1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/of_device.h> 68 #include <linux/of_platform.h> 69 #include <linux/of_address.h> 70 #include <linux/of_irq.h> 71 72 #ifdef CONFIG_PARISC 73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 74 #include <asm/parisc-device.h> 75 #endif 76 77 #define PFX "ipmi_si: " 78 79 /* Measure times between events in the driver. */ 80 #undef DEBUG_TIMING 81 82 /* Call every 10 ms. */ 83 #define SI_TIMEOUT_TIME_USEC 10000 84 #define SI_USEC_PER_JIFFY (1000000/HZ) 85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 87 short timeout */ 88 89 enum si_intf_state { 90 SI_NORMAL, 91 SI_GETTING_FLAGS, 92 SI_GETTING_EVENTS, 93 SI_CLEARING_FLAGS, 94 SI_GETTING_MESSAGES, 95 SI_CHECKING_ENABLES, 96 SI_SETTING_ENABLES 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 #define DEVICE_NAME "ipmi_si" 111 112 static struct platform_driver ipmi_driver; 113 114 /* 115 * Indexes into stats[] in smi_info below. 116 */ 117 enum si_stat_indexes { 118 /* 119 * Number of times the driver requested a timer while an operation 120 * was in progress. 121 */ 122 SI_STAT_short_timeouts = 0, 123 124 /* 125 * Number of times the driver requested a timer while nothing was in 126 * progress. 127 */ 128 SI_STAT_long_timeouts, 129 130 /* Number of times the interface was idle while being polled. */ 131 SI_STAT_idles, 132 133 /* Number of interrupts the driver handled. */ 134 SI_STAT_interrupts, 135 136 /* Number of time the driver got an ATTN from the hardware. */ 137 SI_STAT_attentions, 138 139 /* Number of times the driver requested flags from the hardware. */ 140 SI_STAT_flag_fetches, 141 142 /* Number of times the hardware didn't follow the state machine. */ 143 SI_STAT_hosed_count, 144 145 /* Number of completed messages. */ 146 SI_STAT_complete_transactions, 147 148 /* Number of IPMI events received from the hardware. */ 149 SI_STAT_events, 150 151 /* Number of watchdog pretimeouts. */ 152 SI_STAT_watchdog_pretimeouts, 153 154 /* Number of asynchronous messages received. */ 155 SI_STAT_incoming_messages, 156 157 158 /* This *must* remain last, add new values above this. */ 159 SI_NUM_STATS 160 }; 161 162 struct smi_info { 163 int intf_num; 164 ipmi_smi_t intf; 165 struct si_sm_data *si_sm; 166 const struct si_sm_handlers *handlers; 167 enum si_type si_type; 168 spinlock_t si_lock; 169 struct ipmi_smi_msg *waiting_msg; 170 struct ipmi_smi_msg *curr_msg; 171 enum si_intf_state si_state; 172 173 /* 174 * Used to handle the various types of I/O that can occur with 175 * IPMI 176 */ 177 struct si_sm_io io; 178 int (*io_setup)(struct smi_info *info); 179 void (*io_cleanup)(struct smi_info *info); 180 int (*irq_setup)(struct smi_info *info); 181 void (*irq_cleanup)(struct smi_info *info); 182 unsigned int io_size; 183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 184 void (*addr_source_cleanup)(struct smi_info *info); 185 void *addr_source_data; 186 187 /* 188 * Per-OEM handler, called from handle_flags(). Returns 1 189 * when handle_flags() needs to be re-run or 0 indicating it 190 * set si_state itself. 191 */ 192 int (*oem_data_avail_handler)(struct smi_info *smi_info); 193 194 /* 195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 196 * is set to hold the flags until we are done handling everything 197 * from the flags. 198 */ 199 #define RECEIVE_MSG_AVAIL 0x01 200 #define EVENT_MSG_BUFFER_FULL 0x02 201 #define WDT_PRE_TIMEOUT_INT 0x08 202 #define OEM0_DATA_AVAIL 0x20 203 #define OEM1_DATA_AVAIL 0x40 204 #define OEM2_DATA_AVAIL 0x80 205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 206 OEM1_DATA_AVAIL | \ 207 OEM2_DATA_AVAIL) 208 unsigned char msg_flags; 209 210 /* Does the BMC have an event buffer? */ 211 bool has_event_buffer; 212 213 /* 214 * If set to true, this will request events the next time the 215 * state machine is idle. 216 */ 217 atomic_t req_events; 218 219 /* 220 * If true, run the state machine to completion on every send 221 * call. Generally used after a panic to make sure stuff goes 222 * out. 223 */ 224 bool run_to_completion; 225 226 /* The I/O port of an SI interface. */ 227 int port; 228 229 /* 230 * The space between start addresses of the two ports. For 231 * instance, if the first port is 0xca2 and the spacing is 4, then 232 * the second port is 0xca6. 233 */ 234 unsigned int spacing; 235 236 /* zero if no irq; */ 237 int irq; 238 239 /* The timer for this si. */ 240 struct timer_list si_timer; 241 242 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 243 bool timer_running; 244 245 /* The time (in jiffies) the last timeout occurred at. */ 246 unsigned long last_timeout_jiffies; 247 248 /* Are we waiting for the events, pretimeouts, received msgs? */ 249 atomic_t need_watch; 250 251 /* 252 * The driver will disable interrupts when it gets into a 253 * situation where it cannot handle messages due to lack of 254 * memory. Once that situation clears up, it will re-enable 255 * interrupts. 256 */ 257 bool interrupt_disabled; 258 259 /* 260 * Does the BMC support events? 261 */ 262 bool supports_event_msg_buff; 263 264 /* 265 * Can we disable interrupts the global enables receive irq 266 * bit? There are currently two forms of brokenness, some 267 * systems cannot disable the bit (which is technically within 268 * the spec but a bad idea) and some systems have the bit 269 * forced to zero even though interrupts work (which is 270 * clearly outside the spec). The next bool tells which form 271 * of brokenness is present. 272 */ 273 bool cannot_disable_irq; 274 275 /* 276 * Some systems are broken and cannot set the irq enable 277 * bit, even if they support interrupts. 278 */ 279 bool irq_enable_broken; 280 281 /* 282 * Did we get an attention that we did not handle? 283 */ 284 bool got_attn; 285 286 /* From the get device id response... */ 287 struct ipmi_device_id device_id; 288 289 /* Driver model stuff. */ 290 struct device *dev; 291 struct platform_device *pdev; 292 293 /* 294 * True if we allocated the device, false if it came from 295 * someplace else (like PCI). 296 */ 297 bool dev_registered; 298 299 /* Slave address, could be reported from DMI. */ 300 unsigned char slave_addr; 301 302 /* Counters and things for the proc filesystem. */ 303 atomic_t stats[SI_NUM_STATS]; 304 305 struct task_struct *thread; 306 307 struct list_head link; 308 union ipmi_smi_info_union addr_info; 309 }; 310 311 #define smi_inc_stat(smi, stat) \ 312 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 313 #define smi_get_stat(smi, stat) \ 314 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 315 316 #define SI_MAX_PARMS 4 317 318 static int force_kipmid[SI_MAX_PARMS]; 319 static int num_force_kipmid; 320 #ifdef CONFIG_PCI 321 static bool pci_registered; 322 #endif 323 #ifdef CONFIG_PARISC 324 static bool parisc_registered; 325 #endif 326 327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 328 static int num_max_busy_us; 329 330 static bool unload_when_empty = true; 331 332 static int add_smi(struct smi_info *smi); 333 static int try_smi_init(struct smi_info *smi); 334 static void cleanup_one_si(struct smi_info *to_clean); 335 static void cleanup_ipmi_si(void); 336 337 #ifdef DEBUG_TIMING 338 void debug_timestamp(char *msg) 339 { 340 struct timespec64 t; 341 342 getnstimeofday64(&t); 343 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 344 } 345 #else 346 #define debug_timestamp(x) 347 #endif 348 349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 350 static int register_xaction_notifier(struct notifier_block *nb) 351 { 352 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 353 } 354 355 static void deliver_recv_msg(struct smi_info *smi_info, 356 struct ipmi_smi_msg *msg) 357 { 358 /* Deliver the message to the upper layer. */ 359 if (smi_info->intf) 360 ipmi_smi_msg_received(smi_info->intf, msg); 361 else 362 ipmi_free_smi_msg(msg); 363 } 364 365 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 366 { 367 struct ipmi_smi_msg *msg = smi_info->curr_msg; 368 369 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 370 cCode = IPMI_ERR_UNSPECIFIED; 371 /* else use it as is */ 372 373 /* Make it a response */ 374 msg->rsp[0] = msg->data[0] | 4; 375 msg->rsp[1] = msg->data[1]; 376 msg->rsp[2] = cCode; 377 msg->rsp_size = 3; 378 379 smi_info->curr_msg = NULL; 380 deliver_recv_msg(smi_info, msg); 381 } 382 383 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 384 { 385 int rv; 386 387 if (!smi_info->waiting_msg) { 388 smi_info->curr_msg = NULL; 389 rv = SI_SM_IDLE; 390 } else { 391 int err; 392 393 smi_info->curr_msg = smi_info->waiting_msg; 394 smi_info->waiting_msg = NULL; 395 debug_timestamp("Start2"); 396 err = atomic_notifier_call_chain(&xaction_notifier_list, 397 0, smi_info); 398 if (err & NOTIFY_STOP_MASK) { 399 rv = SI_SM_CALL_WITHOUT_DELAY; 400 goto out; 401 } 402 err = smi_info->handlers->start_transaction( 403 smi_info->si_sm, 404 smi_info->curr_msg->data, 405 smi_info->curr_msg->data_size); 406 if (err) 407 return_hosed_msg(smi_info, err); 408 409 rv = SI_SM_CALL_WITHOUT_DELAY; 410 } 411 out: 412 return rv; 413 } 414 415 static void start_check_enables(struct smi_info *smi_info) 416 { 417 unsigned char msg[2]; 418 419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 421 422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 423 smi_info->si_state = SI_CHECKING_ENABLES; 424 } 425 426 static void start_clear_flags(struct smi_info *smi_info) 427 { 428 unsigned char msg[3]; 429 430 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 431 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 432 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 433 msg[2] = WDT_PRE_TIMEOUT_INT; 434 435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 436 smi_info->si_state = SI_CLEARING_FLAGS; 437 } 438 439 static void start_getting_msg_queue(struct smi_info *smi_info) 440 { 441 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 442 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 443 smi_info->curr_msg->data_size = 2; 444 445 smi_info->handlers->start_transaction( 446 smi_info->si_sm, 447 smi_info->curr_msg->data, 448 smi_info->curr_msg->data_size); 449 smi_info->si_state = SI_GETTING_MESSAGES; 450 } 451 452 static void start_getting_events(struct smi_info *smi_info) 453 { 454 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 455 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 456 smi_info->curr_msg->data_size = 2; 457 458 smi_info->handlers->start_transaction( 459 smi_info->si_sm, 460 smi_info->curr_msg->data, 461 smi_info->curr_msg->data_size); 462 smi_info->si_state = SI_GETTING_EVENTS; 463 } 464 465 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 466 { 467 smi_info->last_timeout_jiffies = jiffies; 468 mod_timer(&smi_info->si_timer, new_val); 469 smi_info->timer_running = true; 470 } 471 472 /* 473 * When we have a situtaion where we run out of memory and cannot 474 * allocate messages, we just leave them in the BMC and run the system 475 * polled until we can allocate some memory. Once we have some 476 * memory, we will re-enable the interrupt. 477 * 478 * Note that we cannot just use disable_irq(), since the interrupt may 479 * be shared. 480 */ 481 static inline bool disable_si_irq(struct smi_info *smi_info) 482 { 483 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 484 smi_info->interrupt_disabled = true; 485 start_check_enables(smi_info); 486 return true; 487 } 488 return false; 489 } 490 491 static inline bool enable_si_irq(struct smi_info *smi_info) 492 { 493 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 494 smi_info->interrupt_disabled = false; 495 start_check_enables(smi_info); 496 return true; 497 } 498 return false; 499 } 500 501 /* 502 * Allocate a message. If unable to allocate, start the interrupt 503 * disable process and return NULL. If able to allocate but 504 * interrupts are disabled, free the message and return NULL after 505 * starting the interrupt enable process. 506 */ 507 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 508 { 509 struct ipmi_smi_msg *msg; 510 511 msg = ipmi_alloc_smi_msg(); 512 if (!msg) { 513 if (!disable_si_irq(smi_info)) 514 smi_info->si_state = SI_NORMAL; 515 } else if (enable_si_irq(smi_info)) { 516 ipmi_free_smi_msg(msg); 517 msg = NULL; 518 } 519 return msg; 520 } 521 522 static void handle_flags(struct smi_info *smi_info) 523 { 524 retry: 525 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 526 /* Watchdog pre-timeout */ 527 smi_inc_stat(smi_info, watchdog_pretimeouts); 528 529 start_clear_flags(smi_info); 530 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 531 if (smi_info->intf) 532 ipmi_smi_watchdog_pretimeout(smi_info->intf); 533 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 534 /* Messages available. */ 535 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 536 if (!smi_info->curr_msg) 537 return; 538 539 start_getting_msg_queue(smi_info); 540 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 541 /* Events available. */ 542 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 543 if (!smi_info->curr_msg) 544 return; 545 546 start_getting_events(smi_info); 547 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 548 smi_info->oem_data_avail_handler) { 549 if (smi_info->oem_data_avail_handler(smi_info)) 550 goto retry; 551 } else 552 smi_info->si_state = SI_NORMAL; 553 } 554 555 /* 556 * Global enables we care about. 557 */ 558 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 559 IPMI_BMC_EVT_MSG_INTR) 560 561 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 562 bool *irq_on) 563 { 564 u8 enables = 0; 565 566 if (smi_info->supports_event_msg_buff) 567 enables |= IPMI_BMC_EVT_MSG_BUFF; 568 569 if (((smi_info->irq && !smi_info->interrupt_disabled) || 570 smi_info->cannot_disable_irq) && 571 !smi_info->irq_enable_broken) 572 enables |= IPMI_BMC_RCV_MSG_INTR; 573 574 if (smi_info->supports_event_msg_buff && 575 smi_info->irq && !smi_info->interrupt_disabled && 576 !smi_info->irq_enable_broken) 577 enables |= IPMI_BMC_EVT_MSG_INTR; 578 579 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 580 581 return enables; 582 } 583 584 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 585 { 586 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 587 588 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 589 590 if ((bool)irqstate == irq_on) 591 return; 592 593 if (irq_on) 594 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 595 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 596 else 597 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 598 } 599 600 static void handle_transaction_done(struct smi_info *smi_info) 601 { 602 struct ipmi_smi_msg *msg; 603 604 debug_timestamp("Done"); 605 switch (smi_info->si_state) { 606 case SI_NORMAL: 607 if (!smi_info->curr_msg) 608 break; 609 610 smi_info->curr_msg->rsp_size 611 = smi_info->handlers->get_result( 612 smi_info->si_sm, 613 smi_info->curr_msg->rsp, 614 IPMI_MAX_MSG_LENGTH); 615 616 /* 617 * Do this here becase deliver_recv_msg() releases the 618 * lock, and a new message can be put in during the 619 * time the lock is released. 620 */ 621 msg = smi_info->curr_msg; 622 smi_info->curr_msg = NULL; 623 deliver_recv_msg(smi_info, msg); 624 break; 625 626 case SI_GETTING_FLAGS: 627 { 628 unsigned char msg[4]; 629 unsigned int len; 630 631 /* We got the flags from the SMI, now handle them. */ 632 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 633 if (msg[2] != 0) { 634 /* Error fetching flags, just give up for now. */ 635 smi_info->si_state = SI_NORMAL; 636 } else if (len < 4) { 637 /* 638 * Hmm, no flags. That's technically illegal, but 639 * don't use uninitialized data. 640 */ 641 smi_info->si_state = SI_NORMAL; 642 } else { 643 smi_info->msg_flags = msg[3]; 644 handle_flags(smi_info); 645 } 646 break; 647 } 648 649 case SI_CLEARING_FLAGS: 650 { 651 unsigned char msg[3]; 652 653 /* We cleared the flags. */ 654 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 655 if (msg[2] != 0) { 656 /* Error clearing flags */ 657 dev_warn(smi_info->dev, 658 "Error clearing flags: %2.2x\n", msg[2]); 659 } 660 smi_info->si_state = SI_NORMAL; 661 break; 662 } 663 664 case SI_GETTING_EVENTS: 665 { 666 smi_info->curr_msg->rsp_size 667 = smi_info->handlers->get_result( 668 smi_info->si_sm, 669 smi_info->curr_msg->rsp, 670 IPMI_MAX_MSG_LENGTH); 671 672 /* 673 * Do this here becase deliver_recv_msg() releases the 674 * lock, and a new message can be put in during the 675 * time the lock is released. 676 */ 677 msg = smi_info->curr_msg; 678 smi_info->curr_msg = NULL; 679 if (msg->rsp[2] != 0) { 680 /* Error getting event, probably done. */ 681 msg->done(msg); 682 683 /* Take off the event flag. */ 684 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 685 handle_flags(smi_info); 686 } else { 687 smi_inc_stat(smi_info, events); 688 689 /* 690 * Do this before we deliver the message 691 * because delivering the message releases the 692 * lock and something else can mess with the 693 * state. 694 */ 695 handle_flags(smi_info); 696 697 deliver_recv_msg(smi_info, msg); 698 } 699 break; 700 } 701 702 case SI_GETTING_MESSAGES: 703 { 704 smi_info->curr_msg->rsp_size 705 = smi_info->handlers->get_result( 706 smi_info->si_sm, 707 smi_info->curr_msg->rsp, 708 IPMI_MAX_MSG_LENGTH); 709 710 /* 711 * Do this here becase deliver_recv_msg() releases the 712 * lock, and a new message can be put in during the 713 * time the lock is released. 714 */ 715 msg = smi_info->curr_msg; 716 smi_info->curr_msg = NULL; 717 if (msg->rsp[2] != 0) { 718 /* Error getting event, probably done. */ 719 msg->done(msg); 720 721 /* Take off the msg flag. */ 722 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 723 handle_flags(smi_info); 724 } else { 725 smi_inc_stat(smi_info, incoming_messages); 726 727 /* 728 * Do this before we deliver the message 729 * because delivering the message releases the 730 * lock and something else can mess with the 731 * state. 732 */ 733 handle_flags(smi_info); 734 735 deliver_recv_msg(smi_info, msg); 736 } 737 break; 738 } 739 740 case SI_CHECKING_ENABLES: 741 { 742 unsigned char msg[4]; 743 u8 enables; 744 bool irq_on; 745 746 /* We got the flags from the SMI, now handle them. */ 747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 748 if (msg[2] != 0) { 749 dev_warn(smi_info->dev, 750 "Couldn't get irq info: %x.\n", msg[2]); 751 dev_warn(smi_info->dev, 752 "Maybe ok, but ipmi might run very slowly.\n"); 753 smi_info->si_state = SI_NORMAL; 754 break; 755 } 756 enables = current_global_enables(smi_info, 0, &irq_on); 757 if (smi_info->si_type == SI_BT) 758 /* BT has its own interrupt enable bit. */ 759 check_bt_irq(smi_info, irq_on); 760 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 761 /* Enables are not correct, fix them. */ 762 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 763 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 764 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 765 smi_info->handlers->start_transaction( 766 smi_info->si_sm, msg, 3); 767 smi_info->si_state = SI_SETTING_ENABLES; 768 } else if (smi_info->supports_event_msg_buff) { 769 smi_info->curr_msg = ipmi_alloc_smi_msg(); 770 if (!smi_info->curr_msg) { 771 smi_info->si_state = SI_NORMAL; 772 break; 773 } 774 start_getting_msg_queue(smi_info); 775 } else { 776 smi_info->si_state = SI_NORMAL; 777 } 778 break; 779 } 780 781 case SI_SETTING_ENABLES: 782 { 783 unsigned char msg[4]; 784 785 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 786 if (msg[2] != 0) 787 dev_warn(smi_info->dev, 788 "Could not set the global enables: 0x%x.\n", 789 msg[2]); 790 791 if (smi_info->supports_event_msg_buff) { 792 smi_info->curr_msg = ipmi_alloc_smi_msg(); 793 if (!smi_info->curr_msg) { 794 smi_info->si_state = SI_NORMAL; 795 break; 796 } 797 start_getting_msg_queue(smi_info); 798 } else { 799 smi_info->si_state = SI_NORMAL; 800 } 801 break; 802 } 803 } 804 } 805 806 /* 807 * Called on timeouts and events. Timeouts should pass the elapsed 808 * time, interrupts should pass in zero. Must be called with 809 * si_lock held and interrupts disabled. 810 */ 811 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 812 int time) 813 { 814 enum si_sm_result si_sm_result; 815 816 restart: 817 /* 818 * There used to be a loop here that waited a little while 819 * (around 25us) before giving up. That turned out to be 820 * pointless, the minimum delays I was seeing were in the 300us 821 * range, which is far too long to wait in an interrupt. So 822 * we just run until the state machine tells us something 823 * happened or it needs a delay. 824 */ 825 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 826 time = 0; 827 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 828 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 829 830 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 831 smi_inc_stat(smi_info, complete_transactions); 832 833 handle_transaction_done(smi_info); 834 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 835 } else if (si_sm_result == SI_SM_HOSED) { 836 smi_inc_stat(smi_info, hosed_count); 837 838 /* 839 * Do the before return_hosed_msg, because that 840 * releases the lock. 841 */ 842 smi_info->si_state = SI_NORMAL; 843 if (smi_info->curr_msg != NULL) { 844 /* 845 * If we were handling a user message, format 846 * a response to send to the upper layer to 847 * tell it about the error. 848 */ 849 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 850 } 851 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 852 } 853 854 /* 855 * We prefer handling attn over new messages. But don't do 856 * this if there is not yet an upper layer to handle anything. 857 */ 858 if (likely(smi_info->intf) && 859 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 860 unsigned char msg[2]; 861 862 if (smi_info->si_state != SI_NORMAL) { 863 /* 864 * We got an ATTN, but we are doing something else. 865 * Handle the ATTN later. 866 */ 867 smi_info->got_attn = true; 868 } else { 869 smi_info->got_attn = false; 870 smi_inc_stat(smi_info, attentions); 871 872 /* 873 * Got a attn, send down a get message flags to see 874 * what's causing it. It would be better to handle 875 * this in the upper layer, but due to the way 876 * interrupts work with the SMI, that's not really 877 * possible. 878 */ 879 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 880 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 881 882 smi_info->handlers->start_transaction( 883 smi_info->si_sm, msg, 2); 884 smi_info->si_state = SI_GETTING_FLAGS; 885 goto restart; 886 } 887 } 888 889 /* If we are currently idle, try to start the next message. */ 890 if (si_sm_result == SI_SM_IDLE) { 891 smi_inc_stat(smi_info, idles); 892 893 si_sm_result = start_next_msg(smi_info); 894 if (si_sm_result != SI_SM_IDLE) 895 goto restart; 896 } 897 898 if ((si_sm_result == SI_SM_IDLE) 899 && (atomic_read(&smi_info->req_events))) { 900 /* 901 * We are idle and the upper layer requested that I fetch 902 * events, so do so. 903 */ 904 atomic_set(&smi_info->req_events, 0); 905 906 /* 907 * Take this opportunity to check the interrupt and 908 * message enable state for the BMC. The BMC can be 909 * asynchronously reset, and may thus get interrupts 910 * disable and messages disabled. 911 */ 912 if (smi_info->supports_event_msg_buff || smi_info->irq) { 913 start_check_enables(smi_info); 914 } else { 915 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 916 if (!smi_info->curr_msg) 917 goto out; 918 919 start_getting_events(smi_info); 920 } 921 goto restart; 922 } 923 out: 924 return si_sm_result; 925 } 926 927 static void check_start_timer_thread(struct smi_info *smi_info) 928 { 929 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 930 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 931 932 if (smi_info->thread) 933 wake_up_process(smi_info->thread); 934 935 start_next_msg(smi_info); 936 smi_event_handler(smi_info, 0); 937 } 938 } 939 940 static void flush_messages(void *send_info) 941 { 942 struct smi_info *smi_info = send_info; 943 enum si_sm_result result; 944 945 /* 946 * Currently, this function is called only in run-to-completion 947 * mode. This means we are single-threaded, no need for locks. 948 */ 949 result = smi_event_handler(smi_info, 0); 950 while (result != SI_SM_IDLE) { 951 udelay(SI_SHORT_TIMEOUT_USEC); 952 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 953 } 954 } 955 956 static void sender(void *send_info, 957 struct ipmi_smi_msg *msg) 958 { 959 struct smi_info *smi_info = send_info; 960 unsigned long flags; 961 962 debug_timestamp("Enqueue"); 963 964 if (smi_info->run_to_completion) { 965 /* 966 * If we are running to completion, start it. Upper 967 * layer will call flush_messages to clear it out. 968 */ 969 smi_info->waiting_msg = msg; 970 return; 971 } 972 973 spin_lock_irqsave(&smi_info->si_lock, flags); 974 /* 975 * The following two lines don't need to be under the lock for 976 * the lock's sake, but they do need SMP memory barriers to 977 * avoid getting things out of order. We are already claiming 978 * the lock, anyway, so just do it under the lock to avoid the 979 * ordering problem. 980 */ 981 BUG_ON(smi_info->waiting_msg); 982 smi_info->waiting_msg = msg; 983 check_start_timer_thread(smi_info); 984 spin_unlock_irqrestore(&smi_info->si_lock, flags); 985 } 986 987 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 988 { 989 struct smi_info *smi_info = send_info; 990 991 smi_info->run_to_completion = i_run_to_completion; 992 if (i_run_to_completion) 993 flush_messages(smi_info); 994 } 995 996 /* 997 * Use -1 in the nsec value of the busy waiting timespec to tell that 998 * we are spinning in kipmid looking for something and not delaying 999 * between checks 1000 */ 1001 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 1002 { 1003 ts->tv_nsec = -1; 1004 } 1005 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1006 { 1007 return ts->tv_nsec != -1; 1008 } 1009 1010 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1011 const struct smi_info *smi_info, 1012 struct timespec64 *busy_until) 1013 { 1014 unsigned int max_busy_us = 0; 1015 1016 if (smi_info->intf_num < num_max_busy_us) 1017 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1018 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1019 ipmi_si_set_not_busy(busy_until); 1020 else if (!ipmi_si_is_busy(busy_until)) { 1021 getnstimeofday64(busy_until); 1022 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1023 } else { 1024 struct timespec64 now; 1025 1026 getnstimeofday64(&now); 1027 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1028 ipmi_si_set_not_busy(busy_until); 1029 return 0; 1030 } 1031 } 1032 return 1; 1033 } 1034 1035 1036 /* 1037 * A busy-waiting loop for speeding up IPMI operation. 1038 * 1039 * Lousy hardware makes this hard. This is only enabled for systems 1040 * that are not BT and do not have interrupts. It starts spinning 1041 * when an operation is complete or until max_busy tells it to stop 1042 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1043 * Documentation/IPMI.txt for details. 1044 */ 1045 static int ipmi_thread(void *data) 1046 { 1047 struct smi_info *smi_info = data; 1048 unsigned long flags; 1049 enum si_sm_result smi_result; 1050 struct timespec64 busy_until; 1051 1052 ipmi_si_set_not_busy(&busy_until); 1053 set_user_nice(current, MAX_NICE); 1054 while (!kthread_should_stop()) { 1055 int busy_wait; 1056 1057 spin_lock_irqsave(&(smi_info->si_lock), flags); 1058 smi_result = smi_event_handler(smi_info, 0); 1059 1060 /* 1061 * If the driver is doing something, there is a possible 1062 * race with the timer. If the timer handler see idle, 1063 * and the thread here sees something else, the timer 1064 * handler won't restart the timer even though it is 1065 * required. So start it here if necessary. 1066 */ 1067 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1068 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1069 1070 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1071 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1072 &busy_until); 1073 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1074 ; /* do nothing */ 1075 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1076 schedule(); 1077 else if (smi_result == SI_SM_IDLE) { 1078 if (atomic_read(&smi_info->need_watch)) { 1079 schedule_timeout_interruptible(100); 1080 } else { 1081 /* Wait to be woken up when we are needed. */ 1082 __set_current_state(TASK_INTERRUPTIBLE); 1083 schedule(); 1084 } 1085 } else 1086 schedule_timeout_interruptible(1); 1087 } 1088 return 0; 1089 } 1090 1091 1092 static void poll(void *send_info) 1093 { 1094 struct smi_info *smi_info = send_info; 1095 unsigned long flags = 0; 1096 bool run_to_completion = smi_info->run_to_completion; 1097 1098 /* 1099 * Make sure there is some delay in the poll loop so we can 1100 * drive time forward and timeout things. 1101 */ 1102 udelay(10); 1103 if (!run_to_completion) 1104 spin_lock_irqsave(&smi_info->si_lock, flags); 1105 smi_event_handler(smi_info, 10); 1106 if (!run_to_completion) 1107 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1108 } 1109 1110 static void request_events(void *send_info) 1111 { 1112 struct smi_info *smi_info = send_info; 1113 1114 if (!smi_info->has_event_buffer) 1115 return; 1116 1117 atomic_set(&smi_info->req_events, 1); 1118 } 1119 1120 static void set_need_watch(void *send_info, bool enable) 1121 { 1122 struct smi_info *smi_info = send_info; 1123 unsigned long flags; 1124 1125 atomic_set(&smi_info->need_watch, enable); 1126 spin_lock_irqsave(&smi_info->si_lock, flags); 1127 check_start_timer_thread(smi_info); 1128 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1129 } 1130 1131 static int initialized; 1132 1133 static void smi_timeout(unsigned long data) 1134 { 1135 struct smi_info *smi_info = (struct smi_info *) data; 1136 enum si_sm_result smi_result; 1137 unsigned long flags; 1138 unsigned long jiffies_now; 1139 long time_diff; 1140 long timeout; 1141 1142 spin_lock_irqsave(&(smi_info->si_lock), flags); 1143 debug_timestamp("Timer"); 1144 1145 jiffies_now = jiffies; 1146 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1147 * SI_USEC_PER_JIFFY); 1148 smi_result = smi_event_handler(smi_info, time_diff); 1149 1150 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1151 /* Running with interrupts, only do long timeouts. */ 1152 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1153 smi_inc_stat(smi_info, long_timeouts); 1154 goto do_mod_timer; 1155 } 1156 1157 /* 1158 * If the state machine asks for a short delay, then shorten 1159 * the timer timeout. 1160 */ 1161 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1162 smi_inc_stat(smi_info, short_timeouts); 1163 timeout = jiffies + 1; 1164 } else { 1165 smi_inc_stat(smi_info, long_timeouts); 1166 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1167 } 1168 1169 do_mod_timer: 1170 if (smi_result != SI_SM_IDLE) 1171 smi_mod_timer(smi_info, timeout); 1172 else 1173 smi_info->timer_running = false; 1174 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1175 } 1176 1177 static irqreturn_t si_irq_handler(int irq, void *data) 1178 { 1179 struct smi_info *smi_info = data; 1180 unsigned long flags; 1181 1182 spin_lock_irqsave(&(smi_info->si_lock), flags); 1183 1184 smi_inc_stat(smi_info, interrupts); 1185 1186 debug_timestamp("Interrupt"); 1187 1188 smi_event_handler(smi_info, 0); 1189 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1190 return IRQ_HANDLED; 1191 } 1192 1193 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1194 { 1195 struct smi_info *smi_info = data; 1196 /* We need to clear the IRQ flag for the BT interface. */ 1197 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1198 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1199 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1200 return si_irq_handler(irq, data); 1201 } 1202 1203 static int smi_start_processing(void *send_info, 1204 ipmi_smi_t intf) 1205 { 1206 struct smi_info *new_smi = send_info; 1207 int enable = 0; 1208 1209 new_smi->intf = intf; 1210 1211 /* Try to claim any interrupts. */ 1212 if (new_smi->irq_setup) 1213 new_smi->irq_setup(new_smi); 1214 1215 /* Set up the timer that drives the interface. */ 1216 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1217 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1218 1219 /* 1220 * Check if the user forcefully enabled the daemon. 1221 */ 1222 if (new_smi->intf_num < num_force_kipmid) 1223 enable = force_kipmid[new_smi->intf_num]; 1224 /* 1225 * The BT interface is efficient enough to not need a thread, 1226 * and there is no need for a thread if we have interrupts. 1227 */ 1228 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1229 enable = 1; 1230 1231 if (enable) { 1232 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1233 "kipmi%d", new_smi->intf_num); 1234 if (IS_ERR(new_smi->thread)) { 1235 dev_notice(new_smi->dev, "Could not start" 1236 " kernel thread due to error %ld, only using" 1237 " timers to drive the interface\n", 1238 PTR_ERR(new_smi->thread)); 1239 new_smi->thread = NULL; 1240 } 1241 } 1242 1243 return 0; 1244 } 1245 1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1247 { 1248 struct smi_info *smi = send_info; 1249 1250 data->addr_src = smi->addr_source; 1251 data->dev = smi->dev; 1252 data->addr_info = smi->addr_info; 1253 get_device(smi->dev); 1254 1255 return 0; 1256 } 1257 1258 static void set_maintenance_mode(void *send_info, bool enable) 1259 { 1260 struct smi_info *smi_info = send_info; 1261 1262 if (!enable) 1263 atomic_set(&smi_info->req_events, 0); 1264 } 1265 1266 static const struct ipmi_smi_handlers handlers = { 1267 .owner = THIS_MODULE, 1268 .start_processing = smi_start_processing, 1269 .get_smi_info = get_smi_info, 1270 .sender = sender, 1271 .request_events = request_events, 1272 .set_need_watch = set_need_watch, 1273 .set_maintenance_mode = set_maintenance_mode, 1274 .set_run_to_completion = set_run_to_completion, 1275 .flush_messages = flush_messages, 1276 .poll = poll, 1277 }; 1278 1279 /* 1280 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1281 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1282 */ 1283 1284 static LIST_HEAD(smi_infos); 1285 static DEFINE_MUTEX(smi_infos_lock); 1286 static int smi_num; /* Used to sequence the SMIs */ 1287 1288 #define DEFAULT_REGSPACING 1 1289 #define DEFAULT_REGSIZE 1 1290 1291 #ifdef CONFIG_ACPI 1292 static bool si_tryacpi = true; 1293 #endif 1294 #ifdef CONFIG_DMI 1295 static bool si_trydmi = true; 1296 #endif 1297 static bool si_tryplatform = true; 1298 #ifdef CONFIG_PCI 1299 static bool si_trypci = true; 1300 #endif 1301 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); 1302 static char *si_type[SI_MAX_PARMS]; 1303 #define MAX_SI_TYPE_STR 30 1304 static char si_type_str[MAX_SI_TYPE_STR]; 1305 static unsigned long addrs[SI_MAX_PARMS]; 1306 static unsigned int num_addrs; 1307 static unsigned int ports[SI_MAX_PARMS]; 1308 static unsigned int num_ports; 1309 static int irqs[SI_MAX_PARMS]; 1310 static unsigned int num_irqs; 1311 static int regspacings[SI_MAX_PARMS]; 1312 static unsigned int num_regspacings; 1313 static int regsizes[SI_MAX_PARMS]; 1314 static unsigned int num_regsizes; 1315 static int regshifts[SI_MAX_PARMS]; 1316 static unsigned int num_regshifts; 1317 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1318 static unsigned int num_slave_addrs; 1319 1320 #define IPMI_IO_ADDR_SPACE 0 1321 #define IPMI_MEM_ADDR_SPACE 1 1322 static char *addr_space_to_str[] = { "i/o", "mem" }; 1323 1324 static int hotmod_handler(const char *val, struct kernel_param *kp); 1325 1326 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1327 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1328 " Documentation/IPMI.txt in the kernel sources for the" 1329 " gory details."); 1330 1331 #ifdef CONFIG_ACPI 1332 module_param_named(tryacpi, si_tryacpi, bool, 0); 1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1334 " default scan of the interfaces identified via ACPI"); 1335 #endif 1336 #ifdef CONFIG_DMI 1337 module_param_named(trydmi, si_trydmi, bool, 0); 1338 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1339 " default scan of the interfaces identified via DMI"); 1340 #endif 1341 module_param_named(tryplatform, si_tryplatform, bool, 0); 1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1343 " default scan of the interfaces identified via platform" 1344 " interfaces like openfirmware"); 1345 #ifdef CONFIG_PCI 1346 module_param_named(trypci, si_trypci, bool, 0); 1347 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1348 " default scan of the interfaces identified via pci"); 1349 #endif 1350 module_param_named(trydefaults, si_trydefaults, bool, 0); 1351 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1352 " default scan of the KCS and SMIC interface at the standard" 1353 " address"); 1354 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1355 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1356 " interface separated by commas. The types are 'kcs'," 1357 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1358 " the first interface to kcs and the second to bt"); 1359 module_param_array(addrs, ulong, &num_addrs, 0); 1360 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1361 " addresses separated by commas. Only use if an interface" 1362 " is in memory. Otherwise, set it to zero or leave" 1363 " it blank."); 1364 module_param_array(ports, uint, &num_ports, 0); 1365 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1366 " addresses separated by commas. Only use if an interface" 1367 " is a port. Otherwise, set it to zero or leave" 1368 " it blank."); 1369 module_param_array(irqs, int, &num_irqs, 0); 1370 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1371 " addresses separated by commas. Only use if an interface" 1372 " has an interrupt. Otherwise, set it to zero or leave" 1373 " it blank."); 1374 module_param_array(regspacings, int, &num_regspacings, 0); 1375 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1376 " and each successive register used by the interface. For" 1377 " instance, if the start address is 0xca2 and the spacing" 1378 " is 2, then the second address is at 0xca4. Defaults" 1379 " to 1."); 1380 module_param_array(regsizes, int, &num_regsizes, 0); 1381 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1382 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1383 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1384 " the 8-bit IPMI register has to be read from a larger" 1385 " register."); 1386 module_param_array(regshifts, int, &num_regshifts, 0); 1387 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1388 " IPMI register, in bits. For instance, if the data" 1389 " is read from a 32-bit word and the IPMI data is in" 1390 " bit 8-15, then the shift would be 8"); 1391 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1392 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1393 " the controller. Normally this is 0x20, but can be" 1394 " overridden by this parm. This is an array indexed" 1395 " by interface number."); 1396 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1397 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1398 " disabled(0). Normally the IPMI driver auto-detects" 1399 " this, but the value may be overridden by this parm."); 1400 module_param(unload_when_empty, bool, 0); 1401 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1402 " specified or found, default is 1. Setting to 0" 1403 " is useful for hot add of devices using hotmod."); 1404 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1405 MODULE_PARM_DESC(kipmid_max_busy_us, 1406 "Max time (in microseconds) to busy-wait for IPMI data before" 1407 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1408 " if kipmid is using up a lot of CPU time."); 1409 1410 1411 static void std_irq_cleanup(struct smi_info *info) 1412 { 1413 if (info->si_type == SI_BT) 1414 /* Disable the interrupt in the BT interface. */ 1415 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1416 free_irq(info->irq, info); 1417 } 1418 1419 static int std_irq_setup(struct smi_info *info) 1420 { 1421 int rv; 1422 1423 if (!info->irq) 1424 return 0; 1425 1426 if (info->si_type == SI_BT) { 1427 rv = request_irq(info->irq, 1428 si_bt_irq_handler, 1429 IRQF_SHARED, 1430 DEVICE_NAME, 1431 info); 1432 if (!rv) 1433 /* Enable the interrupt in the BT interface. */ 1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1435 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1436 } else 1437 rv = request_irq(info->irq, 1438 si_irq_handler, 1439 IRQF_SHARED, 1440 DEVICE_NAME, 1441 info); 1442 if (rv) { 1443 dev_warn(info->dev, "%s unable to claim interrupt %d," 1444 " running polled\n", 1445 DEVICE_NAME, info->irq); 1446 info->irq = 0; 1447 } else { 1448 info->irq_cleanup = std_irq_cleanup; 1449 dev_info(info->dev, "Using irq %d\n", info->irq); 1450 } 1451 1452 return rv; 1453 } 1454 1455 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) 1456 { 1457 unsigned int addr = io->addr_data; 1458 1459 return inb(addr + (offset * io->regspacing)); 1460 } 1461 1462 static void port_outb(const struct si_sm_io *io, unsigned int offset, 1463 unsigned char b) 1464 { 1465 unsigned int addr = io->addr_data; 1466 1467 outb(b, addr + (offset * io->regspacing)); 1468 } 1469 1470 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) 1471 { 1472 unsigned int addr = io->addr_data; 1473 1474 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1475 } 1476 1477 static void port_outw(const struct si_sm_io *io, unsigned int offset, 1478 unsigned char b) 1479 { 1480 unsigned int addr = io->addr_data; 1481 1482 outw(b << io->regshift, addr + (offset * io->regspacing)); 1483 } 1484 1485 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) 1486 { 1487 unsigned int addr = io->addr_data; 1488 1489 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1490 } 1491 1492 static void port_outl(const struct si_sm_io *io, unsigned int offset, 1493 unsigned char b) 1494 { 1495 unsigned int addr = io->addr_data; 1496 1497 outl(b << io->regshift, addr+(offset * io->regspacing)); 1498 } 1499 1500 static void port_cleanup(struct smi_info *info) 1501 { 1502 unsigned int addr = info->io.addr_data; 1503 int idx; 1504 1505 if (addr) { 1506 for (idx = 0; idx < info->io_size; idx++) 1507 release_region(addr + idx * info->io.regspacing, 1508 info->io.regsize); 1509 } 1510 } 1511 1512 static int port_setup(struct smi_info *info) 1513 { 1514 unsigned int addr = info->io.addr_data; 1515 int idx; 1516 1517 if (!addr) 1518 return -ENODEV; 1519 1520 info->io_cleanup = port_cleanup; 1521 1522 /* 1523 * Figure out the actual inb/inw/inl/etc routine to use based 1524 * upon the register size. 1525 */ 1526 switch (info->io.regsize) { 1527 case 1: 1528 info->io.inputb = port_inb; 1529 info->io.outputb = port_outb; 1530 break; 1531 case 2: 1532 info->io.inputb = port_inw; 1533 info->io.outputb = port_outw; 1534 break; 1535 case 4: 1536 info->io.inputb = port_inl; 1537 info->io.outputb = port_outl; 1538 break; 1539 default: 1540 dev_warn(info->dev, "Invalid register size: %d\n", 1541 info->io.regsize); 1542 return -EINVAL; 1543 } 1544 1545 /* 1546 * Some BIOSes reserve disjoint I/O regions in their ACPI 1547 * tables. This causes problems when trying to register the 1548 * entire I/O region. Therefore we must register each I/O 1549 * port separately. 1550 */ 1551 for (idx = 0; idx < info->io_size; idx++) { 1552 if (request_region(addr + idx * info->io.regspacing, 1553 info->io.regsize, DEVICE_NAME) == NULL) { 1554 /* Undo allocations */ 1555 while (idx--) { 1556 release_region(addr + idx * info->io.regspacing, 1557 info->io.regsize); 1558 } 1559 return -EIO; 1560 } 1561 } 1562 return 0; 1563 } 1564 1565 static unsigned char intf_mem_inb(const struct si_sm_io *io, 1566 unsigned int offset) 1567 { 1568 return readb((io->addr)+(offset * io->regspacing)); 1569 } 1570 1571 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, 1572 unsigned char b) 1573 { 1574 writeb(b, (io->addr)+(offset * io->regspacing)); 1575 } 1576 1577 static unsigned char intf_mem_inw(const struct si_sm_io *io, 1578 unsigned int offset) 1579 { 1580 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1581 & 0xff; 1582 } 1583 1584 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, 1585 unsigned char b) 1586 { 1587 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1588 } 1589 1590 static unsigned char intf_mem_inl(const struct si_sm_io *io, 1591 unsigned int offset) 1592 { 1593 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1594 & 0xff; 1595 } 1596 1597 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, 1598 unsigned char b) 1599 { 1600 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1601 } 1602 1603 #ifdef readq 1604 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) 1605 { 1606 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1607 & 0xff; 1608 } 1609 1610 static void mem_outq(const struct si_sm_io *io, unsigned int offset, 1611 unsigned char b) 1612 { 1613 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1614 } 1615 #endif 1616 1617 static void mem_cleanup(struct smi_info *info) 1618 { 1619 unsigned long addr = info->io.addr_data; 1620 int mapsize; 1621 1622 if (info->io.addr) { 1623 iounmap(info->io.addr); 1624 1625 mapsize = ((info->io_size * info->io.regspacing) 1626 - (info->io.regspacing - info->io.regsize)); 1627 1628 release_mem_region(addr, mapsize); 1629 } 1630 } 1631 1632 static int mem_setup(struct smi_info *info) 1633 { 1634 unsigned long addr = info->io.addr_data; 1635 int mapsize; 1636 1637 if (!addr) 1638 return -ENODEV; 1639 1640 info->io_cleanup = mem_cleanup; 1641 1642 /* 1643 * Figure out the actual readb/readw/readl/etc routine to use based 1644 * upon the register size. 1645 */ 1646 switch (info->io.regsize) { 1647 case 1: 1648 info->io.inputb = intf_mem_inb; 1649 info->io.outputb = intf_mem_outb; 1650 break; 1651 case 2: 1652 info->io.inputb = intf_mem_inw; 1653 info->io.outputb = intf_mem_outw; 1654 break; 1655 case 4: 1656 info->io.inputb = intf_mem_inl; 1657 info->io.outputb = intf_mem_outl; 1658 break; 1659 #ifdef readq 1660 case 8: 1661 info->io.inputb = mem_inq; 1662 info->io.outputb = mem_outq; 1663 break; 1664 #endif 1665 default: 1666 dev_warn(info->dev, "Invalid register size: %d\n", 1667 info->io.regsize); 1668 return -EINVAL; 1669 } 1670 1671 /* 1672 * Calculate the total amount of memory to claim. This is an 1673 * unusual looking calculation, but it avoids claiming any 1674 * more memory than it has to. It will claim everything 1675 * between the first address to the end of the last full 1676 * register. 1677 */ 1678 mapsize = ((info->io_size * info->io.regspacing) 1679 - (info->io.regspacing - info->io.regsize)); 1680 1681 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1682 return -EIO; 1683 1684 info->io.addr = ioremap(addr, mapsize); 1685 if (info->io.addr == NULL) { 1686 release_mem_region(addr, mapsize); 1687 return -EIO; 1688 } 1689 return 0; 1690 } 1691 1692 /* 1693 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1694 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1695 * Options are: 1696 * rsp=<regspacing> 1697 * rsi=<regsize> 1698 * rsh=<regshift> 1699 * irq=<irq> 1700 * ipmb=<ipmb addr> 1701 */ 1702 enum hotmod_op { HM_ADD, HM_REMOVE }; 1703 struct hotmod_vals { 1704 char *name; 1705 int val; 1706 }; 1707 static struct hotmod_vals hotmod_ops[] = { 1708 { "add", HM_ADD }, 1709 { "remove", HM_REMOVE }, 1710 { NULL } 1711 }; 1712 static struct hotmod_vals hotmod_si[] = { 1713 { "kcs", SI_KCS }, 1714 { "smic", SI_SMIC }, 1715 { "bt", SI_BT }, 1716 { NULL } 1717 }; 1718 static struct hotmod_vals hotmod_as[] = { 1719 { "mem", IPMI_MEM_ADDR_SPACE }, 1720 { "i/o", IPMI_IO_ADDR_SPACE }, 1721 { NULL } 1722 }; 1723 1724 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1725 { 1726 char *s; 1727 int i; 1728 1729 s = strchr(*curr, ','); 1730 if (!s) { 1731 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1732 return -EINVAL; 1733 } 1734 *s = '\0'; 1735 s++; 1736 for (i = 0; v[i].name; i++) { 1737 if (strcmp(*curr, v[i].name) == 0) { 1738 *val = v[i].val; 1739 *curr = s; 1740 return 0; 1741 } 1742 } 1743 1744 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1745 return -EINVAL; 1746 } 1747 1748 static int check_hotmod_int_op(const char *curr, const char *option, 1749 const char *name, int *val) 1750 { 1751 char *n; 1752 1753 if (strcmp(curr, name) == 0) { 1754 if (!option) { 1755 printk(KERN_WARNING PFX 1756 "No option given for '%s'\n", 1757 curr); 1758 return -EINVAL; 1759 } 1760 *val = simple_strtoul(option, &n, 0); 1761 if ((*n != '\0') || (*option == '\0')) { 1762 printk(KERN_WARNING PFX 1763 "Bad option given for '%s'\n", 1764 curr); 1765 return -EINVAL; 1766 } 1767 return 1; 1768 } 1769 return 0; 1770 } 1771 1772 static struct smi_info *smi_info_alloc(void) 1773 { 1774 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1775 1776 if (info) 1777 spin_lock_init(&info->si_lock); 1778 return info; 1779 } 1780 1781 static int hotmod_handler(const char *val, struct kernel_param *kp) 1782 { 1783 char *str = kstrdup(val, GFP_KERNEL); 1784 int rv; 1785 char *next, *curr, *s, *n, *o; 1786 enum hotmod_op op; 1787 enum si_type si_type; 1788 int addr_space; 1789 unsigned long addr; 1790 int regspacing; 1791 int regsize; 1792 int regshift; 1793 int irq; 1794 int ipmb; 1795 int ival; 1796 int len; 1797 struct smi_info *info; 1798 1799 if (!str) 1800 return -ENOMEM; 1801 1802 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1803 len = strlen(str); 1804 ival = len - 1; 1805 while ((ival >= 0) && isspace(str[ival])) { 1806 str[ival] = '\0'; 1807 ival--; 1808 } 1809 1810 for (curr = str; curr; curr = next) { 1811 regspacing = 1; 1812 regsize = 1; 1813 regshift = 0; 1814 irq = 0; 1815 ipmb = 0; /* Choose the default if not specified */ 1816 1817 next = strchr(curr, ':'); 1818 if (next) { 1819 *next = '\0'; 1820 next++; 1821 } 1822 1823 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1824 if (rv) 1825 break; 1826 op = ival; 1827 1828 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1829 if (rv) 1830 break; 1831 si_type = ival; 1832 1833 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1834 if (rv) 1835 break; 1836 1837 s = strchr(curr, ','); 1838 if (s) { 1839 *s = '\0'; 1840 s++; 1841 } 1842 addr = simple_strtoul(curr, &n, 0); 1843 if ((*n != '\0') || (*curr == '\0')) { 1844 printk(KERN_WARNING PFX "Invalid hotmod address" 1845 " '%s'\n", curr); 1846 break; 1847 } 1848 1849 while (s) { 1850 curr = s; 1851 s = strchr(curr, ','); 1852 if (s) { 1853 *s = '\0'; 1854 s++; 1855 } 1856 o = strchr(curr, '='); 1857 if (o) { 1858 *o = '\0'; 1859 o++; 1860 } 1861 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1862 if (rv < 0) 1863 goto out; 1864 else if (rv) 1865 continue; 1866 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1867 if (rv < 0) 1868 goto out; 1869 else if (rv) 1870 continue; 1871 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1872 if (rv < 0) 1873 goto out; 1874 else if (rv) 1875 continue; 1876 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1877 if (rv < 0) 1878 goto out; 1879 else if (rv) 1880 continue; 1881 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1882 if (rv < 0) 1883 goto out; 1884 else if (rv) 1885 continue; 1886 1887 rv = -EINVAL; 1888 printk(KERN_WARNING PFX 1889 "Invalid hotmod option '%s'\n", 1890 curr); 1891 goto out; 1892 } 1893 1894 if (op == HM_ADD) { 1895 info = smi_info_alloc(); 1896 if (!info) { 1897 rv = -ENOMEM; 1898 goto out; 1899 } 1900 1901 info->addr_source = SI_HOTMOD; 1902 info->si_type = si_type; 1903 info->io.addr_data = addr; 1904 info->io.addr_type = addr_space; 1905 if (addr_space == IPMI_MEM_ADDR_SPACE) 1906 info->io_setup = mem_setup; 1907 else 1908 info->io_setup = port_setup; 1909 1910 info->io.addr = NULL; 1911 info->io.regspacing = regspacing; 1912 if (!info->io.regspacing) 1913 info->io.regspacing = DEFAULT_REGSPACING; 1914 info->io.regsize = regsize; 1915 if (!info->io.regsize) 1916 info->io.regsize = DEFAULT_REGSPACING; 1917 info->io.regshift = regshift; 1918 info->irq = irq; 1919 if (info->irq) 1920 info->irq_setup = std_irq_setup; 1921 info->slave_addr = ipmb; 1922 1923 rv = add_smi(info); 1924 if (rv) { 1925 kfree(info); 1926 goto out; 1927 } 1928 rv = try_smi_init(info); 1929 if (rv) { 1930 cleanup_one_si(info); 1931 goto out; 1932 } 1933 } else { 1934 /* remove */ 1935 struct smi_info *e, *tmp_e; 1936 1937 mutex_lock(&smi_infos_lock); 1938 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1939 if (e->io.addr_type != addr_space) 1940 continue; 1941 if (e->si_type != si_type) 1942 continue; 1943 if (e->io.addr_data == addr) 1944 cleanup_one_si(e); 1945 } 1946 mutex_unlock(&smi_infos_lock); 1947 } 1948 } 1949 rv = len; 1950 out: 1951 kfree(str); 1952 return rv; 1953 } 1954 1955 static int hardcode_find_bmc(void) 1956 { 1957 int ret = -ENODEV; 1958 int i; 1959 struct smi_info *info; 1960 1961 for (i = 0; i < SI_MAX_PARMS; i++) { 1962 if (!ports[i] && !addrs[i]) 1963 continue; 1964 1965 info = smi_info_alloc(); 1966 if (!info) 1967 return -ENOMEM; 1968 1969 info->addr_source = SI_HARDCODED; 1970 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1971 1972 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1973 info->si_type = SI_KCS; 1974 } else if (strcmp(si_type[i], "smic") == 0) { 1975 info->si_type = SI_SMIC; 1976 } else if (strcmp(si_type[i], "bt") == 0) { 1977 info->si_type = SI_BT; 1978 } else { 1979 printk(KERN_WARNING PFX "Interface type specified " 1980 "for interface %d, was invalid: %s\n", 1981 i, si_type[i]); 1982 kfree(info); 1983 continue; 1984 } 1985 1986 if (ports[i]) { 1987 /* An I/O port */ 1988 info->io_setup = port_setup; 1989 info->io.addr_data = ports[i]; 1990 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1991 } else if (addrs[i]) { 1992 /* A memory port */ 1993 info->io_setup = mem_setup; 1994 info->io.addr_data = addrs[i]; 1995 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1996 } else { 1997 printk(KERN_WARNING PFX "Interface type specified " 1998 "for interface %d, but port and address were " 1999 "not set or set to zero.\n", i); 2000 kfree(info); 2001 continue; 2002 } 2003 2004 info->io.addr = NULL; 2005 info->io.regspacing = regspacings[i]; 2006 if (!info->io.regspacing) 2007 info->io.regspacing = DEFAULT_REGSPACING; 2008 info->io.regsize = regsizes[i]; 2009 if (!info->io.regsize) 2010 info->io.regsize = DEFAULT_REGSPACING; 2011 info->io.regshift = regshifts[i]; 2012 info->irq = irqs[i]; 2013 if (info->irq) 2014 info->irq_setup = std_irq_setup; 2015 info->slave_addr = slave_addrs[i]; 2016 2017 if (!add_smi(info)) { 2018 if (try_smi_init(info)) 2019 cleanup_one_si(info); 2020 ret = 0; 2021 } else { 2022 kfree(info); 2023 } 2024 } 2025 return ret; 2026 } 2027 2028 #ifdef CONFIG_ACPI 2029 2030 #include <linux/acpi.h> 2031 2032 /* 2033 * Once we get an ACPI failure, we don't try any more, because we go 2034 * through the tables sequentially. Once we don't find a table, there 2035 * are no more. 2036 */ 2037 static int acpi_failure; 2038 2039 /* For GPE-type interrupts. */ 2040 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2041 u32 gpe_number, void *context) 2042 { 2043 struct smi_info *smi_info = context; 2044 unsigned long flags; 2045 2046 spin_lock_irqsave(&(smi_info->si_lock), flags); 2047 2048 smi_inc_stat(smi_info, interrupts); 2049 2050 debug_timestamp("ACPI_GPE"); 2051 2052 smi_event_handler(smi_info, 0); 2053 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2054 2055 return ACPI_INTERRUPT_HANDLED; 2056 } 2057 2058 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2059 { 2060 if (!info->irq) 2061 return; 2062 2063 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2064 } 2065 2066 static int acpi_gpe_irq_setup(struct smi_info *info) 2067 { 2068 acpi_status status; 2069 2070 if (!info->irq) 2071 return 0; 2072 2073 status = acpi_install_gpe_handler(NULL, 2074 info->irq, 2075 ACPI_GPE_LEVEL_TRIGGERED, 2076 &ipmi_acpi_gpe, 2077 info); 2078 if (status != AE_OK) { 2079 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2080 " running polled\n", DEVICE_NAME, info->irq); 2081 info->irq = 0; 2082 return -EINVAL; 2083 } else { 2084 info->irq_cleanup = acpi_gpe_irq_cleanup; 2085 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2086 return 0; 2087 } 2088 } 2089 2090 /* 2091 * Defined at 2092 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2093 */ 2094 struct SPMITable { 2095 s8 Signature[4]; 2096 u32 Length; 2097 u8 Revision; 2098 u8 Checksum; 2099 s8 OEMID[6]; 2100 s8 OEMTableID[8]; 2101 s8 OEMRevision[4]; 2102 s8 CreatorID[4]; 2103 s8 CreatorRevision[4]; 2104 u8 InterfaceType; 2105 u8 IPMIlegacy; 2106 s16 SpecificationRevision; 2107 2108 /* 2109 * Bit 0 - SCI interrupt supported 2110 * Bit 1 - I/O APIC/SAPIC 2111 */ 2112 u8 InterruptType; 2113 2114 /* 2115 * If bit 0 of InterruptType is set, then this is the SCI 2116 * interrupt in the GPEx_STS register. 2117 */ 2118 u8 GPE; 2119 2120 s16 Reserved; 2121 2122 /* 2123 * If bit 1 of InterruptType is set, then this is the I/O 2124 * APIC/SAPIC interrupt. 2125 */ 2126 u32 GlobalSystemInterrupt; 2127 2128 /* The actual register address. */ 2129 struct acpi_generic_address addr; 2130 2131 u8 UID[4]; 2132 2133 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2134 }; 2135 2136 static int try_init_spmi(struct SPMITable *spmi) 2137 { 2138 struct smi_info *info; 2139 int rv; 2140 2141 if (spmi->IPMIlegacy != 1) { 2142 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2143 return -ENODEV; 2144 } 2145 2146 info = smi_info_alloc(); 2147 if (!info) { 2148 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2149 return -ENOMEM; 2150 } 2151 2152 info->addr_source = SI_SPMI; 2153 printk(KERN_INFO PFX "probing via SPMI\n"); 2154 2155 /* Figure out the interface type. */ 2156 switch (spmi->InterfaceType) { 2157 case 1: /* KCS */ 2158 info->si_type = SI_KCS; 2159 break; 2160 case 2: /* SMIC */ 2161 info->si_type = SI_SMIC; 2162 break; 2163 case 3: /* BT */ 2164 info->si_type = SI_BT; 2165 break; 2166 case 4: /* SSIF, just ignore */ 2167 kfree(info); 2168 return -EIO; 2169 default: 2170 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2171 spmi->InterfaceType); 2172 kfree(info); 2173 return -EIO; 2174 } 2175 2176 if (spmi->InterruptType & 1) { 2177 /* We've got a GPE interrupt. */ 2178 info->irq = spmi->GPE; 2179 info->irq_setup = acpi_gpe_irq_setup; 2180 } else if (spmi->InterruptType & 2) { 2181 /* We've got an APIC/SAPIC interrupt. */ 2182 info->irq = spmi->GlobalSystemInterrupt; 2183 info->irq_setup = std_irq_setup; 2184 } else { 2185 /* Use the default interrupt setting. */ 2186 info->irq = 0; 2187 info->irq_setup = NULL; 2188 } 2189 2190 if (spmi->addr.bit_width) { 2191 /* A (hopefully) properly formed register bit width. */ 2192 info->io.regspacing = spmi->addr.bit_width / 8; 2193 } else { 2194 info->io.regspacing = DEFAULT_REGSPACING; 2195 } 2196 info->io.regsize = info->io.regspacing; 2197 info->io.regshift = spmi->addr.bit_offset; 2198 2199 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2200 info->io_setup = mem_setup; 2201 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2202 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2203 info->io_setup = port_setup; 2204 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2205 } else { 2206 kfree(info); 2207 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2208 return -EIO; 2209 } 2210 info->io.addr_data = spmi->addr.address; 2211 2212 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2213 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2214 info->io.addr_data, info->io.regsize, info->io.regspacing, 2215 info->irq); 2216 2217 rv = add_smi(info); 2218 if (rv) 2219 kfree(info); 2220 2221 return rv; 2222 } 2223 2224 static void spmi_find_bmc(void) 2225 { 2226 acpi_status status; 2227 struct SPMITable *spmi; 2228 int i; 2229 2230 if (acpi_disabled) 2231 return; 2232 2233 if (acpi_failure) 2234 return; 2235 2236 for (i = 0; ; i++) { 2237 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2238 (struct acpi_table_header **)&spmi); 2239 if (status != AE_OK) 2240 return; 2241 2242 try_init_spmi(spmi); 2243 } 2244 } 2245 #endif 2246 2247 #ifdef CONFIG_DMI 2248 struct dmi_ipmi_data { 2249 u8 type; 2250 u8 addr_space; 2251 unsigned long base_addr; 2252 u8 irq; 2253 u8 offset; 2254 u8 slave_addr; 2255 }; 2256 2257 static int decode_dmi(const struct dmi_header *dm, 2258 struct dmi_ipmi_data *dmi) 2259 { 2260 const u8 *data = (const u8 *)dm; 2261 unsigned long base_addr; 2262 u8 reg_spacing; 2263 u8 len = dm->length; 2264 2265 dmi->type = data[4]; 2266 2267 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2268 if (len >= 0x11) { 2269 if (base_addr & 1) { 2270 /* I/O */ 2271 base_addr &= 0xFFFE; 2272 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2273 } else 2274 /* Memory */ 2275 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2276 2277 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2278 is odd. */ 2279 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2280 2281 dmi->irq = data[0x11]; 2282 2283 /* The top two bits of byte 0x10 hold the register spacing. */ 2284 reg_spacing = (data[0x10] & 0xC0) >> 6; 2285 switch (reg_spacing) { 2286 case 0x00: /* Byte boundaries */ 2287 dmi->offset = 1; 2288 break; 2289 case 0x01: /* 32-bit boundaries */ 2290 dmi->offset = 4; 2291 break; 2292 case 0x02: /* 16-byte boundaries */ 2293 dmi->offset = 16; 2294 break; 2295 default: 2296 /* Some other interface, just ignore it. */ 2297 return -EIO; 2298 } 2299 } else { 2300 /* Old DMI spec. */ 2301 /* 2302 * Note that technically, the lower bit of the base 2303 * address should be 1 if the address is I/O and 0 if 2304 * the address is in memory. So many systems get that 2305 * wrong (and all that I have seen are I/O) so we just 2306 * ignore that bit and assume I/O. Systems that use 2307 * memory should use the newer spec, anyway. 2308 */ 2309 dmi->base_addr = base_addr & 0xfffe; 2310 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2311 dmi->offset = 1; 2312 } 2313 2314 dmi->slave_addr = data[6]; 2315 2316 return 0; 2317 } 2318 2319 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2320 { 2321 struct smi_info *info; 2322 2323 info = smi_info_alloc(); 2324 if (!info) { 2325 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2326 return; 2327 } 2328 2329 info->addr_source = SI_SMBIOS; 2330 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2331 2332 switch (ipmi_data->type) { 2333 case 0x01: /* KCS */ 2334 info->si_type = SI_KCS; 2335 break; 2336 case 0x02: /* SMIC */ 2337 info->si_type = SI_SMIC; 2338 break; 2339 case 0x03: /* BT */ 2340 info->si_type = SI_BT; 2341 break; 2342 default: 2343 kfree(info); 2344 return; 2345 } 2346 2347 switch (ipmi_data->addr_space) { 2348 case IPMI_MEM_ADDR_SPACE: 2349 info->io_setup = mem_setup; 2350 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2351 break; 2352 2353 case IPMI_IO_ADDR_SPACE: 2354 info->io_setup = port_setup; 2355 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2356 break; 2357 2358 default: 2359 kfree(info); 2360 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2361 ipmi_data->addr_space); 2362 return; 2363 } 2364 info->io.addr_data = ipmi_data->base_addr; 2365 2366 info->io.regspacing = ipmi_data->offset; 2367 if (!info->io.regspacing) 2368 info->io.regspacing = DEFAULT_REGSPACING; 2369 info->io.regsize = DEFAULT_REGSPACING; 2370 info->io.regshift = 0; 2371 2372 info->slave_addr = ipmi_data->slave_addr; 2373 2374 info->irq = ipmi_data->irq; 2375 if (info->irq) 2376 info->irq_setup = std_irq_setup; 2377 2378 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2379 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2380 info->io.addr_data, info->io.regsize, info->io.regspacing, 2381 info->irq); 2382 2383 if (add_smi(info)) 2384 kfree(info); 2385 } 2386 2387 static void dmi_find_bmc(void) 2388 { 2389 const struct dmi_device *dev = NULL; 2390 struct dmi_ipmi_data data; 2391 int rv; 2392 2393 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2394 memset(&data, 0, sizeof(data)); 2395 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2396 &data); 2397 if (!rv) 2398 try_init_dmi(&data); 2399 } 2400 } 2401 #endif /* CONFIG_DMI */ 2402 2403 #ifdef CONFIG_PCI 2404 2405 #define PCI_ERMC_CLASSCODE 0x0C0700 2406 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2407 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2408 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2409 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2410 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2411 2412 #define PCI_HP_VENDOR_ID 0x103C 2413 #define PCI_MMC_DEVICE_ID 0x121A 2414 #define PCI_MMC_ADDR_CW 0x10 2415 2416 static void ipmi_pci_cleanup(struct smi_info *info) 2417 { 2418 struct pci_dev *pdev = info->addr_source_data; 2419 2420 pci_disable_device(pdev); 2421 } 2422 2423 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2424 { 2425 if (info->si_type == SI_KCS) { 2426 unsigned char status; 2427 int regspacing; 2428 2429 info->io.regsize = DEFAULT_REGSIZE; 2430 info->io.regshift = 0; 2431 info->io_size = 2; 2432 info->handlers = &kcs_smi_handlers; 2433 2434 /* detect 1, 4, 16byte spacing */ 2435 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2436 info->io.regspacing = regspacing; 2437 if (info->io_setup(info)) { 2438 dev_err(info->dev, 2439 "Could not setup I/O space\n"); 2440 return DEFAULT_REGSPACING; 2441 } 2442 /* write invalid cmd */ 2443 info->io.outputb(&info->io, 1, 0x10); 2444 /* read status back */ 2445 status = info->io.inputb(&info->io, 1); 2446 info->io_cleanup(info); 2447 if (status) 2448 return regspacing; 2449 regspacing *= 4; 2450 } 2451 } 2452 return DEFAULT_REGSPACING; 2453 } 2454 2455 static int ipmi_pci_probe(struct pci_dev *pdev, 2456 const struct pci_device_id *ent) 2457 { 2458 int rv; 2459 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2460 struct smi_info *info; 2461 2462 info = smi_info_alloc(); 2463 if (!info) 2464 return -ENOMEM; 2465 2466 info->addr_source = SI_PCI; 2467 dev_info(&pdev->dev, "probing via PCI"); 2468 2469 switch (class_type) { 2470 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2471 info->si_type = SI_SMIC; 2472 break; 2473 2474 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2475 info->si_type = SI_KCS; 2476 break; 2477 2478 case PCI_ERMC_CLASSCODE_TYPE_BT: 2479 info->si_type = SI_BT; 2480 break; 2481 2482 default: 2483 kfree(info); 2484 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2485 return -ENOMEM; 2486 } 2487 2488 rv = pci_enable_device(pdev); 2489 if (rv) { 2490 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2491 kfree(info); 2492 return rv; 2493 } 2494 2495 info->addr_source_cleanup = ipmi_pci_cleanup; 2496 info->addr_source_data = pdev; 2497 2498 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2499 info->io_setup = port_setup; 2500 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2501 } else { 2502 info->io_setup = mem_setup; 2503 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2504 } 2505 info->io.addr_data = pci_resource_start(pdev, 0); 2506 2507 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2508 info->io.regsize = DEFAULT_REGSIZE; 2509 info->io.regshift = 0; 2510 2511 info->irq = pdev->irq; 2512 if (info->irq) 2513 info->irq_setup = std_irq_setup; 2514 2515 info->dev = &pdev->dev; 2516 pci_set_drvdata(pdev, info); 2517 2518 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2519 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2520 info->irq); 2521 2522 rv = add_smi(info); 2523 if (rv) { 2524 kfree(info); 2525 pci_disable_device(pdev); 2526 } 2527 2528 return rv; 2529 } 2530 2531 static void ipmi_pci_remove(struct pci_dev *pdev) 2532 { 2533 struct smi_info *info = pci_get_drvdata(pdev); 2534 cleanup_one_si(info); 2535 pci_disable_device(pdev); 2536 } 2537 2538 static const struct pci_device_id ipmi_pci_devices[] = { 2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2541 { 0, } 2542 }; 2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2544 2545 static struct pci_driver ipmi_pci_driver = { 2546 .name = DEVICE_NAME, 2547 .id_table = ipmi_pci_devices, 2548 .probe = ipmi_pci_probe, 2549 .remove = ipmi_pci_remove, 2550 }; 2551 #endif /* CONFIG_PCI */ 2552 2553 #ifdef CONFIG_OF 2554 static const struct of_device_id of_ipmi_match[] = { 2555 { .type = "ipmi", .compatible = "ipmi-kcs", 2556 .data = (void *)(unsigned long) SI_KCS }, 2557 { .type = "ipmi", .compatible = "ipmi-smic", 2558 .data = (void *)(unsigned long) SI_SMIC }, 2559 { .type = "ipmi", .compatible = "ipmi-bt", 2560 .data = (void *)(unsigned long) SI_BT }, 2561 {}, 2562 }; 2563 2564 static int of_ipmi_probe(struct platform_device *dev) 2565 { 2566 const struct of_device_id *match; 2567 struct smi_info *info; 2568 struct resource resource; 2569 const __be32 *regsize, *regspacing, *regshift; 2570 struct device_node *np = dev->dev.of_node; 2571 int ret; 2572 int proplen; 2573 2574 dev_info(&dev->dev, "probing via device tree\n"); 2575 2576 match = of_match_device(of_ipmi_match, &dev->dev); 2577 if (!match) 2578 return -ENODEV; 2579 2580 if (!of_device_is_available(np)) 2581 return -EINVAL; 2582 2583 ret = of_address_to_resource(np, 0, &resource); 2584 if (ret) { 2585 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2586 return ret; 2587 } 2588 2589 regsize = of_get_property(np, "reg-size", &proplen); 2590 if (regsize && proplen != 4) { 2591 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2592 return -EINVAL; 2593 } 2594 2595 regspacing = of_get_property(np, "reg-spacing", &proplen); 2596 if (regspacing && proplen != 4) { 2597 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2598 return -EINVAL; 2599 } 2600 2601 regshift = of_get_property(np, "reg-shift", &proplen); 2602 if (regshift && proplen != 4) { 2603 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2604 return -EINVAL; 2605 } 2606 2607 info = smi_info_alloc(); 2608 2609 if (!info) { 2610 dev_err(&dev->dev, 2611 "could not allocate memory for OF probe\n"); 2612 return -ENOMEM; 2613 } 2614 2615 info->si_type = (enum si_type) match->data; 2616 info->addr_source = SI_DEVICETREE; 2617 info->irq_setup = std_irq_setup; 2618 2619 if (resource.flags & IORESOURCE_IO) { 2620 info->io_setup = port_setup; 2621 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2622 } else { 2623 info->io_setup = mem_setup; 2624 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2625 } 2626 2627 info->io.addr_data = resource.start; 2628 2629 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2630 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2631 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2632 2633 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2634 info->dev = &dev->dev; 2635 2636 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2637 info->io.addr_data, info->io.regsize, info->io.regspacing, 2638 info->irq); 2639 2640 dev_set_drvdata(&dev->dev, info); 2641 2642 ret = add_smi(info); 2643 if (ret) { 2644 kfree(info); 2645 return ret; 2646 } 2647 return 0; 2648 } 2649 MODULE_DEVICE_TABLE(of, of_ipmi_match); 2650 #else 2651 #define of_ipmi_match NULL 2652 static int of_ipmi_probe(struct platform_device *dev) 2653 { 2654 return -ENODEV; 2655 } 2656 #endif 2657 2658 #ifdef CONFIG_ACPI 2659 static int acpi_ipmi_probe(struct platform_device *dev) 2660 { 2661 struct smi_info *info; 2662 struct resource *res, *res_second; 2663 acpi_handle handle; 2664 acpi_status status; 2665 unsigned long long tmp; 2666 int rv = -EINVAL; 2667 2668 handle = ACPI_HANDLE(&dev->dev); 2669 if (!handle) 2670 return -ENODEV; 2671 2672 info = smi_info_alloc(); 2673 if (!info) 2674 return -ENOMEM; 2675 2676 info->addr_source = SI_ACPI; 2677 dev_info(&dev->dev, PFX "probing via ACPI\n"); 2678 2679 info->addr_info.acpi_info.acpi_handle = handle; 2680 2681 /* _IFT tells us the interface type: KCS, BT, etc */ 2682 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2683 if (ACPI_FAILURE(status)) { 2684 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2685 goto err_free; 2686 } 2687 2688 switch (tmp) { 2689 case 1: 2690 info->si_type = SI_KCS; 2691 break; 2692 case 2: 2693 info->si_type = SI_SMIC; 2694 break; 2695 case 3: 2696 info->si_type = SI_BT; 2697 break; 2698 case 4: /* SSIF, just ignore */ 2699 rv = -ENODEV; 2700 goto err_free; 2701 default: 2702 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2703 goto err_free; 2704 } 2705 2706 res = platform_get_resource(dev, IORESOURCE_IO, 0); 2707 if (res) { 2708 info->io_setup = port_setup; 2709 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2710 } else { 2711 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2712 if (res) { 2713 info->io_setup = mem_setup; 2714 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2715 } 2716 } 2717 if (!res) { 2718 dev_err(&dev->dev, "no I/O or memory address\n"); 2719 goto err_free; 2720 } 2721 info->io.addr_data = res->start; 2722 2723 info->io.regspacing = DEFAULT_REGSPACING; 2724 res_second = platform_get_resource(dev, 2725 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2726 IORESOURCE_IO : IORESOURCE_MEM, 2727 1); 2728 if (res_second) { 2729 if (res_second->start > info->io.addr_data) 2730 info->io.regspacing = 2731 res_second->start - info->io.addr_data; 2732 } 2733 info->io.regsize = DEFAULT_REGSPACING; 2734 info->io.regshift = 0; 2735 2736 /* If _GPE exists, use it; otherwise use standard interrupts */ 2737 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2738 if (ACPI_SUCCESS(status)) { 2739 info->irq = tmp; 2740 info->irq_setup = acpi_gpe_irq_setup; 2741 } else { 2742 int irq = platform_get_irq(dev, 0); 2743 2744 if (irq > 0) { 2745 info->irq = irq; 2746 info->irq_setup = std_irq_setup; 2747 } 2748 } 2749 2750 info->dev = &dev->dev; 2751 platform_set_drvdata(dev, info); 2752 2753 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2754 res, info->io.regsize, info->io.regspacing, 2755 info->irq); 2756 2757 rv = add_smi(info); 2758 if (rv) 2759 kfree(info); 2760 2761 return rv; 2762 2763 err_free: 2764 kfree(info); 2765 return rv; 2766 } 2767 2768 static const struct acpi_device_id acpi_ipmi_match[] = { 2769 { "IPI0001", 0 }, 2770 { }, 2771 }; 2772 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); 2773 #else 2774 static int acpi_ipmi_probe(struct platform_device *dev) 2775 { 2776 return -ENODEV; 2777 } 2778 #endif 2779 2780 static int ipmi_probe(struct platform_device *dev) 2781 { 2782 if (of_ipmi_probe(dev) == 0) 2783 return 0; 2784 2785 return acpi_ipmi_probe(dev); 2786 } 2787 2788 static int ipmi_remove(struct platform_device *dev) 2789 { 2790 struct smi_info *info = dev_get_drvdata(&dev->dev); 2791 2792 cleanup_one_si(info); 2793 return 0; 2794 } 2795 2796 static struct platform_driver ipmi_driver = { 2797 .driver = { 2798 .name = DEVICE_NAME, 2799 .of_match_table = of_ipmi_match, 2800 .acpi_match_table = ACPI_PTR(acpi_ipmi_match), 2801 }, 2802 .probe = ipmi_probe, 2803 .remove = ipmi_remove, 2804 }; 2805 2806 #ifdef CONFIG_PARISC 2807 static int ipmi_parisc_probe(struct parisc_device *dev) 2808 { 2809 struct smi_info *info; 2810 int rv; 2811 2812 info = smi_info_alloc(); 2813 2814 if (!info) { 2815 dev_err(&dev->dev, 2816 "could not allocate memory for PARISC probe\n"); 2817 return -ENOMEM; 2818 } 2819 2820 info->si_type = SI_KCS; 2821 info->addr_source = SI_DEVICETREE; 2822 info->io_setup = mem_setup; 2823 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2824 info->io.addr_data = dev->hpa.start; 2825 info->io.regsize = 1; 2826 info->io.regspacing = 1; 2827 info->io.regshift = 0; 2828 info->irq = 0; /* no interrupt */ 2829 info->irq_setup = NULL; 2830 info->dev = &dev->dev; 2831 2832 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2833 2834 dev_set_drvdata(&dev->dev, info); 2835 2836 rv = add_smi(info); 2837 if (rv) { 2838 kfree(info); 2839 return rv; 2840 } 2841 2842 return 0; 2843 } 2844 2845 static int ipmi_parisc_remove(struct parisc_device *dev) 2846 { 2847 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2848 return 0; 2849 } 2850 2851 static struct parisc_device_id ipmi_parisc_tbl[] = { 2852 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2853 { 0, } 2854 }; 2855 2856 static struct parisc_driver ipmi_parisc_driver = { 2857 .name = "ipmi", 2858 .id_table = ipmi_parisc_tbl, 2859 .probe = ipmi_parisc_probe, 2860 .remove = ipmi_parisc_remove, 2861 }; 2862 #endif /* CONFIG_PARISC */ 2863 2864 static int wait_for_msg_done(struct smi_info *smi_info) 2865 { 2866 enum si_sm_result smi_result; 2867 2868 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2869 for (;;) { 2870 if (smi_result == SI_SM_CALL_WITH_DELAY || 2871 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2872 schedule_timeout_uninterruptible(1); 2873 smi_result = smi_info->handlers->event( 2874 smi_info->si_sm, jiffies_to_usecs(1)); 2875 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2876 smi_result = smi_info->handlers->event( 2877 smi_info->si_sm, 0); 2878 } else 2879 break; 2880 } 2881 if (smi_result == SI_SM_HOSED) 2882 /* 2883 * We couldn't get the state machine to run, so whatever's at 2884 * the port is probably not an IPMI SMI interface. 2885 */ 2886 return -ENODEV; 2887 2888 return 0; 2889 } 2890 2891 static int try_get_dev_id(struct smi_info *smi_info) 2892 { 2893 unsigned char msg[2]; 2894 unsigned char *resp; 2895 unsigned long resp_len; 2896 int rv = 0; 2897 2898 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2899 if (!resp) 2900 return -ENOMEM; 2901 2902 /* 2903 * Do a Get Device ID command, since it comes back with some 2904 * useful info. 2905 */ 2906 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2907 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2908 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2909 2910 rv = wait_for_msg_done(smi_info); 2911 if (rv) 2912 goto out; 2913 2914 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2915 resp, IPMI_MAX_MSG_LENGTH); 2916 2917 /* Check and record info from the get device id, in case we need it. */ 2918 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2919 2920 out: 2921 kfree(resp); 2922 return rv; 2923 } 2924 2925 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 2926 { 2927 unsigned char msg[3]; 2928 unsigned char *resp; 2929 unsigned long resp_len; 2930 int rv; 2931 2932 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2933 if (!resp) 2934 return -ENOMEM; 2935 2936 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2937 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2938 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2939 2940 rv = wait_for_msg_done(smi_info); 2941 if (rv) { 2942 dev_warn(smi_info->dev, 2943 "Error getting response from get global enables command: %d\n", 2944 rv); 2945 goto out; 2946 } 2947 2948 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2949 resp, IPMI_MAX_MSG_LENGTH); 2950 2951 if (resp_len < 4 || 2952 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2953 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2954 resp[2] != 0) { 2955 dev_warn(smi_info->dev, 2956 "Invalid return from get global enables command: %ld %x %x %x\n", 2957 resp_len, resp[0], resp[1], resp[2]); 2958 rv = -EINVAL; 2959 goto out; 2960 } else { 2961 *enables = resp[3]; 2962 } 2963 2964 out: 2965 kfree(resp); 2966 return rv; 2967 } 2968 2969 /* 2970 * Returns 1 if it gets an error from the command. 2971 */ 2972 static int set_global_enables(struct smi_info *smi_info, u8 enables) 2973 { 2974 unsigned char msg[3]; 2975 unsigned char *resp; 2976 unsigned long resp_len; 2977 int rv; 2978 2979 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2980 if (!resp) 2981 return -ENOMEM; 2982 2983 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2984 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2985 msg[2] = enables; 2986 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2987 2988 rv = wait_for_msg_done(smi_info); 2989 if (rv) { 2990 dev_warn(smi_info->dev, 2991 "Error getting response from set global enables command: %d\n", 2992 rv); 2993 goto out; 2994 } 2995 2996 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2997 resp, IPMI_MAX_MSG_LENGTH); 2998 2999 if (resp_len < 3 || 3000 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3001 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3002 dev_warn(smi_info->dev, 3003 "Invalid return from set global enables command: %ld %x %x\n", 3004 resp_len, resp[0], resp[1]); 3005 rv = -EINVAL; 3006 goto out; 3007 } 3008 3009 if (resp[2] != 0) 3010 rv = 1; 3011 3012 out: 3013 kfree(resp); 3014 return rv; 3015 } 3016 3017 /* 3018 * Some BMCs do not support clearing the receive irq bit in the global 3019 * enables (even if they don't support interrupts on the BMC). Check 3020 * for this and handle it properly. 3021 */ 3022 static void check_clr_rcv_irq(struct smi_info *smi_info) 3023 { 3024 u8 enables = 0; 3025 int rv; 3026 3027 rv = get_global_enables(smi_info, &enables); 3028 if (!rv) { 3029 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 3030 /* Already clear, should work ok. */ 3031 return; 3032 3033 enables &= ~IPMI_BMC_RCV_MSG_INTR; 3034 rv = set_global_enables(smi_info, enables); 3035 } 3036 3037 if (rv < 0) { 3038 dev_err(smi_info->dev, 3039 "Cannot check clearing the rcv irq: %d\n", rv); 3040 return; 3041 } 3042 3043 if (rv) { 3044 /* 3045 * An error when setting the event buffer bit means 3046 * clearing the bit is not supported. 3047 */ 3048 dev_warn(smi_info->dev, 3049 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3050 smi_info->cannot_disable_irq = true; 3051 } 3052 } 3053 3054 /* 3055 * Some BMCs do not support setting the interrupt bits in the global 3056 * enables even if they support interrupts. Clearly bad, but we can 3057 * compensate. 3058 */ 3059 static void check_set_rcv_irq(struct smi_info *smi_info) 3060 { 3061 u8 enables = 0; 3062 int rv; 3063 3064 if (!smi_info->irq) 3065 return; 3066 3067 rv = get_global_enables(smi_info, &enables); 3068 if (!rv) { 3069 enables |= IPMI_BMC_RCV_MSG_INTR; 3070 rv = set_global_enables(smi_info, enables); 3071 } 3072 3073 if (rv < 0) { 3074 dev_err(smi_info->dev, 3075 "Cannot check setting the rcv irq: %d\n", rv); 3076 return; 3077 } 3078 3079 if (rv) { 3080 /* 3081 * An error when setting the event buffer bit means 3082 * setting the bit is not supported. 3083 */ 3084 dev_warn(smi_info->dev, 3085 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3086 smi_info->cannot_disable_irq = true; 3087 smi_info->irq_enable_broken = true; 3088 } 3089 } 3090 3091 static int try_enable_event_buffer(struct smi_info *smi_info) 3092 { 3093 unsigned char msg[3]; 3094 unsigned char *resp; 3095 unsigned long resp_len; 3096 int rv = 0; 3097 3098 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3099 if (!resp) 3100 return -ENOMEM; 3101 3102 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3103 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3104 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3105 3106 rv = wait_for_msg_done(smi_info); 3107 if (rv) { 3108 printk(KERN_WARNING PFX "Error getting response from get" 3109 " global enables command, the event buffer is not" 3110 " enabled.\n"); 3111 goto out; 3112 } 3113 3114 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3115 resp, IPMI_MAX_MSG_LENGTH); 3116 3117 if (resp_len < 4 || 3118 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3119 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3120 resp[2] != 0) { 3121 printk(KERN_WARNING PFX "Invalid return from get global" 3122 " enables command, cannot enable the event buffer.\n"); 3123 rv = -EINVAL; 3124 goto out; 3125 } 3126 3127 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3128 /* buffer is already enabled, nothing to do. */ 3129 smi_info->supports_event_msg_buff = true; 3130 goto out; 3131 } 3132 3133 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3134 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3135 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3136 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3137 3138 rv = wait_for_msg_done(smi_info); 3139 if (rv) { 3140 printk(KERN_WARNING PFX "Error getting response from set" 3141 " global, enables command, the event buffer is not" 3142 " enabled.\n"); 3143 goto out; 3144 } 3145 3146 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3147 resp, IPMI_MAX_MSG_LENGTH); 3148 3149 if (resp_len < 3 || 3150 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3151 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3152 printk(KERN_WARNING PFX "Invalid return from get global," 3153 "enables command, not enable the event buffer.\n"); 3154 rv = -EINVAL; 3155 goto out; 3156 } 3157 3158 if (resp[2] != 0) 3159 /* 3160 * An error when setting the event buffer bit means 3161 * that the event buffer is not supported. 3162 */ 3163 rv = -ENOENT; 3164 else 3165 smi_info->supports_event_msg_buff = true; 3166 3167 out: 3168 kfree(resp); 3169 return rv; 3170 } 3171 3172 static int smi_type_proc_show(struct seq_file *m, void *v) 3173 { 3174 struct smi_info *smi = m->private; 3175 3176 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3177 3178 return 0; 3179 } 3180 3181 static int smi_type_proc_open(struct inode *inode, struct file *file) 3182 { 3183 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3184 } 3185 3186 static const struct file_operations smi_type_proc_ops = { 3187 .open = smi_type_proc_open, 3188 .read = seq_read, 3189 .llseek = seq_lseek, 3190 .release = single_release, 3191 }; 3192 3193 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3194 { 3195 struct smi_info *smi = m->private; 3196 3197 seq_printf(m, "interrupts_enabled: %d\n", 3198 smi->irq && !smi->interrupt_disabled); 3199 seq_printf(m, "short_timeouts: %u\n", 3200 smi_get_stat(smi, short_timeouts)); 3201 seq_printf(m, "long_timeouts: %u\n", 3202 smi_get_stat(smi, long_timeouts)); 3203 seq_printf(m, "idles: %u\n", 3204 smi_get_stat(smi, idles)); 3205 seq_printf(m, "interrupts: %u\n", 3206 smi_get_stat(smi, interrupts)); 3207 seq_printf(m, "attentions: %u\n", 3208 smi_get_stat(smi, attentions)); 3209 seq_printf(m, "flag_fetches: %u\n", 3210 smi_get_stat(smi, flag_fetches)); 3211 seq_printf(m, "hosed_count: %u\n", 3212 smi_get_stat(smi, hosed_count)); 3213 seq_printf(m, "complete_transactions: %u\n", 3214 smi_get_stat(smi, complete_transactions)); 3215 seq_printf(m, "events: %u\n", 3216 smi_get_stat(smi, events)); 3217 seq_printf(m, "watchdog_pretimeouts: %u\n", 3218 smi_get_stat(smi, watchdog_pretimeouts)); 3219 seq_printf(m, "incoming_messages: %u\n", 3220 smi_get_stat(smi, incoming_messages)); 3221 return 0; 3222 } 3223 3224 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3225 { 3226 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3227 } 3228 3229 static const struct file_operations smi_si_stats_proc_ops = { 3230 .open = smi_si_stats_proc_open, 3231 .read = seq_read, 3232 .llseek = seq_lseek, 3233 .release = single_release, 3234 }; 3235 3236 static int smi_params_proc_show(struct seq_file *m, void *v) 3237 { 3238 struct smi_info *smi = m->private; 3239 3240 seq_printf(m, 3241 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3242 si_to_str[smi->si_type], 3243 addr_space_to_str[smi->io.addr_type], 3244 smi->io.addr_data, 3245 smi->io.regspacing, 3246 smi->io.regsize, 3247 smi->io.regshift, 3248 smi->irq, 3249 smi->slave_addr); 3250 3251 return 0; 3252 } 3253 3254 static int smi_params_proc_open(struct inode *inode, struct file *file) 3255 { 3256 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3257 } 3258 3259 static const struct file_operations smi_params_proc_ops = { 3260 .open = smi_params_proc_open, 3261 .read = seq_read, 3262 .llseek = seq_lseek, 3263 .release = single_release, 3264 }; 3265 3266 /* 3267 * oem_data_avail_to_receive_msg_avail 3268 * @info - smi_info structure with msg_flags set 3269 * 3270 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3271 * Returns 1 indicating need to re-run handle_flags(). 3272 */ 3273 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3274 { 3275 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3276 RECEIVE_MSG_AVAIL); 3277 return 1; 3278 } 3279 3280 /* 3281 * setup_dell_poweredge_oem_data_handler 3282 * @info - smi_info.device_id must be populated 3283 * 3284 * Systems that match, but have firmware version < 1.40 may assert 3285 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3286 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3287 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3288 * as RECEIVE_MSG_AVAIL instead. 3289 * 3290 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3291 * assert the OEM[012] bits, and if it did, the driver would have to 3292 * change to handle that properly, we don't actually check for the 3293 * firmware version. 3294 * Device ID = 0x20 BMC on PowerEdge 8G servers 3295 * Device Revision = 0x80 3296 * Firmware Revision1 = 0x01 BMC version 1.40 3297 * Firmware Revision2 = 0x40 BCD encoded 3298 * IPMI Version = 0x51 IPMI 1.5 3299 * Manufacturer ID = A2 02 00 Dell IANA 3300 * 3301 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3302 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3303 * 3304 */ 3305 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3306 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3307 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3308 #define DELL_IANA_MFR_ID 0x0002a2 3309 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3310 { 3311 struct ipmi_device_id *id = &smi_info->device_id; 3312 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3313 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3314 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3315 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3316 smi_info->oem_data_avail_handler = 3317 oem_data_avail_to_receive_msg_avail; 3318 } else if (ipmi_version_major(id) < 1 || 3319 (ipmi_version_major(id) == 1 && 3320 ipmi_version_minor(id) < 5)) { 3321 smi_info->oem_data_avail_handler = 3322 oem_data_avail_to_receive_msg_avail; 3323 } 3324 } 3325 } 3326 3327 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3328 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3329 { 3330 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3331 3332 /* Make it a response */ 3333 msg->rsp[0] = msg->data[0] | 4; 3334 msg->rsp[1] = msg->data[1]; 3335 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3336 msg->rsp_size = 3; 3337 smi_info->curr_msg = NULL; 3338 deliver_recv_msg(smi_info, msg); 3339 } 3340 3341 /* 3342 * dell_poweredge_bt_xaction_handler 3343 * @info - smi_info.device_id must be populated 3344 * 3345 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3346 * not respond to a Get SDR command if the length of the data 3347 * requested is exactly 0x3A, which leads to command timeouts and no 3348 * data returned. This intercepts such commands, and causes userspace 3349 * callers to try again with a different-sized buffer, which succeeds. 3350 */ 3351 3352 #define STORAGE_NETFN 0x0A 3353 #define STORAGE_CMD_GET_SDR 0x23 3354 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3355 unsigned long unused, 3356 void *in) 3357 { 3358 struct smi_info *smi_info = in; 3359 unsigned char *data = smi_info->curr_msg->data; 3360 unsigned int size = smi_info->curr_msg->data_size; 3361 if (size >= 8 && 3362 (data[0]>>2) == STORAGE_NETFN && 3363 data[1] == STORAGE_CMD_GET_SDR && 3364 data[7] == 0x3A) { 3365 return_hosed_msg_badsize(smi_info); 3366 return NOTIFY_STOP; 3367 } 3368 return NOTIFY_DONE; 3369 } 3370 3371 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3372 .notifier_call = dell_poweredge_bt_xaction_handler, 3373 }; 3374 3375 /* 3376 * setup_dell_poweredge_bt_xaction_handler 3377 * @info - smi_info.device_id must be filled in already 3378 * 3379 * Fills in smi_info.device_id.start_transaction_pre_hook 3380 * when we know what function to use there. 3381 */ 3382 static void 3383 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3384 { 3385 struct ipmi_device_id *id = &smi_info->device_id; 3386 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3387 smi_info->si_type == SI_BT) 3388 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3389 } 3390 3391 /* 3392 * setup_oem_data_handler 3393 * @info - smi_info.device_id must be filled in already 3394 * 3395 * Fills in smi_info.device_id.oem_data_available_handler 3396 * when we know what function to use there. 3397 */ 3398 3399 static void setup_oem_data_handler(struct smi_info *smi_info) 3400 { 3401 setup_dell_poweredge_oem_data_handler(smi_info); 3402 } 3403 3404 static void setup_xaction_handlers(struct smi_info *smi_info) 3405 { 3406 setup_dell_poweredge_bt_xaction_handler(smi_info); 3407 } 3408 3409 static void check_for_broken_irqs(struct smi_info *smi_info) 3410 { 3411 check_clr_rcv_irq(smi_info); 3412 check_set_rcv_irq(smi_info); 3413 } 3414 3415 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3416 { 3417 if (smi_info->thread != NULL) 3418 kthread_stop(smi_info->thread); 3419 if (smi_info->timer_running) 3420 del_timer_sync(&smi_info->si_timer); 3421 } 3422 3423 static const struct ipmi_default_vals 3424 { 3425 int type; 3426 int port; 3427 } ipmi_defaults[] = 3428 { 3429 { .type = SI_KCS, .port = 0xca2 }, 3430 { .type = SI_SMIC, .port = 0xca9 }, 3431 { .type = SI_BT, .port = 0xe4 }, 3432 { .port = 0 } 3433 }; 3434 3435 static void default_find_bmc(void) 3436 { 3437 struct smi_info *info; 3438 int i; 3439 3440 for (i = 0; ; i++) { 3441 if (!ipmi_defaults[i].port) 3442 break; 3443 #ifdef CONFIG_PPC 3444 if (check_legacy_ioport(ipmi_defaults[i].port)) 3445 continue; 3446 #endif 3447 info = smi_info_alloc(); 3448 if (!info) 3449 return; 3450 3451 info->addr_source = SI_DEFAULT; 3452 3453 info->si_type = ipmi_defaults[i].type; 3454 info->io_setup = port_setup; 3455 info->io.addr_data = ipmi_defaults[i].port; 3456 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3457 3458 info->io.addr = NULL; 3459 info->io.regspacing = DEFAULT_REGSPACING; 3460 info->io.regsize = DEFAULT_REGSPACING; 3461 info->io.regshift = 0; 3462 3463 if (add_smi(info) == 0) { 3464 if ((try_smi_init(info)) == 0) { 3465 /* Found one... */ 3466 printk(KERN_INFO PFX "Found default %s" 3467 " state machine at %s address 0x%lx\n", 3468 si_to_str[info->si_type], 3469 addr_space_to_str[info->io.addr_type], 3470 info->io.addr_data); 3471 } else 3472 cleanup_one_si(info); 3473 } else { 3474 kfree(info); 3475 } 3476 } 3477 } 3478 3479 static int is_new_interface(struct smi_info *info) 3480 { 3481 struct smi_info *e; 3482 3483 list_for_each_entry(e, &smi_infos, link) { 3484 if (e->io.addr_type != info->io.addr_type) 3485 continue; 3486 if (e->io.addr_data == info->io.addr_data) 3487 return 0; 3488 } 3489 3490 return 1; 3491 } 3492 3493 static int add_smi(struct smi_info *new_smi) 3494 { 3495 int rv = 0; 3496 3497 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3498 ipmi_addr_src_to_str(new_smi->addr_source), 3499 si_to_str[new_smi->si_type]); 3500 mutex_lock(&smi_infos_lock); 3501 if (!is_new_interface(new_smi)) { 3502 printk(KERN_CONT " duplicate interface\n"); 3503 rv = -EBUSY; 3504 goto out_err; 3505 } 3506 3507 printk(KERN_CONT "\n"); 3508 3509 /* So we know not to free it unless we have allocated one. */ 3510 new_smi->intf = NULL; 3511 new_smi->si_sm = NULL; 3512 new_smi->handlers = NULL; 3513 3514 list_add_tail(&new_smi->link, &smi_infos); 3515 3516 out_err: 3517 mutex_unlock(&smi_infos_lock); 3518 return rv; 3519 } 3520 3521 static int try_smi_init(struct smi_info *new_smi) 3522 { 3523 int rv = 0; 3524 int i; 3525 3526 printk(KERN_INFO PFX "Trying %s-specified %s state" 3527 " machine at %s address 0x%lx, slave address 0x%x," 3528 " irq %d\n", 3529 ipmi_addr_src_to_str(new_smi->addr_source), 3530 si_to_str[new_smi->si_type], 3531 addr_space_to_str[new_smi->io.addr_type], 3532 new_smi->io.addr_data, 3533 new_smi->slave_addr, new_smi->irq); 3534 3535 switch (new_smi->si_type) { 3536 case SI_KCS: 3537 new_smi->handlers = &kcs_smi_handlers; 3538 break; 3539 3540 case SI_SMIC: 3541 new_smi->handlers = &smic_smi_handlers; 3542 break; 3543 3544 case SI_BT: 3545 new_smi->handlers = &bt_smi_handlers; 3546 break; 3547 3548 default: 3549 /* No support for anything else yet. */ 3550 rv = -EIO; 3551 goto out_err; 3552 } 3553 3554 /* Allocate the state machine's data and initialize it. */ 3555 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3556 if (!new_smi->si_sm) { 3557 printk(KERN_ERR PFX 3558 "Could not allocate state machine memory\n"); 3559 rv = -ENOMEM; 3560 goto out_err; 3561 } 3562 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3563 &new_smi->io); 3564 3565 /* Now that we know the I/O size, we can set up the I/O. */ 3566 rv = new_smi->io_setup(new_smi); 3567 if (rv) { 3568 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3569 goto out_err; 3570 } 3571 3572 /* Do low-level detection first. */ 3573 if (new_smi->handlers->detect(new_smi->si_sm)) { 3574 if (new_smi->addr_source) 3575 printk(KERN_INFO PFX "Interface detection failed\n"); 3576 rv = -ENODEV; 3577 goto out_err; 3578 } 3579 3580 /* 3581 * Attempt a get device id command. If it fails, we probably 3582 * don't have a BMC here. 3583 */ 3584 rv = try_get_dev_id(new_smi); 3585 if (rv) { 3586 if (new_smi->addr_source) 3587 printk(KERN_INFO PFX "There appears to be no BMC" 3588 " at this location\n"); 3589 goto out_err; 3590 } 3591 3592 setup_oem_data_handler(new_smi); 3593 setup_xaction_handlers(new_smi); 3594 check_for_broken_irqs(new_smi); 3595 3596 new_smi->waiting_msg = NULL; 3597 new_smi->curr_msg = NULL; 3598 atomic_set(&new_smi->req_events, 0); 3599 new_smi->run_to_completion = false; 3600 for (i = 0; i < SI_NUM_STATS; i++) 3601 atomic_set(&new_smi->stats[i], 0); 3602 3603 new_smi->interrupt_disabled = true; 3604 atomic_set(&new_smi->need_watch, 0); 3605 new_smi->intf_num = smi_num; 3606 smi_num++; 3607 3608 rv = try_enable_event_buffer(new_smi); 3609 if (rv == 0) 3610 new_smi->has_event_buffer = true; 3611 3612 /* 3613 * Start clearing the flags before we enable interrupts or the 3614 * timer to avoid racing with the timer. 3615 */ 3616 start_clear_flags(new_smi); 3617 3618 /* 3619 * IRQ is defined to be set when non-zero. req_events will 3620 * cause a global flags check that will enable interrupts. 3621 */ 3622 if (new_smi->irq) { 3623 new_smi->interrupt_disabled = false; 3624 atomic_set(&new_smi->req_events, 1); 3625 } 3626 3627 if (!new_smi->dev) { 3628 /* 3629 * If we don't already have a device from something 3630 * else (like PCI), then register a new one. 3631 */ 3632 new_smi->pdev = platform_device_alloc("ipmi_si", 3633 new_smi->intf_num); 3634 if (!new_smi->pdev) { 3635 printk(KERN_ERR PFX 3636 "Unable to allocate platform device\n"); 3637 goto out_err; 3638 } 3639 new_smi->dev = &new_smi->pdev->dev; 3640 new_smi->dev->driver = &ipmi_driver.driver; 3641 3642 rv = platform_device_add(new_smi->pdev); 3643 if (rv) { 3644 printk(KERN_ERR PFX 3645 "Unable to register system interface device:" 3646 " %d\n", 3647 rv); 3648 goto out_err; 3649 } 3650 new_smi->dev_registered = true; 3651 } 3652 3653 rv = ipmi_register_smi(&handlers, 3654 new_smi, 3655 &new_smi->device_id, 3656 new_smi->dev, 3657 new_smi->slave_addr); 3658 if (rv) { 3659 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3660 rv); 3661 goto out_err_stop_timer; 3662 } 3663 3664 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3665 &smi_type_proc_ops, 3666 new_smi); 3667 if (rv) { 3668 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3669 goto out_err_stop_timer; 3670 } 3671 3672 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3673 &smi_si_stats_proc_ops, 3674 new_smi); 3675 if (rv) { 3676 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3677 goto out_err_stop_timer; 3678 } 3679 3680 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3681 &smi_params_proc_ops, 3682 new_smi); 3683 if (rv) { 3684 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3685 goto out_err_stop_timer; 3686 } 3687 3688 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3689 si_to_str[new_smi->si_type]); 3690 3691 return 0; 3692 3693 out_err_stop_timer: 3694 wait_for_timer_and_thread(new_smi); 3695 3696 out_err: 3697 new_smi->interrupt_disabled = true; 3698 3699 if (new_smi->intf) { 3700 ipmi_smi_t intf = new_smi->intf; 3701 new_smi->intf = NULL; 3702 ipmi_unregister_smi(intf); 3703 } 3704 3705 if (new_smi->irq_cleanup) { 3706 new_smi->irq_cleanup(new_smi); 3707 new_smi->irq_cleanup = NULL; 3708 } 3709 3710 /* 3711 * Wait until we know that we are out of any interrupt 3712 * handlers might have been running before we freed the 3713 * interrupt. 3714 */ 3715 synchronize_sched(); 3716 3717 if (new_smi->si_sm) { 3718 if (new_smi->handlers) 3719 new_smi->handlers->cleanup(new_smi->si_sm); 3720 kfree(new_smi->si_sm); 3721 new_smi->si_sm = NULL; 3722 } 3723 if (new_smi->addr_source_cleanup) { 3724 new_smi->addr_source_cleanup(new_smi); 3725 new_smi->addr_source_cleanup = NULL; 3726 } 3727 if (new_smi->io_cleanup) { 3728 new_smi->io_cleanup(new_smi); 3729 new_smi->io_cleanup = NULL; 3730 } 3731 3732 if (new_smi->dev_registered) { 3733 platform_device_unregister(new_smi->pdev); 3734 new_smi->dev_registered = false; 3735 } 3736 3737 return rv; 3738 } 3739 3740 static int init_ipmi_si(void) 3741 { 3742 int i; 3743 char *str; 3744 int rv; 3745 struct smi_info *e; 3746 enum ipmi_addr_src type = SI_INVALID; 3747 3748 if (initialized) 3749 return 0; 3750 initialized = 1; 3751 3752 if (si_tryplatform) { 3753 rv = platform_driver_register(&ipmi_driver); 3754 if (rv) { 3755 printk(KERN_ERR PFX "Unable to register " 3756 "driver: %d\n", rv); 3757 return rv; 3758 } 3759 } 3760 3761 /* Parse out the si_type string into its components. */ 3762 str = si_type_str; 3763 if (*str != '\0') { 3764 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3765 si_type[i] = str; 3766 str = strchr(str, ','); 3767 if (str) { 3768 *str = '\0'; 3769 str++; 3770 } else { 3771 break; 3772 } 3773 } 3774 } 3775 3776 printk(KERN_INFO "IPMI System Interface driver.\n"); 3777 3778 /* If the user gave us a device, they presumably want us to use it */ 3779 if (!hardcode_find_bmc()) 3780 return 0; 3781 3782 #ifdef CONFIG_PCI 3783 if (si_trypci) { 3784 rv = pci_register_driver(&ipmi_pci_driver); 3785 if (rv) 3786 printk(KERN_ERR PFX "Unable to register " 3787 "PCI driver: %d\n", rv); 3788 else 3789 pci_registered = true; 3790 } 3791 #endif 3792 3793 #ifdef CONFIG_DMI 3794 if (si_trydmi) 3795 dmi_find_bmc(); 3796 #endif 3797 3798 #ifdef CONFIG_ACPI 3799 if (si_tryacpi) 3800 spmi_find_bmc(); 3801 #endif 3802 3803 #ifdef CONFIG_PARISC 3804 register_parisc_driver(&ipmi_parisc_driver); 3805 parisc_registered = true; 3806 /* poking PC IO addresses will crash machine, don't do it */ 3807 si_trydefaults = 0; 3808 #endif 3809 3810 /* We prefer devices with interrupts, but in the case of a machine 3811 with multiple BMCs we assume that there will be several instances 3812 of a given type so if we succeed in registering a type then also 3813 try to register everything else of the same type */ 3814 3815 mutex_lock(&smi_infos_lock); 3816 list_for_each_entry(e, &smi_infos, link) { 3817 /* Try to register a device if it has an IRQ and we either 3818 haven't successfully registered a device yet or this 3819 device has the same type as one we successfully registered */ 3820 if (e->irq && (!type || e->addr_source == type)) { 3821 if (!try_smi_init(e)) { 3822 type = e->addr_source; 3823 } 3824 } 3825 } 3826 3827 /* type will only have been set if we successfully registered an si */ 3828 if (type) { 3829 mutex_unlock(&smi_infos_lock); 3830 return 0; 3831 } 3832 3833 /* Fall back to the preferred device */ 3834 3835 list_for_each_entry(e, &smi_infos, link) { 3836 if (!e->irq && (!type || e->addr_source == type)) { 3837 if (!try_smi_init(e)) { 3838 type = e->addr_source; 3839 } 3840 } 3841 } 3842 mutex_unlock(&smi_infos_lock); 3843 3844 if (type) 3845 return 0; 3846 3847 if (si_trydefaults) { 3848 mutex_lock(&smi_infos_lock); 3849 if (list_empty(&smi_infos)) { 3850 /* No BMC was found, try defaults. */ 3851 mutex_unlock(&smi_infos_lock); 3852 default_find_bmc(); 3853 } else 3854 mutex_unlock(&smi_infos_lock); 3855 } 3856 3857 mutex_lock(&smi_infos_lock); 3858 if (unload_when_empty && list_empty(&smi_infos)) { 3859 mutex_unlock(&smi_infos_lock); 3860 cleanup_ipmi_si(); 3861 printk(KERN_WARNING PFX 3862 "Unable to find any System Interface(s)\n"); 3863 return -ENODEV; 3864 } else { 3865 mutex_unlock(&smi_infos_lock); 3866 return 0; 3867 } 3868 } 3869 module_init(init_ipmi_si); 3870 3871 static void cleanup_one_si(struct smi_info *to_clean) 3872 { 3873 int rv = 0; 3874 3875 if (!to_clean) 3876 return; 3877 3878 if (to_clean->intf) { 3879 ipmi_smi_t intf = to_clean->intf; 3880 3881 to_clean->intf = NULL; 3882 rv = ipmi_unregister_smi(intf); 3883 if (rv) { 3884 pr_err(PFX "Unable to unregister device: errno=%d\n", 3885 rv); 3886 } 3887 } 3888 3889 if (to_clean->dev) 3890 dev_set_drvdata(to_clean->dev, NULL); 3891 3892 list_del(&to_clean->link); 3893 3894 /* 3895 * Make sure that interrupts, the timer and the thread are 3896 * stopped and will not run again. 3897 */ 3898 if (to_clean->irq_cleanup) 3899 to_clean->irq_cleanup(to_clean); 3900 wait_for_timer_and_thread(to_clean); 3901 3902 /* 3903 * Timeouts are stopped, now make sure the interrupts are off 3904 * in the BMC. Note that timers and CPU interrupts are off, 3905 * so no need for locks. 3906 */ 3907 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3908 poll(to_clean); 3909 schedule_timeout_uninterruptible(1); 3910 } 3911 disable_si_irq(to_clean); 3912 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3913 poll(to_clean); 3914 schedule_timeout_uninterruptible(1); 3915 } 3916 3917 if (to_clean->handlers) 3918 to_clean->handlers->cleanup(to_clean->si_sm); 3919 3920 kfree(to_clean->si_sm); 3921 3922 if (to_clean->addr_source_cleanup) 3923 to_clean->addr_source_cleanup(to_clean); 3924 if (to_clean->io_cleanup) 3925 to_clean->io_cleanup(to_clean); 3926 3927 if (to_clean->dev_registered) 3928 platform_device_unregister(to_clean->pdev); 3929 3930 kfree(to_clean); 3931 } 3932 3933 static void cleanup_ipmi_si(void) 3934 { 3935 struct smi_info *e, *tmp_e; 3936 3937 if (!initialized) 3938 return; 3939 3940 #ifdef CONFIG_PCI 3941 if (pci_registered) 3942 pci_unregister_driver(&ipmi_pci_driver); 3943 #endif 3944 #ifdef CONFIG_PARISC 3945 if (parisc_registered) 3946 unregister_parisc_driver(&ipmi_parisc_driver); 3947 #endif 3948 3949 platform_driver_unregister(&ipmi_driver); 3950 3951 mutex_lock(&smi_infos_lock); 3952 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3953 cleanup_one_si(e); 3954 mutex_unlock(&smi_infos_lock); 3955 } 3956 module_exit(cleanup_ipmi_si); 3957 3958 MODULE_LICENSE("GPL"); 3959 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3960 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3961 " system interfaces."); 3962