xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 enum ipmi_addr_src {
111 	SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 	SI_PCI,	SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 					"ACPI", "SMBIOS", "PCI",
116 					"device-tree", "default" };
117 
118 #define DEVICE_NAME "ipmi_si"
119 
120 static struct platform_driver ipmi_driver = {
121 	.driver = {
122 		.name = DEVICE_NAME,
123 		.bus = &platform_bus_type
124 	}
125 };
126 
127 
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132 	/*
133 	 * Number of times the driver requested a timer while an operation
134 	 * was in progress.
135 	 */
136 	SI_STAT_short_timeouts = 0,
137 
138 	/*
139 	 * Number of times the driver requested a timer while nothing was in
140 	 * progress.
141 	 */
142 	SI_STAT_long_timeouts,
143 
144 	/* Number of times the interface was idle while being polled. */
145 	SI_STAT_idles,
146 
147 	/* Number of interrupts the driver handled. */
148 	SI_STAT_interrupts,
149 
150 	/* Number of time the driver got an ATTN from the hardware. */
151 	SI_STAT_attentions,
152 
153 	/* Number of times the driver requested flags from the hardware. */
154 	SI_STAT_flag_fetches,
155 
156 	/* Number of times the hardware didn't follow the state machine. */
157 	SI_STAT_hosed_count,
158 
159 	/* Number of completed messages. */
160 	SI_STAT_complete_transactions,
161 
162 	/* Number of IPMI events received from the hardware. */
163 	SI_STAT_events,
164 
165 	/* Number of watchdog pretimeouts. */
166 	SI_STAT_watchdog_pretimeouts,
167 
168 	/* Number of asyncronous messages received. */
169 	SI_STAT_incoming_messages,
170 
171 
172 	/* This *must* remain last, add new values above this. */
173 	SI_NUM_STATS
174 };
175 
176 struct smi_info {
177 	int                    intf_num;
178 	ipmi_smi_t             intf;
179 	struct si_sm_data      *si_sm;
180 	struct si_sm_handlers  *handlers;
181 	enum si_type           si_type;
182 	spinlock_t             si_lock;
183 	spinlock_t             msg_lock;
184 	struct list_head       xmit_msgs;
185 	struct list_head       hp_xmit_msgs;
186 	struct ipmi_smi_msg    *curr_msg;
187 	enum si_intf_state     si_state;
188 
189 	/*
190 	 * Used to handle the various types of I/O that can occur with
191 	 * IPMI
192 	 */
193 	struct si_sm_io io;
194 	int (*io_setup)(struct smi_info *info);
195 	void (*io_cleanup)(struct smi_info *info);
196 	int (*irq_setup)(struct smi_info *info);
197 	void (*irq_cleanup)(struct smi_info *info);
198 	unsigned int io_size;
199 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200 	void (*addr_source_cleanup)(struct smi_info *info);
201 	void *addr_source_data;
202 
203 	/*
204 	 * Per-OEM handler, called from handle_flags().  Returns 1
205 	 * when handle_flags() needs to be re-run or 0 indicating it
206 	 * set si_state itself.
207 	 */
208 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
209 
210 	/*
211 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 	 * is set to hold the flags until we are done handling everything
213 	 * from the flags.
214 	 */
215 #define RECEIVE_MSG_AVAIL	0x01
216 #define EVENT_MSG_BUFFER_FULL	0x02
217 #define WDT_PRE_TIMEOUT_INT	0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222 			     OEM1_DATA_AVAIL | \
223 			     OEM2_DATA_AVAIL)
224 	unsigned char       msg_flags;
225 
226 	/* Does the BMC have an event buffer? */
227 	char		    has_event_buffer;
228 
229 	/*
230 	 * If set to true, this will request events the next time the
231 	 * state machine is idle.
232 	 */
233 	atomic_t            req_events;
234 
235 	/*
236 	 * If true, run the state machine to completion on every send
237 	 * call.  Generally used after a panic to make sure stuff goes
238 	 * out.
239 	 */
240 	int                 run_to_completion;
241 
242 	/* The I/O port of an SI interface. */
243 	int                 port;
244 
245 	/*
246 	 * The space between start addresses of the two ports.  For
247 	 * instance, if the first port is 0xca2 and the spacing is 4, then
248 	 * the second port is 0xca6.
249 	 */
250 	unsigned int        spacing;
251 
252 	/* zero if no irq; */
253 	int                 irq;
254 
255 	/* The timer for this si. */
256 	struct timer_list   si_timer;
257 
258 	/* The time (in jiffies) the last timeout occurred at. */
259 	unsigned long       last_timeout_jiffies;
260 
261 	/* Used to gracefully stop the timer without race conditions. */
262 	atomic_t            stop_operation;
263 
264 	/*
265 	 * The driver will disable interrupts when it gets into a
266 	 * situation where it cannot handle messages due to lack of
267 	 * memory.  Once that situation clears up, it will re-enable
268 	 * interrupts.
269 	 */
270 	int interrupt_disabled;
271 
272 	/* From the get device id response... */
273 	struct ipmi_device_id device_id;
274 
275 	/* Driver model stuff. */
276 	struct device *dev;
277 	struct platform_device *pdev;
278 
279 	/*
280 	 * True if we allocated the device, false if it came from
281 	 * someplace else (like PCI).
282 	 */
283 	int dev_registered;
284 
285 	/* Slave address, could be reported from DMI. */
286 	unsigned char slave_addr;
287 
288 	/* Counters and things for the proc filesystem. */
289 	atomic_t stats[SI_NUM_STATS];
290 
291 	struct task_struct *thread;
292 
293 	struct list_head link;
294 };
295 
296 #define smi_inc_stat(smi, stat) \
297 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300 
301 #define SI_MAX_PARMS 4
302 
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_PPC_OF
309 static int of_registered;
310 #endif
311 
312 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
313 static int num_max_busy_us;
314 
315 static int unload_when_empty = 1;
316 
317 static int add_smi(struct smi_info *smi);
318 static int try_smi_init(struct smi_info *smi);
319 static void cleanup_one_si(struct smi_info *to_clean);
320 
321 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
322 static int register_xaction_notifier(struct notifier_block *nb)
323 {
324 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
325 }
326 
327 static void deliver_recv_msg(struct smi_info *smi_info,
328 			     struct ipmi_smi_msg *msg)
329 {
330 	/* Deliver the message to the upper layer with the lock
331 	   released. */
332 
333 	if (smi_info->run_to_completion) {
334 		ipmi_smi_msg_received(smi_info->intf, msg);
335 	} else {
336 		spin_unlock(&(smi_info->si_lock));
337 		ipmi_smi_msg_received(smi_info->intf, msg);
338 		spin_lock(&(smi_info->si_lock));
339 	}
340 }
341 
342 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
343 {
344 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
345 
346 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
347 		cCode = IPMI_ERR_UNSPECIFIED;
348 	/* else use it as is */
349 
350 	/* Make it a reponse */
351 	msg->rsp[0] = msg->data[0] | 4;
352 	msg->rsp[1] = msg->data[1];
353 	msg->rsp[2] = cCode;
354 	msg->rsp_size = 3;
355 
356 	smi_info->curr_msg = NULL;
357 	deliver_recv_msg(smi_info, msg);
358 }
359 
360 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
361 {
362 	int              rv;
363 	struct list_head *entry = NULL;
364 #ifdef DEBUG_TIMING
365 	struct timeval t;
366 #endif
367 
368 	/*
369 	 * No need to save flags, we aleady have interrupts off and we
370 	 * already hold the SMI lock.
371 	 */
372 	if (!smi_info->run_to_completion)
373 		spin_lock(&(smi_info->msg_lock));
374 
375 	/* Pick the high priority queue first. */
376 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
377 		entry = smi_info->hp_xmit_msgs.next;
378 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
379 		entry = smi_info->xmit_msgs.next;
380 	}
381 
382 	if (!entry) {
383 		smi_info->curr_msg = NULL;
384 		rv = SI_SM_IDLE;
385 	} else {
386 		int err;
387 
388 		list_del(entry);
389 		smi_info->curr_msg = list_entry(entry,
390 						struct ipmi_smi_msg,
391 						link);
392 #ifdef DEBUG_TIMING
393 		do_gettimeofday(&t);
394 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
395 #endif
396 		err = atomic_notifier_call_chain(&xaction_notifier_list,
397 				0, smi_info);
398 		if (err & NOTIFY_STOP_MASK) {
399 			rv = SI_SM_CALL_WITHOUT_DELAY;
400 			goto out;
401 		}
402 		err = smi_info->handlers->start_transaction(
403 			smi_info->si_sm,
404 			smi_info->curr_msg->data,
405 			smi_info->curr_msg->data_size);
406 		if (err)
407 			return_hosed_msg(smi_info, err);
408 
409 		rv = SI_SM_CALL_WITHOUT_DELAY;
410 	}
411  out:
412 	if (!smi_info->run_to_completion)
413 		spin_unlock(&(smi_info->msg_lock));
414 
415 	return rv;
416 }
417 
418 static void start_enable_irq(struct smi_info *smi_info)
419 {
420 	unsigned char msg[2];
421 
422 	/*
423 	 * If we are enabling interrupts, we have to tell the
424 	 * BMC to use them.
425 	 */
426 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428 
429 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
431 }
432 
433 static void start_disable_irq(struct smi_info *smi_info)
434 {
435 	unsigned char msg[2];
436 
437 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
439 
440 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
441 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
442 }
443 
444 static void start_clear_flags(struct smi_info *smi_info)
445 {
446 	unsigned char msg[3];
447 
448 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
449 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
450 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
451 	msg[2] = WDT_PRE_TIMEOUT_INT;
452 
453 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
454 	smi_info->si_state = SI_CLEARING_FLAGS;
455 }
456 
457 /*
458  * When we have a situtaion where we run out of memory and cannot
459  * allocate messages, we just leave them in the BMC and run the system
460  * polled until we can allocate some memory.  Once we have some
461  * memory, we will re-enable the interrupt.
462  */
463 static inline void disable_si_irq(struct smi_info *smi_info)
464 {
465 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
466 		start_disable_irq(smi_info);
467 		smi_info->interrupt_disabled = 1;
468 		if (!atomic_read(&smi_info->stop_operation))
469 			mod_timer(&smi_info->si_timer,
470 				  jiffies + SI_TIMEOUT_JIFFIES);
471 	}
472 }
473 
474 static inline void enable_si_irq(struct smi_info *smi_info)
475 {
476 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
477 		start_enable_irq(smi_info);
478 		smi_info->interrupt_disabled = 0;
479 	}
480 }
481 
482 static void handle_flags(struct smi_info *smi_info)
483 {
484  retry:
485 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
486 		/* Watchdog pre-timeout */
487 		smi_inc_stat(smi_info, watchdog_pretimeouts);
488 
489 		start_clear_flags(smi_info);
490 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
491 		spin_unlock(&(smi_info->si_lock));
492 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
493 		spin_lock(&(smi_info->si_lock));
494 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
495 		/* Messages available. */
496 		smi_info->curr_msg = ipmi_alloc_smi_msg();
497 		if (!smi_info->curr_msg) {
498 			disable_si_irq(smi_info);
499 			smi_info->si_state = SI_NORMAL;
500 			return;
501 		}
502 		enable_si_irq(smi_info);
503 
504 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
505 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
506 		smi_info->curr_msg->data_size = 2;
507 
508 		smi_info->handlers->start_transaction(
509 			smi_info->si_sm,
510 			smi_info->curr_msg->data,
511 			smi_info->curr_msg->data_size);
512 		smi_info->si_state = SI_GETTING_MESSAGES;
513 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
514 		/* Events available. */
515 		smi_info->curr_msg = ipmi_alloc_smi_msg();
516 		if (!smi_info->curr_msg) {
517 			disable_si_irq(smi_info);
518 			smi_info->si_state = SI_NORMAL;
519 			return;
520 		}
521 		enable_si_irq(smi_info);
522 
523 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
524 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
525 		smi_info->curr_msg->data_size = 2;
526 
527 		smi_info->handlers->start_transaction(
528 			smi_info->si_sm,
529 			smi_info->curr_msg->data,
530 			smi_info->curr_msg->data_size);
531 		smi_info->si_state = SI_GETTING_EVENTS;
532 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
533 		   smi_info->oem_data_avail_handler) {
534 		if (smi_info->oem_data_avail_handler(smi_info))
535 			goto retry;
536 	} else
537 		smi_info->si_state = SI_NORMAL;
538 }
539 
540 static void handle_transaction_done(struct smi_info *smi_info)
541 {
542 	struct ipmi_smi_msg *msg;
543 #ifdef DEBUG_TIMING
544 	struct timeval t;
545 
546 	do_gettimeofday(&t);
547 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
548 #endif
549 	switch (smi_info->si_state) {
550 	case SI_NORMAL:
551 		if (!smi_info->curr_msg)
552 			break;
553 
554 		smi_info->curr_msg->rsp_size
555 			= smi_info->handlers->get_result(
556 				smi_info->si_sm,
557 				smi_info->curr_msg->rsp,
558 				IPMI_MAX_MSG_LENGTH);
559 
560 		/*
561 		 * Do this here becase deliver_recv_msg() releases the
562 		 * lock, and a new message can be put in during the
563 		 * time the lock is released.
564 		 */
565 		msg = smi_info->curr_msg;
566 		smi_info->curr_msg = NULL;
567 		deliver_recv_msg(smi_info, msg);
568 		break;
569 
570 	case SI_GETTING_FLAGS:
571 	{
572 		unsigned char msg[4];
573 		unsigned int  len;
574 
575 		/* We got the flags from the SMI, now handle them. */
576 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
577 		if (msg[2] != 0) {
578 			/* Error fetching flags, just give up for now. */
579 			smi_info->si_state = SI_NORMAL;
580 		} else if (len < 4) {
581 			/*
582 			 * Hmm, no flags.  That's technically illegal, but
583 			 * don't use uninitialized data.
584 			 */
585 			smi_info->si_state = SI_NORMAL;
586 		} else {
587 			smi_info->msg_flags = msg[3];
588 			handle_flags(smi_info);
589 		}
590 		break;
591 	}
592 
593 	case SI_CLEARING_FLAGS:
594 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
595 	{
596 		unsigned char msg[3];
597 
598 		/* We cleared the flags. */
599 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
600 		if (msg[2] != 0) {
601 			/* Error clearing flags */
602 			dev_warn(smi_info->dev,
603 				 "Error clearing flags: %2.2x\n", msg[2]);
604 		}
605 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
606 			start_enable_irq(smi_info);
607 		else
608 			smi_info->si_state = SI_NORMAL;
609 		break;
610 	}
611 
612 	case SI_GETTING_EVENTS:
613 	{
614 		smi_info->curr_msg->rsp_size
615 			= smi_info->handlers->get_result(
616 				smi_info->si_sm,
617 				smi_info->curr_msg->rsp,
618 				IPMI_MAX_MSG_LENGTH);
619 
620 		/*
621 		 * Do this here becase deliver_recv_msg() releases the
622 		 * lock, and a new message can be put in during the
623 		 * time the lock is released.
624 		 */
625 		msg = smi_info->curr_msg;
626 		smi_info->curr_msg = NULL;
627 		if (msg->rsp[2] != 0) {
628 			/* Error getting event, probably done. */
629 			msg->done(msg);
630 
631 			/* Take off the event flag. */
632 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
633 			handle_flags(smi_info);
634 		} else {
635 			smi_inc_stat(smi_info, events);
636 
637 			/*
638 			 * Do this before we deliver the message
639 			 * because delivering the message releases the
640 			 * lock and something else can mess with the
641 			 * state.
642 			 */
643 			handle_flags(smi_info);
644 
645 			deliver_recv_msg(smi_info, msg);
646 		}
647 		break;
648 	}
649 
650 	case SI_GETTING_MESSAGES:
651 	{
652 		smi_info->curr_msg->rsp_size
653 			= smi_info->handlers->get_result(
654 				smi_info->si_sm,
655 				smi_info->curr_msg->rsp,
656 				IPMI_MAX_MSG_LENGTH);
657 
658 		/*
659 		 * Do this here becase deliver_recv_msg() releases the
660 		 * lock, and a new message can be put in during the
661 		 * time the lock is released.
662 		 */
663 		msg = smi_info->curr_msg;
664 		smi_info->curr_msg = NULL;
665 		if (msg->rsp[2] != 0) {
666 			/* Error getting event, probably done. */
667 			msg->done(msg);
668 
669 			/* Take off the msg flag. */
670 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
671 			handle_flags(smi_info);
672 		} else {
673 			smi_inc_stat(smi_info, incoming_messages);
674 
675 			/*
676 			 * Do this before we deliver the message
677 			 * because delivering the message releases the
678 			 * lock and something else can mess with the
679 			 * state.
680 			 */
681 			handle_flags(smi_info);
682 
683 			deliver_recv_msg(smi_info, msg);
684 		}
685 		break;
686 	}
687 
688 	case SI_ENABLE_INTERRUPTS1:
689 	{
690 		unsigned char msg[4];
691 
692 		/* We got the flags from the SMI, now handle them. */
693 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
694 		if (msg[2] != 0) {
695 			dev_warn(smi_info->dev, "Could not enable interrupts"
696 				 ", failed get, using polled mode.\n");
697 			smi_info->si_state = SI_NORMAL;
698 		} else {
699 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
700 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
701 			msg[2] = (msg[3] |
702 				  IPMI_BMC_RCV_MSG_INTR |
703 				  IPMI_BMC_EVT_MSG_INTR);
704 			smi_info->handlers->start_transaction(
705 				smi_info->si_sm, msg, 3);
706 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
707 		}
708 		break;
709 	}
710 
711 	case SI_ENABLE_INTERRUPTS2:
712 	{
713 		unsigned char msg[4];
714 
715 		/* We got the flags from the SMI, now handle them. */
716 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
717 		if (msg[2] != 0)
718 			dev_warn(smi_info->dev, "Could not enable interrupts"
719 				 ", failed set, using polled mode.\n");
720 		else
721 			smi_info->interrupt_disabled = 0;
722 		smi_info->si_state = SI_NORMAL;
723 		break;
724 	}
725 
726 	case SI_DISABLE_INTERRUPTS1:
727 	{
728 		unsigned char msg[4];
729 
730 		/* We got the flags from the SMI, now handle them. */
731 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732 		if (msg[2] != 0) {
733 			dev_warn(smi_info->dev, "Could not disable interrupts"
734 				 ", failed get.\n");
735 			smi_info->si_state = SI_NORMAL;
736 		} else {
737 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
738 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
739 			msg[2] = (msg[3] &
740 				  ~(IPMI_BMC_RCV_MSG_INTR |
741 				    IPMI_BMC_EVT_MSG_INTR));
742 			smi_info->handlers->start_transaction(
743 				smi_info->si_sm, msg, 3);
744 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
745 		}
746 		break;
747 	}
748 
749 	case SI_DISABLE_INTERRUPTS2:
750 	{
751 		unsigned char msg[4];
752 
753 		/* We got the flags from the SMI, now handle them. */
754 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755 		if (msg[2] != 0) {
756 			dev_warn(smi_info->dev, "Could not disable interrupts"
757 				 ", failed set.\n");
758 		}
759 		smi_info->si_state = SI_NORMAL;
760 		break;
761 	}
762 	}
763 }
764 
765 /*
766  * Called on timeouts and events.  Timeouts should pass the elapsed
767  * time, interrupts should pass in zero.  Must be called with
768  * si_lock held and interrupts disabled.
769  */
770 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
771 					   int time)
772 {
773 	enum si_sm_result si_sm_result;
774 
775  restart:
776 	/*
777 	 * There used to be a loop here that waited a little while
778 	 * (around 25us) before giving up.  That turned out to be
779 	 * pointless, the minimum delays I was seeing were in the 300us
780 	 * range, which is far too long to wait in an interrupt.  So
781 	 * we just run until the state machine tells us something
782 	 * happened or it needs a delay.
783 	 */
784 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
785 	time = 0;
786 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
787 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788 
789 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
790 		smi_inc_stat(smi_info, complete_transactions);
791 
792 		handle_transaction_done(smi_info);
793 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
794 	} else if (si_sm_result == SI_SM_HOSED) {
795 		smi_inc_stat(smi_info, hosed_count);
796 
797 		/*
798 		 * Do the before return_hosed_msg, because that
799 		 * releases the lock.
800 		 */
801 		smi_info->si_state = SI_NORMAL;
802 		if (smi_info->curr_msg != NULL) {
803 			/*
804 			 * If we were handling a user message, format
805 			 * a response to send to the upper layer to
806 			 * tell it about the error.
807 			 */
808 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
809 		}
810 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
811 	}
812 
813 	/*
814 	 * We prefer handling attn over new messages.  But don't do
815 	 * this if there is not yet an upper layer to handle anything.
816 	 */
817 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
818 		unsigned char msg[2];
819 
820 		smi_inc_stat(smi_info, attentions);
821 
822 		/*
823 		 * Got a attn, send down a get message flags to see
824 		 * what's causing it.  It would be better to handle
825 		 * this in the upper layer, but due to the way
826 		 * interrupts work with the SMI, that's not really
827 		 * possible.
828 		 */
829 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
830 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
831 
832 		smi_info->handlers->start_transaction(
833 			smi_info->si_sm, msg, 2);
834 		smi_info->si_state = SI_GETTING_FLAGS;
835 		goto restart;
836 	}
837 
838 	/* If we are currently idle, try to start the next message. */
839 	if (si_sm_result == SI_SM_IDLE) {
840 		smi_inc_stat(smi_info, idles);
841 
842 		si_sm_result = start_next_msg(smi_info);
843 		if (si_sm_result != SI_SM_IDLE)
844 			goto restart;
845 	}
846 
847 	if ((si_sm_result == SI_SM_IDLE)
848 	    && (atomic_read(&smi_info->req_events))) {
849 		/*
850 		 * We are idle and the upper layer requested that I fetch
851 		 * events, so do so.
852 		 */
853 		atomic_set(&smi_info->req_events, 0);
854 
855 		smi_info->curr_msg = ipmi_alloc_smi_msg();
856 		if (!smi_info->curr_msg)
857 			goto out;
858 
859 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
860 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
861 		smi_info->curr_msg->data_size = 2;
862 
863 		smi_info->handlers->start_transaction(
864 			smi_info->si_sm,
865 			smi_info->curr_msg->data,
866 			smi_info->curr_msg->data_size);
867 		smi_info->si_state = SI_GETTING_EVENTS;
868 		goto restart;
869 	}
870  out:
871 	return si_sm_result;
872 }
873 
874 static void sender(void                *send_info,
875 		   struct ipmi_smi_msg *msg,
876 		   int                 priority)
877 {
878 	struct smi_info   *smi_info = send_info;
879 	enum si_sm_result result;
880 	unsigned long     flags;
881 #ifdef DEBUG_TIMING
882 	struct timeval    t;
883 #endif
884 
885 	if (atomic_read(&smi_info->stop_operation)) {
886 		msg->rsp[0] = msg->data[0] | 4;
887 		msg->rsp[1] = msg->data[1];
888 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
889 		msg->rsp_size = 3;
890 		deliver_recv_msg(smi_info, msg);
891 		return;
892 	}
893 
894 #ifdef DEBUG_TIMING
895 	do_gettimeofday(&t);
896 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
897 #endif
898 
899 	mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
900 
901 	if (smi_info->thread)
902 		wake_up_process(smi_info->thread);
903 
904 	if (smi_info->run_to_completion) {
905 		/*
906 		 * If we are running to completion, then throw it in
907 		 * the list and run transactions until everything is
908 		 * clear.  Priority doesn't matter here.
909 		 */
910 
911 		/*
912 		 * Run to completion means we are single-threaded, no
913 		 * need for locks.
914 		 */
915 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
916 
917 		result = smi_event_handler(smi_info, 0);
918 		while (result != SI_SM_IDLE) {
919 			udelay(SI_SHORT_TIMEOUT_USEC);
920 			result = smi_event_handler(smi_info,
921 						   SI_SHORT_TIMEOUT_USEC);
922 		}
923 		return;
924 	}
925 
926 	spin_lock_irqsave(&smi_info->msg_lock, flags);
927 	if (priority > 0)
928 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
929 	else
930 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
931 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
932 
933 	spin_lock_irqsave(&smi_info->si_lock, flags);
934 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
935 		start_next_msg(smi_info);
936 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
937 }
938 
939 static void set_run_to_completion(void *send_info, int i_run_to_completion)
940 {
941 	struct smi_info   *smi_info = send_info;
942 	enum si_sm_result result;
943 
944 	smi_info->run_to_completion = i_run_to_completion;
945 	if (i_run_to_completion) {
946 		result = smi_event_handler(smi_info, 0);
947 		while (result != SI_SM_IDLE) {
948 			udelay(SI_SHORT_TIMEOUT_USEC);
949 			result = smi_event_handler(smi_info,
950 						   SI_SHORT_TIMEOUT_USEC);
951 		}
952 	}
953 }
954 
955 /*
956  * Use -1 in the nsec value of the busy waiting timespec to tell that
957  * we are spinning in kipmid looking for something and not delaying
958  * between checks
959  */
960 static inline void ipmi_si_set_not_busy(struct timespec *ts)
961 {
962 	ts->tv_nsec = -1;
963 }
964 static inline int ipmi_si_is_busy(struct timespec *ts)
965 {
966 	return ts->tv_nsec != -1;
967 }
968 
969 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
970 				 const struct smi_info *smi_info,
971 				 struct timespec *busy_until)
972 {
973 	unsigned int max_busy_us = 0;
974 
975 	if (smi_info->intf_num < num_max_busy_us)
976 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
977 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
978 		ipmi_si_set_not_busy(busy_until);
979 	else if (!ipmi_si_is_busy(busy_until)) {
980 		getnstimeofday(busy_until);
981 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
982 	} else {
983 		struct timespec now;
984 		getnstimeofday(&now);
985 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
986 			ipmi_si_set_not_busy(busy_until);
987 			return 0;
988 		}
989 	}
990 	return 1;
991 }
992 
993 
994 /*
995  * A busy-waiting loop for speeding up IPMI operation.
996  *
997  * Lousy hardware makes this hard.  This is only enabled for systems
998  * that are not BT and do not have interrupts.  It starts spinning
999  * when an operation is complete or until max_busy tells it to stop
1000  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1001  * Documentation/IPMI.txt for details.
1002  */
1003 static int ipmi_thread(void *data)
1004 {
1005 	struct smi_info *smi_info = data;
1006 	unsigned long flags;
1007 	enum si_sm_result smi_result;
1008 	struct timespec busy_until;
1009 
1010 	ipmi_si_set_not_busy(&busy_until);
1011 	set_user_nice(current, 19);
1012 	while (!kthread_should_stop()) {
1013 		int busy_wait;
1014 
1015 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1016 		smi_result = smi_event_handler(smi_info, 0);
1017 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1018 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1019 						  &busy_until);
1020 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1021 			; /* do nothing */
1022 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1023 			schedule();
1024 		else if (smi_result == SI_SM_IDLE)
1025 			schedule_timeout_interruptible(100);
1026 		else
1027 			schedule_timeout_interruptible(1);
1028 	}
1029 	return 0;
1030 }
1031 
1032 
1033 static void poll(void *send_info)
1034 {
1035 	struct smi_info *smi_info = send_info;
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * Make sure there is some delay in the poll loop so we can
1040 	 * drive time forward and timeout things.
1041 	 */
1042 	udelay(10);
1043 	spin_lock_irqsave(&smi_info->si_lock, flags);
1044 	smi_event_handler(smi_info, 10);
1045 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047 
1048 static void request_events(void *send_info)
1049 {
1050 	struct smi_info *smi_info = send_info;
1051 
1052 	if (atomic_read(&smi_info->stop_operation) ||
1053 				!smi_info->has_event_buffer)
1054 		return;
1055 
1056 	atomic_set(&smi_info->req_events, 1);
1057 }
1058 
1059 static int initialized;
1060 
1061 static void smi_timeout(unsigned long data)
1062 {
1063 	struct smi_info   *smi_info = (struct smi_info *) data;
1064 	enum si_sm_result smi_result;
1065 	unsigned long     flags;
1066 	unsigned long     jiffies_now;
1067 	long              time_diff;
1068 	long		  timeout;
1069 #ifdef DEBUG_TIMING
1070 	struct timeval    t;
1071 #endif
1072 
1073 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1074 #ifdef DEBUG_TIMING
1075 	do_gettimeofday(&t);
1076 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1077 #endif
1078 	jiffies_now = jiffies;
1079 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1080 		     * SI_USEC_PER_JIFFY);
1081 	smi_result = smi_event_handler(smi_info, time_diff);
1082 
1083 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1084 
1085 	smi_info->last_timeout_jiffies = jiffies_now;
1086 
1087 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1088 		/* Running with interrupts, only do long timeouts. */
1089 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090 		smi_inc_stat(smi_info, long_timeouts);
1091 		goto do_mod_timer;
1092 	}
1093 
1094 	/*
1095 	 * If the state machine asks for a short delay, then shorten
1096 	 * the timer timeout.
1097 	 */
1098 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1099 		smi_inc_stat(smi_info, short_timeouts);
1100 		timeout = jiffies + 1;
1101 	} else {
1102 		smi_inc_stat(smi_info, long_timeouts);
1103 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1104 	}
1105 
1106  do_mod_timer:
1107 	if (smi_result != SI_SM_IDLE)
1108 		mod_timer(&(smi_info->si_timer), timeout);
1109 }
1110 
1111 static irqreturn_t si_irq_handler(int irq, void *data)
1112 {
1113 	struct smi_info *smi_info = data;
1114 	unsigned long   flags;
1115 #ifdef DEBUG_TIMING
1116 	struct timeval  t;
1117 #endif
1118 
1119 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1120 
1121 	smi_inc_stat(smi_info, interrupts);
1122 
1123 #ifdef DEBUG_TIMING
1124 	do_gettimeofday(&t);
1125 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1126 #endif
1127 	smi_event_handler(smi_info, 0);
1128 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1129 	return IRQ_HANDLED;
1130 }
1131 
1132 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1133 {
1134 	struct smi_info *smi_info = data;
1135 	/* We need to clear the IRQ flag for the BT interface. */
1136 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1139 	return si_irq_handler(irq, data);
1140 }
1141 
1142 static int smi_start_processing(void       *send_info,
1143 				ipmi_smi_t intf)
1144 {
1145 	struct smi_info *new_smi = send_info;
1146 	int             enable = 0;
1147 
1148 	new_smi->intf = intf;
1149 
1150 	/* Try to claim any interrupts. */
1151 	if (new_smi->irq_setup)
1152 		new_smi->irq_setup(new_smi);
1153 
1154 	/* Set up the timer that drives the interface. */
1155 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1156 	new_smi->last_timeout_jiffies = jiffies;
1157 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1158 
1159 	/*
1160 	 * Check if the user forcefully enabled the daemon.
1161 	 */
1162 	if (new_smi->intf_num < num_force_kipmid)
1163 		enable = force_kipmid[new_smi->intf_num];
1164 	/*
1165 	 * The BT interface is efficient enough to not need a thread,
1166 	 * and there is no need for a thread if we have interrupts.
1167 	 */
1168 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1169 		enable = 1;
1170 
1171 	if (enable) {
1172 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173 					      "kipmi%d", new_smi->intf_num);
1174 		if (IS_ERR(new_smi->thread)) {
1175 			dev_notice(new_smi->dev, "Could not start"
1176 				   " kernel thread due to error %ld, only using"
1177 				   " timers to drive the interface\n",
1178 				   PTR_ERR(new_smi->thread));
1179 			new_smi->thread = NULL;
1180 		}
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static void set_maintenance_mode(void *send_info, int enable)
1187 {
1188 	struct smi_info   *smi_info = send_info;
1189 
1190 	if (!enable)
1191 		atomic_set(&smi_info->req_events, 0);
1192 }
1193 
1194 static struct ipmi_smi_handlers handlers = {
1195 	.owner                  = THIS_MODULE,
1196 	.start_processing       = smi_start_processing,
1197 	.sender			= sender,
1198 	.request_events		= request_events,
1199 	.set_maintenance_mode   = set_maintenance_mode,
1200 	.set_run_to_completion  = set_run_to_completion,
1201 	.poll			= poll,
1202 };
1203 
1204 /*
1205  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1206  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1207  */
1208 
1209 static LIST_HEAD(smi_infos);
1210 static DEFINE_MUTEX(smi_infos_lock);
1211 static int smi_num; /* Used to sequence the SMIs */
1212 
1213 #define DEFAULT_REGSPACING	1
1214 #define DEFAULT_REGSIZE		1
1215 
1216 static int           si_trydefaults = 1;
1217 static char          *si_type[SI_MAX_PARMS];
1218 #define MAX_SI_TYPE_STR 30
1219 static char          si_type_str[MAX_SI_TYPE_STR];
1220 static unsigned long addrs[SI_MAX_PARMS];
1221 static unsigned int num_addrs;
1222 static unsigned int  ports[SI_MAX_PARMS];
1223 static unsigned int num_ports;
1224 static int           irqs[SI_MAX_PARMS];
1225 static unsigned int num_irqs;
1226 static int           regspacings[SI_MAX_PARMS];
1227 static unsigned int num_regspacings;
1228 static int           regsizes[SI_MAX_PARMS];
1229 static unsigned int num_regsizes;
1230 static int           regshifts[SI_MAX_PARMS];
1231 static unsigned int num_regshifts;
1232 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1233 static unsigned int num_slave_addrs;
1234 
1235 #define IPMI_IO_ADDR_SPACE  0
1236 #define IPMI_MEM_ADDR_SPACE 1
1237 static char *addr_space_to_str[] = { "i/o", "mem" };
1238 
1239 static int hotmod_handler(const char *val, struct kernel_param *kp);
1240 
1241 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1242 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1243 		 " Documentation/IPMI.txt in the kernel sources for the"
1244 		 " gory details.");
1245 
1246 module_param_named(trydefaults, si_trydefaults, bool, 0);
1247 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1248 		 " default scan of the KCS and SMIC interface at the standard"
1249 		 " address");
1250 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1251 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1252 		 " interface separated by commas.  The types are 'kcs',"
1253 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1254 		 " the first interface to kcs and the second to bt");
1255 module_param_array(addrs, ulong, &num_addrs, 0);
1256 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1257 		 " addresses separated by commas.  Only use if an interface"
1258 		 " is in memory.  Otherwise, set it to zero or leave"
1259 		 " it blank.");
1260 module_param_array(ports, uint, &num_ports, 0);
1261 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1262 		 " addresses separated by commas.  Only use if an interface"
1263 		 " is a port.  Otherwise, set it to zero or leave"
1264 		 " it blank.");
1265 module_param_array(irqs, int, &num_irqs, 0);
1266 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1267 		 " addresses separated by commas.  Only use if an interface"
1268 		 " has an interrupt.  Otherwise, set it to zero or leave"
1269 		 " it blank.");
1270 module_param_array(regspacings, int, &num_regspacings, 0);
1271 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1272 		 " and each successive register used by the interface.  For"
1273 		 " instance, if the start address is 0xca2 and the spacing"
1274 		 " is 2, then the second address is at 0xca4.  Defaults"
1275 		 " to 1.");
1276 module_param_array(regsizes, int, &num_regsizes, 0);
1277 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1278 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1279 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1280 		 " the 8-bit IPMI register has to be read from a larger"
1281 		 " register.");
1282 module_param_array(regshifts, int, &num_regshifts, 0);
1283 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1284 		 " IPMI register, in bits.  For instance, if the data"
1285 		 " is read from a 32-bit word and the IPMI data is in"
1286 		 " bit 8-15, then the shift would be 8");
1287 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1288 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1289 		 " the controller.  Normally this is 0x20, but can be"
1290 		 " overridden by this parm.  This is an array indexed"
1291 		 " by interface number.");
1292 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1293 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1294 		 " disabled(0).  Normally the IPMI driver auto-detects"
1295 		 " this, but the value may be overridden by this parm.");
1296 module_param(unload_when_empty, int, 0);
1297 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1298 		 " specified or found, default is 1.  Setting to 0"
1299 		 " is useful for hot add of devices using hotmod.");
1300 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1301 MODULE_PARM_DESC(kipmid_max_busy_us,
1302 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1303 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1304 		 " if kipmid is using up a lot of CPU time.");
1305 
1306 
1307 static void std_irq_cleanup(struct smi_info *info)
1308 {
1309 	if (info->si_type == SI_BT)
1310 		/* Disable the interrupt in the BT interface. */
1311 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1312 	free_irq(info->irq, info);
1313 }
1314 
1315 static int std_irq_setup(struct smi_info *info)
1316 {
1317 	int rv;
1318 
1319 	if (!info->irq)
1320 		return 0;
1321 
1322 	if (info->si_type == SI_BT) {
1323 		rv = request_irq(info->irq,
1324 				 si_bt_irq_handler,
1325 				 IRQF_SHARED | IRQF_DISABLED,
1326 				 DEVICE_NAME,
1327 				 info);
1328 		if (!rv)
1329 			/* Enable the interrupt in the BT interface. */
1330 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1331 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1332 	} else
1333 		rv = request_irq(info->irq,
1334 				 si_irq_handler,
1335 				 IRQF_SHARED | IRQF_DISABLED,
1336 				 DEVICE_NAME,
1337 				 info);
1338 	if (rv) {
1339 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1340 			 " running polled\n",
1341 			 DEVICE_NAME, info->irq);
1342 		info->irq = 0;
1343 	} else {
1344 		info->irq_cleanup = std_irq_cleanup;
1345 		dev_info(info->dev, "Using irq %d\n", info->irq);
1346 	}
1347 
1348 	return rv;
1349 }
1350 
1351 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1352 {
1353 	unsigned int addr = io->addr_data;
1354 
1355 	return inb(addr + (offset * io->regspacing));
1356 }
1357 
1358 static void port_outb(struct si_sm_io *io, unsigned int offset,
1359 		      unsigned char b)
1360 {
1361 	unsigned int addr = io->addr_data;
1362 
1363 	outb(b, addr + (offset * io->regspacing));
1364 }
1365 
1366 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1367 {
1368 	unsigned int addr = io->addr_data;
1369 
1370 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1371 }
1372 
1373 static void port_outw(struct si_sm_io *io, unsigned int offset,
1374 		      unsigned char b)
1375 {
1376 	unsigned int addr = io->addr_data;
1377 
1378 	outw(b << io->regshift, addr + (offset * io->regspacing));
1379 }
1380 
1381 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1382 {
1383 	unsigned int addr = io->addr_data;
1384 
1385 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1386 }
1387 
1388 static void port_outl(struct si_sm_io *io, unsigned int offset,
1389 		      unsigned char b)
1390 {
1391 	unsigned int addr = io->addr_data;
1392 
1393 	outl(b << io->regshift, addr+(offset * io->regspacing));
1394 }
1395 
1396 static void port_cleanup(struct smi_info *info)
1397 {
1398 	unsigned int addr = info->io.addr_data;
1399 	int          idx;
1400 
1401 	if (addr) {
1402 		for (idx = 0; idx < info->io_size; idx++)
1403 			release_region(addr + idx * info->io.regspacing,
1404 				       info->io.regsize);
1405 	}
1406 }
1407 
1408 static int port_setup(struct smi_info *info)
1409 {
1410 	unsigned int addr = info->io.addr_data;
1411 	int          idx;
1412 
1413 	if (!addr)
1414 		return -ENODEV;
1415 
1416 	info->io_cleanup = port_cleanup;
1417 
1418 	/*
1419 	 * Figure out the actual inb/inw/inl/etc routine to use based
1420 	 * upon the register size.
1421 	 */
1422 	switch (info->io.regsize) {
1423 	case 1:
1424 		info->io.inputb = port_inb;
1425 		info->io.outputb = port_outb;
1426 		break;
1427 	case 2:
1428 		info->io.inputb = port_inw;
1429 		info->io.outputb = port_outw;
1430 		break;
1431 	case 4:
1432 		info->io.inputb = port_inl;
1433 		info->io.outputb = port_outl;
1434 		break;
1435 	default:
1436 		dev_warn(info->dev, "Invalid register size: %d\n",
1437 			 info->io.regsize);
1438 		return -EINVAL;
1439 	}
1440 
1441 	/*
1442 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1443 	 * tables.  This causes problems when trying to register the
1444 	 * entire I/O region.  Therefore we must register each I/O
1445 	 * port separately.
1446 	 */
1447 	for (idx = 0; idx < info->io_size; idx++) {
1448 		if (request_region(addr + idx * info->io.regspacing,
1449 				   info->io.regsize, DEVICE_NAME) == NULL) {
1450 			/* Undo allocations */
1451 			while (idx--) {
1452 				release_region(addr + idx * info->io.regspacing,
1453 					       info->io.regsize);
1454 			}
1455 			return -EIO;
1456 		}
1457 	}
1458 	return 0;
1459 }
1460 
1461 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1462 {
1463 	return readb((io->addr)+(offset * io->regspacing));
1464 }
1465 
1466 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1467 		     unsigned char b)
1468 {
1469 	writeb(b, (io->addr)+(offset * io->regspacing));
1470 }
1471 
1472 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1473 {
1474 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1475 		& 0xff;
1476 }
1477 
1478 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1479 		     unsigned char b)
1480 {
1481 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1482 }
1483 
1484 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1485 {
1486 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1487 		& 0xff;
1488 }
1489 
1490 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1491 		     unsigned char b)
1492 {
1493 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1494 }
1495 
1496 #ifdef readq
1497 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1498 {
1499 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500 		& 0xff;
1501 }
1502 
1503 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1504 		     unsigned char b)
1505 {
1506 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507 }
1508 #endif
1509 
1510 static void mem_cleanup(struct smi_info *info)
1511 {
1512 	unsigned long addr = info->io.addr_data;
1513 	int           mapsize;
1514 
1515 	if (info->io.addr) {
1516 		iounmap(info->io.addr);
1517 
1518 		mapsize = ((info->io_size * info->io.regspacing)
1519 			   - (info->io.regspacing - info->io.regsize));
1520 
1521 		release_mem_region(addr, mapsize);
1522 	}
1523 }
1524 
1525 static int mem_setup(struct smi_info *info)
1526 {
1527 	unsigned long addr = info->io.addr_data;
1528 	int           mapsize;
1529 
1530 	if (!addr)
1531 		return -ENODEV;
1532 
1533 	info->io_cleanup = mem_cleanup;
1534 
1535 	/*
1536 	 * Figure out the actual readb/readw/readl/etc routine to use based
1537 	 * upon the register size.
1538 	 */
1539 	switch (info->io.regsize) {
1540 	case 1:
1541 		info->io.inputb = intf_mem_inb;
1542 		info->io.outputb = intf_mem_outb;
1543 		break;
1544 	case 2:
1545 		info->io.inputb = intf_mem_inw;
1546 		info->io.outputb = intf_mem_outw;
1547 		break;
1548 	case 4:
1549 		info->io.inputb = intf_mem_inl;
1550 		info->io.outputb = intf_mem_outl;
1551 		break;
1552 #ifdef readq
1553 	case 8:
1554 		info->io.inputb = mem_inq;
1555 		info->io.outputb = mem_outq;
1556 		break;
1557 #endif
1558 	default:
1559 		dev_warn(info->dev, "Invalid register size: %d\n",
1560 			 info->io.regsize);
1561 		return -EINVAL;
1562 	}
1563 
1564 	/*
1565 	 * Calculate the total amount of memory to claim.  This is an
1566 	 * unusual looking calculation, but it avoids claiming any
1567 	 * more memory than it has to.  It will claim everything
1568 	 * between the first address to the end of the last full
1569 	 * register.
1570 	 */
1571 	mapsize = ((info->io_size * info->io.regspacing)
1572 		   - (info->io.regspacing - info->io.regsize));
1573 
1574 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1575 		return -EIO;
1576 
1577 	info->io.addr = ioremap(addr, mapsize);
1578 	if (info->io.addr == NULL) {
1579 		release_mem_region(addr, mapsize);
1580 		return -EIO;
1581 	}
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1587  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1588  * Options are:
1589  *   rsp=<regspacing>
1590  *   rsi=<regsize>
1591  *   rsh=<regshift>
1592  *   irq=<irq>
1593  *   ipmb=<ipmb addr>
1594  */
1595 enum hotmod_op { HM_ADD, HM_REMOVE };
1596 struct hotmod_vals {
1597 	char *name;
1598 	int  val;
1599 };
1600 static struct hotmod_vals hotmod_ops[] = {
1601 	{ "add",	HM_ADD },
1602 	{ "remove",	HM_REMOVE },
1603 	{ NULL }
1604 };
1605 static struct hotmod_vals hotmod_si[] = {
1606 	{ "kcs",	SI_KCS },
1607 	{ "smic",	SI_SMIC },
1608 	{ "bt",		SI_BT },
1609 	{ NULL }
1610 };
1611 static struct hotmod_vals hotmod_as[] = {
1612 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1613 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1614 	{ NULL }
1615 };
1616 
1617 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1618 {
1619 	char *s;
1620 	int  i;
1621 
1622 	s = strchr(*curr, ',');
1623 	if (!s) {
1624 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1625 		return -EINVAL;
1626 	}
1627 	*s = '\0';
1628 	s++;
1629 	for (i = 0; hotmod_ops[i].name; i++) {
1630 		if (strcmp(*curr, v[i].name) == 0) {
1631 			*val = v[i].val;
1632 			*curr = s;
1633 			return 0;
1634 		}
1635 	}
1636 
1637 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1638 	return -EINVAL;
1639 }
1640 
1641 static int check_hotmod_int_op(const char *curr, const char *option,
1642 			       const char *name, int *val)
1643 {
1644 	char *n;
1645 
1646 	if (strcmp(curr, name) == 0) {
1647 		if (!option) {
1648 			printk(KERN_WARNING PFX
1649 			       "No option given for '%s'\n",
1650 			       curr);
1651 			return -EINVAL;
1652 		}
1653 		*val = simple_strtoul(option, &n, 0);
1654 		if ((*n != '\0') || (*option == '\0')) {
1655 			printk(KERN_WARNING PFX
1656 			       "Bad option given for '%s'\n",
1657 			       curr);
1658 			return -EINVAL;
1659 		}
1660 		return 1;
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int hotmod_handler(const char *val, struct kernel_param *kp)
1666 {
1667 	char *str = kstrdup(val, GFP_KERNEL);
1668 	int  rv;
1669 	char *next, *curr, *s, *n, *o;
1670 	enum hotmod_op op;
1671 	enum si_type si_type;
1672 	int  addr_space;
1673 	unsigned long addr;
1674 	int regspacing;
1675 	int regsize;
1676 	int regshift;
1677 	int irq;
1678 	int ipmb;
1679 	int ival;
1680 	int len;
1681 	struct smi_info *info;
1682 
1683 	if (!str)
1684 		return -ENOMEM;
1685 
1686 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1687 	len = strlen(str);
1688 	ival = len - 1;
1689 	while ((ival >= 0) && isspace(str[ival])) {
1690 		str[ival] = '\0';
1691 		ival--;
1692 	}
1693 
1694 	for (curr = str; curr; curr = next) {
1695 		regspacing = 1;
1696 		regsize = 1;
1697 		regshift = 0;
1698 		irq = 0;
1699 		ipmb = 0; /* Choose the default if not specified */
1700 
1701 		next = strchr(curr, ':');
1702 		if (next) {
1703 			*next = '\0';
1704 			next++;
1705 		}
1706 
1707 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1708 		if (rv)
1709 			break;
1710 		op = ival;
1711 
1712 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1713 		if (rv)
1714 			break;
1715 		si_type = ival;
1716 
1717 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1718 		if (rv)
1719 			break;
1720 
1721 		s = strchr(curr, ',');
1722 		if (s) {
1723 			*s = '\0';
1724 			s++;
1725 		}
1726 		addr = simple_strtoul(curr, &n, 0);
1727 		if ((*n != '\0') || (*curr == '\0')) {
1728 			printk(KERN_WARNING PFX "Invalid hotmod address"
1729 			       " '%s'\n", curr);
1730 			break;
1731 		}
1732 
1733 		while (s) {
1734 			curr = s;
1735 			s = strchr(curr, ',');
1736 			if (s) {
1737 				*s = '\0';
1738 				s++;
1739 			}
1740 			o = strchr(curr, '=');
1741 			if (o) {
1742 				*o = '\0';
1743 				o++;
1744 			}
1745 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1746 			if (rv < 0)
1747 				goto out;
1748 			else if (rv)
1749 				continue;
1750 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1751 			if (rv < 0)
1752 				goto out;
1753 			else if (rv)
1754 				continue;
1755 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1756 			if (rv < 0)
1757 				goto out;
1758 			else if (rv)
1759 				continue;
1760 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1761 			if (rv < 0)
1762 				goto out;
1763 			else if (rv)
1764 				continue;
1765 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1766 			if (rv < 0)
1767 				goto out;
1768 			else if (rv)
1769 				continue;
1770 
1771 			rv = -EINVAL;
1772 			printk(KERN_WARNING PFX
1773 			       "Invalid hotmod option '%s'\n",
1774 			       curr);
1775 			goto out;
1776 		}
1777 
1778 		if (op == HM_ADD) {
1779 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1780 			if (!info) {
1781 				rv = -ENOMEM;
1782 				goto out;
1783 			}
1784 
1785 			info->addr_source = SI_HOTMOD;
1786 			info->si_type = si_type;
1787 			info->io.addr_data = addr;
1788 			info->io.addr_type = addr_space;
1789 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1790 				info->io_setup = mem_setup;
1791 			else
1792 				info->io_setup = port_setup;
1793 
1794 			info->io.addr = NULL;
1795 			info->io.regspacing = regspacing;
1796 			if (!info->io.regspacing)
1797 				info->io.regspacing = DEFAULT_REGSPACING;
1798 			info->io.regsize = regsize;
1799 			if (!info->io.regsize)
1800 				info->io.regsize = DEFAULT_REGSPACING;
1801 			info->io.regshift = regshift;
1802 			info->irq = irq;
1803 			if (info->irq)
1804 				info->irq_setup = std_irq_setup;
1805 			info->slave_addr = ipmb;
1806 
1807 			if (!add_smi(info)) {
1808 				if (try_smi_init(info))
1809 					cleanup_one_si(info);
1810 			} else {
1811 				kfree(info);
1812 			}
1813 		} else {
1814 			/* remove */
1815 			struct smi_info *e, *tmp_e;
1816 
1817 			mutex_lock(&smi_infos_lock);
1818 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1819 				if (e->io.addr_type != addr_space)
1820 					continue;
1821 				if (e->si_type != si_type)
1822 					continue;
1823 				if (e->io.addr_data == addr)
1824 					cleanup_one_si(e);
1825 			}
1826 			mutex_unlock(&smi_infos_lock);
1827 		}
1828 	}
1829 	rv = len;
1830  out:
1831 	kfree(str);
1832 	return rv;
1833 }
1834 
1835 static __devinit void hardcode_find_bmc(void)
1836 {
1837 	int             i;
1838 	struct smi_info *info;
1839 
1840 	for (i = 0; i < SI_MAX_PARMS; i++) {
1841 		if (!ports[i] && !addrs[i])
1842 			continue;
1843 
1844 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1845 		if (!info)
1846 			return;
1847 
1848 		info->addr_source = SI_HARDCODED;
1849 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1850 
1851 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1852 			info->si_type = SI_KCS;
1853 		} else if (strcmp(si_type[i], "smic") == 0) {
1854 			info->si_type = SI_SMIC;
1855 		} else if (strcmp(si_type[i], "bt") == 0) {
1856 			info->si_type = SI_BT;
1857 		} else {
1858 			printk(KERN_WARNING PFX "Interface type specified "
1859 			       "for interface %d, was invalid: %s\n",
1860 			       i, si_type[i]);
1861 			kfree(info);
1862 			continue;
1863 		}
1864 
1865 		if (ports[i]) {
1866 			/* An I/O port */
1867 			info->io_setup = port_setup;
1868 			info->io.addr_data = ports[i];
1869 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1870 		} else if (addrs[i]) {
1871 			/* A memory port */
1872 			info->io_setup = mem_setup;
1873 			info->io.addr_data = addrs[i];
1874 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1875 		} else {
1876 			printk(KERN_WARNING PFX "Interface type specified "
1877 			       "for interface %d, but port and address were "
1878 			       "not set or set to zero.\n", i);
1879 			kfree(info);
1880 			continue;
1881 		}
1882 
1883 		info->io.addr = NULL;
1884 		info->io.regspacing = regspacings[i];
1885 		if (!info->io.regspacing)
1886 			info->io.regspacing = DEFAULT_REGSPACING;
1887 		info->io.regsize = regsizes[i];
1888 		if (!info->io.regsize)
1889 			info->io.regsize = DEFAULT_REGSPACING;
1890 		info->io.regshift = regshifts[i];
1891 		info->irq = irqs[i];
1892 		if (info->irq)
1893 			info->irq_setup = std_irq_setup;
1894 		info->slave_addr = slave_addrs[i];
1895 
1896 		if (!add_smi(info)) {
1897 			if (try_smi_init(info))
1898 				cleanup_one_si(info);
1899 		} else {
1900 			kfree(info);
1901 		}
1902 	}
1903 }
1904 
1905 #ifdef CONFIG_ACPI
1906 
1907 #include <linux/acpi.h>
1908 
1909 /*
1910  * Once we get an ACPI failure, we don't try any more, because we go
1911  * through the tables sequentially.  Once we don't find a table, there
1912  * are no more.
1913  */
1914 static int acpi_failure;
1915 
1916 /* For GPE-type interrupts. */
1917 static u32 ipmi_acpi_gpe(void *context)
1918 {
1919 	struct smi_info *smi_info = context;
1920 	unsigned long   flags;
1921 #ifdef DEBUG_TIMING
1922 	struct timeval t;
1923 #endif
1924 
1925 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1926 
1927 	smi_inc_stat(smi_info, interrupts);
1928 
1929 #ifdef DEBUG_TIMING
1930 	do_gettimeofday(&t);
1931 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1932 #endif
1933 	smi_event_handler(smi_info, 0);
1934 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1935 
1936 	return ACPI_INTERRUPT_HANDLED;
1937 }
1938 
1939 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1940 {
1941 	if (!info->irq)
1942 		return;
1943 
1944 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1945 }
1946 
1947 static int acpi_gpe_irq_setup(struct smi_info *info)
1948 {
1949 	acpi_status status;
1950 
1951 	if (!info->irq)
1952 		return 0;
1953 
1954 	/* FIXME - is level triggered right? */
1955 	status = acpi_install_gpe_handler(NULL,
1956 					  info->irq,
1957 					  ACPI_GPE_LEVEL_TRIGGERED,
1958 					  &ipmi_acpi_gpe,
1959 					  info);
1960 	if (status != AE_OK) {
1961 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1962 			 " running polled\n", DEVICE_NAME, info->irq);
1963 		info->irq = 0;
1964 		return -EINVAL;
1965 	} else {
1966 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1967 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1968 		return 0;
1969 	}
1970 }
1971 
1972 /*
1973  * Defined at
1974  * http://h21007.www2.hp.com/portal/download/files
1975  * /unprot/hpspmi.pdf
1976  */
1977 struct SPMITable {
1978 	s8	Signature[4];
1979 	u32	Length;
1980 	u8	Revision;
1981 	u8	Checksum;
1982 	s8	OEMID[6];
1983 	s8	OEMTableID[8];
1984 	s8	OEMRevision[4];
1985 	s8	CreatorID[4];
1986 	s8	CreatorRevision[4];
1987 	u8	InterfaceType;
1988 	u8	IPMIlegacy;
1989 	s16	SpecificationRevision;
1990 
1991 	/*
1992 	 * Bit 0 - SCI interrupt supported
1993 	 * Bit 1 - I/O APIC/SAPIC
1994 	 */
1995 	u8	InterruptType;
1996 
1997 	/*
1998 	 * If bit 0 of InterruptType is set, then this is the SCI
1999 	 * interrupt in the GPEx_STS register.
2000 	 */
2001 	u8	GPE;
2002 
2003 	s16	Reserved;
2004 
2005 	/*
2006 	 * If bit 1 of InterruptType is set, then this is the I/O
2007 	 * APIC/SAPIC interrupt.
2008 	 */
2009 	u32	GlobalSystemInterrupt;
2010 
2011 	/* The actual register address. */
2012 	struct acpi_generic_address addr;
2013 
2014 	u8	UID[4];
2015 
2016 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2017 };
2018 
2019 static __devinit int try_init_spmi(struct SPMITable *spmi)
2020 {
2021 	struct smi_info  *info;
2022 
2023 	if (spmi->IPMIlegacy != 1) {
2024 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2025 		return -ENODEV;
2026 	}
2027 
2028 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2029 	if (!info) {
2030 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2031 		return -ENOMEM;
2032 	}
2033 
2034 	info->addr_source = SI_SPMI;
2035 	printk(KERN_INFO PFX "probing via SPMI\n");
2036 
2037 	/* Figure out the interface type. */
2038 	switch (spmi->InterfaceType) {
2039 	case 1:	/* KCS */
2040 		info->si_type = SI_KCS;
2041 		break;
2042 	case 2:	/* SMIC */
2043 		info->si_type = SI_SMIC;
2044 		break;
2045 	case 3:	/* BT */
2046 		info->si_type = SI_BT;
2047 		break;
2048 	default:
2049 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2050 		       spmi->InterfaceType);
2051 		kfree(info);
2052 		return -EIO;
2053 	}
2054 
2055 	if (spmi->InterruptType & 1) {
2056 		/* We've got a GPE interrupt. */
2057 		info->irq = spmi->GPE;
2058 		info->irq_setup = acpi_gpe_irq_setup;
2059 	} else if (spmi->InterruptType & 2) {
2060 		/* We've got an APIC/SAPIC interrupt. */
2061 		info->irq = spmi->GlobalSystemInterrupt;
2062 		info->irq_setup = std_irq_setup;
2063 	} else {
2064 		/* Use the default interrupt setting. */
2065 		info->irq = 0;
2066 		info->irq_setup = NULL;
2067 	}
2068 
2069 	if (spmi->addr.bit_width) {
2070 		/* A (hopefully) properly formed register bit width. */
2071 		info->io.regspacing = spmi->addr.bit_width / 8;
2072 	} else {
2073 		info->io.regspacing = DEFAULT_REGSPACING;
2074 	}
2075 	info->io.regsize = info->io.regspacing;
2076 	info->io.regshift = spmi->addr.bit_offset;
2077 
2078 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2079 		info->io_setup = mem_setup;
2080 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2081 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2082 		info->io_setup = port_setup;
2083 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2084 	} else {
2085 		kfree(info);
2086 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2087 		return -EIO;
2088 	}
2089 	info->io.addr_data = spmi->addr.address;
2090 
2091 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2092 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2093 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2094 		 info->irq);
2095 
2096 	if (add_smi(info))
2097 		kfree(info);
2098 
2099 	return 0;
2100 }
2101 
2102 static __devinit void spmi_find_bmc(void)
2103 {
2104 	acpi_status      status;
2105 	struct SPMITable *spmi;
2106 	int              i;
2107 
2108 	if (acpi_disabled)
2109 		return;
2110 
2111 	if (acpi_failure)
2112 		return;
2113 
2114 	for (i = 0; ; i++) {
2115 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2116 					(struct acpi_table_header **)&spmi);
2117 		if (status != AE_OK)
2118 			return;
2119 
2120 		try_init_spmi(spmi);
2121 	}
2122 }
2123 
2124 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2125 				    const struct pnp_device_id *dev_id)
2126 {
2127 	struct acpi_device *acpi_dev;
2128 	struct smi_info *info;
2129 	struct resource *res;
2130 	acpi_handle handle;
2131 	acpi_status status;
2132 	unsigned long long tmp;
2133 
2134 	acpi_dev = pnp_acpi_device(dev);
2135 	if (!acpi_dev)
2136 		return -ENODEV;
2137 
2138 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2139 	if (!info)
2140 		return -ENOMEM;
2141 
2142 	info->addr_source = SI_ACPI;
2143 	printk(KERN_INFO PFX "probing via ACPI\n");
2144 
2145 	handle = acpi_dev->handle;
2146 
2147 	/* _IFT tells us the interface type: KCS, BT, etc */
2148 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2149 	if (ACPI_FAILURE(status))
2150 		goto err_free;
2151 
2152 	switch (tmp) {
2153 	case 1:
2154 		info->si_type = SI_KCS;
2155 		break;
2156 	case 2:
2157 		info->si_type = SI_SMIC;
2158 		break;
2159 	case 3:
2160 		info->si_type = SI_BT;
2161 		break;
2162 	default:
2163 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2164 		goto err_free;
2165 	}
2166 
2167 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2168 	if (res) {
2169 		info->io_setup = port_setup;
2170 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2171 	} else {
2172 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2173 		if (res) {
2174 			info->io_setup = mem_setup;
2175 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2176 		}
2177 	}
2178 	if (!res) {
2179 		dev_err(&dev->dev, "no I/O or memory address\n");
2180 		goto err_free;
2181 	}
2182 	info->io.addr_data = res->start;
2183 
2184 	info->io.regspacing = DEFAULT_REGSPACING;
2185 	res = pnp_get_resource(dev,
2186 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2187 					IORESOURCE_IO : IORESOURCE_MEM,
2188 			       1);
2189 	if (res) {
2190 		if (res->start > info->io.addr_data)
2191 			info->io.regspacing = res->start - info->io.addr_data;
2192 	}
2193 	info->io.regsize = DEFAULT_REGSPACING;
2194 	info->io.regshift = 0;
2195 
2196 	/* If _GPE exists, use it; otherwise use standard interrupts */
2197 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2198 	if (ACPI_SUCCESS(status)) {
2199 		info->irq = tmp;
2200 		info->irq_setup = acpi_gpe_irq_setup;
2201 	} else if (pnp_irq_valid(dev, 0)) {
2202 		info->irq = pnp_irq(dev, 0);
2203 		info->irq_setup = std_irq_setup;
2204 	}
2205 
2206 	info->dev = &dev->dev;
2207 	pnp_set_drvdata(dev, info);
2208 
2209 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2210 		 res, info->io.regsize, info->io.regspacing,
2211 		 info->irq);
2212 
2213 	if (add_smi(info))
2214 		goto err_free;
2215 
2216 	return 0;
2217 
2218 err_free:
2219 	kfree(info);
2220 	return -EINVAL;
2221 }
2222 
2223 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2224 {
2225 	struct smi_info *info = pnp_get_drvdata(dev);
2226 
2227 	cleanup_one_si(info);
2228 }
2229 
2230 static const struct pnp_device_id pnp_dev_table[] = {
2231 	{"IPI0001", 0},
2232 	{"", 0},
2233 };
2234 
2235 static struct pnp_driver ipmi_pnp_driver = {
2236 	.name		= DEVICE_NAME,
2237 	.probe		= ipmi_pnp_probe,
2238 	.remove		= __devexit_p(ipmi_pnp_remove),
2239 	.id_table	= pnp_dev_table,
2240 };
2241 #endif
2242 
2243 #ifdef CONFIG_DMI
2244 struct dmi_ipmi_data {
2245 	u8   		type;
2246 	u8   		addr_space;
2247 	unsigned long	base_addr;
2248 	u8   		irq;
2249 	u8              offset;
2250 	u8              slave_addr;
2251 };
2252 
2253 static int __devinit decode_dmi(const struct dmi_header *dm,
2254 				struct dmi_ipmi_data *dmi)
2255 {
2256 	const u8	*data = (const u8 *)dm;
2257 	unsigned long  	base_addr;
2258 	u8		reg_spacing;
2259 	u8              len = dm->length;
2260 
2261 	dmi->type = data[4];
2262 
2263 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2264 	if (len >= 0x11) {
2265 		if (base_addr & 1) {
2266 			/* I/O */
2267 			base_addr &= 0xFFFE;
2268 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2269 		} else
2270 			/* Memory */
2271 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2272 
2273 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2274 		   is odd. */
2275 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2276 
2277 		dmi->irq = data[0x11];
2278 
2279 		/* The top two bits of byte 0x10 hold the register spacing. */
2280 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2281 		switch (reg_spacing) {
2282 		case 0x00: /* Byte boundaries */
2283 		    dmi->offset = 1;
2284 		    break;
2285 		case 0x01: /* 32-bit boundaries */
2286 		    dmi->offset = 4;
2287 		    break;
2288 		case 0x02: /* 16-byte boundaries */
2289 		    dmi->offset = 16;
2290 		    break;
2291 		default:
2292 		    /* Some other interface, just ignore it. */
2293 		    return -EIO;
2294 		}
2295 	} else {
2296 		/* Old DMI spec. */
2297 		/*
2298 		 * Note that technically, the lower bit of the base
2299 		 * address should be 1 if the address is I/O and 0 if
2300 		 * the address is in memory.  So many systems get that
2301 		 * wrong (and all that I have seen are I/O) so we just
2302 		 * ignore that bit and assume I/O.  Systems that use
2303 		 * memory should use the newer spec, anyway.
2304 		 */
2305 		dmi->base_addr = base_addr & 0xfffe;
2306 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2307 		dmi->offset = 1;
2308 	}
2309 
2310 	dmi->slave_addr = data[6];
2311 
2312 	return 0;
2313 }
2314 
2315 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2316 {
2317 	struct smi_info *info;
2318 
2319 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2320 	if (!info) {
2321 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2322 		return;
2323 	}
2324 
2325 	info->addr_source = SI_SMBIOS;
2326 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2327 
2328 	switch (ipmi_data->type) {
2329 	case 0x01: /* KCS */
2330 		info->si_type = SI_KCS;
2331 		break;
2332 	case 0x02: /* SMIC */
2333 		info->si_type = SI_SMIC;
2334 		break;
2335 	case 0x03: /* BT */
2336 		info->si_type = SI_BT;
2337 		break;
2338 	default:
2339 		kfree(info);
2340 		return;
2341 	}
2342 
2343 	switch (ipmi_data->addr_space) {
2344 	case IPMI_MEM_ADDR_SPACE:
2345 		info->io_setup = mem_setup;
2346 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2347 		break;
2348 
2349 	case IPMI_IO_ADDR_SPACE:
2350 		info->io_setup = port_setup;
2351 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2352 		break;
2353 
2354 	default:
2355 		kfree(info);
2356 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2357 		       ipmi_data->addr_space);
2358 		return;
2359 	}
2360 	info->io.addr_data = ipmi_data->base_addr;
2361 
2362 	info->io.regspacing = ipmi_data->offset;
2363 	if (!info->io.regspacing)
2364 		info->io.regspacing = DEFAULT_REGSPACING;
2365 	info->io.regsize = DEFAULT_REGSPACING;
2366 	info->io.regshift = 0;
2367 
2368 	info->slave_addr = ipmi_data->slave_addr;
2369 
2370 	info->irq = ipmi_data->irq;
2371 	if (info->irq)
2372 		info->irq_setup = std_irq_setup;
2373 
2374 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2375 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2376 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2377 		 info->irq);
2378 
2379 	if (add_smi(info))
2380 		kfree(info);
2381 }
2382 
2383 static void __devinit dmi_find_bmc(void)
2384 {
2385 	const struct dmi_device *dev = NULL;
2386 	struct dmi_ipmi_data data;
2387 	int                  rv;
2388 
2389 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2390 		memset(&data, 0, sizeof(data));
2391 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2392 				&data);
2393 		if (!rv)
2394 			try_init_dmi(&data);
2395 	}
2396 }
2397 #endif /* CONFIG_DMI */
2398 
2399 #ifdef CONFIG_PCI
2400 
2401 #define PCI_ERMC_CLASSCODE		0x0C0700
2402 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2403 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2404 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2405 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2406 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2407 
2408 #define PCI_HP_VENDOR_ID    0x103C
2409 #define PCI_MMC_DEVICE_ID   0x121A
2410 #define PCI_MMC_ADDR_CW     0x10
2411 
2412 static void ipmi_pci_cleanup(struct smi_info *info)
2413 {
2414 	struct pci_dev *pdev = info->addr_source_data;
2415 
2416 	pci_disable_device(pdev);
2417 }
2418 
2419 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2420 				    const struct pci_device_id *ent)
2421 {
2422 	int rv;
2423 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2424 	struct smi_info *info;
2425 
2426 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2427 	if (!info)
2428 		return -ENOMEM;
2429 
2430 	info->addr_source = SI_PCI;
2431 	dev_info(&pdev->dev, "probing via PCI");
2432 
2433 	switch (class_type) {
2434 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2435 		info->si_type = SI_SMIC;
2436 		break;
2437 
2438 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2439 		info->si_type = SI_KCS;
2440 		break;
2441 
2442 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2443 		info->si_type = SI_BT;
2444 		break;
2445 
2446 	default:
2447 		kfree(info);
2448 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2449 		return -ENOMEM;
2450 	}
2451 
2452 	rv = pci_enable_device(pdev);
2453 	if (rv) {
2454 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2455 		kfree(info);
2456 		return rv;
2457 	}
2458 
2459 	info->addr_source_cleanup = ipmi_pci_cleanup;
2460 	info->addr_source_data = pdev;
2461 
2462 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2463 		info->io_setup = port_setup;
2464 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2465 	} else {
2466 		info->io_setup = mem_setup;
2467 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2468 	}
2469 	info->io.addr_data = pci_resource_start(pdev, 0);
2470 
2471 	info->io.regspacing = DEFAULT_REGSPACING;
2472 	info->io.regsize = DEFAULT_REGSPACING;
2473 	info->io.regshift = 0;
2474 
2475 	info->irq = pdev->irq;
2476 	if (info->irq)
2477 		info->irq_setup = std_irq_setup;
2478 
2479 	info->dev = &pdev->dev;
2480 	pci_set_drvdata(pdev, info);
2481 
2482 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2483 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2484 		info->irq);
2485 
2486 	if (add_smi(info))
2487 		kfree(info);
2488 
2489 	return 0;
2490 }
2491 
2492 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2493 {
2494 	struct smi_info *info = pci_get_drvdata(pdev);
2495 	cleanup_one_si(info);
2496 }
2497 
2498 #ifdef CONFIG_PM
2499 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2500 {
2501 	return 0;
2502 }
2503 
2504 static int ipmi_pci_resume(struct pci_dev *pdev)
2505 {
2506 	return 0;
2507 }
2508 #endif
2509 
2510 static struct pci_device_id ipmi_pci_devices[] = {
2511 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2512 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2513 	{ 0, }
2514 };
2515 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2516 
2517 static struct pci_driver ipmi_pci_driver = {
2518 	.name =         DEVICE_NAME,
2519 	.id_table =     ipmi_pci_devices,
2520 	.probe =        ipmi_pci_probe,
2521 	.remove =       __devexit_p(ipmi_pci_remove),
2522 #ifdef CONFIG_PM
2523 	.suspend =      ipmi_pci_suspend,
2524 	.resume =       ipmi_pci_resume,
2525 #endif
2526 };
2527 #endif /* CONFIG_PCI */
2528 
2529 
2530 #ifdef CONFIG_PPC_OF
2531 static int __devinit ipmi_of_probe(struct platform_device *dev,
2532 			 const struct of_device_id *match)
2533 {
2534 	struct smi_info *info;
2535 	struct resource resource;
2536 	const int *regsize, *regspacing, *regshift;
2537 	struct device_node *np = dev->dev.of_node;
2538 	int ret;
2539 	int proplen;
2540 
2541 	dev_info(&dev->dev, "probing via device tree\n");
2542 
2543 	ret = of_address_to_resource(np, 0, &resource);
2544 	if (ret) {
2545 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2546 		return ret;
2547 	}
2548 
2549 	regsize = of_get_property(np, "reg-size", &proplen);
2550 	if (regsize && proplen != 4) {
2551 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2552 		return -EINVAL;
2553 	}
2554 
2555 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2556 	if (regspacing && proplen != 4) {
2557 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2558 		return -EINVAL;
2559 	}
2560 
2561 	regshift = of_get_property(np, "reg-shift", &proplen);
2562 	if (regshift && proplen != 4) {
2563 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2564 		return -EINVAL;
2565 	}
2566 
2567 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2568 
2569 	if (!info) {
2570 		dev_err(&dev->dev,
2571 			"could not allocate memory for OF probe\n");
2572 		return -ENOMEM;
2573 	}
2574 
2575 	info->si_type		= (enum si_type) match->data;
2576 	info->addr_source	= SI_DEVICETREE;
2577 	info->irq_setup		= std_irq_setup;
2578 
2579 	if (resource.flags & IORESOURCE_IO) {
2580 		info->io_setup		= port_setup;
2581 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2582 	} else {
2583 		info->io_setup		= mem_setup;
2584 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2585 	}
2586 
2587 	info->io.addr_data	= resource.start;
2588 
2589 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2590 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2591 	info->io.regshift	= regshift ? *regshift : 0;
2592 
2593 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2594 	info->dev		= &dev->dev;
2595 
2596 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2597 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2598 		info->irq);
2599 
2600 	dev_set_drvdata(&dev->dev, info);
2601 
2602 	if (add_smi(info)) {
2603 		kfree(info);
2604 		return -EBUSY;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 static int __devexit ipmi_of_remove(struct platform_device *dev)
2611 {
2612 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2613 	return 0;
2614 }
2615 
2616 static struct of_device_id ipmi_match[] =
2617 {
2618 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2619 	  .data = (void *)(unsigned long) SI_KCS },
2620 	{ .type = "ipmi", .compatible = "ipmi-smic",
2621 	  .data = (void *)(unsigned long) SI_SMIC },
2622 	{ .type = "ipmi", .compatible = "ipmi-bt",
2623 	  .data = (void *)(unsigned long) SI_BT },
2624 	{},
2625 };
2626 
2627 static struct of_platform_driver ipmi_of_platform_driver = {
2628 	.driver = {
2629 		.name = "ipmi",
2630 		.owner = THIS_MODULE,
2631 		.of_match_table = ipmi_match,
2632 	},
2633 	.probe		= ipmi_of_probe,
2634 	.remove		= __devexit_p(ipmi_of_remove),
2635 };
2636 #endif /* CONFIG_PPC_OF */
2637 
2638 static int wait_for_msg_done(struct smi_info *smi_info)
2639 {
2640 	enum si_sm_result     smi_result;
2641 
2642 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2643 	for (;;) {
2644 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2645 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2646 			schedule_timeout_uninterruptible(1);
2647 			smi_result = smi_info->handlers->event(
2648 				smi_info->si_sm, 100);
2649 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2650 			smi_result = smi_info->handlers->event(
2651 				smi_info->si_sm, 0);
2652 		} else
2653 			break;
2654 	}
2655 	if (smi_result == SI_SM_HOSED)
2656 		/*
2657 		 * We couldn't get the state machine to run, so whatever's at
2658 		 * the port is probably not an IPMI SMI interface.
2659 		 */
2660 		return -ENODEV;
2661 
2662 	return 0;
2663 }
2664 
2665 static int try_get_dev_id(struct smi_info *smi_info)
2666 {
2667 	unsigned char         msg[2];
2668 	unsigned char         *resp;
2669 	unsigned long         resp_len;
2670 	int                   rv = 0;
2671 
2672 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2673 	if (!resp)
2674 		return -ENOMEM;
2675 
2676 	/*
2677 	 * Do a Get Device ID command, since it comes back with some
2678 	 * useful info.
2679 	 */
2680 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2681 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2682 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2683 
2684 	rv = wait_for_msg_done(smi_info);
2685 	if (rv)
2686 		goto out;
2687 
2688 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2689 						  resp, IPMI_MAX_MSG_LENGTH);
2690 
2691 	/* Check and record info from the get device id, in case we need it. */
2692 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2693 
2694  out:
2695 	kfree(resp);
2696 	return rv;
2697 }
2698 
2699 static int try_enable_event_buffer(struct smi_info *smi_info)
2700 {
2701 	unsigned char         msg[3];
2702 	unsigned char         *resp;
2703 	unsigned long         resp_len;
2704 	int                   rv = 0;
2705 
2706 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2707 	if (!resp)
2708 		return -ENOMEM;
2709 
2710 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2711 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2712 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2713 
2714 	rv = wait_for_msg_done(smi_info);
2715 	if (rv) {
2716 		printk(KERN_WARNING PFX "Error getting response from get"
2717 		       " global enables command, the event buffer is not"
2718 		       " enabled.\n");
2719 		goto out;
2720 	}
2721 
2722 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2723 						  resp, IPMI_MAX_MSG_LENGTH);
2724 
2725 	if (resp_len < 4 ||
2726 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2727 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2728 			resp[2] != 0) {
2729 		printk(KERN_WARNING PFX "Invalid return from get global"
2730 		       " enables command, cannot enable the event buffer.\n");
2731 		rv = -EINVAL;
2732 		goto out;
2733 	}
2734 
2735 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2736 		/* buffer is already enabled, nothing to do. */
2737 		goto out;
2738 
2739 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2741 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2742 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2743 
2744 	rv = wait_for_msg_done(smi_info);
2745 	if (rv) {
2746 		printk(KERN_WARNING PFX "Error getting response from set"
2747 		       " global, enables command, the event buffer is not"
2748 		       " enabled.\n");
2749 		goto out;
2750 	}
2751 
2752 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2753 						  resp, IPMI_MAX_MSG_LENGTH);
2754 
2755 	if (resp_len < 3 ||
2756 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2757 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2758 		printk(KERN_WARNING PFX "Invalid return from get global,"
2759 		       "enables command, not enable the event buffer.\n");
2760 		rv = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	if (resp[2] != 0)
2765 		/*
2766 		 * An error when setting the event buffer bit means
2767 		 * that the event buffer is not supported.
2768 		 */
2769 		rv = -ENOENT;
2770  out:
2771 	kfree(resp);
2772 	return rv;
2773 }
2774 
2775 static int type_file_read_proc(char *page, char **start, off_t off,
2776 			       int count, int *eof, void *data)
2777 {
2778 	struct smi_info *smi = data;
2779 
2780 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2781 }
2782 
2783 static int stat_file_read_proc(char *page, char **start, off_t off,
2784 			       int count, int *eof, void *data)
2785 {
2786 	char            *out = (char *) page;
2787 	struct smi_info *smi = data;
2788 
2789 	out += sprintf(out, "interrupts_enabled:    %d\n",
2790 		       smi->irq && !smi->interrupt_disabled);
2791 	out += sprintf(out, "short_timeouts:        %u\n",
2792 		       smi_get_stat(smi, short_timeouts));
2793 	out += sprintf(out, "long_timeouts:         %u\n",
2794 		       smi_get_stat(smi, long_timeouts));
2795 	out += sprintf(out, "idles:                 %u\n",
2796 		       smi_get_stat(smi, idles));
2797 	out += sprintf(out, "interrupts:            %u\n",
2798 		       smi_get_stat(smi, interrupts));
2799 	out += sprintf(out, "attentions:            %u\n",
2800 		       smi_get_stat(smi, attentions));
2801 	out += sprintf(out, "flag_fetches:          %u\n",
2802 		       smi_get_stat(smi, flag_fetches));
2803 	out += sprintf(out, "hosed_count:           %u\n",
2804 		       smi_get_stat(smi, hosed_count));
2805 	out += sprintf(out, "complete_transactions: %u\n",
2806 		       smi_get_stat(smi, complete_transactions));
2807 	out += sprintf(out, "events:                %u\n",
2808 		       smi_get_stat(smi, events));
2809 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2810 		       smi_get_stat(smi, watchdog_pretimeouts));
2811 	out += sprintf(out, "incoming_messages:     %u\n",
2812 		       smi_get_stat(smi, incoming_messages));
2813 
2814 	return out - page;
2815 }
2816 
2817 static int param_read_proc(char *page, char **start, off_t off,
2818 			   int count, int *eof, void *data)
2819 {
2820 	struct smi_info *smi = data;
2821 
2822 	return sprintf(page,
2823 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2824 		       si_to_str[smi->si_type],
2825 		       addr_space_to_str[smi->io.addr_type],
2826 		       smi->io.addr_data,
2827 		       smi->io.regspacing,
2828 		       smi->io.regsize,
2829 		       smi->io.regshift,
2830 		       smi->irq,
2831 		       smi->slave_addr);
2832 }
2833 
2834 /*
2835  * oem_data_avail_to_receive_msg_avail
2836  * @info - smi_info structure with msg_flags set
2837  *
2838  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2839  * Returns 1 indicating need to re-run handle_flags().
2840  */
2841 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2842 {
2843 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2844 			       RECEIVE_MSG_AVAIL);
2845 	return 1;
2846 }
2847 
2848 /*
2849  * setup_dell_poweredge_oem_data_handler
2850  * @info - smi_info.device_id must be populated
2851  *
2852  * Systems that match, but have firmware version < 1.40 may assert
2853  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2854  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2855  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2856  * as RECEIVE_MSG_AVAIL instead.
2857  *
2858  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2859  * assert the OEM[012] bits, and if it did, the driver would have to
2860  * change to handle that properly, we don't actually check for the
2861  * firmware version.
2862  * Device ID = 0x20                BMC on PowerEdge 8G servers
2863  * Device Revision = 0x80
2864  * Firmware Revision1 = 0x01       BMC version 1.40
2865  * Firmware Revision2 = 0x40       BCD encoded
2866  * IPMI Version = 0x51             IPMI 1.5
2867  * Manufacturer ID = A2 02 00      Dell IANA
2868  *
2869  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2870  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2871  *
2872  */
2873 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2874 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2875 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2876 #define DELL_IANA_MFR_ID 0x0002a2
2877 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2878 {
2879 	struct ipmi_device_id *id = &smi_info->device_id;
2880 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2881 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2882 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2883 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2884 			smi_info->oem_data_avail_handler =
2885 				oem_data_avail_to_receive_msg_avail;
2886 		} else if (ipmi_version_major(id) < 1 ||
2887 			   (ipmi_version_major(id) == 1 &&
2888 			    ipmi_version_minor(id) < 5)) {
2889 			smi_info->oem_data_avail_handler =
2890 				oem_data_avail_to_receive_msg_avail;
2891 		}
2892 	}
2893 }
2894 
2895 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2896 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2897 {
2898 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2899 
2900 	/* Make it a reponse */
2901 	msg->rsp[0] = msg->data[0] | 4;
2902 	msg->rsp[1] = msg->data[1];
2903 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2904 	msg->rsp_size = 3;
2905 	smi_info->curr_msg = NULL;
2906 	deliver_recv_msg(smi_info, msg);
2907 }
2908 
2909 /*
2910  * dell_poweredge_bt_xaction_handler
2911  * @info - smi_info.device_id must be populated
2912  *
2913  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2914  * not respond to a Get SDR command if the length of the data
2915  * requested is exactly 0x3A, which leads to command timeouts and no
2916  * data returned.  This intercepts such commands, and causes userspace
2917  * callers to try again with a different-sized buffer, which succeeds.
2918  */
2919 
2920 #define STORAGE_NETFN 0x0A
2921 #define STORAGE_CMD_GET_SDR 0x23
2922 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2923 					     unsigned long unused,
2924 					     void *in)
2925 {
2926 	struct smi_info *smi_info = in;
2927 	unsigned char *data = smi_info->curr_msg->data;
2928 	unsigned int size   = smi_info->curr_msg->data_size;
2929 	if (size >= 8 &&
2930 	    (data[0]>>2) == STORAGE_NETFN &&
2931 	    data[1] == STORAGE_CMD_GET_SDR &&
2932 	    data[7] == 0x3A) {
2933 		return_hosed_msg_badsize(smi_info);
2934 		return NOTIFY_STOP;
2935 	}
2936 	return NOTIFY_DONE;
2937 }
2938 
2939 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2940 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2941 };
2942 
2943 /*
2944  * setup_dell_poweredge_bt_xaction_handler
2945  * @info - smi_info.device_id must be filled in already
2946  *
2947  * Fills in smi_info.device_id.start_transaction_pre_hook
2948  * when we know what function to use there.
2949  */
2950 static void
2951 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2952 {
2953 	struct ipmi_device_id *id = &smi_info->device_id;
2954 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2955 	    smi_info->si_type == SI_BT)
2956 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2957 }
2958 
2959 /*
2960  * setup_oem_data_handler
2961  * @info - smi_info.device_id must be filled in already
2962  *
2963  * Fills in smi_info.device_id.oem_data_available_handler
2964  * when we know what function to use there.
2965  */
2966 
2967 static void setup_oem_data_handler(struct smi_info *smi_info)
2968 {
2969 	setup_dell_poweredge_oem_data_handler(smi_info);
2970 }
2971 
2972 static void setup_xaction_handlers(struct smi_info *smi_info)
2973 {
2974 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2975 }
2976 
2977 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2978 {
2979 	if (smi_info->intf) {
2980 		/*
2981 		 * The timer and thread are only running if the
2982 		 * interface has been started up and registered.
2983 		 */
2984 		if (smi_info->thread != NULL)
2985 			kthread_stop(smi_info->thread);
2986 		del_timer_sync(&smi_info->si_timer);
2987 	}
2988 }
2989 
2990 static __devinitdata struct ipmi_default_vals
2991 {
2992 	int type;
2993 	int port;
2994 } ipmi_defaults[] =
2995 {
2996 	{ .type = SI_KCS, .port = 0xca2 },
2997 	{ .type = SI_SMIC, .port = 0xca9 },
2998 	{ .type = SI_BT, .port = 0xe4 },
2999 	{ .port = 0 }
3000 };
3001 
3002 static __devinit void default_find_bmc(void)
3003 {
3004 	struct smi_info *info;
3005 	int             i;
3006 
3007 	for (i = 0; ; i++) {
3008 		if (!ipmi_defaults[i].port)
3009 			break;
3010 #ifdef CONFIG_PPC
3011 		if (check_legacy_ioport(ipmi_defaults[i].port))
3012 			continue;
3013 #endif
3014 		info = kzalloc(sizeof(*info), GFP_KERNEL);
3015 		if (!info)
3016 			return;
3017 
3018 		info->addr_source = SI_DEFAULT;
3019 
3020 		info->si_type = ipmi_defaults[i].type;
3021 		info->io_setup = port_setup;
3022 		info->io.addr_data = ipmi_defaults[i].port;
3023 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3024 
3025 		info->io.addr = NULL;
3026 		info->io.regspacing = DEFAULT_REGSPACING;
3027 		info->io.regsize = DEFAULT_REGSPACING;
3028 		info->io.regshift = 0;
3029 
3030 		if (add_smi(info) == 0) {
3031 			if ((try_smi_init(info)) == 0) {
3032 				/* Found one... */
3033 				printk(KERN_INFO PFX "Found default %s"
3034 				" state machine at %s address 0x%lx\n",
3035 				si_to_str[info->si_type],
3036 				addr_space_to_str[info->io.addr_type],
3037 				info->io.addr_data);
3038 			} else
3039 				cleanup_one_si(info);
3040 		} else {
3041 			kfree(info);
3042 		}
3043 	}
3044 }
3045 
3046 static int is_new_interface(struct smi_info *info)
3047 {
3048 	struct smi_info *e;
3049 
3050 	list_for_each_entry(e, &smi_infos, link) {
3051 		if (e->io.addr_type != info->io.addr_type)
3052 			continue;
3053 		if (e->io.addr_data == info->io.addr_data)
3054 			return 0;
3055 	}
3056 
3057 	return 1;
3058 }
3059 
3060 static int add_smi(struct smi_info *new_smi)
3061 {
3062 	int rv = 0;
3063 
3064 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3065 			ipmi_addr_src_to_str[new_smi->addr_source],
3066 			si_to_str[new_smi->si_type]);
3067 	mutex_lock(&smi_infos_lock);
3068 	if (!is_new_interface(new_smi)) {
3069 		printk(KERN_CONT " duplicate interface\n");
3070 		rv = -EBUSY;
3071 		goto out_err;
3072 	}
3073 
3074 	printk(KERN_CONT "\n");
3075 
3076 	/* So we know not to free it unless we have allocated one. */
3077 	new_smi->intf = NULL;
3078 	new_smi->si_sm = NULL;
3079 	new_smi->handlers = NULL;
3080 
3081 	list_add_tail(&new_smi->link, &smi_infos);
3082 
3083 out_err:
3084 	mutex_unlock(&smi_infos_lock);
3085 	return rv;
3086 }
3087 
3088 static int try_smi_init(struct smi_info *new_smi)
3089 {
3090 	int rv = 0;
3091 	int i;
3092 
3093 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3094 	       " machine at %s address 0x%lx, slave address 0x%x,"
3095 	       " irq %d\n",
3096 	       ipmi_addr_src_to_str[new_smi->addr_source],
3097 	       si_to_str[new_smi->si_type],
3098 	       addr_space_to_str[new_smi->io.addr_type],
3099 	       new_smi->io.addr_data,
3100 	       new_smi->slave_addr, new_smi->irq);
3101 
3102 	switch (new_smi->si_type) {
3103 	case SI_KCS:
3104 		new_smi->handlers = &kcs_smi_handlers;
3105 		break;
3106 
3107 	case SI_SMIC:
3108 		new_smi->handlers = &smic_smi_handlers;
3109 		break;
3110 
3111 	case SI_BT:
3112 		new_smi->handlers = &bt_smi_handlers;
3113 		break;
3114 
3115 	default:
3116 		/* No support for anything else yet. */
3117 		rv = -EIO;
3118 		goto out_err;
3119 	}
3120 
3121 	/* Allocate the state machine's data and initialize it. */
3122 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3123 	if (!new_smi->si_sm) {
3124 		printk(KERN_ERR PFX
3125 		       "Could not allocate state machine memory\n");
3126 		rv = -ENOMEM;
3127 		goto out_err;
3128 	}
3129 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3130 							&new_smi->io);
3131 
3132 	/* Now that we know the I/O size, we can set up the I/O. */
3133 	rv = new_smi->io_setup(new_smi);
3134 	if (rv) {
3135 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3136 		goto out_err;
3137 	}
3138 
3139 	spin_lock_init(&(new_smi->si_lock));
3140 	spin_lock_init(&(new_smi->msg_lock));
3141 
3142 	/* Do low-level detection first. */
3143 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3144 		if (new_smi->addr_source)
3145 			printk(KERN_INFO PFX "Interface detection failed\n");
3146 		rv = -ENODEV;
3147 		goto out_err;
3148 	}
3149 
3150 	/*
3151 	 * Attempt a get device id command.  If it fails, we probably
3152 	 * don't have a BMC here.
3153 	 */
3154 	rv = try_get_dev_id(new_smi);
3155 	if (rv) {
3156 		if (new_smi->addr_source)
3157 			printk(KERN_INFO PFX "There appears to be no BMC"
3158 			       " at this location\n");
3159 		goto out_err;
3160 	}
3161 
3162 	setup_oem_data_handler(new_smi);
3163 	setup_xaction_handlers(new_smi);
3164 
3165 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3166 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3167 	new_smi->curr_msg = NULL;
3168 	atomic_set(&new_smi->req_events, 0);
3169 	new_smi->run_to_completion = 0;
3170 	for (i = 0; i < SI_NUM_STATS; i++)
3171 		atomic_set(&new_smi->stats[i], 0);
3172 
3173 	new_smi->interrupt_disabled = 1;
3174 	atomic_set(&new_smi->stop_operation, 0);
3175 	new_smi->intf_num = smi_num;
3176 	smi_num++;
3177 
3178 	rv = try_enable_event_buffer(new_smi);
3179 	if (rv == 0)
3180 		new_smi->has_event_buffer = 1;
3181 
3182 	/*
3183 	 * Start clearing the flags before we enable interrupts or the
3184 	 * timer to avoid racing with the timer.
3185 	 */
3186 	start_clear_flags(new_smi);
3187 	/* IRQ is defined to be set when non-zero. */
3188 	if (new_smi->irq)
3189 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3190 
3191 	if (!new_smi->dev) {
3192 		/*
3193 		 * If we don't already have a device from something
3194 		 * else (like PCI), then register a new one.
3195 		 */
3196 		new_smi->pdev = platform_device_alloc("ipmi_si",
3197 						      new_smi->intf_num);
3198 		if (!new_smi->pdev) {
3199 			printk(KERN_ERR PFX
3200 			       "Unable to allocate platform device\n");
3201 			goto out_err;
3202 		}
3203 		new_smi->dev = &new_smi->pdev->dev;
3204 		new_smi->dev->driver = &ipmi_driver.driver;
3205 
3206 		rv = platform_device_add(new_smi->pdev);
3207 		if (rv) {
3208 			printk(KERN_ERR PFX
3209 			       "Unable to register system interface device:"
3210 			       " %d\n",
3211 			       rv);
3212 			goto out_err;
3213 		}
3214 		new_smi->dev_registered = 1;
3215 	}
3216 
3217 	rv = ipmi_register_smi(&handlers,
3218 			       new_smi,
3219 			       &new_smi->device_id,
3220 			       new_smi->dev,
3221 			       "bmc",
3222 			       new_smi->slave_addr);
3223 	if (rv) {
3224 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3225 			rv);
3226 		goto out_err_stop_timer;
3227 	}
3228 
3229 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3230 				     type_file_read_proc,
3231 				     new_smi);
3232 	if (rv) {
3233 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3234 		goto out_err_stop_timer;
3235 	}
3236 
3237 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3238 				     stat_file_read_proc,
3239 				     new_smi);
3240 	if (rv) {
3241 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3242 		goto out_err_stop_timer;
3243 	}
3244 
3245 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3246 				     param_read_proc,
3247 				     new_smi);
3248 	if (rv) {
3249 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3250 		goto out_err_stop_timer;
3251 	}
3252 
3253 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3254 		 si_to_str[new_smi->si_type]);
3255 
3256 	return 0;
3257 
3258  out_err_stop_timer:
3259 	atomic_inc(&new_smi->stop_operation);
3260 	wait_for_timer_and_thread(new_smi);
3261 
3262  out_err:
3263 	new_smi->interrupt_disabled = 1;
3264 
3265 	if (new_smi->intf) {
3266 		ipmi_unregister_smi(new_smi->intf);
3267 		new_smi->intf = NULL;
3268 	}
3269 
3270 	if (new_smi->irq_cleanup) {
3271 		new_smi->irq_cleanup(new_smi);
3272 		new_smi->irq_cleanup = NULL;
3273 	}
3274 
3275 	/*
3276 	 * Wait until we know that we are out of any interrupt
3277 	 * handlers might have been running before we freed the
3278 	 * interrupt.
3279 	 */
3280 	synchronize_sched();
3281 
3282 	if (new_smi->si_sm) {
3283 		if (new_smi->handlers)
3284 			new_smi->handlers->cleanup(new_smi->si_sm);
3285 		kfree(new_smi->si_sm);
3286 		new_smi->si_sm = NULL;
3287 	}
3288 	if (new_smi->addr_source_cleanup) {
3289 		new_smi->addr_source_cleanup(new_smi);
3290 		new_smi->addr_source_cleanup = NULL;
3291 	}
3292 	if (new_smi->io_cleanup) {
3293 		new_smi->io_cleanup(new_smi);
3294 		new_smi->io_cleanup = NULL;
3295 	}
3296 
3297 	if (new_smi->dev_registered) {
3298 		platform_device_unregister(new_smi->pdev);
3299 		new_smi->dev_registered = 0;
3300 	}
3301 
3302 	return rv;
3303 }
3304 
3305 static __devinit int init_ipmi_si(void)
3306 {
3307 	int  i;
3308 	char *str;
3309 	int  rv;
3310 	struct smi_info *e;
3311 	enum ipmi_addr_src type = SI_INVALID;
3312 
3313 	if (initialized)
3314 		return 0;
3315 	initialized = 1;
3316 
3317 	/* Register the device drivers. */
3318 	rv = driver_register(&ipmi_driver.driver);
3319 	if (rv) {
3320 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3321 		return rv;
3322 	}
3323 
3324 
3325 	/* Parse out the si_type string into its components. */
3326 	str = si_type_str;
3327 	if (*str != '\0') {
3328 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3329 			si_type[i] = str;
3330 			str = strchr(str, ',');
3331 			if (str) {
3332 				*str = '\0';
3333 				str++;
3334 			} else {
3335 				break;
3336 			}
3337 		}
3338 	}
3339 
3340 	printk(KERN_INFO "IPMI System Interface driver.\n");
3341 
3342 	hardcode_find_bmc();
3343 
3344 	/* If the user gave us a device, they presumably want us to use it */
3345 	mutex_lock(&smi_infos_lock);
3346 	if (!list_empty(&smi_infos)) {
3347 		mutex_unlock(&smi_infos_lock);
3348 		return 0;
3349 	}
3350 	mutex_unlock(&smi_infos_lock);
3351 
3352 #ifdef CONFIG_PCI
3353 	rv = pci_register_driver(&ipmi_pci_driver);
3354 	if (rv)
3355 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3356 	else
3357 		pci_registered = 1;
3358 #endif
3359 
3360 #ifdef CONFIG_ACPI
3361 	pnp_register_driver(&ipmi_pnp_driver);
3362 #endif
3363 
3364 #ifdef CONFIG_DMI
3365 	dmi_find_bmc();
3366 #endif
3367 
3368 #ifdef CONFIG_ACPI
3369 	spmi_find_bmc();
3370 #endif
3371 
3372 #ifdef CONFIG_PPC_OF
3373 	of_register_platform_driver(&ipmi_of_platform_driver);
3374 	of_registered = 1;
3375 #endif
3376 
3377 	/* We prefer devices with interrupts, but in the case of a machine
3378 	   with multiple BMCs we assume that there will be several instances
3379 	   of a given type so if we succeed in registering a type then also
3380 	   try to register everything else of the same type */
3381 
3382 	mutex_lock(&smi_infos_lock);
3383 	list_for_each_entry(e, &smi_infos, link) {
3384 		/* Try to register a device if it has an IRQ and we either
3385 		   haven't successfully registered a device yet or this
3386 		   device has the same type as one we successfully registered */
3387 		if (e->irq && (!type || e->addr_source == type)) {
3388 			if (!try_smi_init(e)) {
3389 				type = e->addr_source;
3390 			}
3391 		}
3392 	}
3393 
3394 	/* type will only have been set if we successfully registered an si */
3395 	if (type) {
3396 		mutex_unlock(&smi_infos_lock);
3397 		return 0;
3398 	}
3399 
3400 	/* Fall back to the preferred device */
3401 
3402 	list_for_each_entry(e, &smi_infos, link) {
3403 		if (!e->irq && (!type || e->addr_source == type)) {
3404 			if (!try_smi_init(e)) {
3405 				type = e->addr_source;
3406 			}
3407 		}
3408 	}
3409 	mutex_unlock(&smi_infos_lock);
3410 
3411 	if (type)
3412 		return 0;
3413 
3414 	if (si_trydefaults) {
3415 		mutex_lock(&smi_infos_lock);
3416 		if (list_empty(&smi_infos)) {
3417 			/* No BMC was found, try defaults. */
3418 			mutex_unlock(&smi_infos_lock);
3419 			default_find_bmc();
3420 		} else
3421 			mutex_unlock(&smi_infos_lock);
3422 	}
3423 
3424 	mutex_lock(&smi_infos_lock);
3425 	if (unload_when_empty && list_empty(&smi_infos)) {
3426 		mutex_unlock(&smi_infos_lock);
3427 #ifdef CONFIG_PCI
3428 		if (pci_registered)
3429 			pci_unregister_driver(&ipmi_pci_driver);
3430 #endif
3431 
3432 #ifdef CONFIG_PPC_OF
3433 		if (of_registered)
3434 			of_unregister_platform_driver(&ipmi_of_platform_driver);
3435 #endif
3436 		driver_unregister(&ipmi_driver.driver);
3437 		printk(KERN_WARNING PFX
3438 		       "Unable to find any System Interface(s)\n");
3439 		return -ENODEV;
3440 	} else {
3441 		mutex_unlock(&smi_infos_lock);
3442 		return 0;
3443 	}
3444 }
3445 module_init(init_ipmi_si);
3446 
3447 static void cleanup_one_si(struct smi_info *to_clean)
3448 {
3449 	int           rv = 0;
3450 	unsigned long flags;
3451 
3452 	if (!to_clean)
3453 		return;
3454 
3455 	list_del(&to_clean->link);
3456 
3457 	/* Tell the driver that we are shutting down. */
3458 	atomic_inc(&to_clean->stop_operation);
3459 
3460 	/*
3461 	 * Make sure the timer and thread are stopped and will not run
3462 	 * again.
3463 	 */
3464 	wait_for_timer_and_thread(to_clean);
3465 
3466 	/*
3467 	 * Timeouts are stopped, now make sure the interrupts are off
3468 	 * for the device.  A little tricky with locks to make sure
3469 	 * there are no races.
3470 	 */
3471 	spin_lock_irqsave(&to_clean->si_lock, flags);
3472 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3473 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3474 		poll(to_clean);
3475 		schedule_timeout_uninterruptible(1);
3476 		spin_lock_irqsave(&to_clean->si_lock, flags);
3477 	}
3478 	disable_si_irq(to_clean);
3479 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3480 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3481 		poll(to_clean);
3482 		schedule_timeout_uninterruptible(1);
3483 	}
3484 
3485 	/* Clean up interrupts and make sure that everything is done. */
3486 	if (to_clean->irq_cleanup)
3487 		to_clean->irq_cleanup(to_clean);
3488 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3489 		poll(to_clean);
3490 		schedule_timeout_uninterruptible(1);
3491 	}
3492 
3493 	if (to_clean->intf)
3494 		rv = ipmi_unregister_smi(to_clean->intf);
3495 
3496 	if (rv) {
3497 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3498 		       rv);
3499 	}
3500 
3501 	if (to_clean->handlers)
3502 		to_clean->handlers->cleanup(to_clean->si_sm);
3503 
3504 	kfree(to_clean->si_sm);
3505 
3506 	if (to_clean->addr_source_cleanup)
3507 		to_clean->addr_source_cleanup(to_clean);
3508 	if (to_clean->io_cleanup)
3509 		to_clean->io_cleanup(to_clean);
3510 
3511 	if (to_clean->dev_registered)
3512 		platform_device_unregister(to_clean->pdev);
3513 
3514 	kfree(to_clean);
3515 }
3516 
3517 static __exit void cleanup_ipmi_si(void)
3518 {
3519 	struct smi_info *e, *tmp_e;
3520 
3521 	if (!initialized)
3522 		return;
3523 
3524 #ifdef CONFIG_PCI
3525 	if (pci_registered)
3526 		pci_unregister_driver(&ipmi_pci_driver);
3527 #endif
3528 #ifdef CONFIG_ACPI
3529 	pnp_unregister_driver(&ipmi_pnp_driver);
3530 #endif
3531 
3532 #ifdef CONFIG_PPC_OF
3533 	if (of_registered)
3534 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3535 #endif
3536 
3537 	mutex_lock(&smi_infos_lock);
3538 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3539 		cleanup_one_si(e);
3540 	mutex_unlock(&smi_infos_lock);
3541 
3542 	driver_unregister(&ipmi_driver.driver);
3543 }
3544 module_exit(cleanup_ipmi_si);
3545 
3546 MODULE_LICENSE("GPL");
3547 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3548 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3549 		   " system interfaces.");
3550