1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 69 #ifdef CONFIG_PPC_OF 70 #include <linux/of_device.h> 71 #include <linux/of_platform.h> 72 #endif 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 enum ipmi_addr_src { 111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS, 112 SI_PCI, SI_DEVICETREE, SI_DEFAULT 113 }; 114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 115 "ACPI", "SMBIOS", "PCI", 116 "device-tree", "default" }; 117 118 #define DEVICE_NAME "ipmi_si" 119 120 static struct platform_driver ipmi_driver = { 121 .driver = { 122 .name = DEVICE_NAME, 123 .bus = &platform_bus_type 124 } 125 }; 126 127 128 /* 129 * Indexes into stats[] in smi_info below. 130 */ 131 enum si_stat_indexes { 132 /* 133 * Number of times the driver requested a timer while an operation 134 * was in progress. 135 */ 136 SI_STAT_short_timeouts = 0, 137 138 /* 139 * Number of times the driver requested a timer while nothing was in 140 * progress. 141 */ 142 SI_STAT_long_timeouts, 143 144 /* Number of times the interface was idle while being polled. */ 145 SI_STAT_idles, 146 147 /* Number of interrupts the driver handled. */ 148 SI_STAT_interrupts, 149 150 /* Number of time the driver got an ATTN from the hardware. */ 151 SI_STAT_attentions, 152 153 /* Number of times the driver requested flags from the hardware. */ 154 SI_STAT_flag_fetches, 155 156 /* Number of times the hardware didn't follow the state machine. */ 157 SI_STAT_hosed_count, 158 159 /* Number of completed messages. */ 160 SI_STAT_complete_transactions, 161 162 /* Number of IPMI events received from the hardware. */ 163 SI_STAT_events, 164 165 /* Number of watchdog pretimeouts. */ 166 SI_STAT_watchdog_pretimeouts, 167 168 /* Number of asyncronous messages received. */ 169 SI_STAT_incoming_messages, 170 171 172 /* This *must* remain last, add new values above this. */ 173 SI_NUM_STATS 174 }; 175 176 struct smi_info { 177 int intf_num; 178 ipmi_smi_t intf; 179 struct si_sm_data *si_sm; 180 struct si_sm_handlers *handlers; 181 enum si_type si_type; 182 spinlock_t si_lock; 183 spinlock_t msg_lock; 184 struct list_head xmit_msgs; 185 struct list_head hp_xmit_msgs; 186 struct ipmi_smi_msg *curr_msg; 187 enum si_intf_state si_state; 188 189 /* 190 * Used to handle the various types of I/O that can occur with 191 * IPMI 192 */ 193 struct si_sm_io io; 194 int (*io_setup)(struct smi_info *info); 195 void (*io_cleanup)(struct smi_info *info); 196 int (*irq_setup)(struct smi_info *info); 197 void (*irq_cleanup)(struct smi_info *info); 198 unsigned int io_size; 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 200 void (*addr_source_cleanup)(struct smi_info *info); 201 void *addr_source_data; 202 203 /* 204 * Per-OEM handler, called from handle_flags(). Returns 1 205 * when handle_flags() needs to be re-run or 0 indicating it 206 * set si_state itself. 207 */ 208 int (*oem_data_avail_handler)(struct smi_info *smi_info); 209 210 /* 211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 212 * is set to hold the flags until we are done handling everything 213 * from the flags. 214 */ 215 #define RECEIVE_MSG_AVAIL 0x01 216 #define EVENT_MSG_BUFFER_FULL 0x02 217 #define WDT_PRE_TIMEOUT_INT 0x08 218 #define OEM0_DATA_AVAIL 0x20 219 #define OEM1_DATA_AVAIL 0x40 220 #define OEM2_DATA_AVAIL 0x80 221 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 222 OEM1_DATA_AVAIL | \ 223 OEM2_DATA_AVAIL) 224 unsigned char msg_flags; 225 226 /* Does the BMC have an event buffer? */ 227 char has_event_buffer; 228 229 /* 230 * If set to true, this will request events the next time the 231 * state machine is idle. 232 */ 233 atomic_t req_events; 234 235 /* 236 * If true, run the state machine to completion on every send 237 * call. Generally used after a panic to make sure stuff goes 238 * out. 239 */ 240 int run_to_completion; 241 242 /* The I/O port of an SI interface. */ 243 int port; 244 245 /* 246 * The space between start addresses of the two ports. For 247 * instance, if the first port is 0xca2 and the spacing is 4, then 248 * the second port is 0xca6. 249 */ 250 unsigned int spacing; 251 252 /* zero if no irq; */ 253 int irq; 254 255 /* The timer for this si. */ 256 struct timer_list si_timer; 257 258 /* The time (in jiffies) the last timeout occurred at. */ 259 unsigned long last_timeout_jiffies; 260 261 /* Used to gracefully stop the timer without race conditions. */ 262 atomic_t stop_operation; 263 264 /* 265 * The driver will disable interrupts when it gets into a 266 * situation where it cannot handle messages due to lack of 267 * memory. Once that situation clears up, it will re-enable 268 * interrupts. 269 */ 270 int interrupt_disabled; 271 272 /* From the get device id response... */ 273 struct ipmi_device_id device_id; 274 275 /* Driver model stuff. */ 276 struct device *dev; 277 struct platform_device *pdev; 278 279 /* 280 * True if we allocated the device, false if it came from 281 * someplace else (like PCI). 282 */ 283 int dev_registered; 284 285 /* Slave address, could be reported from DMI. */ 286 unsigned char slave_addr; 287 288 /* Counters and things for the proc filesystem. */ 289 atomic_t stats[SI_NUM_STATS]; 290 291 struct task_struct *thread; 292 293 struct list_head link; 294 }; 295 296 #define smi_inc_stat(smi, stat) \ 297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 298 #define smi_get_stat(smi, stat) \ 299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 300 301 #define SI_MAX_PARMS 4 302 303 static int force_kipmid[SI_MAX_PARMS]; 304 static int num_force_kipmid; 305 #ifdef CONFIG_PCI 306 static int pci_registered; 307 #endif 308 #ifdef CONFIG_PPC_OF 309 static int of_registered; 310 #endif 311 312 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 313 static int num_max_busy_us; 314 315 static int unload_when_empty = 1; 316 317 static int add_smi(struct smi_info *smi); 318 static int try_smi_init(struct smi_info *smi); 319 static void cleanup_one_si(struct smi_info *to_clean); 320 321 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 322 static int register_xaction_notifier(struct notifier_block *nb) 323 { 324 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 325 } 326 327 static void deliver_recv_msg(struct smi_info *smi_info, 328 struct ipmi_smi_msg *msg) 329 { 330 /* Deliver the message to the upper layer with the lock 331 released. */ 332 333 if (smi_info->run_to_completion) { 334 ipmi_smi_msg_received(smi_info->intf, msg); 335 } else { 336 spin_unlock(&(smi_info->si_lock)); 337 ipmi_smi_msg_received(smi_info->intf, msg); 338 spin_lock(&(smi_info->si_lock)); 339 } 340 } 341 342 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 343 { 344 struct ipmi_smi_msg *msg = smi_info->curr_msg; 345 346 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 347 cCode = IPMI_ERR_UNSPECIFIED; 348 /* else use it as is */ 349 350 /* Make it a reponse */ 351 msg->rsp[0] = msg->data[0] | 4; 352 msg->rsp[1] = msg->data[1]; 353 msg->rsp[2] = cCode; 354 msg->rsp_size = 3; 355 356 smi_info->curr_msg = NULL; 357 deliver_recv_msg(smi_info, msg); 358 } 359 360 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 361 { 362 int rv; 363 struct list_head *entry = NULL; 364 #ifdef DEBUG_TIMING 365 struct timeval t; 366 #endif 367 368 /* 369 * No need to save flags, we aleady have interrupts off and we 370 * already hold the SMI lock. 371 */ 372 if (!smi_info->run_to_completion) 373 spin_lock(&(smi_info->msg_lock)); 374 375 /* Pick the high priority queue first. */ 376 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 377 entry = smi_info->hp_xmit_msgs.next; 378 } else if (!list_empty(&(smi_info->xmit_msgs))) { 379 entry = smi_info->xmit_msgs.next; 380 } 381 382 if (!entry) { 383 smi_info->curr_msg = NULL; 384 rv = SI_SM_IDLE; 385 } else { 386 int err; 387 388 list_del(entry); 389 smi_info->curr_msg = list_entry(entry, 390 struct ipmi_smi_msg, 391 link); 392 #ifdef DEBUG_TIMING 393 do_gettimeofday(&t); 394 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 395 #endif 396 err = atomic_notifier_call_chain(&xaction_notifier_list, 397 0, smi_info); 398 if (err & NOTIFY_STOP_MASK) { 399 rv = SI_SM_CALL_WITHOUT_DELAY; 400 goto out; 401 } 402 err = smi_info->handlers->start_transaction( 403 smi_info->si_sm, 404 smi_info->curr_msg->data, 405 smi_info->curr_msg->data_size); 406 if (err) 407 return_hosed_msg(smi_info, err); 408 409 rv = SI_SM_CALL_WITHOUT_DELAY; 410 } 411 out: 412 if (!smi_info->run_to_completion) 413 spin_unlock(&(smi_info->msg_lock)); 414 415 return rv; 416 } 417 418 static void start_enable_irq(struct smi_info *smi_info) 419 { 420 unsigned char msg[2]; 421 422 /* 423 * If we are enabling interrupts, we have to tell the 424 * BMC to use them. 425 */ 426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 427 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 428 429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 430 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 431 } 432 433 static void start_disable_irq(struct smi_info *smi_info) 434 { 435 unsigned char msg[2]; 436 437 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 438 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 439 440 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 441 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 442 } 443 444 static void start_clear_flags(struct smi_info *smi_info) 445 { 446 unsigned char msg[3]; 447 448 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 449 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 450 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 451 msg[2] = WDT_PRE_TIMEOUT_INT; 452 453 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 454 smi_info->si_state = SI_CLEARING_FLAGS; 455 } 456 457 /* 458 * When we have a situtaion where we run out of memory and cannot 459 * allocate messages, we just leave them in the BMC and run the system 460 * polled until we can allocate some memory. Once we have some 461 * memory, we will re-enable the interrupt. 462 */ 463 static inline void disable_si_irq(struct smi_info *smi_info) 464 { 465 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 466 start_disable_irq(smi_info); 467 smi_info->interrupt_disabled = 1; 468 if (!atomic_read(&smi_info->stop_operation)) 469 mod_timer(&smi_info->si_timer, 470 jiffies + SI_TIMEOUT_JIFFIES); 471 } 472 } 473 474 static inline void enable_si_irq(struct smi_info *smi_info) 475 { 476 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 477 start_enable_irq(smi_info); 478 smi_info->interrupt_disabled = 0; 479 } 480 } 481 482 static void handle_flags(struct smi_info *smi_info) 483 { 484 retry: 485 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 486 /* Watchdog pre-timeout */ 487 smi_inc_stat(smi_info, watchdog_pretimeouts); 488 489 start_clear_flags(smi_info); 490 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 491 spin_unlock(&(smi_info->si_lock)); 492 ipmi_smi_watchdog_pretimeout(smi_info->intf); 493 spin_lock(&(smi_info->si_lock)); 494 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 495 /* Messages available. */ 496 smi_info->curr_msg = ipmi_alloc_smi_msg(); 497 if (!smi_info->curr_msg) { 498 disable_si_irq(smi_info); 499 smi_info->si_state = SI_NORMAL; 500 return; 501 } 502 enable_si_irq(smi_info); 503 504 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 505 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 506 smi_info->curr_msg->data_size = 2; 507 508 smi_info->handlers->start_transaction( 509 smi_info->si_sm, 510 smi_info->curr_msg->data, 511 smi_info->curr_msg->data_size); 512 smi_info->si_state = SI_GETTING_MESSAGES; 513 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 514 /* Events available. */ 515 smi_info->curr_msg = ipmi_alloc_smi_msg(); 516 if (!smi_info->curr_msg) { 517 disable_si_irq(smi_info); 518 smi_info->si_state = SI_NORMAL; 519 return; 520 } 521 enable_si_irq(smi_info); 522 523 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 524 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 525 smi_info->curr_msg->data_size = 2; 526 527 smi_info->handlers->start_transaction( 528 smi_info->si_sm, 529 smi_info->curr_msg->data, 530 smi_info->curr_msg->data_size); 531 smi_info->si_state = SI_GETTING_EVENTS; 532 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 533 smi_info->oem_data_avail_handler) { 534 if (smi_info->oem_data_avail_handler(smi_info)) 535 goto retry; 536 } else 537 smi_info->si_state = SI_NORMAL; 538 } 539 540 static void handle_transaction_done(struct smi_info *smi_info) 541 { 542 struct ipmi_smi_msg *msg; 543 #ifdef DEBUG_TIMING 544 struct timeval t; 545 546 do_gettimeofday(&t); 547 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 548 #endif 549 switch (smi_info->si_state) { 550 case SI_NORMAL: 551 if (!smi_info->curr_msg) 552 break; 553 554 smi_info->curr_msg->rsp_size 555 = smi_info->handlers->get_result( 556 smi_info->si_sm, 557 smi_info->curr_msg->rsp, 558 IPMI_MAX_MSG_LENGTH); 559 560 /* 561 * Do this here becase deliver_recv_msg() releases the 562 * lock, and a new message can be put in during the 563 * time the lock is released. 564 */ 565 msg = smi_info->curr_msg; 566 smi_info->curr_msg = NULL; 567 deliver_recv_msg(smi_info, msg); 568 break; 569 570 case SI_GETTING_FLAGS: 571 { 572 unsigned char msg[4]; 573 unsigned int len; 574 575 /* We got the flags from the SMI, now handle them. */ 576 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 577 if (msg[2] != 0) { 578 /* Error fetching flags, just give up for now. */ 579 smi_info->si_state = SI_NORMAL; 580 } else if (len < 4) { 581 /* 582 * Hmm, no flags. That's technically illegal, but 583 * don't use uninitialized data. 584 */ 585 smi_info->si_state = SI_NORMAL; 586 } else { 587 smi_info->msg_flags = msg[3]; 588 handle_flags(smi_info); 589 } 590 break; 591 } 592 593 case SI_CLEARING_FLAGS: 594 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 595 { 596 unsigned char msg[3]; 597 598 /* We cleared the flags. */ 599 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 600 if (msg[2] != 0) { 601 /* Error clearing flags */ 602 dev_warn(smi_info->dev, 603 "Error clearing flags: %2.2x\n", msg[2]); 604 } 605 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 606 start_enable_irq(smi_info); 607 else 608 smi_info->si_state = SI_NORMAL; 609 break; 610 } 611 612 case SI_GETTING_EVENTS: 613 { 614 smi_info->curr_msg->rsp_size 615 = smi_info->handlers->get_result( 616 smi_info->si_sm, 617 smi_info->curr_msg->rsp, 618 IPMI_MAX_MSG_LENGTH); 619 620 /* 621 * Do this here becase deliver_recv_msg() releases the 622 * lock, and a new message can be put in during the 623 * time the lock is released. 624 */ 625 msg = smi_info->curr_msg; 626 smi_info->curr_msg = NULL; 627 if (msg->rsp[2] != 0) { 628 /* Error getting event, probably done. */ 629 msg->done(msg); 630 631 /* Take off the event flag. */ 632 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 633 handle_flags(smi_info); 634 } else { 635 smi_inc_stat(smi_info, events); 636 637 /* 638 * Do this before we deliver the message 639 * because delivering the message releases the 640 * lock and something else can mess with the 641 * state. 642 */ 643 handle_flags(smi_info); 644 645 deliver_recv_msg(smi_info, msg); 646 } 647 break; 648 } 649 650 case SI_GETTING_MESSAGES: 651 { 652 smi_info->curr_msg->rsp_size 653 = smi_info->handlers->get_result( 654 smi_info->si_sm, 655 smi_info->curr_msg->rsp, 656 IPMI_MAX_MSG_LENGTH); 657 658 /* 659 * Do this here becase deliver_recv_msg() releases the 660 * lock, and a new message can be put in during the 661 * time the lock is released. 662 */ 663 msg = smi_info->curr_msg; 664 smi_info->curr_msg = NULL; 665 if (msg->rsp[2] != 0) { 666 /* Error getting event, probably done. */ 667 msg->done(msg); 668 669 /* Take off the msg flag. */ 670 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 671 handle_flags(smi_info); 672 } else { 673 smi_inc_stat(smi_info, incoming_messages); 674 675 /* 676 * Do this before we deliver the message 677 * because delivering the message releases the 678 * lock and something else can mess with the 679 * state. 680 */ 681 handle_flags(smi_info); 682 683 deliver_recv_msg(smi_info, msg); 684 } 685 break; 686 } 687 688 case SI_ENABLE_INTERRUPTS1: 689 { 690 unsigned char msg[4]; 691 692 /* We got the flags from the SMI, now handle them. */ 693 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 694 if (msg[2] != 0) { 695 dev_warn(smi_info->dev, "Could not enable interrupts" 696 ", failed get, using polled mode.\n"); 697 smi_info->si_state = SI_NORMAL; 698 } else { 699 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 700 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 701 msg[2] = (msg[3] | 702 IPMI_BMC_RCV_MSG_INTR | 703 IPMI_BMC_EVT_MSG_INTR); 704 smi_info->handlers->start_transaction( 705 smi_info->si_sm, msg, 3); 706 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 707 } 708 break; 709 } 710 711 case SI_ENABLE_INTERRUPTS2: 712 { 713 unsigned char msg[4]; 714 715 /* We got the flags from the SMI, now handle them. */ 716 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 717 if (msg[2] != 0) 718 dev_warn(smi_info->dev, "Could not enable interrupts" 719 ", failed set, using polled mode.\n"); 720 else 721 smi_info->interrupt_disabled = 0; 722 smi_info->si_state = SI_NORMAL; 723 break; 724 } 725 726 case SI_DISABLE_INTERRUPTS1: 727 { 728 unsigned char msg[4]; 729 730 /* We got the flags from the SMI, now handle them. */ 731 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 732 if (msg[2] != 0) { 733 dev_warn(smi_info->dev, "Could not disable interrupts" 734 ", failed get.\n"); 735 smi_info->si_state = SI_NORMAL; 736 } else { 737 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 738 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 739 msg[2] = (msg[3] & 740 ~(IPMI_BMC_RCV_MSG_INTR | 741 IPMI_BMC_EVT_MSG_INTR)); 742 smi_info->handlers->start_transaction( 743 smi_info->si_sm, msg, 3); 744 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 745 } 746 break; 747 } 748 749 case SI_DISABLE_INTERRUPTS2: 750 { 751 unsigned char msg[4]; 752 753 /* We got the flags from the SMI, now handle them. */ 754 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 755 if (msg[2] != 0) { 756 dev_warn(smi_info->dev, "Could not disable interrupts" 757 ", failed set.\n"); 758 } 759 smi_info->si_state = SI_NORMAL; 760 break; 761 } 762 } 763 } 764 765 /* 766 * Called on timeouts and events. Timeouts should pass the elapsed 767 * time, interrupts should pass in zero. Must be called with 768 * si_lock held and interrupts disabled. 769 */ 770 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 771 int time) 772 { 773 enum si_sm_result si_sm_result; 774 775 restart: 776 /* 777 * There used to be a loop here that waited a little while 778 * (around 25us) before giving up. That turned out to be 779 * pointless, the minimum delays I was seeing were in the 300us 780 * range, which is far too long to wait in an interrupt. So 781 * we just run until the state machine tells us something 782 * happened or it needs a delay. 783 */ 784 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 785 time = 0; 786 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 788 789 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 790 smi_inc_stat(smi_info, complete_transactions); 791 792 handle_transaction_done(smi_info); 793 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 794 } else if (si_sm_result == SI_SM_HOSED) { 795 smi_inc_stat(smi_info, hosed_count); 796 797 /* 798 * Do the before return_hosed_msg, because that 799 * releases the lock. 800 */ 801 smi_info->si_state = SI_NORMAL; 802 if (smi_info->curr_msg != NULL) { 803 /* 804 * If we were handling a user message, format 805 * a response to send to the upper layer to 806 * tell it about the error. 807 */ 808 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 809 } 810 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 811 } 812 813 /* 814 * We prefer handling attn over new messages. But don't do 815 * this if there is not yet an upper layer to handle anything. 816 */ 817 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 818 unsigned char msg[2]; 819 820 smi_inc_stat(smi_info, attentions); 821 822 /* 823 * Got a attn, send down a get message flags to see 824 * what's causing it. It would be better to handle 825 * this in the upper layer, but due to the way 826 * interrupts work with the SMI, that's not really 827 * possible. 828 */ 829 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 830 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 831 832 smi_info->handlers->start_transaction( 833 smi_info->si_sm, msg, 2); 834 smi_info->si_state = SI_GETTING_FLAGS; 835 goto restart; 836 } 837 838 /* If we are currently idle, try to start the next message. */ 839 if (si_sm_result == SI_SM_IDLE) { 840 smi_inc_stat(smi_info, idles); 841 842 si_sm_result = start_next_msg(smi_info); 843 if (si_sm_result != SI_SM_IDLE) 844 goto restart; 845 } 846 847 if ((si_sm_result == SI_SM_IDLE) 848 && (atomic_read(&smi_info->req_events))) { 849 /* 850 * We are idle and the upper layer requested that I fetch 851 * events, so do so. 852 */ 853 atomic_set(&smi_info->req_events, 0); 854 855 smi_info->curr_msg = ipmi_alloc_smi_msg(); 856 if (!smi_info->curr_msg) 857 goto out; 858 859 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 860 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 861 smi_info->curr_msg->data_size = 2; 862 863 smi_info->handlers->start_transaction( 864 smi_info->si_sm, 865 smi_info->curr_msg->data, 866 smi_info->curr_msg->data_size); 867 smi_info->si_state = SI_GETTING_EVENTS; 868 goto restart; 869 } 870 out: 871 return si_sm_result; 872 } 873 874 static void sender(void *send_info, 875 struct ipmi_smi_msg *msg, 876 int priority) 877 { 878 struct smi_info *smi_info = send_info; 879 enum si_sm_result result; 880 unsigned long flags; 881 #ifdef DEBUG_TIMING 882 struct timeval t; 883 #endif 884 885 if (atomic_read(&smi_info->stop_operation)) { 886 msg->rsp[0] = msg->data[0] | 4; 887 msg->rsp[1] = msg->data[1]; 888 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 889 msg->rsp_size = 3; 890 deliver_recv_msg(smi_info, msg); 891 return; 892 } 893 894 #ifdef DEBUG_TIMING 895 do_gettimeofday(&t); 896 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 897 #endif 898 899 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 900 901 if (smi_info->thread) 902 wake_up_process(smi_info->thread); 903 904 if (smi_info->run_to_completion) { 905 /* 906 * If we are running to completion, then throw it in 907 * the list and run transactions until everything is 908 * clear. Priority doesn't matter here. 909 */ 910 911 /* 912 * Run to completion means we are single-threaded, no 913 * need for locks. 914 */ 915 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 916 917 result = smi_event_handler(smi_info, 0); 918 while (result != SI_SM_IDLE) { 919 udelay(SI_SHORT_TIMEOUT_USEC); 920 result = smi_event_handler(smi_info, 921 SI_SHORT_TIMEOUT_USEC); 922 } 923 return; 924 } 925 926 spin_lock_irqsave(&smi_info->msg_lock, flags); 927 if (priority > 0) 928 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 929 else 930 list_add_tail(&msg->link, &smi_info->xmit_msgs); 931 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 932 933 spin_lock_irqsave(&smi_info->si_lock, flags); 934 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 935 start_next_msg(smi_info); 936 spin_unlock_irqrestore(&smi_info->si_lock, flags); 937 } 938 939 static void set_run_to_completion(void *send_info, int i_run_to_completion) 940 { 941 struct smi_info *smi_info = send_info; 942 enum si_sm_result result; 943 944 smi_info->run_to_completion = i_run_to_completion; 945 if (i_run_to_completion) { 946 result = smi_event_handler(smi_info, 0); 947 while (result != SI_SM_IDLE) { 948 udelay(SI_SHORT_TIMEOUT_USEC); 949 result = smi_event_handler(smi_info, 950 SI_SHORT_TIMEOUT_USEC); 951 } 952 } 953 } 954 955 /* 956 * Use -1 in the nsec value of the busy waiting timespec to tell that 957 * we are spinning in kipmid looking for something and not delaying 958 * between checks 959 */ 960 static inline void ipmi_si_set_not_busy(struct timespec *ts) 961 { 962 ts->tv_nsec = -1; 963 } 964 static inline int ipmi_si_is_busy(struct timespec *ts) 965 { 966 return ts->tv_nsec != -1; 967 } 968 969 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 970 const struct smi_info *smi_info, 971 struct timespec *busy_until) 972 { 973 unsigned int max_busy_us = 0; 974 975 if (smi_info->intf_num < num_max_busy_us) 976 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 977 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 978 ipmi_si_set_not_busy(busy_until); 979 else if (!ipmi_si_is_busy(busy_until)) { 980 getnstimeofday(busy_until); 981 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 982 } else { 983 struct timespec now; 984 getnstimeofday(&now); 985 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 986 ipmi_si_set_not_busy(busy_until); 987 return 0; 988 } 989 } 990 return 1; 991 } 992 993 994 /* 995 * A busy-waiting loop for speeding up IPMI operation. 996 * 997 * Lousy hardware makes this hard. This is only enabled for systems 998 * that are not BT and do not have interrupts. It starts spinning 999 * when an operation is complete or until max_busy tells it to stop 1000 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1001 * Documentation/IPMI.txt for details. 1002 */ 1003 static int ipmi_thread(void *data) 1004 { 1005 struct smi_info *smi_info = data; 1006 unsigned long flags; 1007 enum si_sm_result smi_result; 1008 struct timespec busy_until; 1009 1010 ipmi_si_set_not_busy(&busy_until); 1011 set_user_nice(current, 19); 1012 while (!kthread_should_stop()) { 1013 int busy_wait; 1014 1015 spin_lock_irqsave(&(smi_info->si_lock), flags); 1016 smi_result = smi_event_handler(smi_info, 0); 1017 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1018 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1019 &busy_until); 1020 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1021 ; /* do nothing */ 1022 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1023 schedule(); 1024 else if (smi_result == SI_SM_IDLE) 1025 schedule_timeout_interruptible(100); 1026 else 1027 schedule_timeout_interruptible(1); 1028 } 1029 return 0; 1030 } 1031 1032 1033 static void poll(void *send_info) 1034 { 1035 struct smi_info *smi_info = send_info; 1036 unsigned long flags; 1037 1038 /* 1039 * Make sure there is some delay in the poll loop so we can 1040 * drive time forward and timeout things. 1041 */ 1042 udelay(10); 1043 spin_lock_irqsave(&smi_info->si_lock, flags); 1044 smi_event_handler(smi_info, 10); 1045 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1046 } 1047 1048 static void request_events(void *send_info) 1049 { 1050 struct smi_info *smi_info = send_info; 1051 1052 if (atomic_read(&smi_info->stop_operation) || 1053 !smi_info->has_event_buffer) 1054 return; 1055 1056 atomic_set(&smi_info->req_events, 1); 1057 } 1058 1059 static int initialized; 1060 1061 static void smi_timeout(unsigned long data) 1062 { 1063 struct smi_info *smi_info = (struct smi_info *) data; 1064 enum si_sm_result smi_result; 1065 unsigned long flags; 1066 unsigned long jiffies_now; 1067 long time_diff; 1068 long timeout; 1069 #ifdef DEBUG_TIMING 1070 struct timeval t; 1071 #endif 1072 1073 spin_lock_irqsave(&(smi_info->si_lock), flags); 1074 #ifdef DEBUG_TIMING 1075 do_gettimeofday(&t); 1076 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1077 #endif 1078 jiffies_now = jiffies; 1079 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1080 * SI_USEC_PER_JIFFY); 1081 smi_result = smi_event_handler(smi_info, time_diff); 1082 1083 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1084 1085 smi_info->last_timeout_jiffies = jiffies_now; 1086 1087 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1088 /* Running with interrupts, only do long timeouts. */ 1089 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1090 smi_inc_stat(smi_info, long_timeouts); 1091 goto do_mod_timer; 1092 } 1093 1094 /* 1095 * If the state machine asks for a short delay, then shorten 1096 * the timer timeout. 1097 */ 1098 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1099 smi_inc_stat(smi_info, short_timeouts); 1100 timeout = jiffies + 1; 1101 } else { 1102 smi_inc_stat(smi_info, long_timeouts); 1103 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1104 } 1105 1106 do_mod_timer: 1107 if (smi_result != SI_SM_IDLE) 1108 mod_timer(&(smi_info->si_timer), timeout); 1109 } 1110 1111 static irqreturn_t si_irq_handler(int irq, void *data) 1112 { 1113 struct smi_info *smi_info = data; 1114 unsigned long flags; 1115 #ifdef DEBUG_TIMING 1116 struct timeval t; 1117 #endif 1118 1119 spin_lock_irqsave(&(smi_info->si_lock), flags); 1120 1121 smi_inc_stat(smi_info, interrupts); 1122 1123 #ifdef DEBUG_TIMING 1124 do_gettimeofday(&t); 1125 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1126 #endif 1127 smi_event_handler(smi_info, 0); 1128 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1129 return IRQ_HANDLED; 1130 } 1131 1132 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1133 { 1134 struct smi_info *smi_info = data; 1135 /* We need to clear the IRQ flag for the BT interface. */ 1136 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1137 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1138 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1139 return si_irq_handler(irq, data); 1140 } 1141 1142 static int smi_start_processing(void *send_info, 1143 ipmi_smi_t intf) 1144 { 1145 struct smi_info *new_smi = send_info; 1146 int enable = 0; 1147 1148 new_smi->intf = intf; 1149 1150 /* Try to claim any interrupts. */ 1151 if (new_smi->irq_setup) 1152 new_smi->irq_setup(new_smi); 1153 1154 /* Set up the timer that drives the interface. */ 1155 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1156 new_smi->last_timeout_jiffies = jiffies; 1157 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1158 1159 /* 1160 * Check if the user forcefully enabled the daemon. 1161 */ 1162 if (new_smi->intf_num < num_force_kipmid) 1163 enable = force_kipmid[new_smi->intf_num]; 1164 /* 1165 * The BT interface is efficient enough to not need a thread, 1166 * and there is no need for a thread if we have interrupts. 1167 */ 1168 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1169 enable = 1; 1170 1171 if (enable) { 1172 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1173 "kipmi%d", new_smi->intf_num); 1174 if (IS_ERR(new_smi->thread)) { 1175 dev_notice(new_smi->dev, "Could not start" 1176 " kernel thread due to error %ld, only using" 1177 " timers to drive the interface\n", 1178 PTR_ERR(new_smi->thread)); 1179 new_smi->thread = NULL; 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 1186 static void set_maintenance_mode(void *send_info, int enable) 1187 { 1188 struct smi_info *smi_info = send_info; 1189 1190 if (!enable) 1191 atomic_set(&smi_info->req_events, 0); 1192 } 1193 1194 static struct ipmi_smi_handlers handlers = { 1195 .owner = THIS_MODULE, 1196 .start_processing = smi_start_processing, 1197 .sender = sender, 1198 .request_events = request_events, 1199 .set_maintenance_mode = set_maintenance_mode, 1200 .set_run_to_completion = set_run_to_completion, 1201 .poll = poll, 1202 }; 1203 1204 /* 1205 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1206 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1207 */ 1208 1209 static LIST_HEAD(smi_infos); 1210 static DEFINE_MUTEX(smi_infos_lock); 1211 static int smi_num; /* Used to sequence the SMIs */ 1212 1213 #define DEFAULT_REGSPACING 1 1214 #define DEFAULT_REGSIZE 1 1215 1216 static int si_trydefaults = 1; 1217 static char *si_type[SI_MAX_PARMS]; 1218 #define MAX_SI_TYPE_STR 30 1219 static char si_type_str[MAX_SI_TYPE_STR]; 1220 static unsigned long addrs[SI_MAX_PARMS]; 1221 static unsigned int num_addrs; 1222 static unsigned int ports[SI_MAX_PARMS]; 1223 static unsigned int num_ports; 1224 static int irqs[SI_MAX_PARMS]; 1225 static unsigned int num_irqs; 1226 static int regspacings[SI_MAX_PARMS]; 1227 static unsigned int num_regspacings; 1228 static int regsizes[SI_MAX_PARMS]; 1229 static unsigned int num_regsizes; 1230 static int regshifts[SI_MAX_PARMS]; 1231 static unsigned int num_regshifts; 1232 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1233 static unsigned int num_slave_addrs; 1234 1235 #define IPMI_IO_ADDR_SPACE 0 1236 #define IPMI_MEM_ADDR_SPACE 1 1237 static char *addr_space_to_str[] = { "i/o", "mem" }; 1238 1239 static int hotmod_handler(const char *val, struct kernel_param *kp); 1240 1241 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1242 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1243 " Documentation/IPMI.txt in the kernel sources for the" 1244 " gory details."); 1245 1246 module_param_named(trydefaults, si_trydefaults, bool, 0); 1247 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1248 " default scan of the KCS and SMIC interface at the standard" 1249 " address"); 1250 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1251 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1252 " interface separated by commas. The types are 'kcs'," 1253 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1254 " the first interface to kcs and the second to bt"); 1255 module_param_array(addrs, ulong, &num_addrs, 0); 1256 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1257 " addresses separated by commas. Only use if an interface" 1258 " is in memory. Otherwise, set it to zero or leave" 1259 " it blank."); 1260 module_param_array(ports, uint, &num_ports, 0); 1261 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1262 " addresses separated by commas. Only use if an interface" 1263 " is a port. Otherwise, set it to zero or leave" 1264 " it blank."); 1265 module_param_array(irqs, int, &num_irqs, 0); 1266 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1267 " addresses separated by commas. Only use if an interface" 1268 " has an interrupt. Otherwise, set it to zero or leave" 1269 " it blank."); 1270 module_param_array(regspacings, int, &num_regspacings, 0); 1271 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1272 " and each successive register used by the interface. For" 1273 " instance, if the start address is 0xca2 and the spacing" 1274 " is 2, then the second address is at 0xca4. Defaults" 1275 " to 1."); 1276 module_param_array(regsizes, int, &num_regsizes, 0); 1277 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1278 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1279 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1280 " the 8-bit IPMI register has to be read from a larger" 1281 " register."); 1282 module_param_array(regshifts, int, &num_regshifts, 0); 1283 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1284 " IPMI register, in bits. For instance, if the data" 1285 " is read from a 32-bit word and the IPMI data is in" 1286 " bit 8-15, then the shift would be 8"); 1287 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1288 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1289 " the controller. Normally this is 0x20, but can be" 1290 " overridden by this parm. This is an array indexed" 1291 " by interface number."); 1292 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1293 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1294 " disabled(0). Normally the IPMI driver auto-detects" 1295 " this, but the value may be overridden by this parm."); 1296 module_param(unload_when_empty, int, 0); 1297 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1298 " specified or found, default is 1. Setting to 0" 1299 " is useful for hot add of devices using hotmod."); 1300 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1301 MODULE_PARM_DESC(kipmid_max_busy_us, 1302 "Max time (in microseconds) to busy-wait for IPMI data before" 1303 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1304 " if kipmid is using up a lot of CPU time."); 1305 1306 1307 static void std_irq_cleanup(struct smi_info *info) 1308 { 1309 if (info->si_type == SI_BT) 1310 /* Disable the interrupt in the BT interface. */ 1311 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1312 free_irq(info->irq, info); 1313 } 1314 1315 static int std_irq_setup(struct smi_info *info) 1316 { 1317 int rv; 1318 1319 if (!info->irq) 1320 return 0; 1321 1322 if (info->si_type == SI_BT) { 1323 rv = request_irq(info->irq, 1324 si_bt_irq_handler, 1325 IRQF_SHARED | IRQF_DISABLED, 1326 DEVICE_NAME, 1327 info); 1328 if (!rv) 1329 /* Enable the interrupt in the BT interface. */ 1330 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1331 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1332 } else 1333 rv = request_irq(info->irq, 1334 si_irq_handler, 1335 IRQF_SHARED | IRQF_DISABLED, 1336 DEVICE_NAME, 1337 info); 1338 if (rv) { 1339 dev_warn(info->dev, "%s unable to claim interrupt %d," 1340 " running polled\n", 1341 DEVICE_NAME, info->irq); 1342 info->irq = 0; 1343 } else { 1344 info->irq_cleanup = std_irq_cleanup; 1345 dev_info(info->dev, "Using irq %d\n", info->irq); 1346 } 1347 1348 return rv; 1349 } 1350 1351 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1352 { 1353 unsigned int addr = io->addr_data; 1354 1355 return inb(addr + (offset * io->regspacing)); 1356 } 1357 1358 static void port_outb(struct si_sm_io *io, unsigned int offset, 1359 unsigned char b) 1360 { 1361 unsigned int addr = io->addr_data; 1362 1363 outb(b, addr + (offset * io->regspacing)); 1364 } 1365 1366 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1367 { 1368 unsigned int addr = io->addr_data; 1369 1370 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1371 } 1372 1373 static void port_outw(struct si_sm_io *io, unsigned int offset, 1374 unsigned char b) 1375 { 1376 unsigned int addr = io->addr_data; 1377 1378 outw(b << io->regshift, addr + (offset * io->regspacing)); 1379 } 1380 1381 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1382 { 1383 unsigned int addr = io->addr_data; 1384 1385 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1386 } 1387 1388 static void port_outl(struct si_sm_io *io, unsigned int offset, 1389 unsigned char b) 1390 { 1391 unsigned int addr = io->addr_data; 1392 1393 outl(b << io->regshift, addr+(offset * io->regspacing)); 1394 } 1395 1396 static void port_cleanup(struct smi_info *info) 1397 { 1398 unsigned int addr = info->io.addr_data; 1399 int idx; 1400 1401 if (addr) { 1402 for (idx = 0; idx < info->io_size; idx++) 1403 release_region(addr + idx * info->io.regspacing, 1404 info->io.regsize); 1405 } 1406 } 1407 1408 static int port_setup(struct smi_info *info) 1409 { 1410 unsigned int addr = info->io.addr_data; 1411 int idx; 1412 1413 if (!addr) 1414 return -ENODEV; 1415 1416 info->io_cleanup = port_cleanup; 1417 1418 /* 1419 * Figure out the actual inb/inw/inl/etc routine to use based 1420 * upon the register size. 1421 */ 1422 switch (info->io.regsize) { 1423 case 1: 1424 info->io.inputb = port_inb; 1425 info->io.outputb = port_outb; 1426 break; 1427 case 2: 1428 info->io.inputb = port_inw; 1429 info->io.outputb = port_outw; 1430 break; 1431 case 4: 1432 info->io.inputb = port_inl; 1433 info->io.outputb = port_outl; 1434 break; 1435 default: 1436 dev_warn(info->dev, "Invalid register size: %d\n", 1437 info->io.regsize); 1438 return -EINVAL; 1439 } 1440 1441 /* 1442 * Some BIOSes reserve disjoint I/O regions in their ACPI 1443 * tables. This causes problems when trying to register the 1444 * entire I/O region. Therefore we must register each I/O 1445 * port separately. 1446 */ 1447 for (idx = 0; idx < info->io_size; idx++) { 1448 if (request_region(addr + idx * info->io.regspacing, 1449 info->io.regsize, DEVICE_NAME) == NULL) { 1450 /* Undo allocations */ 1451 while (idx--) { 1452 release_region(addr + idx * info->io.regspacing, 1453 info->io.regsize); 1454 } 1455 return -EIO; 1456 } 1457 } 1458 return 0; 1459 } 1460 1461 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1462 { 1463 return readb((io->addr)+(offset * io->regspacing)); 1464 } 1465 1466 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1467 unsigned char b) 1468 { 1469 writeb(b, (io->addr)+(offset * io->regspacing)); 1470 } 1471 1472 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1473 { 1474 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1475 & 0xff; 1476 } 1477 1478 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1479 unsigned char b) 1480 { 1481 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1482 } 1483 1484 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1485 { 1486 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1487 & 0xff; 1488 } 1489 1490 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1491 unsigned char b) 1492 { 1493 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1494 } 1495 1496 #ifdef readq 1497 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1498 { 1499 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1500 & 0xff; 1501 } 1502 1503 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1504 unsigned char b) 1505 { 1506 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1507 } 1508 #endif 1509 1510 static void mem_cleanup(struct smi_info *info) 1511 { 1512 unsigned long addr = info->io.addr_data; 1513 int mapsize; 1514 1515 if (info->io.addr) { 1516 iounmap(info->io.addr); 1517 1518 mapsize = ((info->io_size * info->io.regspacing) 1519 - (info->io.regspacing - info->io.regsize)); 1520 1521 release_mem_region(addr, mapsize); 1522 } 1523 } 1524 1525 static int mem_setup(struct smi_info *info) 1526 { 1527 unsigned long addr = info->io.addr_data; 1528 int mapsize; 1529 1530 if (!addr) 1531 return -ENODEV; 1532 1533 info->io_cleanup = mem_cleanup; 1534 1535 /* 1536 * Figure out the actual readb/readw/readl/etc routine to use based 1537 * upon the register size. 1538 */ 1539 switch (info->io.regsize) { 1540 case 1: 1541 info->io.inputb = intf_mem_inb; 1542 info->io.outputb = intf_mem_outb; 1543 break; 1544 case 2: 1545 info->io.inputb = intf_mem_inw; 1546 info->io.outputb = intf_mem_outw; 1547 break; 1548 case 4: 1549 info->io.inputb = intf_mem_inl; 1550 info->io.outputb = intf_mem_outl; 1551 break; 1552 #ifdef readq 1553 case 8: 1554 info->io.inputb = mem_inq; 1555 info->io.outputb = mem_outq; 1556 break; 1557 #endif 1558 default: 1559 dev_warn(info->dev, "Invalid register size: %d\n", 1560 info->io.regsize); 1561 return -EINVAL; 1562 } 1563 1564 /* 1565 * Calculate the total amount of memory to claim. This is an 1566 * unusual looking calculation, but it avoids claiming any 1567 * more memory than it has to. It will claim everything 1568 * between the first address to the end of the last full 1569 * register. 1570 */ 1571 mapsize = ((info->io_size * info->io.regspacing) 1572 - (info->io.regspacing - info->io.regsize)); 1573 1574 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1575 return -EIO; 1576 1577 info->io.addr = ioremap(addr, mapsize); 1578 if (info->io.addr == NULL) { 1579 release_mem_region(addr, mapsize); 1580 return -EIO; 1581 } 1582 return 0; 1583 } 1584 1585 /* 1586 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1587 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1588 * Options are: 1589 * rsp=<regspacing> 1590 * rsi=<regsize> 1591 * rsh=<regshift> 1592 * irq=<irq> 1593 * ipmb=<ipmb addr> 1594 */ 1595 enum hotmod_op { HM_ADD, HM_REMOVE }; 1596 struct hotmod_vals { 1597 char *name; 1598 int val; 1599 }; 1600 static struct hotmod_vals hotmod_ops[] = { 1601 { "add", HM_ADD }, 1602 { "remove", HM_REMOVE }, 1603 { NULL } 1604 }; 1605 static struct hotmod_vals hotmod_si[] = { 1606 { "kcs", SI_KCS }, 1607 { "smic", SI_SMIC }, 1608 { "bt", SI_BT }, 1609 { NULL } 1610 }; 1611 static struct hotmod_vals hotmod_as[] = { 1612 { "mem", IPMI_MEM_ADDR_SPACE }, 1613 { "i/o", IPMI_IO_ADDR_SPACE }, 1614 { NULL } 1615 }; 1616 1617 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1618 { 1619 char *s; 1620 int i; 1621 1622 s = strchr(*curr, ','); 1623 if (!s) { 1624 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1625 return -EINVAL; 1626 } 1627 *s = '\0'; 1628 s++; 1629 for (i = 0; hotmod_ops[i].name; i++) { 1630 if (strcmp(*curr, v[i].name) == 0) { 1631 *val = v[i].val; 1632 *curr = s; 1633 return 0; 1634 } 1635 } 1636 1637 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1638 return -EINVAL; 1639 } 1640 1641 static int check_hotmod_int_op(const char *curr, const char *option, 1642 const char *name, int *val) 1643 { 1644 char *n; 1645 1646 if (strcmp(curr, name) == 0) { 1647 if (!option) { 1648 printk(KERN_WARNING PFX 1649 "No option given for '%s'\n", 1650 curr); 1651 return -EINVAL; 1652 } 1653 *val = simple_strtoul(option, &n, 0); 1654 if ((*n != '\0') || (*option == '\0')) { 1655 printk(KERN_WARNING PFX 1656 "Bad option given for '%s'\n", 1657 curr); 1658 return -EINVAL; 1659 } 1660 return 1; 1661 } 1662 return 0; 1663 } 1664 1665 static int hotmod_handler(const char *val, struct kernel_param *kp) 1666 { 1667 char *str = kstrdup(val, GFP_KERNEL); 1668 int rv; 1669 char *next, *curr, *s, *n, *o; 1670 enum hotmod_op op; 1671 enum si_type si_type; 1672 int addr_space; 1673 unsigned long addr; 1674 int regspacing; 1675 int regsize; 1676 int regshift; 1677 int irq; 1678 int ipmb; 1679 int ival; 1680 int len; 1681 struct smi_info *info; 1682 1683 if (!str) 1684 return -ENOMEM; 1685 1686 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1687 len = strlen(str); 1688 ival = len - 1; 1689 while ((ival >= 0) && isspace(str[ival])) { 1690 str[ival] = '\0'; 1691 ival--; 1692 } 1693 1694 for (curr = str; curr; curr = next) { 1695 regspacing = 1; 1696 regsize = 1; 1697 regshift = 0; 1698 irq = 0; 1699 ipmb = 0; /* Choose the default if not specified */ 1700 1701 next = strchr(curr, ':'); 1702 if (next) { 1703 *next = '\0'; 1704 next++; 1705 } 1706 1707 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1708 if (rv) 1709 break; 1710 op = ival; 1711 1712 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1713 if (rv) 1714 break; 1715 si_type = ival; 1716 1717 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1718 if (rv) 1719 break; 1720 1721 s = strchr(curr, ','); 1722 if (s) { 1723 *s = '\0'; 1724 s++; 1725 } 1726 addr = simple_strtoul(curr, &n, 0); 1727 if ((*n != '\0') || (*curr == '\0')) { 1728 printk(KERN_WARNING PFX "Invalid hotmod address" 1729 " '%s'\n", curr); 1730 break; 1731 } 1732 1733 while (s) { 1734 curr = s; 1735 s = strchr(curr, ','); 1736 if (s) { 1737 *s = '\0'; 1738 s++; 1739 } 1740 o = strchr(curr, '='); 1741 if (o) { 1742 *o = '\0'; 1743 o++; 1744 } 1745 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1746 if (rv < 0) 1747 goto out; 1748 else if (rv) 1749 continue; 1750 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1751 if (rv < 0) 1752 goto out; 1753 else if (rv) 1754 continue; 1755 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1756 if (rv < 0) 1757 goto out; 1758 else if (rv) 1759 continue; 1760 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1761 if (rv < 0) 1762 goto out; 1763 else if (rv) 1764 continue; 1765 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1766 if (rv < 0) 1767 goto out; 1768 else if (rv) 1769 continue; 1770 1771 rv = -EINVAL; 1772 printk(KERN_WARNING PFX 1773 "Invalid hotmod option '%s'\n", 1774 curr); 1775 goto out; 1776 } 1777 1778 if (op == HM_ADD) { 1779 info = kzalloc(sizeof(*info), GFP_KERNEL); 1780 if (!info) { 1781 rv = -ENOMEM; 1782 goto out; 1783 } 1784 1785 info->addr_source = SI_HOTMOD; 1786 info->si_type = si_type; 1787 info->io.addr_data = addr; 1788 info->io.addr_type = addr_space; 1789 if (addr_space == IPMI_MEM_ADDR_SPACE) 1790 info->io_setup = mem_setup; 1791 else 1792 info->io_setup = port_setup; 1793 1794 info->io.addr = NULL; 1795 info->io.regspacing = regspacing; 1796 if (!info->io.regspacing) 1797 info->io.regspacing = DEFAULT_REGSPACING; 1798 info->io.regsize = regsize; 1799 if (!info->io.regsize) 1800 info->io.regsize = DEFAULT_REGSPACING; 1801 info->io.regshift = regshift; 1802 info->irq = irq; 1803 if (info->irq) 1804 info->irq_setup = std_irq_setup; 1805 info->slave_addr = ipmb; 1806 1807 if (!add_smi(info)) { 1808 if (try_smi_init(info)) 1809 cleanup_one_si(info); 1810 } else { 1811 kfree(info); 1812 } 1813 } else { 1814 /* remove */ 1815 struct smi_info *e, *tmp_e; 1816 1817 mutex_lock(&smi_infos_lock); 1818 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1819 if (e->io.addr_type != addr_space) 1820 continue; 1821 if (e->si_type != si_type) 1822 continue; 1823 if (e->io.addr_data == addr) 1824 cleanup_one_si(e); 1825 } 1826 mutex_unlock(&smi_infos_lock); 1827 } 1828 } 1829 rv = len; 1830 out: 1831 kfree(str); 1832 return rv; 1833 } 1834 1835 static __devinit void hardcode_find_bmc(void) 1836 { 1837 int i; 1838 struct smi_info *info; 1839 1840 for (i = 0; i < SI_MAX_PARMS; i++) { 1841 if (!ports[i] && !addrs[i]) 1842 continue; 1843 1844 info = kzalloc(sizeof(*info), GFP_KERNEL); 1845 if (!info) 1846 return; 1847 1848 info->addr_source = SI_HARDCODED; 1849 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1850 1851 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1852 info->si_type = SI_KCS; 1853 } else if (strcmp(si_type[i], "smic") == 0) { 1854 info->si_type = SI_SMIC; 1855 } else if (strcmp(si_type[i], "bt") == 0) { 1856 info->si_type = SI_BT; 1857 } else { 1858 printk(KERN_WARNING PFX "Interface type specified " 1859 "for interface %d, was invalid: %s\n", 1860 i, si_type[i]); 1861 kfree(info); 1862 continue; 1863 } 1864 1865 if (ports[i]) { 1866 /* An I/O port */ 1867 info->io_setup = port_setup; 1868 info->io.addr_data = ports[i]; 1869 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1870 } else if (addrs[i]) { 1871 /* A memory port */ 1872 info->io_setup = mem_setup; 1873 info->io.addr_data = addrs[i]; 1874 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1875 } else { 1876 printk(KERN_WARNING PFX "Interface type specified " 1877 "for interface %d, but port and address were " 1878 "not set or set to zero.\n", i); 1879 kfree(info); 1880 continue; 1881 } 1882 1883 info->io.addr = NULL; 1884 info->io.regspacing = regspacings[i]; 1885 if (!info->io.regspacing) 1886 info->io.regspacing = DEFAULT_REGSPACING; 1887 info->io.regsize = regsizes[i]; 1888 if (!info->io.regsize) 1889 info->io.regsize = DEFAULT_REGSPACING; 1890 info->io.regshift = regshifts[i]; 1891 info->irq = irqs[i]; 1892 if (info->irq) 1893 info->irq_setup = std_irq_setup; 1894 info->slave_addr = slave_addrs[i]; 1895 1896 if (!add_smi(info)) { 1897 if (try_smi_init(info)) 1898 cleanup_one_si(info); 1899 } else { 1900 kfree(info); 1901 } 1902 } 1903 } 1904 1905 #ifdef CONFIG_ACPI 1906 1907 #include <linux/acpi.h> 1908 1909 /* 1910 * Once we get an ACPI failure, we don't try any more, because we go 1911 * through the tables sequentially. Once we don't find a table, there 1912 * are no more. 1913 */ 1914 static int acpi_failure; 1915 1916 /* For GPE-type interrupts. */ 1917 static u32 ipmi_acpi_gpe(void *context) 1918 { 1919 struct smi_info *smi_info = context; 1920 unsigned long flags; 1921 #ifdef DEBUG_TIMING 1922 struct timeval t; 1923 #endif 1924 1925 spin_lock_irqsave(&(smi_info->si_lock), flags); 1926 1927 smi_inc_stat(smi_info, interrupts); 1928 1929 #ifdef DEBUG_TIMING 1930 do_gettimeofday(&t); 1931 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1932 #endif 1933 smi_event_handler(smi_info, 0); 1934 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1935 1936 return ACPI_INTERRUPT_HANDLED; 1937 } 1938 1939 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1940 { 1941 if (!info->irq) 1942 return; 1943 1944 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1945 } 1946 1947 static int acpi_gpe_irq_setup(struct smi_info *info) 1948 { 1949 acpi_status status; 1950 1951 if (!info->irq) 1952 return 0; 1953 1954 /* FIXME - is level triggered right? */ 1955 status = acpi_install_gpe_handler(NULL, 1956 info->irq, 1957 ACPI_GPE_LEVEL_TRIGGERED, 1958 &ipmi_acpi_gpe, 1959 info); 1960 if (status != AE_OK) { 1961 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1962 " running polled\n", DEVICE_NAME, info->irq); 1963 info->irq = 0; 1964 return -EINVAL; 1965 } else { 1966 info->irq_cleanup = acpi_gpe_irq_cleanup; 1967 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1968 return 0; 1969 } 1970 } 1971 1972 /* 1973 * Defined at 1974 * http://h21007.www2.hp.com/portal/download/files 1975 * /unprot/hpspmi.pdf 1976 */ 1977 struct SPMITable { 1978 s8 Signature[4]; 1979 u32 Length; 1980 u8 Revision; 1981 u8 Checksum; 1982 s8 OEMID[6]; 1983 s8 OEMTableID[8]; 1984 s8 OEMRevision[4]; 1985 s8 CreatorID[4]; 1986 s8 CreatorRevision[4]; 1987 u8 InterfaceType; 1988 u8 IPMIlegacy; 1989 s16 SpecificationRevision; 1990 1991 /* 1992 * Bit 0 - SCI interrupt supported 1993 * Bit 1 - I/O APIC/SAPIC 1994 */ 1995 u8 InterruptType; 1996 1997 /* 1998 * If bit 0 of InterruptType is set, then this is the SCI 1999 * interrupt in the GPEx_STS register. 2000 */ 2001 u8 GPE; 2002 2003 s16 Reserved; 2004 2005 /* 2006 * If bit 1 of InterruptType is set, then this is the I/O 2007 * APIC/SAPIC interrupt. 2008 */ 2009 u32 GlobalSystemInterrupt; 2010 2011 /* The actual register address. */ 2012 struct acpi_generic_address addr; 2013 2014 u8 UID[4]; 2015 2016 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2017 }; 2018 2019 static __devinit int try_init_spmi(struct SPMITable *spmi) 2020 { 2021 struct smi_info *info; 2022 2023 if (spmi->IPMIlegacy != 1) { 2024 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2025 return -ENODEV; 2026 } 2027 2028 info = kzalloc(sizeof(*info), GFP_KERNEL); 2029 if (!info) { 2030 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2031 return -ENOMEM; 2032 } 2033 2034 info->addr_source = SI_SPMI; 2035 printk(KERN_INFO PFX "probing via SPMI\n"); 2036 2037 /* Figure out the interface type. */ 2038 switch (spmi->InterfaceType) { 2039 case 1: /* KCS */ 2040 info->si_type = SI_KCS; 2041 break; 2042 case 2: /* SMIC */ 2043 info->si_type = SI_SMIC; 2044 break; 2045 case 3: /* BT */ 2046 info->si_type = SI_BT; 2047 break; 2048 default: 2049 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2050 spmi->InterfaceType); 2051 kfree(info); 2052 return -EIO; 2053 } 2054 2055 if (spmi->InterruptType & 1) { 2056 /* We've got a GPE interrupt. */ 2057 info->irq = spmi->GPE; 2058 info->irq_setup = acpi_gpe_irq_setup; 2059 } else if (spmi->InterruptType & 2) { 2060 /* We've got an APIC/SAPIC interrupt. */ 2061 info->irq = spmi->GlobalSystemInterrupt; 2062 info->irq_setup = std_irq_setup; 2063 } else { 2064 /* Use the default interrupt setting. */ 2065 info->irq = 0; 2066 info->irq_setup = NULL; 2067 } 2068 2069 if (spmi->addr.bit_width) { 2070 /* A (hopefully) properly formed register bit width. */ 2071 info->io.regspacing = spmi->addr.bit_width / 8; 2072 } else { 2073 info->io.regspacing = DEFAULT_REGSPACING; 2074 } 2075 info->io.regsize = info->io.regspacing; 2076 info->io.regshift = spmi->addr.bit_offset; 2077 2078 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2079 info->io_setup = mem_setup; 2080 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2081 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2082 info->io_setup = port_setup; 2083 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2084 } else { 2085 kfree(info); 2086 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2087 return -EIO; 2088 } 2089 info->io.addr_data = spmi->addr.address; 2090 2091 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2092 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2093 info->io.addr_data, info->io.regsize, info->io.regspacing, 2094 info->irq); 2095 2096 if (add_smi(info)) 2097 kfree(info); 2098 2099 return 0; 2100 } 2101 2102 static __devinit void spmi_find_bmc(void) 2103 { 2104 acpi_status status; 2105 struct SPMITable *spmi; 2106 int i; 2107 2108 if (acpi_disabled) 2109 return; 2110 2111 if (acpi_failure) 2112 return; 2113 2114 for (i = 0; ; i++) { 2115 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2116 (struct acpi_table_header **)&spmi); 2117 if (status != AE_OK) 2118 return; 2119 2120 try_init_spmi(spmi); 2121 } 2122 } 2123 2124 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2125 const struct pnp_device_id *dev_id) 2126 { 2127 struct acpi_device *acpi_dev; 2128 struct smi_info *info; 2129 struct resource *res; 2130 acpi_handle handle; 2131 acpi_status status; 2132 unsigned long long tmp; 2133 2134 acpi_dev = pnp_acpi_device(dev); 2135 if (!acpi_dev) 2136 return -ENODEV; 2137 2138 info = kzalloc(sizeof(*info), GFP_KERNEL); 2139 if (!info) 2140 return -ENOMEM; 2141 2142 info->addr_source = SI_ACPI; 2143 printk(KERN_INFO PFX "probing via ACPI\n"); 2144 2145 handle = acpi_dev->handle; 2146 2147 /* _IFT tells us the interface type: KCS, BT, etc */ 2148 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2149 if (ACPI_FAILURE(status)) 2150 goto err_free; 2151 2152 switch (tmp) { 2153 case 1: 2154 info->si_type = SI_KCS; 2155 break; 2156 case 2: 2157 info->si_type = SI_SMIC; 2158 break; 2159 case 3: 2160 info->si_type = SI_BT; 2161 break; 2162 default: 2163 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2164 goto err_free; 2165 } 2166 2167 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2168 if (res) { 2169 info->io_setup = port_setup; 2170 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2171 } else { 2172 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2173 if (res) { 2174 info->io_setup = mem_setup; 2175 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2176 } 2177 } 2178 if (!res) { 2179 dev_err(&dev->dev, "no I/O or memory address\n"); 2180 goto err_free; 2181 } 2182 info->io.addr_data = res->start; 2183 2184 info->io.regspacing = DEFAULT_REGSPACING; 2185 res = pnp_get_resource(dev, 2186 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2187 IORESOURCE_IO : IORESOURCE_MEM, 2188 1); 2189 if (res) { 2190 if (res->start > info->io.addr_data) 2191 info->io.regspacing = res->start - info->io.addr_data; 2192 } 2193 info->io.regsize = DEFAULT_REGSPACING; 2194 info->io.regshift = 0; 2195 2196 /* If _GPE exists, use it; otherwise use standard interrupts */ 2197 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2198 if (ACPI_SUCCESS(status)) { 2199 info->irq = tmp; 2200 info->irq_setup = acpi_gpe_irq_setup; 2201 } else if (pnp_irq_valid(dev, 0)) { 2202 info->irq = pnp_irq(dev, 0); 2203 info->irq_setup = std_irq_setup; 2204 } 2205 2206 info->dev = &dev->dev; 2207 pnp_set_drvdata(dev, info); 2208 2209 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2210 res, info->io.regsize, info->io.regspacing, 2211 info->irq); 2212 2213 if (add_smi(info)) 2214 goto err_free; 2215 2216 return 0; 2217 2218 err_free: 2219 kfree(info); 2220 return -EINVAL; 2221 } 2222 2223 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2224 { 2225 struct smi_info *info = pnp_get_drvdata(dev); 2226 2227 cleanup_one_si(info); 2228 } 2229 2230 static const struct pnp_device_id pnp_dev_table[] = { 2231 {"IPI0001", 0}, 2232 {"", 0}, 2233 }; 2234 2235 static struct pnp_driver ipmi_pnp_driver = { 2236 .name = DEVICE_NAME, 2237 .probe = ipmi_pnp_probe, 2238 .remove = __devexit_p(ipmi_pnp_remove), 2239 .id_table = pnp_dev_table, 2240 }; 2241 #endif 2242 2243 #ifdef CONFIG_DMI 2244 struct dmi_ipmi_data { 2245 u8 type; 2246 u8 addr_space; 2247 unsigned long base_addr; 2248 u8 irq; 2249 u8 offset; 2250 u8 slave_addr; 2251 }; 2252 2253 static int __devinit decode_dmi(const struct dmi_header *dm, 2254 struct dmi_ipmi_data *dmi) 2255 { 2256 const u8 *data = (const u8 *)dm; 2257 unsigned long base_addr; 2258 u8 reg_spacing; 2259 u8 len = dm->length; 2260 2261 dmi->type = data[4]; 2262 2263 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2264 if (len >= 0x11) { 2265 if (base_addr & 1) { 2266 /* I/O */ 2267 base_addr &= 0xFFFE; 2268 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2269 } else 2270 /* Memory */ 2271 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2272 2273 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2274 is odd. */ 2275 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2276 2277 dmi->irq = data[0x11]; 2278 2279 /* The top two bits of byte 0x10 hold the register spacing. */ 2280 reg_spacing = (data[0x10] & 0xC0) >> 6; 2281 switch (reg_spacing) { 2282 case 0x00: /* Byte boundaries */ 2283 dmi->offset = 1; 2284 break; 2285 case 0x01: /* 32-bit boundaries */ 2286 dmi->offset = 4; 2287 break; 2288 case 0x02: /* 16-byte boundaries */ 2289 dmi->offset = 16; 2290 break; 2291 default: 2292 /* Some other interface, just ignore it. */ 2293 return -EIO; 2294 } 2295 } else { 2296 /* Old DMI spec. */ 2297 /* 2298 * Note that technically, the lower bit of the base 2299 * address should be 1 if the address is I/O and 0 if 2300 * the address is in memory. So many systems get that 2301 * wrong (and all that I have seen are I/O) so we just 2302 * ignore that bit and assume I/O. Systems that use 2303 * memory should use the newer spec, anyway. 2304 */ 2305 dmi->base_addr = base_addr & 0xfffe; 2306 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2307 dmi->offset = 1; 2308 } 2309 2310 dmi->slave_addr = data[6]; 2311 2312 return 0; 2313 } 2314 2315 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2316 { 2317 struct smi_info *info; 2318 2319 info = kzalloc(sizeof(*info), GFP_KERNEL); 2320 if (!info) { 2321 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2322 return; 2323 } 2324 2325 info->addr_source = SI_SMBIOS; 2326 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2327 2328 switch (ipmi_data->type) { 2329 case 0x01: /* KCS */ 2330 info->si_type = SI_KCS; 2331 break; 2332 case 0x02: /* SMIC */ 2333 info->si_type = SI_SMIC; 2334 break; 2335 case 0x03: /* BT */ 2336 info->si_type = SI_BT; 2337 break; 2338 default: 2339 kfree(info); 2340 return; 2341 } 2342 2343 switch (ipmi_data->addr_space) { 2344 case IPMI_MEM_ADDR_SPACE: 2345 info->io_setup = mem_setup; 2346 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2347 break; 2348 2349 case IPMI_IO_ADDR_SPACE: 2350 info->io_setup = port_setup; 2351 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2352 break; 2353 2354 default: 2355 kfree(info); 2356 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2357 ipmi_data->addr_space); 2358 return; 2359 } 2360 info->io.addr_data = ipmi_data->base_addr; 2361 2362 info->io.regspacing = ipmi_data->offset; 2363 if (!info->io.regspacing) 2364 info->io.regspacing = DEFAULT_REGSPACING; 2365 info->io.regsize = DEFAULT_REGSPACING; 2366 info->io.regshift = 0; 2367 2368 info->slave_addr = ipmi_data->slave_addr; 2369 2370 info->irq = ipmi_data->irq; 2371 if (info->irq) 2372 info->irq_setup = std_irq_setup; 2373 2374 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2375 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2376 info->io.addr_data, info->io.regsize, info->io.regspacing, 2377 info->irq); 2378 2379 if (add_smi(info)) 2380 kfree(info); 2381 } 2382 2383 static void __devinit dmi_find_bmc(void) 2384 { 2385 const struct dmi_device *dev = NULL; 2386 struct dmi_ipmi_data data; 2387 int rv; 2388 2389 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2390 memset(&data, 0, sizeof(data)); 2391 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2392 &data); 2393 if (!rv) 2394 try_init_dmi(&data); 2395 } 2396 } 2397 #endif /* CONFIG_DMI */ 2398 2399 #ifdef CONFIG_PCI 2400 2401 #define PCI_ERMC_CLASSCODE 0x0C0700 2402 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2403 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2404 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2405 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2406 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2407 2408 #define PCI_HP_VENDOR_ID 0x103C 2409 #define PCI_MMC_DEVICE_ID 0x121A 2410 #define PCI_MMC_ADDR_CW 0x10 2411 2412 static void ipmi_pci_cleanup(struct smi_info *info) 2413 { 2414 struct pci_dev *pdev = info->addr_source_data; 2415 2416 pci_disable_device(pdev); 2417 } 2418 2419 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2420 const struct pci_device_id *ent) 2421 { 2422 int rv; 2423 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2424 struct smi_info *info; 2425 2426 info = kzalloc(sizeof(*info), GFP_KERNEL); 2427 if (!info) 2428 return -ENOMEM; 2429 2430 info->addr_source = SI_PCI; 2431 dev_info(&pdev->dev, "probing via PCI"); 2432 2433 switch (class_type) { 2434 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2435 info->si_type = SI_SMIC; 2436 break; 2437 2438 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2439 info->si_type = SI_KCS; 2440 break; 2441 2442 case PCI_ERMC_CLASSCODE_TYPE_BT: 2443 info->si_type = SI_BT; 2444 break; 2445 2446 default: 2447 kfree(info); 2448 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2449 return -ENOMEM; 2450 } 2451 2452 rv = pci_enable_device(pdev); 2453 if (rv) { 2454 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2455 kfree(info); 2456 return rv; 2457 } 2458 2459 info->addr_source_cleanup = ipmi_pci_cleanup; 2460 info->addr_source_data = pdev; 2461 2462 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2463 info->io_setup = port_setup; 2464 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2465 } else { 2466 info->io_setup = mem_setup; 2467 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2468 } 2469 info->io.addr_data = pci_resource_start(pdev, 0); 2470 2471 info->io.regspacing = DEFAULT_REGSPACING; 2472 info->io.regsize = DEFAULT_REGSPACING; 2473 info->io.regshift = 0; 2474 2475 info->irq = pdev->irq; 2476 if (info->irq) 2477 info->irq_setup = std_irq_setup; 2478 2479 info->dev = &pdev->dev; 2480 pci_set_drvdata(pdev, info); 2481 2482 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2483 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2484 info->irq); 2485 2486 if (add_smi(info)) 2487 kfree(info); 2488 2489 return 0; 2490 } 2491 2492 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2493 { 2494 struct smi_info *info = pci_get_drvdata(pdev); 2495 cleanup_one_si(info); 2496 } 2497 2498 #ifdef CONFIG_PM 2499 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2500 { 2501 return 0; 2502 } 2503 2504 static int ipmi_pci_resume(struct pci_dev *pdev) 2505 { 2506 return 0; 2507 } 2508 #endif 2509 2510 static struct pci_device_id ipmi_pci_devices[] = { 2511 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2512 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2513 { 0, } 2514 }; 2515 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2516 2517 static struct pci_driver ipmi_pci_driver = { 2518 .name = DEVICE_NAME, 2519 .id_table = ipmi_pci_devices, 2520 .probe = ipmi_pci_probe, 2521 .remove = __devexit_p(ipmi_pci_remove), 2522 #ifdef CONFIG_PM 2523 .suspend = ipmi_pci_suspend, 2524 .resume = ipmi_pci_resume, 2525 #endif 2526 }; 2527 #endif /* CONFIG_PCI */ 2528 2529 2530 #ifdef CONFIG_PPC_OF 2531 static int __devinit ipmi_of_probe(struct platform_device *dev, 2532 const struct of_device_id *match) 2533 { 2534 struct smi_info *info; 2535 struct resource resource; 2536 const int *regsize, *regspacing, *regshift; 2537 struct device_node *np = dev->dev.of_node; 2538 int ret; 2539 int proplen; 2540 2541 dev_info(&dev->dev, "probing via device tree\n"); 2542 2543 ret = of_address_to_resource(np, 0, &resource); 2544 if (ret) { 2545 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2546 return ret; 2547 } 2548 2549 regsize = of_get_property(np, "reg-size", &proplen); 2550 if (regsize && proplen != 4) { 2551 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2552 return -EINVAL; 2553 } 2554 2555 regspacing = of_get_property(np, "reg-spacing", &proplen); 2556 if (regspacing && proplen != 4) { 2557 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2558 return -EINVAL; 2559 } 2560 2561 regshift = of_get_property(np, "reg-shift", &proplen); 2562 if (regshift && proplen != 4) { 2563 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2564 return -EINVAL; 2565 } 2566 2567 info = kzalloc(sizeof(*info), GFP_KERNEL); 2568 2569 if (!info) { 2570 dev_err(&dev->dev, 2571 "could not allocate memory for OF probe\n"); 2572 return -ENOMEM; 2573 } 2574 2575 info->si_type = (enum si_type) match->data; 2576 info->addr_source = SI_DEVICETREE; 2577 info->irq_setup = std_irq_setup; 2578 2579 if (resource.flags & IORESOURCE_IO) { 2580 info->io_setup = port_setup; 2581 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2582 } else { 2583 info->io_setup = mem_setup; 2584 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2585 } 2586 2587 info->io.addr_data = resource.start; 2588 2589 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2590 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2591 info->io.regshift = regshift ? *regshift : 0; 2592 2593 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2594 info->dev = &dev->dev; 2595 2596 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2597 info->io.addr_data, info->io.regsize, info->io.regspacing, 2598 info->irq); 2599 2600 dev_set_drvdata(&dev->dev, info); 2601 2602 if (add_smi(info)) { 2603 kfree(info); 2604 return -EBUSY; 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int __devexit ipmi_of_remove(struct platform_device *dev) 2611 { 2612 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2613 return 0; 2614 } 2615 2616 static struct of_device_id ipmi_match[] = 2617 { 2618 { .type = "ipmi", .compatible = "ipmi-kcs", 2619 .data = (void *)(unsigned long) SI_KCS }, 2620 { .type = "ipmi", .compatible = "ipmi-smic", 2621 .data = (void *)(unsigned long) SI_SMIC }, 2622 { .type = "ipmi", .compatible = "ipmi-bt", 2623 .data = (void *)(unsigned long) SI_BT }, 2624 {}, 2625 }; 2626 2627 static struct of_platform_driver ipmi_of_platform_driver = { 2628 .driver = { 2629 .name = "ipmi", 2630 .owner = THIS_MODULE, 2631 .of_match_table = ipmi_match, 2632 }, 2633 .probe = ipmi_of_probe, 2634 .remove = __devexit_p(ipmi_of_remove), 2635 }; 2636 #endif /* CONFIG_PPC_OF */ 2637 2638 static int wait_for_msg_done(struct smi_info *smi_info) 2639 { 2640 enum si_sm_result smi_result; 2641 2642 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2643 for (;;) { 2644 if (smi_result == SI_SM_CALL_WITH_DELAY || 2645 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2646 schedule_timeout_uninterruptible(1); 2647 smi_result = smi_info->handlers->event( 2648 smi_info->si_sm, 100); 2649 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2650 smi_result = smi_info->handlers->event( 2651 smi_info->si_sm, 0); 2652 } else 2653 break; 2654 } 2655 if (smi_result == SI_SM_HOSED) 2656 /* 2657 * We couldn't get the state machine to run, so whatever's at 2658 * the port is probably not an IPMI SMI interface. 2659 */ 2660 return -ENODEV; 2661 2662 return 0; 2663 } 2664 2665 static int try_get_dev_id(struct smi_info *smi_info) 2666 { 2667 unsigned char msg[2]; 2668 unsigned char *resp; 2669 unsigned long resp_len; 2670 int rv = 0; 2671 2672 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2673 if (!resp) 2674 return -ENOMEM; 2675 2676 /* 2677 * Do a Get Device ID command, since it comes back with some 2678 * useful info. 2679 */ 2680 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2681 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2682 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2683 2684 rv = wait_for_msg_done(smi_info); 2685 if (rv) 2686 goto out; 2687 2688 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2689 resp, IPMI_MAX_MSG_LENGTH); 2690 2691 /* Check and record info from the get device id, in case we need it. */ 2692 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2693 2694 out: 2695 kfree(resp); 2696 return rv; 2697 } 2698 2699 static int try_enable_event_buffer(struct smi_info *smi_info) 2700 { 2701 unsigned char msg[3]; 2702 unsigned char *resp; 2703 unsigned long resp_len; 2704 int rv = 0; 2705 2706 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2707 if (!resp) 2708 return -ENOMEM; 2709 2710 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2711 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2712 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2713 2714 rv = wait_for_msg_done(smi_info); 2715 if (rv) { 2716 printk(KERN_WARNING PFX "Error getting response from get" 2717 " global enables command, the event buffer is not" 2718 " enabled.\n"); 2719 goto out; 2720 } 2721 2722 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2723 resp, IPMI_MAX_MSG_LENGTH); 2724 2725 if (resp_len < 4 || 2726 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2727 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2728 resp[2] != 0) { 2729 printk(KERN_WARNING PFX "Invalid return from get global" 2730 " enables command, cannot enable the event buffer.\n"); 2731 rv = -EINVAL; 2732 goto out; 2733 } 2734 2735 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2736 /* buffer is already enabled, nothing to do. */ 2737 goto out; 2738 2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2740 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2741 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2742 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2743 2744 rv = wait_for_msg_done(smi_info); 2745 if (rv) { 2746 printk(KERN_WARNING PFX "Error getting response from set" 2747 " global, enables command, the event buffer is not" 2748 " enabled.\n"); 2749 goto out; 2750 } 2751 2752 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2753 resp, IPMI_MAX_MSG_LENGTH); 2754 2755 if (resp_len < 3 || 2756 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2757 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2758 printk(KERN_WARNING PFX "Invalid return from get global," 2759 "enables command, not enable the event buffer.\n"); 2760 rv = -EINVAL; 2761 goto out; 2762 } 2763 2764 if (resp[2] != 0) 2765 /* 2766 * An error when setting the event buffer bit means 2767 * that the event buffer is not supported. 2768 */ 2769 rv = -ENOENT; 2770 out: 2771 kfree(resp); 2772 return rv; 2773 } 2774 2775 static int type_file_read_proc(char *page, char **start, off_t off, 2776 int count, int *eof, void *data) 2777 { 2778 struct smi_info *smi = data; 2779 2780 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2781 } 2782 2783 static int stat_file_read_proc(char *page, char **start, off_t off, 2784 int count, int *eof, void *data) 2785 { 2786 char *out = (char *) page; 2787 struct smi_info *smi = data; 2788 2789 out += sprintf(out, "interrupts_enabled: %d\n", 2790 smi->irq && !smi->interrupt_disabled); 2791 out += sprintf(out, "short_timeouts: %u\n", 2792 smi_get_stat(smi, short_timeouts)); 2793 out += sprintf(out, "long_timeouts: %u\n", 2794 smi_get_stat(smi, long_timeouts)); 2795 out += sprintf(out, "idles: %u\n", 2796 smi_get_stat(smi, idles)); 2797 out += sprintf(out, "interrupts: %u\n", 2798 smi_get_stat(smi, interrupts)); 2799 out += sprintf(out, "attentions: %u\n", 2800 smi_get_stat(smi, attentions)); 2801 out += sprintf(out, "flag_fetches: %u\n", 2802 smi_get_stat(smi, flag_fetches)); 2803 out += sprintf(out, "hosed_count: %u\n", 2804 smi_get_stat(smi, hosed_count)); 2805 out += sprintf(out, "complete_transactions: %u\n", 2806 smi_get_stat(smi, complete_transactions)); 2807 out += sprintf(out, "events: %u\n", 2808 smi_get_stat(smi, events)); 2809 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2810 smi_get_stat(smi, watchdog_pretimeouts)); 2811 out += sprintf(out, "incoming_messages: %u\n", 2812 smi_get_stat(smi, incoming_messages)); 2813 2814 return out - page; 2815 } 2816 2817 static int param_read_proc(char *page, char **start, off_t off, 2818 int count, int *eof, void *data) 2819 { 2820 struct smi_info *smi = data; 2821 2822 return sprintf(page, 2823 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2824 si_to_str[smi->si_type], 2825 addr_space_to_str[smi->io.addr_type], 2826 smi->io.addr_data, 2827 smi->io.regspacing, 2828 smi->io.regsize, 2829 smi->io.regshift, 2830 smi->irq, 2831 smi->slave_addr); 2832 } 2833 2834 /* 2835 * oem_data_avail_to_receive_msg_avail 2836 * @info - smi_info structure with msg_flags set 2837 * 2838 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2839 * Returns 1 indicating need to re-run handle_flags(). 2840 */ 2841 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2842 { 2843 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2844 RECEIVE_MSG_AVAIL); 2845 return 1; 2846 } 2847 2848 /* 2849 * setup_dell_poweredge_oem_data_handler 2850 * @info - smi_info.device_id must be populated 2851 * 2852 * Systems that match, but have firmware version < 1.40 may assert 2853 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2854 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2855 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2856 * as RECEIVE_MSG_AVAIL instead. 2857 * 2858 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2859 * assert the OEM[012] bits, and if it did, the driver would have to 2860 * change to handle that properly, we don't actually check for the 2861 * firmware version. 2862 * Device ID = 0x20 BMC on PowerEdge 8G servers 2863 * Device Revision = 0x80 2864 * Firmware Revision1 = 0x01 BMC version 1.40 2865 * Firmware Revision2 = 0x40 BCD encoded 2866 * IPMI Version = 0x51 IPMI 1.5 2867 * Manufacturer ID = A2 02 00 Dell IANA 2868 * 2869 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2870 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2871 * 2872 */ 2873 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2874 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2875 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2876 #define DELL_IANA_MFR_ID 0x0002a2 2877 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2878 { 2879 struct ipmi_device_id *id = &smi_info->device_id; 2880 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2881 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2882 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2883 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2884 smi_info->oem_data_avail_handler = 2885 oem_data_avail_to_receive_msg_avail; 2886 } else if (ipmi_version_major(id) < 1 || 2887 (ipmi_version_major(id) == 1 && 2888 ipmi_version_minor(id) < 5)) { 2889 smi_info->oem_data_avail_handler = 2890 oem_data_avail_to_receive_msg_avail; 2891 } 2892 } 2893 } 2894 2895 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2896 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2897 { 2898 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2899 2900 /* Make it a reponse */ 2901 msg->rsp[0] = msg->data[0] | 4; 2902 msg->rsp[1] = msg->data[1]; 2903 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2904 msg->rsp_size = 3; 2905 smi_info->curr_msg = NULL; 2906 deliver_recv_msg(smi_info, msg); 2907 } 2908 2909 /* 2910 * dell_poweredge_bt_xaction_handler 2911 * @info - smi_info.device_id must be populated 2912 * 2913 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2914 * not respond to a Get SDR command if the length of the data 2915 * requested is exactly 0x3A, which leads to command timeouts and no 2916 * data returned. This intercepts such commands, and causes userspace 2917 * callers to try again with a different-sized buffer, which succeeds. 2918 */ 2919 2920 #define STORAGE_NETFN 0x0A 2921 #define STORAGE_CMD_GET_SDR 0x23 2922 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2923 unsigned long unused, 2924 void *in) 2925 { 2926 struct smi_info *smi_info = in; 2927 unsigned char *data = smi_info->curr_msg->data; 2928 unsigned int size = smi_info->curr_msg->data_size; 2929 if (size >= 8 && 2930 (data[0]>>2) == STORAGE_NETFN && 2931 data[1] == STORAGE_CMD_GET_SDR && 2932 data[7] == 0x3A) { 2933 return_hosed_msg_badsize(smi_info); 2934 return NOTIFY_STOP; 2935 } 2936 return NOTIFY_DONE; 2937 } 2938 2939 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2940 .notifier_call = dell_poweredge_bt_xaction_handler, 2941 }; 2942 2943 /* 2944 * setup_dell_poweredge_bt_xaction_handler 2945 * @info - smi_info.device_id must be filled in already 2946 * 2947 * Fills in smi_info.device_id.start_transaction_pre_hook 2948 * when we know what function to use there. 2949 */ 2950 static void 2951 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2952 { 2953 struct ipmi_device_id *id = &smi_info->device_id; 2954 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2955 smi_info->si_type == SI_BT) 2956 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2957 } 2958 2959 /* 2960 * setup_oem_data_handler 2961 * @info - smi_info.device_id must be filled in already 2962 * 2963 * Fills in smi_info.device_id.oem_data_available_handler 2964 * when we know what function to use there. 2965 */ 2966 2967 static void setup_oem_data_handler(struct smi_info *smi_info) 2968 { 2969 setup_dell_poweredge_oem_data_handler(smi_info); 2970 } 2971 2972 static void setup_xaction_handlers(struct smi_info *smi_info) 2973 { 2974 setup_dell_poweredge_bt_xaction_handler(smi_info); 2975 } 2976 2977 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2978 { 2979 if (smi_info->intf) { 2980 /* 2981 * The timer and thread are only running if the 2982 * interface has been started up and registered. 2983 */ 2984 if (smi_info->thread != NULL) 2985 kthread_stop(smi_info->thread); 2986 del_timer_sync(&smi_info->si_timer); 2987 } 2988 } 2989 2990 static __devinitdata struct ipmi_default_vals 2991 { 2992 int type; 2993 int port; 2994 } ipmi_defaults[] = 2995 { 2996 { .type = SI_KCS, .port = 0xca2 }, 2997 { .type = SI_SMIC, .port = 0xca9 }, 2998 { .type = SI_BT, .port = 0xe4 }, 2999 { .port = 0 } 3000 }; 3001 3002 static __devinit void default_find_bmc(void) 3003 { 3004 struct smi_info *info; 3005 int i; 3006 3007 for (i = 0; ; i++) { 3008 if (!ipmi_defaults[i].port) 3009 break; 3010 #ifdef CONFIG_PPC 3011 if (check_legacy_ioport(ipmi_defaults[i].port)) 3012 continue; 3013 #endif 3014 info = kzalloc(sizeof(*info), GFP_KERNEL); 3015 if (!info) 3016 return; 3017 3018 info->addr_source = SI_DEFAULT; 3019 3020 info->si_type = ipmi_defaults[i].type; 3021 info->io_setup = port_setup; 3022 info->io.addr_data = ipmi_defaults[i].port; 3023 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3024 3025 info->io.addr = NULL; 3026 info->io.regspacing = DEFAULT_REGSPACING; 3027 info->io.regsize = DEFAULT_REGSPACING; 3028 info->io.regshift = 0; 3029 3030 if (add_smi(info) == 0) { 3031 if ((try_smi_init(info)) == 0) { 3032 /* Found one... */ 3033 printk(KERN_INFO PFX "Found default %s" 3034 " state machine at %s address 0x%lx\n", 3035 si_to_str[info->si_type], 3036 addr_space_to_str[info->io.addr_type], 3037 info->io.addr_data); 3038 } else 3039 cleanup_one_si(info); 3040 } else { 3041 kfree(info); 3042 } 3043 } 3044 } 3045 3046 static int is_new_interface(struct smi_info *info) 3047 { 3048 struct smi_info *e; 3049 3050 list_for_each_entry(e, &smi_infos, link) { 3051 if (e->io.addr_type != info->io.addr_type) 3052 continue; 3053 if (e->io.addr_data == info->io.addr_data) 3054 return 0; 3055 } 3056 3057 return 1; 3058 } 3059 3060 static int add_smi(struct smi_info *new_smi) 3061 { 3062 int rv = 0; 3063 3064 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3065 ipmi_addr_src_to_str[new_smi->addr_source], 3066 si_to_str[new_smi->si_type]); 3067 mutex_lock(&smi_infos_lock); 3068 if (!is_new_interface(new_smi)) { 3069 printk(KERN_CONT " duplicate interface\n"); 3070 rv = -EBUSY; 3071 goto out_err; 3072 } 3073 3074 printk(KERN_CONT "\n"); 3075 3076 /* So we know not to free it unless we have allocated one. */ 3077 new_smi->intf = NULL; 3078 new_smi->si_sm = NULL; 3079 new_smi->handlers = NULL; 3080 3081 list_add_tail(&new_smi->link, &smi_infos); 3082 3083 out_err: 3084 mutex_unlock(&smi_infos_lock); 3085 return rv; 3086 } 3087 3088 static int try_smi_init(struct smi_info *new_smi) 3089 { 3090 int rv = 0; 3091 int i; 3092 3093 printk(KERN_INFO PFX "Trying %s-specified %s state" 3094 " machine at %s address 0x%lx, slave address 0x%x," 3095 " irq %d\n", 3096 ipmi_addr_src_to_str[new_smi->addr_source], 3097 si_to_str[new_smi->si_type], 3098 addr_space_to_str[new_smi->io.addr_type], 3099 new_smi->io.addr_data, 3100 new_smi->slave_addr, new_smi->irq); 3101 3102 switch (new_smi->si_type) { 3103 case SI_KCS: 3104 new_smi->handlers = &kcs_smi_handlers; 3105 break; 3106 3107 case SI_SMIC: 3108 new_smi->handlers = &smic_smi_handlers; 3109 break; 3110 3111 case SI_BT: 3112 new_smi->handlers = &bt_smi_handlers; 3113 break; 3114 3115 default: 3116 /* No support for anything else yet. */ 3117 rv = -EIO; 3118 goto out_err; 3119 } 3120 3121 /* Allocate the state machine's data and initialize it. */ 3122 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3123 if (!new_smi->si_sm) { 3124 printk(KERN_ERR PFX 3125 "Could not allocate state machine memory\n"); 3126 rv = -ENOMEM; 3127 goto out_err; 3128 } 3129 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3130 &new_smi->io); 3131 3132 /* Now that we know the I/O size, we can set up the I/O. */ 3133 rv = new_smi->io_setup(new_smi); 3134 if (rv) { 3135 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3136 goto out_err; 3137 } 3138 3139 spin_lock_init(&(new_smi->si_lock)); 3140 spin_lock_init(&(new_smi->msg_lock)); 3141 3142 /* Do low-level detection first. */ 3143 if (new_smi->handlers->detect(new_smi->si_sm)) { 3144 if (new_smi->addr_source) 3145 printk(KERN_INFO PFX "Interface detection failed\n"); 3146 rv = -ENODEV; 3147 goto out_err; 3148 } 3149 3150 /* 3151 * Attempt a get device id command. If it fails, we probably 3152 * don't have a BMC here. 3153 */ 3154 rv = try_get_dev_id(new_smi); 3155 if (rv) { 3156 if (new_smi->addr_source) 3157 printk(KERN_INFO PFX "There appears to be no BMC" 3158 " at this location\n"); 3159 goto out_err; 3160 } 3161 3162 setup_oem_data_handler(new_smi); 3163 setup_xaction_handlers(new_smi); 3164 3165 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3166 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3167 new_smi->curr_msg = NULL; 3168 atomic_set(&new_smi->req_events, 0); 3169 new_smi->run_to_completion = 0; 3170 for (i = 0; i < SI_NUM_STATS; i++) 3171 atomic_set(&new_smi->stats[i], 0); 3172 3173 new_smi->interrupt_disabled = 1; 3174 atomic_set(&new_smi->stop_operation, 0); 3175 new_smi->intf_num = smi_num; 3176 smi_num++; 3177 3178 rv = try_enable_event_buffer(new_smi); 3179 if (rv == 0) 3180 new_smi->has_event_buffer = 1; 3181 3182 /* 3183 * Start clearing the flags before we enable interrupts or the 3184 * timer to avoid racing with the timer. 3185 */ 3186 start_clear_flags(new_smi); 3187 /* IRQ is defined to be set when non-zero. */ 3188 if (new_smi->irq) 3189 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3190 3191 if (!new_smi->dev) { 3192 /* 3193 * If we don't already have a device from something 3194 * else (like PCI), then register a new one. 3195 */ 3196 new_smi->pdev = platform_device_alloc("ipmi_si", 3197 new_smi->intf_num); 3198 if (!new_smi->pdev) { 3199 printk(KERN_ERR PFX 3200 "Unable to allocate platform device\n"); 3201 goto out_err; 3202 } 3203 new_smi->dev = &new_smi->pdev->dev; 3204 new_smi->dev->driver = &ipmi_driver.driver; 3205 3206 rv = platform_device_add(new_smi->pdev); 3207 if (rv) { 3208 printk(KERN_ERR PFX 3209 "Unable to register system interface device:" 3210 " %d\n", 3211 rv); 3212 goto out_err; 3213 } 3214 new_smi->dev_registered = 1; 3215 } 3216 3217 rv = ipmi_register_smi(&handlers, 3218 new_smi, 3219 &new_smi->device_id, 3220 new_smi->dev, 3221 "bmc", 3222 new_smi->slave_addr); 3223 if (rv) { 3224 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3225 rv); 3226 goto out_err_stop_timer; 3227 } 3228 3229 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3230 type_file_read_proc, 3231 new_smi); 3232 if (rv) { 3233 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3234 goto out_err_stop_timer; 3235 } 3236 3237 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3238 stat_file_read_proc, 3239 new_smi); 3240 if (rv) { 3241 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3242 goto out_err_stop_timer; 3243 } 3244 3245 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3246 param_read_proc, 3247 new_smi); 3248 if (rv) { 3249 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3250 goto out_err_stop_timer; 3251 } 3252 3253 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3254 si_to_str[new_smi->si_type]); 3255 3256 return 0; 3257 3258 out_err_stop_timer: 3259 atomic_inc(&new_smi->stop_operation); 3260 wait_for_timer_and_thread(new_smi); 3261 3262 out_err: 3263 new_smi->interrupt_disabled = 1; 3264 3265 if (new_smi->intf) { 3266 ipmi_unregister_smi(new_smi->intf); 3267 new_smi->intf = NULL; 3268 } 3269 3270 if (new_smi->irq_cleanup) { 3271 new_smi->irq_cleanup(new_smi); 3272 new_smi->irq_cleanup = NULL; 3273 } 3274 3275 /* 3276 * Wait until we know that we are out of any interrupt 3277 * handlers might have been running before we freed the 3278 * interrupt. 3279 */ 3280 synchronize_sched(); 3281 3282 if (new_smi->si_sm) { 3283 if (new_smi->handlers) 3284 new_smi->handlers->cleanup(new_smi->si_sm); 3285 kfree(new_smi->si_sm); 3286 new_smi->si_sm = NULL; 3287 } 3288 if (new_smi->addr_source_cleanup) { 3289 new_smi->addr_source_cleanup(new_smi); 3290 new_smi->addr_source_cleanup = NULL; 3291 } 3292 if (new_smi->io_cleanup) { 3293 new_smi->io_cleanup(new_smi); 3294 new_smi->io_cleanup = NULL; 3295 } 3296 3297 if (new_smi->dev_registered) { 3298 platform_device_unregister(new_smi->pdev); 3299 new_smi->dev_registered = 0; 3300 } 3301 3302 return rv; 3303 } 3304 3305 static __devinit int init_ipmi_si(void) 3306 { 3307 int i; 3308 char *str; 3309 int rv; 3310 struct smi_info *e; 3311 enum ipmi_addr_src type = SI_INVALID; 3312 3313 if (initialized) 3314 return 0; 3315 initialized = 1; 3316 3317 /* Register the device drivers. */ 3318 rv = driver_register(&ipmi_driver.driver); 3319 if (rv) { 3320 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3321 return rv; 3322 } 3323 3324 3325 /* Parse out the si_type string into its components. */ 3326 str = si_type_str; 3327 if (*str != '\0') { 3328 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3329 si_type[i] = str; 3330 str = strchr(str, ','); 3331 if (str) { 3332 *str = '\0'; 3333 str++; 3334 } else { 3335 break; 3336 } 3337 } 3338 } 3339 3340 printk(KERN_INFO "IPMI System Interface driver.\n"); 3341 3342 hardcode_find_bmc(); 3343 3344 /* If the user gave us a device, they presumably want us to use it */ 3345 mutex_lock(&smi_infos_lock); 3346 if (!list_empty(&smi_infos)) { 3347 mutex_unlock(&smi_infos_lock); 3348 return 0; 3349 } 3350 mutex_unlock(&smi_infos_lock); 3351 3352 #ifdef CONFIG_PCI 3353 rv = pci_register_driver(&ipmi_pci_driver); 3354 if (rv) 3355 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3356 else 3357 pci_registered = 1; 3358 #endif 3359 3360 #ifdef CONFIG_ACPI 3361 pnp_register_driver(&ipmi_pnp_driver); 3362 #endif 3363 3364 #ifdef CONFIG_DMI 3365 dmi_find_bmc(); 3366 #endif 3367 3368 #ifdef CONFIG_ACPI 3369 spmi_find_bmc(); 3370 #endif 3371 3372 #ifdef CONFIG_PPC_OF 3373 of_register_platform_driver(&ipmi_of_platform_driver); 3374 of_registered = 1; 3375 #endif 3376 3377 /* We prefer devices with interrupts, but in the case of a machine 3378 with multiple BMCs we assume that there will be several instances 3379 of a given type so if we succeed in registering a type then also 3380 try to register everything else of the same type */ 3381 3382 mutex_lock(&smi_infos_lock); 3383 list_for_each_entry(e, &smi_infos, link) { 3384 /* Try to register a device if it has an IRQ and we either 3385 haven't successfully registered a device yet or this 3386 device has the same type as one we successfully registered */ 3387 if (e->irq && (!type || e->addr_source == type)) { 3388 if (!try_smi_init(e)) { 3389 type = e->addr_source; 3390 } 3391 } 3392 } 3393 3394 /* type will only have been set if we successfully registered an si */ 3395 if (type) { 3396 mutex_unlock(&smi_infos_lock); 3397 return 0; 3398 } 3399 3400 /* Fall back to the preferred device */ 3401 3402 list_for_each_entry(e, &smi_infos, link) { 3403 if (!e->irq && (!type || e->addr_source == type)) { 3404 if (!try_smi_init(e)) { 3405 type = e->addr_source; 3406 } 3407 } 3408 } 3409 mutex_unlock(&smi_infos_lock); 3410 3411 if (type) 3412 return 0; 3413 3414 if (si_trydefaults) { 3415 mutex_lock(&smi_infos_lock); 3416 if (list_empty(&smi_infos)) { 3417 /* No BMC was found, try defaults. */ 3418 mutex_unlock(&smi_infos_lock); 3419 default_find_bmc(); 3420 } else 3421 mutex_unlock(&smi_infos_lock); 3422 } 3423 3424 mutex_lock(&smi_infos_lock); 3425 if (unload_when_empty && list_empty(&smi_infos)) { 3426 mutex_unlock(&smi_infos_lock); 3427 #ifdef CONFIG_PCI 3428 if (pci_registered) 3429 pci_unregister_driver(&ipmi_pci_driver); 3430 #endif 3431 3432 #ifdef CONFIG_PPC_OF 3433 if (of_registered) 3434 of_unregister_platform_driver(&ipmi_of_platform_driver); 3435 #endif 3436 driver_unregister(&ipmi_driver.driver); 3437 printk(KERN_WARNING PFX 3438 "Unable to find any System Interface(s)\n"); 3439 return -ENODEV; 3440 } else { 3441 mutex_unlock(&smi_infos_lock); 3442 return 0; 3443 } 3444 } 3445 module_init(init_ipmi_si); 3446 3447 static void cleanup_one_si(struct smi_info *to_clean) 3448 { 3449 int rv = 0; 3450 unsigned long flags; 3451 3452 if (!to_clean) 3453 return; 3454 3455 list_del(&to_clean->link); 3456 3457 /* Tell the driver that we are shutting down. */ 3458 atomic_inc(&to_clean->stop_operation); 3459 3460 /* 3461 * Make sure the timer and thread are stopped and will not run 3462 * again. 3463 */ 3464 wait_for_timer_and_thread(to_clean); 3465 3466 /* 3467 * Timeouts are stopped, now make sure the interrupts are off 3468 * for the device. A little tricky with locks to make sure 3469 * there are no races. 3470 */ 3471 spin_lock_irqsave(&to_clean->si_lock, flags); 3472 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3473 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3474 poll(to_clean); 3475 schedule_timeout_uninterruptible(1); 3476 spin_lock_irqsave(&to_clean->si_lock, flags); 3477 } 3478 disable_si_irq(to_clean); 3479 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3480 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3481 poll(to_clean); 3482 schedule_timeout_uninterruptible(1); 3483 } 3484 3485 /* Clean up interrupts and make sure that everything is done. */ 3486 if (to_clean->irq_cleanup) 3487 to_clean->irq_cleanup(to_clean); 3488 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3489 poll(to_clean); 3490 schedule_timeout_uninterruptible(1); 3491 } 3492 3493 if (to_clean->intf) 3494 rv = ipmi_unregister_smi(to_clean->intf); 3495 3496 if (rv) { 3497 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3498 rv); 3499 } 3500 3501 if (to_clean->handlers) 3502 to_clean->handlers->cleanup(to_clean->si_sm); 3503 3504 kfree(to_clean->si_sm); 3505 3506 if (to_clean->addr_source_cleanup) 3507 to_clean->addr_source_cleanup(to_clean); 3508 if (to_clean->io_cleanup) 3509 to_clean->io_cleanup(to_clean); 3510 3511 if (to_clean->dev_registered) 3512 platform_device_unregister(to_clean->pdev); 3513 3514 kfree(to_clean); 3515 } 3516 3517 static __exit void cleanup_ipmi_si(void) 3518 { 3519 struct smi_info *e, *tmp_e; 3520 3521 if (!initialized) 3522 return; 3523 3524 #ifdef CONFIG_PCI 3525 if (pci_registered) 3526 pci_unregister_driver(&ipmi_pci_driver); 3527 #endif 3528 #ifdef CONFIG_ACPI 3529 pnp_unregister_driver(&ipmi_pnp_driver); 3530 #endif 3531 3532 #ifdef CONFIG_PPC_OF 3533 if (of_registered) 3534 of_unregister_platform_driver(&ipmi_of_platform_driver); 3535 #endif 3536 3537 mutex_lock(&smi_infos_lock); 3538 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3539 cleanup_one_si(e); 3540 mutex_unlock(&smi_infos_lock); 3541 3542 driver_unregister(&ipmi_driver.driver); 3543 } 3544 module_exit(cleanup_ipmi_si); 3545 3546 MODULE_LICENSE("GPL"); 3547 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3548 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3549 " system interfaces."); 3550