, msg, 3);
715 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 		}
717 		break;
718 	}
719 
720 	case SI_DISABLE_INTERRUPTS2:
721 	{
722 		unsigned char msg[4];
723 
724 		/* We got the flags from the SMI, now handle them. */
725 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 		if (msg[2] != 0) {
727 			dev_warn(smi_info->dev, "Could not disable interrupts"
728 				 ", failed set.\n");
729 		}
730 		smi_info->si_state = SI_NORMAL;
731 		break;
732 	}
733 	}
734 }
735 
736 /*
737  * Called on timeouts and events.  Timeouts should pass the elapsed
738  * time, interrupts should pass in zero.  Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 					   int time)
743 {
744 	enum si_sm_result si_sm_result;
745 
746  restart:
747 	/*
748 	 * There used to be a loop here that waited a little while
749 	 * (around 25us) before giving up.  That turned out to be
750 	 * pointless, the minimum delays I was seeing were in the 300us
751 	 * range, which is far too long to wait in an interrupt.  So
752 	 * we just run until the state machine tells us something
753 	 * happened or it needs a delay.
754 	 */
755 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 	time = 0;
757 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759 
760 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761 		smi_inc_stat(smi_info, complete_transactions);
762 
763 		handle_transaction_done(smi_info);
764 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765 	} else if (si_sm_result == SI_SM_HOSED) {
766 		smi_inc_stat(smi_info, hosed_count);
767 
768 		/*
769 		 * Do the before return_hosed_msg, because that
770 		 * releases the lock.
771 		 */
772 		smi_info->si_state = SI_NORMAL;
773 		if (smi_info->curr_msg != NULL) {
774 			/*
775 			 * If we were handling a user message, format
776 			 * a response to send to the upper layer to
777 			 * tell it about the error.
778 			 */
779 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780 		}
781 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 	}
783 
784 	/*
785 	 * We prefer handling attn over new messages.  But don't do
786 	 * this if there is not yet an upper layer to handle anything.
787 	 */
788 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789 		unsigned char msg[2];
790 
791 		smi_inc_stat(smi_info, attentions);
792 
793 		/*
794 		 * Got a attn, send down a get message flags to see
795 		 * what's causing it.  It would be better to handle
796 		 * this in the upper layer, but due to the way
797 		 * interrupts work with the SMI, that's not really
798 		 * possible.
799 		 */
800 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802 
803 		smi_info->handlers->start_transaction(
804 			smi_info->si_sm, msg, 2);
805 		smi_info->si_state = SI_GETTING_FLAGS;
806 		goto restart;
807 	}
808 
809 	/* If we are currently idle, try to start the next message. */
810 	if (si_sm_result == SI_SM_IDLE) {
811 		smi_inc_stat(smi_info, idles);
812 
813 		si_sm_result = start_next_msg(smi_info);
814 		if (si_sm_result != SI_SM_IDLE)
815 			goto restart;
816 	}
817 
818 	if ((si_sm_result == SI_SM_IDLE)
819 	    && (atomic_read(&smi_info->req_events))) {
820 		/*
821 		 * We are idle and the upper layer requested that I fetch
822 		 * events, so do so.
823 		 */
824 		atomic_set(&smi_info->req_events, 0);
825 
826 		smi_info->curr_msg = ipmi_alloc_smi_msg();
827 		if (!smi_info->curr_msg)
828 			goto out;
829 
830 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 		smi_info->curr_msg->data_size = 2;
833 
834 		smi_info->handlers->start_transaction(
835 			smi_info->si_sm,
836 			smi_info->curr_msg->data,
837 			smi_info->curr_msg->data_size);
838 		smi_info->si_state = SI_GETTING_EVENTS;
839 		goto restart;
840 	}
841  out:
842 	return si_sm_result;
843 }
844 
845 static void sender(void                *send_info,
846 		   struct ipmi_smi_msg *msg,
847 		   int                 priority)
848 {
849 	struct smi_info   *smi_info = send_info;
850 	enum si_sm_result result;
851 	unsigned long     flags;
852 #ifdef DEBUG_TIMING
853 	struct timeval    t;
854 #endif
855 
856 	if (atomic_read(&smi_info->stop_operation)) {
857 		msg->rsp[0] = msg->data[0] | 4;
858 		msg->rsp[1] = msg->data[1];
859 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 		msg->rsp_size = 3;
861 		deliver_recv_msg(smi_info, msg);
862 		return;
863 	}
864 
865 #ifdef DEBUG_TIMING
866 	do_gettimeofday(&t);
867 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869 
870 	if (smi_info->run_to_completion) {
871 		/*
872 		 * If we are running to completion, then throw it in
873 		 * the list and run transactions until everything is
874 		 * clear.  Priority doesn't matter here.
875 		 */
876 
877 		/*
878 		 * Run to completion means we are single-threaded, no
879 		 * need for locks.
880 		 */
881 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882 
883 		result = smi_event_handler(smi_info, 0);
884 		while (result != SI_SM_IDLE) {
885 			udelay(SI_SHORT_TIMEOUT_USEC);
886 			result = smi_event_handler(smi_info,
887 						   SI_SHORT_TIMEOUT_USEC);
888 		}
889 		return;
890 	}
891 
892 	spin_lock_irqsave(&smi_info->si_lock, flags);
893 	if (priority > 0)
894 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 	else
896 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
897 
898 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899 		/*
900 		 * last_timeout_jiffies is updated here to avoid
901 		 * smi_timeout() handler passing very large time_diff
902 		 * value to smi_event_handler() that causes
903 		 * the send command to abort.
904 		 */
905 		smi_info->last_timeout_jiffies = jiffies;
906 
907 		mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908 
909 		if (smi_info->thread)
910 			wake_up_process(smi_info->thread);
911 
912 		start_next_msg(smi_info);
913 		smi_event_handler(smi_info, 0);
914 	}
915 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917 
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920 	struct smi_info   *smi_info = send_info;
921 	enum si_sm_result result;
922 
923 	smi_info->run_to_completion = i_run_to_completion;
924 	if (i_run_to_completion) {
925 		result = smi_event_handler(smi_info, 0);
926 		while (result != SI_SM_IDLE) {
927 			udelay(SI_SHORT_TIMEOUT_USEC);
928 			result = smi_event_handler(smi_info,
929 						   SI_SHORT_TIMEOUT_USEC);
930 		}
931 	}
932 }
933 
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941 	ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945 	return ts->tv_nsec != -1;
946 }
947 
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 				 const struct smi_info *smi_info,
950 				 struct timespec *busy_until)
951 {
952 	unsigned int max_busy_us = 0;
953 
954 	if (smi_info->intf_num < num_max_busy_us)
955 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 		ipmi_si_set_not_busy(busy_until);
958 	else if (!ipmi_si_is_busy(busy_until)) {
959 		getnstimeofday(busy_until);
960 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 	} else {
962 		struct timespec now;
963 		getnstimeofday(&now);
964 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 			ipmi_si_set_not_busy(busy_until);
966 			return 0;
967 		}
968 	}
969 	return 1;
970 }
971 
972 
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984 	struct smi_info *smi_info = data;
985 	unsigned long flags;
986 	enum si_sm_result smi_result;
987 	struct timespec busy_until;
988 
989 	ipmi_si_set_not_busy(&busy_until);
990 	set_user_nice(current, 19);
991 	while (!kthread_should_stop()) {
992 		int busy_wait;
993 
994 		spin_lock_irqsave(&(smi_info->si_lock), flags);
995 		smi_result = smi_event_handler(smi_info, 0);
996 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 						  &busy_until);
999 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 			; /* do nothing */
1001 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002 			schedule();
1003 		else if (smi_result == SI_SM_IDLE)
1004 			schedule_timeout_interruptible(100);
1005 		else
1006 			schedule_timeout_interruptible(1);
1007 	}
1008 	return 0;
1009 }
1010 
1011 
1012 static void poll(void *send_info)
1013 {
1014 	struct smi_info *smi_info = send_info;
1015 	unsigned long flags = 0;
1016 	int run_to_completion = smi_info->run_to_completion;
1017 
1018 	/*
1019 	 * Make sure there is some delay in the poll loop so we can
1020 	 * drive time forward and timeout things.
1021 	 */
1022 	udelay(10);
1023 	if (!run_to_completion)
1024 		spin_lock_irqsave(&smi_info->si_lock, flags);
1025 	smi_event_handler(smi_info, 10);
1026 	if (!run_to_completion)
1027 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029 
1030 static void request_events(void *send_info)
1031 {
1032 	struct smi_info *smi_info = send_info;
1033 
1034 	if (atomic_read(&smi_info->stop_operation) ||
1035 				!smi_info->has_event_buffer)
1036 		return;
1037 
1038 	atomic_set(&smi_info->req_events, 1);
1039 }
1040 
1041 static int initialized;
1042 
1043 static void smi_timeout(unsigned long data)
1044 {
1045 	struct smi_info   *smi_info = (struct smi_info *) data;
1046 	enum si_sm_result smi_result;
1047 	unsigned long     flags;
1048 	unsigned long     jiffies_now;
1049 	long              time_diff;
1050 	long		  timeout;
1051 #ifdef DEBUG_TIMING
1052 	struct timeval    t;
1053 #endif
1054 
1055 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057 	do_gettimeofday(&t);
1058 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060 	jiffies_now = jiffies;
1061 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062 		     * SI_USEC_PER_JIFFY);
1063 	smi_result = smi_event_handler(smi_info, time_diff);
1064 
1065 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066 
1067 	smi_info->last_timeout_jiffies = jiffies_now;
1068 
1069 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070 		/* Running with interrupts, only do long timeouts. */
1071 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072 		smi_inc_stat(smi_info, long_timeouts);
1073 		goto do_mod_timer;
1074 	}
1075 
1076 	/*
1077 	 * If the state machine asks for a short delay, then shorten
1078 	 * the timer timeout.
1079 	 */
1080 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081 		smi_inc_stat(smi_info, short_timeouts);
1082 		timeout = jiffies + 1;
1083 	} else {
1084 		smi_inc_stat(smi_info, long_timeouts);
1085 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086 	}
1087 
1088  do_mod_timer:
1089 	if (smi_result != SI_SM_IDLE)
1090 		mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092 
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095 	struct smi_info *smi_info = data;
1096 	unsigned long   flags;
1097 #ifdef DEBUG_TIMING
1098 	struct timeval  t;
1099 #endif
1100 
1101 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1102 
1103 	smi_inc_stat(smi_info, interrupts);
1104 
1105 #ifdef DEBUG_TIMING
1106 	do_gettimeofday(&t);
1107 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109 	smi_event_handler(smi_info, 0);
1110 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116 	struct smi_info *smi_info = data;
1117 	/* We need to clear the IRQ flag for the BT interface. */
1118 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121 	return si_irq_handler(irq, data);
1122 }
1123 
1124 static int smi_start_processing(void       *send_info,
1125 				ipmi_smi_t intf)
1126 {
1127 	struct smi_info *new_smi = send_info;
1128 	int             enable = 0;
1129 
1130 	new_smi->intf = intf;
1131 
1132 	/* Try to claim any interrupts. */
1133 	if (new_smi->irq_setup)
1134 		new_smi->irq_setup(new_smi);
1135 
1136 	/* Set up the timer that drives the interface. */
1137 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 	new_smi->last_timeout_jiffies = jiffies;
1139 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140 
1141 	/*
1142 	 * Check if the user forcefully enabled the daemon.
1143 	 */
1144 	if (new_smi->intf_num < num_force_kipmid)
1145 		enable = force_kipmid[new_smi->intf_num];
1146 	/*
1147 	 * The BT interface is efficient enough to not need a thread,
1148 	 * and there is no need for a thread if we have interrupts.
1149 	 */
1150 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151 		enable = 1;
1152 
1153 	if (enable) {
1154 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 					      "kipmi%d", new_smi->intf_num);
1156 		if (IS_ERR(new_smi->thread)) {
1157 			dev_notice(new_smi->dev, "Could not start"
1158 				   " kernel thread due to error %ld, only using"
1159 				   " timers to drive the interface\n",
1160 				   PTR_ERR(new_smi->thread));
1161 			new_smi->thread = NULL;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170 	struct smi_info *smi = send_info;
1171 
1172 	data->addr_src = smi->addr_source;
1173 	data->dev = smi->dev;
1174 	data->addr_info = smi->addr_info;
1175 	get_device(smi->dev);
1176 
1177 	return 0;
1178 }
1179 
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182 	struct smi_info   *smi_info = send_info;
1183 
1184 	if (!enable)
1185 		atomic_set(&smi_info->req_events, 0);
1186 }
1187 
1188 static struct ipmi_smi_handlers handlers = {
1189 	.owner                  = THIS_MODULE,
1190 	.start_processing       = smi_start_processing,
1191 	.get_smi_info		= get_smi_info,
1192 	.sender			= sender,
1193 	.request_events		= request_events,
1194 	.set_maintenance_mode   = set_maintenance_mode,
1195 	.set_run_to_completion  = set_run_to_completion,
1196 	.poll			= poll,
1197 };
1198 
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203 
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207 
1208 #define DEFAULT_REGSPACING	1
1209 #define DEFAULT_REGSIZE		1
1210 
1211 #ifdef CONFIG_ACPI
1212 static bool          si_tryacpi = 1;
1213 #endif
1214 #ifdef CONFIG_DMI
1215 static bool          si_trydmi = 1;
1216 #endif
1217 static bool          si_tryplatform = 1;
1218 #ifdef CONFIG_PCI
1219 static bool          si_trypci = 1;
1220 #endif
1221 static bool          si_trydefaults = 1;
1222 static char          *si_type[SI_MAX_PARMS];
1223 #define MAX_SI_TYPE_STR 30
1224 static char          si_type_str[MAX_SI_TYPE_STR];
1225 static unsigned long addrs[SI_MAX_PARMS];
1226 static unsigned int num_addrs;
1227 static unsigned int  ports[SI_MAX_PARMS];
1228 static unsigned int num_ports;
1229 static int           irqs[SI_MAX_PARMS];
1230 static unsigned int num_irqs;
1231 static int           regspacings[SI_MAX_PARMS];
1232 static unsigned int num_regspacings;
1233 static int           regsizes[SI_MAX_PARMS];
1234 static unsigned int num_regsizes;
1235 static int           regshifts[SI_MAX_PARMS];
1236 static unsigned int num_regshifts;
1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1238 static unsigned int num_slave_addrs;
1239 
1240 #define IPMI_IO_ADDR_SPACE  0
1241 #define IPMI_MEM_ADDR_SPACE 1
1242 static char *addr_space_to_str[] = { "i/o", "mem" };
1243 
1244 static int hotmod_handler(const char *val, struct kernel_param *kp);
1245 
1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1248 		 " Documentation/IPMI.txt in the kernel sources for the"
1249 		 " gory details.");
1250 
1251 #ifdef CONFIG_ACPI
1252 module_param_named(tryacpi, si_tryacpi, bool, 0);
1253 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1254 		 " default scan of the interfaces identified via ACPI");
1255 #endif
1256 #ifdef CONFIG_DMI
1257 module_param_named(trydmi, si_trydmi, bool, 0);
1258 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1259 		 " default scan of the interfaces identified via DMI");
1260 #endif
1261 module_param_named(tryplatform, si_tryplatform, bool, 0);
1262 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1263 		 " default scan of the interfaces identified via platform"
1264 		 " interfaces like openfirmware");
1265 #ifdef CONFIG_PCI
1266 module_param_named(trypci, si_trypci, bool, 0);
1267 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1268 		 " default scan of the interfaces identified via pci");
1269 #endif
1270 module_param_named(trydefaults, si_trydefaults, bool, 0);
1271 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1272 		 " default scan of the KCS and SMIC interface at the standard"
1273 		 " address");
1274 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1275 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1276 		 " interface separated by commas.  The types are 'kcs',"
1277 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1278 		 " the first interface to kcs and the second to bt");
1279 module_param_array(addrs, ulong, &num_addrs, 0);
1280 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1281 		 " addresses separated by commas.  Only use if an interface"
1282 		 " is in memory.  Otherwise, set it to zero or leave"
1283 		 " it blank.");
1284 module_param_array(ports, uint, &num_ports, 0);
1285 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1286 		 " addresses separated by commas.  Only use if an interface"
1287 		 " is a port.  Otherwise, set it to zero or leave"
1288 		 " it blank.");
1289 module_param_array(irqs, int, &num_irqs, 0);
1290 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1291 		 " addresses separated by commas.  Only use if an interface"
1292 		 " has an interrupt.  Otherwise, set it to zero or leave"
1293 		 " it blank.");
1294 module_param_array(regspacings, int, &num_regspacings, 0);
1295 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1296 		 " and each successive register used by the interface.  For"
1297 		 " instance, if the start address is 0xca2 and the spacing"
1298 		 " is 2, then the second address is at 0xca4.  Defaults"
1299 		 " to 1.");
1300 module_param_array(regsizes, int, &num_regsizes, 0);
1301 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1302 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1303 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1304 		 " the 8-bit IPMI register has to be read from a larger"
1305 		 " register.");
1306 module_param_array(regshifts, int, &num_regshifts, 0);
1307 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1308 		 " IPMI register, in bits.  For instance, if the data"
1309 		 " is read from a 32-bit word and the IPMI data is in"
1310 		 " bit 8-15, then the shift would be 8");
1311 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1312 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1313 		 " the controller.  Normally this is 0x20, but can be"
1314 		 " overridden by this parm.  This is an array indexed"
1315 		 " by interface number.");
1316 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1317 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1318 		 " disabled(0).  Normally the IPMI driver auto-detects"
1319 		 " this, but the value may be overridden by this parm.");
1320 module_param(unload_when_empty, int, 0);
1321 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1322 		 " specified or found, default is 1.  Setting to 0"
1323 		 " is useful for hot add of devices using hotmod.");
1324 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1325 MODULE_PARM_DESC(kipmid_max_busy_us,
1326 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1327 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1328 		 " if kipmid is using up a lot of CPU time.");
1329 
1330 
1331 static void std_irq_cleanup(struct smi_info *info)
1332 {
1333 	if (info->si_type == SI_BT)
1334 		/* Disable the interrupt in the BT interface. */
1335 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1336 	free_irq(info->irq, info);
1337 }
1338 
1339 static int std_irq_setup(struct smi_info *info)
1340 {
1341 	int rv;
1342 
1343 	if (!info->irq)
1344 		return 0;
1345 
1346 	if (info->si_type == SI_BT) {
1347 		rv = request_irq(info->irq,
1348 				 si_bt_irq_handler,
1349 				 IRQF_SHARED | IRQF_DISABLED,
1350 				 DEVICE_NAME,
1351 				 info);
1352 		if (!rv)
1353 			/* Enable the interrupt in the BT interface. */
1354 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1355 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1356 	} else
1357 		rv = request_irq(info->irq,
1358 				 si_irq_handler,
1359 				 IRQF_SHARED | IRQF_DISABLED,
1360 				 DEVICE_NAME,
1361 				 info);
1362 	if (rv) {
1363 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1364 			 " running polled\n",
1365 			 DEVICE_NAME, info->irq);
1366 		info->irq = 0;
1367 	} else {
1368 		info->irq_cleanup = std_irq_cleanup;
1369 		dev_info(info->dev, "Using irq %d\n", info->irq);
1370 	}
1371 
1372 	return rv;
1373 }
1374 
1375 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1376 {
1377 	unsigned int addr = io->addr_data;
1378 
1379 	return inb(addr + (offset * io->regspacing));
1380 }
1381 
1382 static void port_outb(struct si_sm_io *io, unsigned int offset,
1383 		      unsigned char b)
1384 {
1385 	unsigned int addr = io->addr_data;
1386 
1387 	outb(b, addr + (offset * io->regspacing));
1388 }
1389 
1390 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1391 {
1392 	unsigned int addr = io->addr_data;
1393 
1394 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1395 }
1396 
1397 static void port_outw(struct si_sm_io *io, unsigned int offset,
1398 		      unsigned char b)
1399 {
1400 	unsigned int addr = io->addr_data;
1401 
1402 	outw(b << io->regshift, addr + (offset * io->regspacing));
1403 }
1404 
1405 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1406 {
1407 	unsigned int addr = io->addr_data;
1408 
1409 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1410 }
1411 
1412 static void port_outl(struct si_sm_io *io, unsigned int offset,
1413 		      unsigned char b)
1414 {
1415 	unsigned int addr = io->addr_data;
1416 
1417 	outl(b << io->regshift, addr+(offset * io->regspacing));
1418 }
1419 
1420 static void port_cleanup(struct smi_info *info)
1421 {
1422 	unsigned int addr = info->io.addr_data;
1423 	int          idx;
1424 
1425 	if (addr) {
1426 		for (idx = 0; idx < info->io_size; idx++)
1427 			release_region(addr + idx * info->io.regspacing,
1428 				       info->io.regsize);
1429 	}
1430 }
1431 
1432 static int port_setup(struct smi_info *info)
1433 {
1434 	unsigned int addr = info->io.addr_data;
1435 	int          idx;
1436 
1437 	if (!addr)
1438 		return -ENODEV;
1439 
1440 	info->io_cleanup = port_cleanup;
1441 
1442 	/*
1443 	 * Figure out the actual inb/inw/inl/etc routine to use based
1444 	 * upon the register size.
1445 	 */
1446 	switch (info->io.regsize) {
1447 	case 1:
1448 		info->io.inputb = port_inb;
1449 		info->io.outputb = port_outb;
1450 		break;
1451 	case 2:
1452 		info->io.inputb = port_inw;
1453 		info->io.outputb = port_outw;
1454 		break;
1455 	case 4:
1456 		info->io.inputb = port_inl;
1457 		info->io.outputb = port_outl;
1458 		break;
1459 	default:
1460 		dev_warn(info->dev, "Invalid register size: %d\n",
1461 			 info->io.regsize);
1462 		return -EINVAL;
1463 	}
1464 
1465 	/*
1466 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1467 	 * tables.  This causes problems when trying to register the
1468 	 * entire I/O region.  Therefore we must register each I/O
1469 	 * port separately.
1470 	 */
1471 	for (idx = 0; idx < info->io_size; idx++) {
1472 		if (request_region(addr + idx * info->io.regspacing,
1473 				   info->io.regsize, DEVICE_NAME) == NULL) {
1474 			/* Undo allocations */
1475 			while (idx--) {
1476 				release_region(addr + idx * info->io.regspacing,
1477 					       info->io.regsize);
1478 			}
1479 			return -EIO;
1480 		}
1481 	}
1482 	return 0;
1483 }
1484 
1485 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1486 {
1487 	return readb((io->addr)+(offset * io->regspacing));
1488 }
1489 
1490 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1491 		     unsigned char b)
1492 {
1493 	writeb(b, (io->addr)+(offset * io->regspacing));
1494 }
1495 
1496 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1497 {
1498 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1499 		& 0xff;
1500 }
1501 
1502 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1503 		     unsigned char b)
1504 {
1505 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1506 }
1507 
1508 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1509 {
1510 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511 		& 0xff;
1512 }
1513 
1514 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1515 		     unsigned char b)
1516 {
1517 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519 
1520 #ifdef readq
1521 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1522 {
1523 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1524 		& 0xff;
1525 }
1526 
1527 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1528 		     unsigned char b)
1529 {
1530 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1531 }
1532 #endif
1533 
1534 static void mem_cleanup(struct smi_info *info)
1535 {
1536 	unsigned long addr = info->io.addr_data;
1537 	int           mapsize;
1538 
1539 	if (info->io.addr) {
1540 		iounmap(info->io.addr);
1541 
1542 		mapsize = ((info->io_size * info->io.regspacing)
1543 			   - (info->io.regspacing - info->io.regsize));
1544 
1545 		release_mem_region(addr, mapsize);
1546 	}
1547 }
1548 
1549 static int mem_setup(struct smi_info *info)
1550 {
1551 	unsigned long addr = info->io.addr_data;
1552 	int           mapsize;
1553 
1554 	if (!addr)
1555 		return -ENODEV;
1556 
1557 	info->io_cleanup = mem_cleanup;
1558 
1559 	/*
1560 	 * Figure out the actual readb/readw/readl/etc routine to use based
1561 	 * upon the register size.
1562 	 */
1563 	switch (info->io.regsize) {
1564 	case 1:
1565 		info->io.inputb = intf_mem_inb;
1566 		info->io.outputb = intf_mem_outb;
1567 		break;
1568 	case 2:
1569 		info->io.inputb = intf_mem_inw;
1570 		info->io.outputb = intf_mem_outw;
1571 		break;
1572 	case 4:
1573 		info->io.inputb = intf_mem_inl;
1574 		info->io.outputb = intf_mem_outl;
1575 		break;
1576 #ifdef readq
1577 	case 8:
1578 		info->io.inputb = mem_inq;
1579 		info->io.outputb = mem_outq;
1580 		break;
1581 #endif
1582 	default:
1583 		dev_warn(info->dev, "Invalid register size: %d\n",
1584 			 info->io.regsize);
1585 		return -EINVAL;
1586 	}
1587 
1588 	/*
1589 	 * Calculate the total amount of memory to claim.  This is an
1590 	 * unusual looking calculation, but it avoids claiming any
1591 	 * more memory than it has to.  It will claim everything
1592 	 * between the first address to the end of the last full
1593 	 * register.
1594 	 */
1595 	mapsize = ((info->io_size * info->io.regspacing)
1596 		   - (info->io.regspacing - info->io.regsize));
1597 
1598 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1599 		return -EIO;
1600 
1601 	info->io.addr = ioremap(addr, mapsize);
1602 	if (info->io.addr == NULL) {
1603 		release_mem_region(addr, mapsize);
1604 		return -EIO;
1605 	}
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1611  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1612  * Options are:
1613  *   rsp=<regspacing>
1614  *   rsi=<regsize>
1615  *   rsh=<regshift>
1616  *   irq=<irq>
1617  *   ipmb=<ipmb addr>
1618  */
1619 enum hotmod_op { HM_ADD, HM_REMOVE };
1620 struct hotmod_vals {
1621 	char *name;
1622 	int  val;
1623 };
1624 static struct hotmod_vals hotmod_ops[] = {
1625 	{ "add",	HM_ADD },
1626 	{ "remove",	HM_REMOVE },
1627 	{ NULL }
1628 };
1629 static struct hotmod_vals hotmod_si[] = {
1630 	{ "kcs",	SI_KCS },
1631 	{ "smic",	SI_SMIC },
1632 	{ "bt",		SI_BT },
1633 	{ NULL }
1634 };
1635 static struct hotmod_vals hotmod_as[] = {
1636 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1637 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1638 	{ NULL }
1639 };
1640 
1641 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1642 {
1643 	char *s;
1644 	int  i;
1645 
1646 	s = strchr(*curr, ',');
1647 	if (!s) {
1648 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1649 		return -EINVAL;
1650 	}
1651 	*s = '\0';
1652 	s++;
1653 	for (i = 0; hotmod_ops[i].name; i++) {
1654 		if (strcmp(*curr, v[i].name) == 0) {
1655 			*val = v[i].val;
1656 			*curr = s;
1657 			return 0;
1658 		}
1659 	}
1660 
1661 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1662 	return -EINVAL;
1663 }
1664 
1665 static int check_hotmod_int_op(const char *curr, const char *option,
1666 			       const char *name, int *val)
1667 {
1668 	char *n;
1669 
1670 	if (strcmp(curr, name) == 0) {
1671 		if (!option) {
1672 			printk(KERN_WARNING PFX
1673 			       "No option given for '%s'\n",
1674 			       curr);
1675 			return -EINVAL;
1676 		}
1677 		*val = simple_strtoul(option, &n, 0);
1678 		if ((*n != '\0') || (*option == '\0')) {
1679 			printk(KERN_WARNING PFX
1680 			       "Bad option given for '%s'\n",
1681 			       curr);
1682 			return -EINVAL;
1683 		}
1684 		return 1;
1685 	}
1686 	return 0;
1687 }
1688 
1689 static struct smi_info *smi_info_alloc(void)
1690 {
1691 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1692 
1693 	if (info)
1694 		spin_lock_init(&info->si_lock);
1695 	return info;
1696 }
1697 
1698 static int hotmod_handler(const char *val, struct kernel_param *kp)
1699 {
1700 	char *str = kstrdup(val, GFP_KERNEL);
1701 	int  rv;
1702 	char *next, *curr, *s, *n, *o;
1703 	enum hotmod_op op;
1704 	enum si_type si_type;
1705 	int  addr_space;
1706 	unsigned long addr;
1707 	int regspacing;
1708 	int regsize;
1709 	int regshift;
1710 	int irq;
1711 	int ipmb;
1712 	int ival;
1713 	int len;
1714 	struct smi_info *info;
1715 
1716 	if (!str)
1717 		return -ENOMEM;
1718 
1719 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1720 	len = strlen(str);
1721 	ival = len - 1;
1722 	while ((ival >= 0) && isspace(str[ival])) {
1723 		str[ival] = '\0';
1724 		ival--;
1725 	}
1726 
1727 	for (curr = str; curr; curr = next) {
1728 		regspacing = 1;
1729 		regsize = 1;
1730 		regshift = 0;
1731 		irq = 0;
1732 		ipmb = 0; /* Choose the default if not specified */
1733 
1734 		next = strchr(curr, ':');
1735 		if (next) {
1736 			*next = '\0';
1737 			next++;
1738 		}
1739 
1740 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1741 		if (rv)
1742 			break;
1743 		op = ival;
1744 
1745 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1746 		if (rv)
1747 			break;
1748 		si_type = ival;
1749 
1750 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1751 		if (rv)
1752 			break;
1753 
1754 		s = strchr(curr, ',');
1755 		if (s) {
1756 			*s = '\0';
1757 			s++;
1758 		}
1759 		addr = simple_strtoul(curr, &n, 0);
1760 		if ((*n != '\0') || (*curr == '\0')) {
1761 			printk(KERN_WARNING PFX "Invalid hotmod address"
1762 			       " '%s'\n", curr);
1763 			break;
1764 		}
1765 
1766 		while (s) {
1767 			curr = s;
1768 			s = strchr(curr, ',');
1769 			if (s) {
1770 				*s = '\0';
1771 				s++;
1772 			}
1773 			o = strchr(curr, '=');
1774 			if (o) {
1775 				*o = '\0';
1776 				o++;
1777 			}
1778 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1779 			if (rv < 0)
1780 				goto out;
1781 			else if (rv)
1782 				continue;
1783 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1784 			if (rv < 0)
1785 				goto out;
1786 			else if (rv)
1787 				continue;
1788 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1789 			if (rv < 0)
1790 				goto out;
1791 			else if (rv)
1792 				continue;
1793 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1794 			if (rv < 0)
1795 				goto out;
1796 			else if (rv)
1797 				continue;
1798 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1799 			if (rv < 0)
1800 				goto out;
1801 			else if (rv)
1802 				continue;
1803 
1804 			rv = -EINVAL;
1805 			printk(KERN_WARNING PFX
1806 			       "Invalid hotmod option '%s'\n",
1807 			       curr);
1808 			goto out;
1809 		}
1810 
1811 		if (op == HM_ADD) {
1812 			info = smi_info_alloc();
1813 			if (!info) {
1814 				rv = -ENOMEM;
1815 				goto out;
1816 			}
1817 
1818 			info->addr_source = SI_HOTMOD;
1819 			info->si_type = si_type;
1820 			info->io.addr_data = addr;
1821 			info->io.addr_type = addr_space;
1822 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1823 				info->io_setup = mem_setup;
1824 			else
1825 				info->io_setup = port_setup;
1826 
1827 			info->io.addr = NULL;
1828 			info->io.regspacing = regspacing;
1829 			if (!info->io.regspacing)
1830 				info->io.regspacing = DEFAULT_REGSPACING;
1831 			info->io.regsize = regsize;
1832 			if (!info->io.regsize)
1833 				info->io.regsize = DEFAULT_REGSPACING;
1834 			info->io.regshift = regshift;
1835 			info->irq = irq;
1836 			if (info->irq)
1837 				info->irq_setup = std_irq_setup;
1838 			info->slave_addr = ipmb;
1839 
1840 			if (!add_smi(info)) {
1841 				if (try_smi_init(info))
1842 					cleanup_one_si(info);
1843 			} else {
1844 				kfree(info);
1845 			}
1846 		} else {
1847 			/* remove */
1848 			struct smi_info *e, *tmp_e;
1849 
1850 			mutex_lock(&smi_infos_lock);
1851 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1852 				if (e->io.addr_type != addr_space)
1853 					continue;
1854 				if (e->si_type != si_type)
1855 					continue;
1856 				if (e->io.addr_data == addr)
1857 					cleanup_one_si(e);
1858 			}
1859 			mutex_unlock(&smi_infos_lock);
1860 		}
1861 	}
1862 	rv = len;
1863  out:
1864 	kfree(str);
1865 	return rv;
1866 }
1867 
1868 static int hardcode_find_bmc(void)
1869 {
1870 	int ret = -ENODEV;
1871 	int             i;
1872 	struct smi_info *info;
1873 
1874 	for (i = 0; i < SI_MAX_PARMS; i++) {
1875 		if (!ports[i] && !addrs[i])
1876 			continue;
1877 
1878 		info = smi_info_alloc();
1879 		if (!info)
1880 			return -ENOMEM;
1881 
1882 		info->addr_source = SI_HARDCODED;
1883 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1884 
1885 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1886 			info->si_type = SI_KCS;
1887 		} else if (strcmp(si_type[i], "smic") == 0) {
1888 			info->si_type = SI_SMIC;
1889 		} else if (strcmp(si_type[i], "bt") == 0) {
1890 			info->si_type = SI_BT;
1891 		} else {
1892 			printk(KERN_WARNING PFX "Interface type specified "
1893 			       "for interface %d, was invalid: %s\n",
1894 			       i, si_type[i]);
1895 			kfree(info);
1896 			continue;
1897 		}
1898 
1899 		if (ports[i]) {
1900 			/* An I/O port */
1901 			info->io_setup = port_setup;
1902 			info->io.addr_data = ports[i];
1903 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1904 		} else if (addrs[i]) {
1905 			/* A memory port */
1906 			info->io_setup = mem_setup;
1907 			info->io.addr_data = addrs[i];
1908 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1909 		} else {
1910 			printk(KERN_WARNING PFX "Interface type specified "
1911 			       "for interface %d, but port and address were "
1912 			       "not set or set to zero.\n", i);
1913 			kfree(info);
1914 			continue;
1915 		}
1916 
1917 		info->io.addr = NULL;
1918 		info->io.regspacing = regspacings[i];
1919 		if (!info->io.regspacing)
1920 			info->io.regspacing = DEFAULT_REGSPACING;
1921 		info->io.regsize = regsizes[i];
1922 		if (!info->io.regsize)
1923 			info->io.regsize = DEFAULT_REGSPACING;
1924 		info->io.regshift = regshifts[i];
1925 		info->irq = irqs[i];
1926 		if (info->irq)
1927 			info->irq_setup = std_irq_setup;
1928 		info->slave_addr = slave_addrs[i];
1929 
1930 		if (!add_smi(info)) {
1931 			if (try_smi_init(info))
1932 				cleanup_one_si(info);
1933 			ret = 0;
1934 		} else {
1935 			kfree(info);
1936 		}
1937 	}
1938 	return ret;
1939 }
1940 
1941 #ifdef CONFIG_ACPI
1942 
1943 #include <linux/acpi.h>
1944 
1945 /*
1946  * Once we get an ACPI failure, we don't try any more, because we go
1947  * through the tables sequentially.  Once we don't find a table, there
1948  * are no more.
1949  */
1950 static int acpi_failure;
1951 
1952 /* For GPE-type interrupts. */
1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954 	u32 gpe_number, void *context)
1955 {
1956 	struct smi_info *smi_info = context;
1957 	unsigned long   flags;
1958 #ifdef DEBUG_TIMING
1959 	struct timeval t;
1960 #endif
1961 
1962 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1963 
1964 	smi_inc_stat(smi_info, interrupts);
1965 
1966 #ifdef DEBUG_TIMING
1967 	do_gettimeofday(&t);
1968 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969 #endif
1970 	smi_event_handler(smi_info, 0);
1971 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972 
1973 	return ACPI_INTERRUPT_HANDLED;
1974 }
1975 
1976 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977 {
1978 	if (!info->irq)
1979 		return;
1980 
1981 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982 }
1983 
1984 static int acpi_gpe_irq_setup(struct smi_info *info)
1985 {
1986 	acpi_status status;
1987 
1988 	if (!info->irq)
1989 		return 0;
1990 
1991 	/* FIXME - is level triggered right? */
1992 	status = acpi_install_gpe_handler(NULL,
1993 					  info->irq,
1994 					  ACPI_GPE_LEVEL_TRIGGERED,
1995 					  &ipmi_acpi_gpe,
1996 					  info);
1997 	if (status != AE_OK) {
1998 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999 			 " running polled\n", DEVICE_NAME, info->irq);
2000 		info->irq = 0;
2001 		return -EINVAL;
2002 	} else {
2003 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2004 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005 		return 0;
2006 	}
2007 }
2008 
2009 /*
2010  * Defined at
2011  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2012  */
2013 struct SPMITable {
2014 	s8	Signature[4];
2015 	u32	Length;
2016 	u8	Revision;
2017 	u8	Checksum;
2018 	s8	OEMID[6];
2019 	s8	OEMTableID[8];
2020 	s8	OEMRevision[4];
2021 	s8	CreatorID[4];
2022 	s8	CreatorRevision[4];
2023 	u8	InterfaceType;
2024 	u8	IPMIlegacy;
2025 	s16	SpecificationRevision;
2026 
2027 	/*
2028 	 * Bit 0 - SCI interrupt supported
2029 	 * Bit 1 - I/O APIC/SAPIC
2030 	 */
2031 	u8	InterruptType;
2032 
2033 	/*
2034 	 * If bit 0 of InterruptType is set, then this is the SCI
2035 	 * interrupt in the GPEx_STS register.
2036 	 */
2037 	u8	GPE;
2038 
2039 	s16	Reserved;
2040 
2041 	/*
2042 	 * If bit 1 of InterruptType is set, then this is the I/O
2043 	 * APIC/SAPIC interrupt.
2044 	 */
2045 	u32	GlobalSystemInterrupt;
2046 
2047 	/* The actual register address. */
2048 	struct acpi_generic_address addr;
2049 
2050 	u8	UID[4];
2051 
2052 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2053 };
2054 
2055 static int try_init_spmi(struct SPMITable *spmi)
2056 {
2057 	struct smi_info  *info;
2058 
2059 	if (spmi->IPMIlegacy != 1) {
2060 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061 		return -ENODEV;
2062 	}
2063 
2064 	info = smi_info_alloc();
2065 	if (!info) {
2066 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067 		return -ENOMEM;
2068 	}
2069 
2070 	info->addr_source = SI_SPMI;
2071 	printk(KERN_INFO PFX "probing via SPMI\n");
2072 
2073 	/* Figure out the interface type. */
2074 	switch (spmi->InterfaceType) {
2075 	case 1:	/* KCS */
2076 		info->si_type = SI_KCS;
2077 		break;
2078 	case 2:	/* SMIC */
2079 		info->si_type = SI_SMIC;
2080 		break;
2081 	case 3:	/* BT */
2082 		info->si_type = SI_BT;
2083 		break;
2084 	default:
2085 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086 		       spmi->InterfaceType);
2087 		kfree(info);
2088 		return -EIO;
2089 	}
2090 
2091 	if (spmi->InterruptType & 1) {
2092 		/* We've got a GPE interrupt. */
2093 		info->irq = spmi->GPE;
2094 		info->irq_setup = acpi_gpe_irq_setup;
2095 	} else if (spmi->InterruptType & 2) {
2096 		/* We've got an APIC/SAPIC interrupt. */
2097 		info->irq = spmi->GlobalSystemInterrupt;
2098 		info->irq_setup = std_irq_setup;
2099 	} else {
2100 		/* Use the default interrupt setting. */
2101 		info->irq = 0;
2102 		info->irq_setup = NULL;
2103 	}
2104 
2105 	if (spmi->addr.bit_width) {
2106 		/* A (hopefully) properly formed register bit width. */
2107 		info->io.regspacing = spmi->addr.bit_width / 8;
2108 	} else {
2109 		info->io.regspacing = DEFAULT_REGSPACING;
2110 	}
2111 	info->io.regsize = info->io.regspacing;
2112 	info->io.regshift = spmi->addr.bit_offset;
2113 
2114 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115 		info->io_setup = mem_setup;
2116 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118 		info->io_setup = port_setup;
2119 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120 	} else {
2121 		kfree(info);
2122 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123 		return -EIO;
2124 	}
2125 	info->io.addr_data = spmi->addr.address;
2126 
2127 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2130 		 info->irq);
2131 
2132 	if (add_smi(info))
2133 		kfree(info);
2134 
2135 	return 0;
2136 }
2137 
2138 static void spmi_find_bmc(void)
2139 {
2140 	acpi_status      status;
2141 	struct SPMITable *spmi;
2142 	int              i;
2143 
2144 	if (acpi_disabled)
2145 		return;
2146 
2147 	if (acpi_failure)
2148 		return;
2149 
2150 	for (i = 0; ; i++) {
2151 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152 					(struct acpi_table_header **)&spmi);
2153 		if (status != AE_OK)
2154 			return;
2155 
2156 		try_init_spmi(spmi);
2157 	}
2158 }
2159 
2160 static int ipmi_pnp_probe(struct pnp_dev *dev,
2161 				    const struct pnp_device_id *dev_id)
2162 {
2163 	struct acpi_device *acpi_dev;
2164 	struct smi_info *info;
2165 	struct resource *res, *res_second;
2166 	acpi_handle handle;
2167 	acpi_status status;
2168 	unsigned long long tmp;
2169 
2170 	acpi_dev = pnp_acpi_device(dev);
2171 	if (!acpi_dev)
2172 		return -ENODEV;
2173 
2174 	info = smi_info_alloc();
2175 	if (!info)
2176 		return -ENOMEM;
2177 
2178 	info->addr_source = SI_ACPI;
2179 	printk(KERN_INFO PFX "probing via ACPI\n");
2180 
2181 	handle = acpi_dev->handle;
2182 	info->addr_info.acpi_info.acpi_handle = handle;
2183 
2184 	/* _IFT tells us the interface type: KCS, BT, etc */
2185 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186 	if (ACPI_FAILURE(status))
2187 		goto err_free;
2188 
2189 	switch (tmp) {
2190 	case 1:
2191 		info->si_type = SI_KCS;
2192 		break;
2193 	case 2:
2194 		info->si_type = SI_SMIC;
2195 		break;
2196 	case 3:
2197 		info->si_type = SI_BT;
2198 		break;
2199 	default:
2200 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201 		goto err_free;
2202 	}
2203 
2204 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205 	if (res) {
2206 		info->io_setup = port_setup;
2207 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208 	} else {
2209 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210 		if (res) {
2211 			info->io_setup = mem_setup;
2212 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213 		}
2214 	}
2215 	if (!res) {
2216 		dev_err(&dev->dev, "no I/O or memory address\n");
2217 		goto err_free;
2218 	}
2219 	info->io.addr_data = res->start;
2220 
2221 	info->io.regspacing = DEFAULT_REGSPACING;
2222 	res_second = pnp_get_resource(dev,
2223 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224 					IORESOURCE_IO : IORESOURCE_MEM,
2225 			       1);
2226 	if (res_second) {
2227 		if (res_second->start > info->io.addr_data)
2228 			info->io.regspacing = res_second->start - info->io.addr_data;
2229 	}
2230 	info->io.regsize = DEFAULT_REGSPACING;
2231 	info->io.regshift = 0;
2232 
2233 	/* If _GPE exists, use it; otherwise use standard interrupts */
2234 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235 	if (ACPI_SUCCESS(status)) {
2236 		info->irq = tmp;
2237 		info->irq_setup = acpi_gpe_irq_setup;
2238 	} else if (pnp_irq_valid(dev, 0)) {
2239 		info->irq = pnp_irq(dev, 0);
2240 		info->irq_setup = std_irq_setup;
2241 	}
2242 
2243 	info->dev = &dev->dev;
2244 	pnp_set_drvdata(dev, info);
2245 
2246 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247 		 res, info->io.regsize, info->io.regspacing,
2248 		 info->irq);
2249 
2250 	if (add_smi(info))
2251 		goto err_free;
2252 
2253 	return 0;
2254 
2255 err_free:
2256 	kfree(info);
2257 	return -EINVAL;
2258 }
2259 
2260 static void ipmi_pnp_remove(struct pnp_dev *dev)
2261 {
2262 	struct smi_info *info = pnp_get_drvdata(dev);
2263 
2264 	cleanup_one_si(info);
2265 }
2266 
2267 static const struct pnp_device_id pnp_dev_table[] = {
2268 	{"IPI0001", 0},
2269 	{"", 0},
2270 };
2271 
2272 static struct pnp_driver ipmi_pnp_driver = {
2273 	.name		= DEVICE_NAME,
2274 	.probe		= ipmi_pnp_probe,
2275 	.remove		= ipmi_pnp_remove,
2276 	.id_table	= pnp_dev_table,
2277 };
2278 #endif
2279 
2280 #ifdef CONFIG_DMI
2281 struct dmi_ipmi_data {
2282 	u8   		type;
2283 	u8   		addr_space;
2284 	unsigned long	base_addr;
2285 	u8   		irq;
2286 	u8              offset;
2287 	u8              slave_addr;
2288 };
2289 
2290 static int decode_dmi(const struct dmi_header *dm,
2291 				struct dmi_ipmi_data *dmi)
2292 {
2293 	const u8	*data = (const u8 *)dm;
2294 	unsigned long  	base_addr;
2295 	u8		reg_spacing;
2296 	u8              len = dm->length;
2297 
2298 	dmi->type = data[4];
2299 
2300 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2301 	if (len >= 0x11) {
2302 		if (base_addr & 1) {
2303 			/* I/O */
2304 			base_addr &= 0xFFFE;
2305 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306 		} else
2307 			/* Memory */
2308 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2309 
2310 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2311 		   is odd. */
2312 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2313 
2314 		dmi->irq = data[0x11];
2315 
2316 		/* The top two bits of byte 0x10 hold the register spacing. */
2317 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2318 		switch (reg_spacing) {
2319 		case 0x00: /* Byte boundaries */
2320 		    dmi->offset = 1;
2321 		    break;
2322 		case 0x01: /* 32-bit boundaries */
2323 		    dmi->offset = 4;
2324 		    break;
2325 		case 0x02: /* 16-byte boundaries */
2326 		    dmi->offset = 16;
2327 		    break;
2328 		default:
2329 		    /* Some other interface, just ignore it. */
2330 		    return -EIO;
2331 		}
2332 	} else {
2333 		/* Old DMI spec. */
2334 		/*
2335 		 * Note that technically, the lower bit of the base
2336 		 * address should be 1 if the address is I/O and 0 if
2337 		 * the address is in memory.  So many systems get that
2338 		 * wrong (and all that I have seen are I/O) so we just
2339 		 * ignore that bit and assume I/O.  Systems that use
2340 		 * memory should use the newer spec, anyway.
2341 		 */
2342 		dmi->base_addr = base_addr & 0xfffe;
2343 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344 		dmi->offset = 1;
2345 	}
2346 
2347 	dmi->slave_addr = data[6];
2348 
2349 	return 0;
2350 }
2351 
2352 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2353 {
2354 	struct smi_info *info;
2355 
2356 	info = smi_info_alloc();
2357 	if (!info) {
2358 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2359 		return;
2360 	}
2361 
2362 	info->addr_source = SI_SMBIOS;
2363 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2364 
2365 	switch (ipmi_data->type) {
2366 	case 0x01: /* KCS */
2367 		info->si_type = SI_KCS;
2368 		break;
2369 	case 0x02: /* SMIC */
2370 		info->si_type = SI_SMIC;
2371 		break;
2372 	case 0x03: /* BT */
2373 		info->si_type = SI_BT;
2374 		break;
2375 	default:
2376 		kfree(info);
2377 		return;
2378 	}
2379 
2380 	switch (ipmi_data->addr_space) {
2381 	case IPMI_MEM_ADDR_SPACE:
2382 		info->io_setup = mem_setup;
2383 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384 		break;
2385 
2386 	case IPMI_IO_ADDR_SPACE:
2387 		info->io_setup = port_setup;
2388 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389 		break;
2390 
2391 	default:
2392 		kfree(info);
2393 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394 		       ipmi_data->addr_space);
2395 		return;
2396 	}
2397 	info->io.addr_data = ipmi_data->base_addr;
2398 
2399 	info->io.regspacing = ipmi_data->offset;
2400 	if (!info->io.regspacing)
2401 		info->io.regspacing = DEFAULT_REGSPACING;
2402 	info->io.regsize = DEFAULT_REGSPACING;
2403 	info->io.regshift = 0;
2404 
2405 	info->slave_addr = ipmi_data->slave_addr;
2406 
2407 	info->irq = ipmi_data->irq;
2408 	if (info->irq)
2409 		info->irq_setup = std_irq_setup;
2410 
2411 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414 		 info->irq);
2415 
2416 	if (add_smi(info))
2417 		kfree(info);
2418 }
2419 
2420 static void dmi_find_bmc(void)
2421 {
2422 	const struct dmi_device *dev = NULL;
2423 	struct dmi_ipmi_data data;
2424 	int                  rv;
2425 
2426 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427 		memset(&data, 0, sizeof(data));
2428 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429 				&data);
2430 		if (!rv)
2431 			try_init_dmi(&data);
2432 	}
2433 }
2434 #endif /* CONFIG_DMI */
2435 
2436 #ifdef CONFIG_PCI
2437 
2438 #define PCI_ERMC_CLASSCODE		0x0C0700
2439 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2443 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2444 
2445 #define PCI_HP_VENDOR_ID    0x103C
2446 #define PCI_MMC_DEVICE_ID   0x121A
2447 #define PCI_MMC_ADDR_CW     0x10
2448 
2449 static void ipmi_pci_cleanup(struct smi_info *info)
2450 {
2451 	struct pci_dev *pdev = info->addr_source_data;
2452 
2453 	pci_disable_device(pdev);
2454 }
2455 
2456 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2457 {
2458 	if (info->si_type == SI_KCS) {
2459 		unsigned char	status;
2460 		int		regspacing;
2461 
2462 		info->io.regsize = DEFAULT_REGSIZE;
2463 		info->io.regshift = 0;
2464 		info->io_size = 2;
2465 		info->handlers = &kcs_smi_handlers;
2466 
2467 		/* detect 1, 4, 16byte spacing */
2468 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2469 			info->io.regspacing = regspacing;
2470 			if (info->io_setup(info)) {
2471 				dev_err(info->dev,
2472 					"Could not setup I/O space\n");
2473 				return DEFAULT_REGSPACING;
2474 			}
2475 			/* write invalid cmd */
2476 			info->io.outputb(&info->io, 1, 0x10);
2477 			/* read status back */
2478 			status = info->io.inputb(&info->io, 1);
2479 			info->io_cleanup(info);
2480 			if (status)
2481 				return regspacing;
2482 			regspacing *= 4;
2483 		}
2484 	}
2485 	return DEFAULT_REGSPACING;
2486 }
2487 
2488 static int ipmi_pci_probe(struct pci_dev *pdev,
2489 				    const struct pci_device_id *ent)
2490 {
2491 	int rv;
2492 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2493 	struct smi_info *info;
2494 
2495 	info = smi_info_alloc();
2496 	if (!info)
2497 		return -ENOMEM;
2498 
2499 	info->addr_source = SI_PCI;
2500 	dev_info(&pdev->dev, "probing via PCI");
2501 
2502 	switch (class_type) {
2503 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2504 		info->si_type = SI_SMIC;
2505 		break;
2506 
2507 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2508 		info->si_type = SI_KCS;
2509 		break;
2510 
2511 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2512 		info->si_type = SI_BT;
2513 		break;
2514 
2515 	default:
2516 		kfree(info);
2517 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2518 		return -ENOMEM;
2519 	}
2520 
2521 	rv = pci_enable_device(pdev);
2522 	if (rv) {
2523 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2524 		kfree(info);
2525 		return rv;
2526 	}
2527 
2528 	info->addr_source_cleanup = ipmi_pci_cleanup;
2529 	info->addr_source_data = pdev;
2530 
2531 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2532 		info->io_setup = port_setup;
2533 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2534 	} else {
2535 		info->io_setup = mem_setup;
2536 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2537 	}
2538 	info->io.addr_data = pci_resource_start(pdev, 0);
2539 
2540 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2541 	info->io.regsize = DEFAULT_REGSIZE;
2542 	info->io.regshift = 0;
2543 
2544 	info->irq = pdev->irq;
2545 	if (info->irq)
2546 		info->irq_setup = std_irq_setup;
2547 
2548 	info->dev = &pdev->dev;
2549 	pci_set_drvdata(pdev, info);
2550 
2551 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2552 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2553 		info->irq);
2554 
2555 	if (add_smi(info))
2556 		kfree(info);
2557 
2558 	return 0;
2559 }
2560 
2561 static void ipmi_pci_remove(struct pci_dev *pdev)
2562 {
2563 	struct smi_info *info = pci_get_drvdata(pdev);
2564 	cleanup_one_si(info);
2565 }
2566 
2567 static struct pci_device_id ipmi_pci_devices[] = {
2568 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2569 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2570 	{ 0, }
2571 };
2572 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2573 
2574 static struct pci_driver ipmi_pci_driver = {
2575 	.name =         DEVICE_NAME,
2576 	.id_table =     ipmi_pci_devices,
2577 	.probe =        ipmi_pci_probe,
2578 	.remove =       ipmi_pci_remove,
2579 };
2580 #endif /* CONFIG_PCI */
2581 
2582 static struct of_device_id ipmi_match[];
2583 static int ipmi_probe(struct platform_device *dev)
2584 {
2585 #ifdef CONFIG_OF
2586 	const struct of_device_id *match;
2587 	struct smi_info *info;
2588 	struct resource resource;
2589 	const __be32 *regsize, *regspacing, *regshift;
2590 	struct device_node *np = dev->dev.of_node;
2591 	int ret;
2592 	int proplen;
2593 
2594 	dev_info(&dev->dev, "probing via device tree\n");
2595 
2596 	match = of_match_device(ipmi_match, &dev->dev);
2597 	if (!match)
2598 		return -EINVAL;
2599 
2600 	ret = of_address_to_resource(np, 0, &resource);
2601 	if (ret) {
2602 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2603 		return ret;
2604 	}
2605 
2606 	regsize = of_get_property(np, "reg-size", &proplen);
2607 	if (regsize && proplen != 4) {
2608 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2609 		return -EINVAL;
2610 	}
2611 
2612 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2613 	if (regspacing && proplen != 4) {
2614 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2615 		return -EINVAL;
2616 	}
2617 
2618 	regshift = of_get_property(np, "reg-shift", &proplen);
2619 	if (regshift && proplen != 4) {
2620 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2621 		return -EINVAL;
2622 	}
2623 
2624 	info = smi_info_alloc();
2625 
2626 	if (!info) {
2627 		dev_err(&dev->dev,
2628 			"could not allocate memory for OF probe\n");
2629 		return -ENOMEM;
2630 	}
2631 
2632 	info->si_type		= (enum si_type) match->data;
2633 	info->addr_source	= SI_DEVICETREE;
2634 	info->irq_setup		= std_irq_setup;
2635 
2636 	if (resource.flags & IORESOURCE_IO) {
2637 		info->io_setup		= port_setup;
2638 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2639 	} else {
2640 		info->io_setup		= mem_setup;
2641 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2642 	}
2643 
2644 	info->io.addr_data	= resource.start;
2645 
2646 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2647 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2648 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2649 
2650 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2651 	info->dev		= &dev->dev;
2652 
2653 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2654 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2655 		info->irq);
2656 
2657 	dev_set_drvdata(&dev->dev, info);
2658 
2659 	if (add_smi(info)) {
2660 		kfree(info);
2661 		return -EBUSY;
2662 	}
2663 #endif
2664 	return 0;
2665 }
2666 
2667 static int ipmi_remove(struct platform_device *dev)
2668 {
2669 #ifdef CONFIG_OF
2670 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2671 #endif
2672 	return 0;
2673 }
2674 
2675 static struct of_device_id ipmi_match[] =
2676 {
2677 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2678 	  .data = (void *)(unsigned long) SI_KCS },
2679 	{ .type = "ipmi", .compatible = "ipmi-smic",
2680 	  .data = (void *)(unsigned long) SI_SMIC },
2681 	{ .type = "ipmi", .compatible = "ipmi-bt",
2682 	  .data = (void *)(unsigned long) SI_BT },
2683 	{},
2684 };
2685 
2686 static struct platform_driver ipmi_driver = {
2687 	.driver = {
2688 		.name = DEVICE_NAME,
2689 		.owner = THIS_MODULE,
2690 		.of_match_table = ipmi_match,
2691 	},
2692 	.probe		= ipmi_probe,
2693 	.remove		= ipmi_remove,
2694 };
2695 
2696 static int wait_for_msg_done(struct smi_info *smi_info)
2697 {
2698 	enum si_sm_result     smi_result;
2699 
2700 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2701 	for (;;) {
2702 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2703 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2704 			schedule_timeout_uninterruptible(1);
2705 			smi_result = smi_info->handlers->event(
2706 				smi_info->si_sm, 100);
2707 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2708 			smi_result = smi_info->handlers->event(
2709 				smi_info->si_sm, 0);
2710 		} else
2711 			break;
2712 	}
2713 	if (smi_result == SI_SM_HOSED)
2714 		/*
2715 		 * We couldn't get the state machine to run, so whatever's at
2716 		 * the port is probably not an IPMI SMI interface.
2717 		 */
2718 		return -ENODEV;
2719 
2720 	return 0;
2721 }
2722 
2723 static int try_get_dev_id(struct smi_info *smi_info)
2724 {
2725 	unsigned char         msg[2];
2726 	unsigned char         *resp;
2727 	unsigned long         resp_len;
2728 	int                   rv = 0;
2729 
2730 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2731 	if (!resp)
2732 		return -ENOMEM;
2733 
2734 	/*
2735 	 * Do a Get Device ID command, since it comes back with some
2736 	 * useful info.
2737 	 */
2738 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2740 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741 
2742 	rv = wait_for_msg_done(smi_info);
2743 	if (rv)
2744 		goto out;
2745 
2746 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2747 						  resp, IPMI_MAX_MSG_LENGTH);
2748 
2749 	/* Check and record info from the get device id, in case we need it. */
2750 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2751 
2752  out:
2753 	kfree(resp);
2754 	return rv;
2755 }
2756 
2757 static int try_enable_event_buffer(struct smi_info *smi_info)
2758 {
2759 	unsigned char         msg[3];
2760 	unsigned char         *resp;
2761 	unsigned long         resp_len;
2762 	int                   rv = 0;
2763 
2764 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2765 	if (!resp)
2766 		return -ENOMEM;
2767 
2768 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2770 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2771 
2772 	rv = wait_for_msg_done(smi_info);
2773 	if (rv) {
2774 		printk(KERN_WARNING PFX "Error getting response from get"
2775 		       " global enables command, the event buffer is not"
2776 		       " enabled.\n");
2777 		goto out;
2778 	}
2779 
2780 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781 						  resp, IPMI_MAX_MSG_LENGTH);
2782 
2783 	if (resp_len < 4 ||
2784 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2786 			resp[2] != 0) {
2787 		printk(KERN_WARNING PFX "Invalid return from get global"
2788 		       " enables command, cannot enable the event buffer.\n");
2789 		rv = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2794 		/* buffer is already enabled, nothing to do. */
2795 		goto out;
2796 
2797 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2798 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2799 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2800 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2801 
2802 	rv = wait_for_msg_done(smi_info);
2803 	if (rv) {
2804 		printk(KERN_WARNING PFX "Error getting response from set"
2805 		       " global, enables command, the event buffer is not"
2806 		       " enabled.\n");
2807 		goto out;
2808 	}
2809 
2810 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2811 						  resp, IPMI_MAX_MSG_LENGTH);
2812 
2813 	if (resp_len < 3 ||
2814 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2815 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2816 		printk(KERN_WARNING PFX "Invalid return from get global,"
2817 		       "enables command, not enable the event buffer.\n");
2818 		rv = -EINVAL;
2819 		goto out;
2820 	}
2821 
2822 	if (resp[2] != 0)
2823 		/*
2824 		 * An error when setting the event buffer bit means
2825 		 * that the event buffer is not supported.
2826 		 */
2827 		rv = -ENOENT;
2828  out:
2829 	kfree(resp);
2830 	return rv;
2831 }
2832 
2833 static int smi_type_proc_show(struct seq_file *m, void *v)
2834 {
2835 	struct smi_info *smi = m->private;
2836 
2837 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2838 }
2839 
2840 static int smi_type_proc_open(struct inode *inode, struct file *file)
2841 {
2842 	return single_open(file, smi_type_proc_show, PDE(inode)->data);
2843 }
2844 
2845 static const struct file_operations smi_type_proc_ops = {
2846 	.open		= smi_type_proc_open,
2847 	.read		= seq_read,
2848 	.llseek		= seq_lseek,
2849 	.release	= single_release,
2850 };
2851 
2852 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2853 {
2854 	struct smi_info *smi = m->private;
2855 
2856 	seq_printf(m, "interrupts_enabled:    %d\n",
2857 		       smi->irq && !smi->interrupt_disabled);
2858 	seq_printf(m, "short_timeouts:        %u\n",
2859 		       smi_get_stat(smi, short_timeouts));
2860 	seq_printf(m, "long_timeouts:         %u\n",
2861 		       smi_get_stat(smi, long_timeouts));
2862 	seq_printf(m, "idles:                 %u\n",
2863 		       smi_get_stat(smi, idles));
2864 	seq_printf(m, "interrupts:            %u\n",
2865 		       smi_get_stat(smi, interrupts));
2866 	seq_printf(m, "attentions:            %u\n",
2867 		       smi_get_stat(smi, attentions));
2868 	seq_printf(m, "flag_fetches:          %u\n",
2869 		       smi_get_stat(smi, flag_fetches));
2870 	seq_printf(m, "hosed_count:           %u\n",
2871 		       smi_get_stat(smi, hosed_count));
2872 	seq_printf(m, "complete_transactions: %u\n",
2873 		       smi_get_stat(smi, complete_transactions));
2874 	seq_printf(m, "events:                %u\n",
2875 		       smi_get_stat(smi, events));
2876 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2877 		       smi_get_stat(smi, watchdog_pretimeouts));
2878 	seq_printf(m, "incoming_messages:     %u\n",
2879 		       smi_get_stat(smi, incoming_messages));
2880 	return 0;
2881 }
2882 
2883 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2884 {
2885 	return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2886 }
2887 
2888 static const struct file_operations smi_si_stats_proc_ops = {
2889 	.open		= smi_si_stats_proc_open,
2890 	.read		= seq_read,
2891 	.llseek		= seq_lseek,
2892 	.release	= single_release,
2893 };
2894 
2895 static int smi_params_proc_show(struct seq_file *m, void *v)
2896 {
2897 	struct smi_info *smi = m->private;
2898 
2899 	return seq_printf(m,
2900 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2901 		       si_to_str[smi->si_type],
2902 		       addr_space_to_str[smi->io.addr_type],
2903 		       smi->io.addr_data,
2904 		       smi->io.regspacing,
2905 		       smi->io.regsize,
2906 		       smi->io.regshift,
2907 		       smi->irq,
2908 		       smi->slave_addr);
2909 }
2910 
2911 static int smi_params_proc_open(struct inode *inode, struct file *file)
2912 {
2913 	return single_open(file, smi_params_proc_show, PDE(inode)->data);
2914 }
2915 
2916 static const struct file_operations smi_params_proc_ops = {
2917 	.open		= smi_params_proc_open,
2918 	.read		= seq_read,
2919 	.llseek		= seq_lseek,
2920 	.release	= single_release,
2921 };
2922 
2923 /*
2924  * oem_data_avail_to_receive_msg_avail
2925  * @info - smi_info structure with msg_flags set
2926  *
2927  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2928  * Returns 1 indicating need to re-run handle_flags().
2929  */
2930 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2931 {
2932 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2933 			       RECEIVE_MSG_AVAIL);
2934 	return 1;
2935 }
2936 
2937 /*
2938  * setup_dell_poweredge_oem_data_handler
2939  * @info - smi_info.device_id must be populated
2940  *
2941  * Systems that match, but have firmware version < 1.40 may assert
2942  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2943  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2944  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2945  * as RECEIVE_MSG_AVAIL instead.
2946  *
2947  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2948  * assert the OEM[012] bits, and if it did, the driver would have to
2949  * change to handle that properly, we don't actually check for the
2950  * firmware version.
2951  * Device ID = 0x20                BMC on PowerEdge 8G servers
2952  * Device Revision = 0x80
2953  * Firmware Revision1 = 0x01       BMC version 1.40
2954  * Firmware Revision2 = 0x40       BCD encoded
2955  * IPMI Version = 0x51             IPMI 1.5
2956  * Manufacturer ID = A2 02 00      Dell IANA
2957  *
2958  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2959  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2960  *
2961  */
2962 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2963 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2964 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2965 #define DELL_IANA_MFR_ID 0x0002a2
2966 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2967 {
2968 	struct ipmi_device_id *id = &smi_info->device_id;
2969 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2970 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2971 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2972 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2973 			smi_info->oem_data_avail_handler =
2974 				oem_data_avail_to_receive_msg_avail;
2975 		} else if (ipmi_version_major(id) < 1 ||
2976 			   (ipmi_version_major(id) == 1 &&
2977 			    ipmi_version_minor(id) < 5)) {
2978 			smi_info->oem_data_avail_handler =
2979 				oem_data_avail_to_receive_msg_avail;
2980 		}
2981 	}
2982 }
2983 
2984 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2985 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2986 {
2987 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2988 
2989 	/* Make it a response */
2990 	msg->rsp[0] = msg->data[0] | 4;
2991 	msg->rsp[1] = msg->data[1];
2992 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2993 	msg->rsp_size = 3;
2994 	smi_info->curr_msg = NULL;
2995 	deliver_recv_msg(smi_info, msg);
2996 }
2997 
2998 /*
2999  * dell_poweredge_bt_xaction_handler
3000  * @info - smi_info.device_id must be populated
3001  *
3002  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3003  * not respond to a Get SDR command if the length of the data
3004  * requested is exactly 0x3A, which leads to command timeouts and no
3005  * data returned.  This intercepts such commands, and causes userspace
3006  * callers to try again with a different-sized buffer, which succeeds.
3007  */
3008 
3009 #define STORAGE_NETFN 0x0A
3010 #define STORAGE_CMD_GET_SDR 0x23
3011 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3012 					     unsigned long unused,
3013 					     void *in)
3014 {
3015 	struct smi_info *smi_info = in;
3016 	unsigned char *data = smi_info->curr_msg->data;
3017 	unsigned int size   = smi_info->curr_msg->data_size;
3018 	if (size >= 8 &&
3019 	    (data[0]>>2) == STORAGE_NETFN &&
3020 	    data[1] == STORAGE_CMD_GET_SDR &&
3021 	    data[7] == 0x3A) {
3022 		return_hosed_msg_badsize(smi_info);
3023 		return NOTIFY_STOP;
3024 	}
3025 	return NOTIFY_DONE;
3026 }
3027 
3028 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3029 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3030 };
3031 
3032 /*
3033  * setup_dell_poweredge_bt_xaction_handler
3034  * @info - smi_info.device_id must be filled in already
3035  *
3036  * Fills in smi_info.device_id.start_transaction_pre_hook
3037  * when we know what function to use there.
3038  */
3039 static void
3040 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3041 {
3042 	struct ipmi_device_id *id = &smi_info->device_id;
3043 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3044 	    smi_info->si_type == SI_BT)
3045 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3046 }
3047 
3048 /*
3049  * setup_oem_data_handler
3050  * @info - smi_info.device_id must be filled in already
3051  *
3052  * Fills in smi_info.device_id.oem_data_available_handler
3053  * when we know what function to use there.
3054  */
3055 
3056 static void setup_oem_data_handler(struct smi_info *smi_info)
3057 {
3058 	setup_dell_poweredge_oem_data_handler(smi_info);
3059 }
3060 
3061 static void setup_xaction_handlers(struct smi_info *smi_info)
3062 {
3063 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3064 }
3065 
3066 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3067 {
3068 	if (smi_info->intf) {
3069 		/*
3070 		 * The timer and thread are only running if the
3071 		 * interface has been started up and registered.
3072 		 */
3073 		if (smi_info->thread != NULL)
3074 			kthread_stop(smi_info->thread);
3075 		del_timer_sync(&smi_info->si_timer);
3076 	}
3077 }
3078 
3079 static struct ipmi_default_vals
3080 {
3081 	int type;
3082 	int port;
3083 } ipmi_defaults[] =
3084 {
3085 	{ .type = SI_KCS, .port = 0xca2 },
3086 	{ .type = SI_SMIC, .port = 0xca9 },
3087 	{ .type = SI_BT, .port = 0xe4 },
3088 	{ .port = 0 }
3089 };
3090 
3091 static void default_find_bmc(void)
3092 {
3093 	struct smi_info *info;
3094 	int             i;
3095 
3096 	for (i = 0; ; i++) {
3097 		if (!ipmi_defaults[i].port)
3098 			break;
3099 #ifdef CONFIG_PPC
3100 		if (check_legacy_ioport(ipmi_defaults[i].port))
3101 			continue;
3102 #endif
3103 		info = smi_info_alloc();
3104 		if (!info)
3105 			return;
3106 
3107 		info->addr_source = SI_DEFAULT;
3108 
3109 		info->si_type = ipmi_defaults[i].type;
3110 		info->io_setup = port_setup;
3111 		info->io.addr_data = ipmi_defaults[i].port;
3112 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3113 
3114 		info->io.addr = NULL;
3115 		info->io.regspacing = DEFAULT_REGSPACING;
3116 		info->io.regsize = DEFAULT_REGSPACING;
3117 		info->io.regshift = 0;
3118 
3119 		if (add_smi(info) == 0) {
3120 			if ((try_smi_init(info)) == 0) {
3121 				/* Found one... */
3122 				printk(KERN_INFO PFX "Found default %s"
3123 				" state machine at %s address 0x%lx\n",
3124 				si_to_str[info->si_type],
3125 				addr_space_to_str[info->io.addr_type],
3126 				info->io.addr_data);
3127 			} else
3128 				cleanup_one_si(info);
3129 		} else {
3130 			kfree(info);
3131 		}
3132 	}
3133 }
3134 
3135 static int is_new_interface(struct smi_info *info)
3136 {
3137 	struct smi_info *e;
3138 
3139 	list_for_each_entry(e, &smi_infos, link) {
3140 		if (e->io.addr_type != info->io.addr_type)
3141 			continue;
3142 		if (e->io.addr_data == info->io.addr_data)
3143 			return 0;
3144 	}
3145 
3146 	return 1;
3147 }
3148 
3149 static int add_smi(struct smi_info *new_smi)
3150 {
3151 	int rv = 0;
3152 
3153 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3154 			ipmi_addr_src_to_str[new_smi->addr_source],
3155 			si_to_str[new_smi->si_type]);
3156 	mutex_lock(&smi_infos_lock);
3157 	if (!is_new_interface(new_smi)) {
3158 		printk(KERN_CONT " duplicate interface\n");
3159 		rv = -EBUSY;
3160 		goto out_err;
3161 	}
3162 
3163 	printk(KERN_CONT "\n");
3164 
3165 	/* So we know not to free it unless we have allocated one. */
3166 	new_smi->intf = NULL;
3167 	new_smi->si_sm = NULL;
3168 	new_smi->handlers = NULL;
3169 
3170 	list_add_tail(&new_smi->link, &smi_infos);
3171 
3172 out_err:
3173 	mutex_unlock(&smi_infos_lock);
3174 	return rv;
3175 }
3176 
3177 static int try_smi_init(struct smi_info *new_smi)
3178 {
3179 	int rv = 0;
3180 	int i;
3181 
3182 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3183 	       " machine at %s address 0x%lx, slave address 0x%x,"
3184 	       " irq %d\n",
3185 	       ipmi_addr_src_to_str[new_smi->addr_source],
3186 	       si_to_str[new_smi->si_type],
3187 	       addr_space_to_str[new_smi->io.addr_type],
3188 	       new_smi->io.addr_data,
3189 	       new_smi->slave_addr, new_smi->irq);
3190 
3191 	switch (new_smi->si_type) {
3192 	case SI_KCS:
3193 		new_smi->handlers = &kcs_smi_handlers;
3194 		break;
3195 
3196 	case SI_SMIC:
3197 		new_smi->handlers = &smic_smi_handlers;
3198 		break;
3199 
3200 	case SI_BT:
3201 		new_smi->handlers = &bt_smi_handlers;
3202 		break;
3203 
3204 	default:
3205 		/* No support for anything else yet. */
3206 		rv = -EIO;
3207 		goto out_err;
3208 	}
3209 
3210 	/* Allocate the state machine's data and initialize it. */
3211 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3212 	if (!new_smi->si_sm) {
3213 		printk(KERN_ERR PFX
3214 		       "Could not allocate state machine memory\n");
3215 		rv = -ENOMEM;
3216 		goto out_err;
3217 	}
3218 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3219 							&new_smi->io);
3220 
3221 	/* Now that we know the I/O size, we can set up the I/O. */
3222 	rv = new_smi->io_setup(new_smi);
3223 	if (rv) {
3224 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3225 		goto out_err;
3226 	}
3227 
3228 	/* Do low-level detection first. */
3229 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3230 		if (new_smi->addr_source)
3231 			printk(KERN_INFO PFX "Interface detection failed\n");
3232 		rv = -ENODEV;
3233 		goto out_err;
3234 	}
3235 
3236 	/*
3237 	 * Attempt a get device id command.  If it fails, we probably
3238 	 * don't have a BMC here.
3239 	 */
3240 	rv = try_get_dev_id(new_smi);
3241 	if (rv) {
3242 		if (new_smi->addr_source)
3243 			printk(KERN_INFO PFX "There appears to be no BMC"
3244 			       " at this location\n");
3245 		goto out_err;
3246 	}
3247 
3248 	setup_oem_data_handler(new_smi);
3249 	setup_xaction_handlers(new_smi);
3250 
3251 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3252 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3253 	new_smi->curr_msg = NULL;
3254 	atomic_set(&new_smi->req_events, 0);
3255 	new_smi->run_to_completion = 0;
3256 	for (i = 0; i < SI_NUM_STATS; i++)
3257 		atomic_set(&new_smi->stats[i], 0);
3258 
3259 	new_smi->interrupt_disabled = 1;
3260 	atomic_set(&new_smi->stop_operation, 0);
3261 	new_smi->intf_num = smi_num;
3262 	smi_num++;
3263 
3264 	rv = try_enable_event_buffer(new_smi);
3265 	if (rv == 0)
3266 		new_smi->has_event_buffer = 1;
3267 
3268 	/*
3269 	 * Start clearing the flags before we enable interrupts or the
3270 	 * timer to avoid racing with the timer.
3271 	 */
3272 	start_clear_flags(new_smi);
3273 	/* IRQ is defined to be set when non-zero. */
3274 	if (new_smi->irq)
3275 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3276 
3277 	if (!new_smi->dev) {
3278 		/*
3279 		 * If we don't already have a device from something
3280 		 * else (like PCI), then register a new one.
3281 		 */
3282 		new_smi->pdev = platform_device_alloc("ipmi_si",
3283 						      new_smi->intf_num);
3284 		if (!new_smi->pdev) {
3285 			printk(KERN_ERR PFX
3286 			       "Unable to allocate platform device\n");
3287 			goto out_err;
3288 		}
3289 		new_smi->dev = &new_smi->pdev->dev;
3290 		new_smi->dev->driver = &ipmi_driver.driver;
3291 
3292 		rv = platform_device_add(new_smi->pdev);
3293 		if (rv) {
3294 			printk(KERN_ERR PFX
3295 			       "Unable to register system interface device:"
3296 			       " %d\n",
3297 			       rv);
3298 			goto out_err;
3299 		}
3300 		new_smi->dev_registered = 1;
3301 	}
3302 
3303 	rv = ipmi_register_smi(&handlers,
3304 			       new_smi,
3305 			       &new_smi->device_id,
3306 			       new_smi->dev,
3307 			       "bmc",
3308 			       new_smi->slave_addr);
3309 	if (rv) {
3310 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3311 			rv);
3312 		goto out_err_stop_timer;
3313 	}
3314 
3315 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3316 				     &smi_type_proc_ops,
3317 				     new_smi);
3318 	if (rv) {
3319 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3320 		goto out_err_stop_timer;
3321 	}
3322 
3323 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3324 				     &smi_si_stats_proc_ops,
3325 				     new_smi);
3326 	if (rv) {
3327 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3328 		goto out_err_stop_timer;
3329 	}
3330 
3331 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3332 				     &smi_params_proc_ops,
3333 				     new_smi);
3334 	if (rv) {
3335 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3336 		goto out_err_stop_timer;
3337 	}
3338 
3339 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3340 		 si_to_str[new_smi->si_type]);
3341 
3342 	return 0;
3343 
3344  out_err_stop_timer:
3345 	atomic_inc(&new_smi->stop_operation);
3346 	wait_for_timer_and_thread(new_smi);
3347 
3348  out_err:
3349 	new_smi->interrupt_disabled = 1;
3350 
3351 	if (new_smi->intf) {
3352 		ipmi_unregister_smi(new_smi->intf);
3353 		new_smi->intf = NULL;
3354 	}
3355 
3356 	if (new_smi->irq_cleanup) {
3357 		new_smi->irq_cleanup(new_smi);
3358 		new_smi->irq_cleanup = NULL;
3359 	}
3360 
3361 	/*
3362 	 * Wait until we know that we are out of any interrupt
3363 	 * handlers might have been running before we freed the
3364 	 * interrupt.
3365 	 */
3366 	synchronize_sched();
3367 
3368 	if (new_smi->si_sm) {
3369 		if (new_smi->handlers)
3370 			new_smi->handlers->cleanup(new_smi->si_sm);
3371 		kfree(new_smi->si_sm);
3372 		new_smi->si_sm = NULL;
3373 	}
3374 	if (new_smi->addr_source_cleanup) {
3375 		new_smi->addr_source_cleanup(new_smi);
3376 		new_smi->addr_source_cleanup = NULL;
3377 	}
3378 	if (new_smi->io_cleanup) {
3379 		new_smi->io_cleanup(new_smi);
3380 		new_smi->io_cleanup = NULL;
3381 	}
3382 
3383 	if (new_smi->dev_registered) {
3384 		platform_device_unregister(new_smi->pdev);
3385 		new_smi->dev_registered = 0;
3386 	}
3387 
3388 	return rv;
3389 }
3390 
3391 static int init_ipmi_si(void)
3392 {
3393 	int  i;
3394 	char *str;
3395 	int  rv;
3396 	struct smi_info *e;
3397 	enum ipmi_addr_src type = SI_INVALID;
3398 
3399 	if (initialized)
3400 		return 0;
3401 	initialized = 1;
3402 
3403 	if (si_tryplatform) {
3404 		rv = platform_driver_register(&ipmi_driver);
3405 		if (rv) {
3406 			printk(KERN_ERR PFX "Unable to register "
3407 			       "driver: %d\n", rv);
3408 			return rv;
3409 		}
3410 	}
3411 
3412 	/* Parse out the si_type string into its components. */
3413 	str = si_type_str;
3414 	if (*str != '\0') {
3415 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3416 			si_type[i] = str;
3417 			str = strchr(str, ',');
3418 			if (str) {
3419 				*str = '\0';
3420 				str++;
3421 			} else {
3422 				break;
3423 			}
3424 		}
3425 	}
3426 
3427 	printk(KERN_INFO "IPMI System Interface driver.\n");
3428 
3429 	/* If the user gave us a device, they presumably want us to use it */
3430 	if (!hardcode_find_bmc())
3431 		return 0;
3432 
3433 #ifdef CONFIG_PCI
3434 	if (si_trypci) {
3435 		rv = pci_register_driver(&ipmi_pci_driver);
3436 		if (rv)
3437 			printk(KERN_ERR PFX "Unable to register "
3438 			       "PCI driver: %d\n", rv);
3439 		else
3440 			pci_registered = 1;
3441 	}
3442 #endif
3443 
3444 #ifdef CONFIG_ACPI
3445 	if (si_tryacpi) {
3446 		pnp_register_driver(&ipmi_pnp_driver);
3447 		pnp_registered = 1;
3448 	}
3449 #endif
3450 
3451 #ifdef CONFIG_DMI
3452 	if (si_trydmi)
3453 		dmi_find_bmc();
3454 #endif
3455 
3456 #ifdef CONFIG_ACPI
3457 	if (si_tryacpi)
3458 		spmi_find_bmc();
3459 #endif
3460 
3461 	/* We prefer devices with interrupts, but in the case of a machine
3462 	   with multiple BMCs we assume that there will be several instances
3463 	   of a given type so if we succeed in registering a type then also
3464 	   try to register everything else of the same type */
3465 
3466 	mutex_lock(&smi_infos_lock);
3467 	list_for_each_entry(e, &smi_infos, link) {
3468 		/* Try to register a device if it has an IRQ and we either
3469 		   haven't successfully registered a device yet or this
3470 		   device has the same type as one we successfully registered */
3471 		if (e->irq && (!type || e->addr_source == type)) {
3472 			if (!try_smi_init(e)) {
3473 				type = e->addr_source;
3474 			}
3475 		}
3476 	}
3477 
3478 	/* type will only have been set if we successfully registered an si */
3479 	if (type) {
3480 		mutex_unlock(&smi_infos_lock);
3481 		return 0;
3482 	}
3483 
3484 	/* Fall back to the preferred device */
3485 
3486 	list_for_each_entry(e, &smi_infos, link) {
3487 		if (!e->irq && (!type || e->addr_source == type)) {
3488 			if (!try_smi_init(e)) {
3489 				type = e->addr_source;
3490 			}
3491 		}
3492 	}
3493 	mutex_unlock(&smi_infos_lock);
3494 
3495 	if (type)
3496 		return 0;
3497 
3498 	if (si_trydefaults) {
3499 		mutex_lock(&smi_infos_lock);
3500 		if (list_empty(&smi_infos)) {
3501 			/* No BMC was found, try defaults. */
3502 			mutex_unlock(&smi_infos_lock);
3503 			default_find_bmc();
3504 		} else
3505 			mutex_unlock(&smi_infos_lock);
3506 	}
3507 
3508 	mutex_lock(&smi_infos_lock);
3509 	if (unload_when_empty && list_empty(&smi_infos)) {
3510 		mutex_unlock(&smi_infos_lock);
3511 		cleanup_ipmi_si();
3512 		printk(KERN_WARNING PFX
3513 		       "Unable to find any System Interface(s)\n");
3514 		return -ENODEV;
3515 	} else {
3516 		mutex_unlock(&smi_infos_lock);
3517 		return 0;
3518 	}
3519 }
3520 module_init(init_ipmi_si);
3521 
3522 static void cleanup_one_si(struct smi_info *to_clean)
3523 {
3524 	int           rv = 0;
3525 	unsigned long flags;
3526 
3527 	if (!to_clean)
3528 		return;
3529 
3530 	list_del(&to_clean->link);
3531 
3532 	/* Tell the driver that we are shutting down. */
3533 	atomic_inc(&to_clean->stop_operation);
3534 
3535 	/*
3536 	 * Make sure the timer and thread are stopped and will not run
3537 	 * again.
3538 	 */
3539 	wait_for_timer_and_thread(to_clean);
3540 
3541 	/*
3542 	 * Timeouts are stopped, now make sure the interrupts are off
3543 	 * for the device.  A little tricky with locks to make sure
3544 	 * there are no races.
3545 	 */
3546 	spin_lock_irqsave(&to_clean->si_lock, flags);
3547 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3548 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3549 		poll(to_clean);
3550 		schedule_timeout_uninterruptible(1);
3551 		spin_lock_irqsave(&to_clean->si_lock, flags);
3552 	}
3553 	disable_si_irq(to_clean);
3554 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3555 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3556 		poll(to_clean);
3557 		schedule_timeout_uninterruptible(1);
3558 	}
3559 
3560 	/* Clean up interrupts and make sure that everything is done. */
3561 	if (to_clean->irq_cleanup)
3562 		to_clean->irq_cleanup(to_clean);
3563 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3564 		poll(to_clean);
3565 		schedule_timeout_uninterruptible(1);
3566 	}
3567 
3568 	if (to_clean->intf)
3569 		rv = ipmi_unregister_smi(to_clean->intf);
3570 
3571 	if (rv) {
3572 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3573 		       rv);
3574 	}
3575 
3576 	if (to_clean->handlers)
3577 		to_clean->handlers->cleanup(to_clean->si_sm);
3578 
3579 	kfree(to_clean->si_sm);
3580 
3581 	if (to_clean->addr_source_cleanup)
3582 		to_clean->addr_source_cleanup(to_clean);
3583 	if (to_clean->io_cleanup)
3584 		to_clean->io_cleanup(to_clean);
3585 
3586 	if (to_clean->dev_registered)
3587 		platform_device_unregister(to_clean->pdev);
3588 
3589 	kfree(to_clean);
3590 }
3591 
3592 static void cleanup_ipmi_si(void)
3593 {
3594 	struct smi_info *e, *tmp_e;
3595 
3596 	if (!initialized)
3597 		return;
3598 
3599 #ifdef CONFIG_PCI
3600 	if (pci_registered)
3601 		pci_unregister_driver(&ipmi_pci_driver);
3602 #endif
3603 #ifdef CONFIG_ACPI
3604 	if (pnp_registered)
3605 		pnp_unregister_driver(&ipmi_pnp_driver);
3606 #endif
3607 
3608 	platform_driver_unregister(&ipmi_driver);
3609 
3610 	mutex_lock(&smi_infos_lock);
3611 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3612 		cleanup_one_si(e);
3613 	mutex_unlock(&smi_infos_lock);
3614 }
3615 module_exit(cleanup_ipmi_si);
3616 
3617 MODULE_LICENSE("GPL");
3618 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3619 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3620 		   " system interfaces.");
3621