xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15 
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21 
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46 
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49 
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC	10000
52 #define SI_USEC_PER_JIFFY	(1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
55 				      short timeout */
56 #define SI_TIMEOUT_HOSED	(HZ) /* 1 second when in hosed state. */
57 
58 enum si_intf_state {
59 	SI_NORMAL,
60 	SI_GETTING_FLAGS,
61 	SI_GETTING_EVENTS,
62 	SI_CLEARING_FLAGS,
63 	SI_GETTING_MESSAGES,
64 	SI_CHECKING_ENABLES,
65 	SI_SETTING_ENABLES,
66 	SI_HOSED
67 	/* FIXME - add watchdog stuff. */
68 };
69 
70 /* Some BT-specific defines we need here. */
71 #define IPMI_BT_INTMASK_REG		2
72 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
73 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
74 
75 /* 'invalid' to allow a firmware-specified interface to be disabled */
76 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
77 
78 const struct ipmi_match_info ipmi_kcs_si_info = { .type = SI_KCS };
79 const struct ipmi_match_info ipmi_smic_si_info = { .type = SI_SMIC };
80 const struct ipmi_match_info ipmi_bt_si_info = { .type = SI_BT };
81 
82 static bool initialized;
83 
84 /*
85  * Indexes into stats[] in smi_info below.
86  */
87 enum si_stat_indexes {
88 	/*
89 	 * Number of times the driver requested a timer while an operation
90 	 * was in progress.
91 	 */
92 	SI_STAT_short_timeouts = 0,
93 
94 	/*
95 	 * Number of times the driver requested a timer while nothing was in
96 	 * progress.
97 	 */
98 	SI_STAT_long_timeouts,
99 
100 	/* Number of times the interface was idle while being polled. */
101 	SI_STAT_idles,
102 
103 	/* Number of interrupts the driver handled. */
104 	SI_STAT_interrupts,
105 
106 	/* Number of time the driver got an ATTN from the hardware. */
107 	SI_STAT_attentions,
108 
109 	/* Number of times the driver requested flags from the hardware. */
110 	SI_STAT_flag_fetches,
111 
112 	/* Number of times the hardware didn't follow the state machine. */
113 	SI_STAT_hosed_count,
114 
115 	/* Number of completed messages. */
116 	SI_STAT_complete_transactions,
117 
118 	/* Number of IPMI events received from the hardware. */
119 	SI_STAT_events,
120 
121 	/* Number of watchdog pretimeouts. */
122 	SI_STAT_watchdog_pretimeouts,
123 
124 	/* Number of asynchronous messages received. */
125 	SI_STAT_incoming_messages,
126 
127 
128 	/* This *must* remain last, add new values above this. */
129 	SI_NUM_STATS
130 };
131 
132 struct smi_info {
133 	int                    si_num;
134 	struct ipmi_smi        *intf;
135 	struct si_sm_data      *si_sm;
136 	const struct si_sm_handlers *handlers;
137 	spinlock_t             si_lock;
138 	struct ipmi_smi_msg    *waiting_msg;
139 	struct ipmi_smi_msg    *curr_msg;
140 	enum si_intf_state     si_state;
141 
142 	/*
143 	 * Used to handle the various types of I/O that can occur with
144 	 * IPMI
145 	 */
146 	struct si_sm_io io;
147 
148 	/*
149 	 * Per-OEM handler, called from handle_flags().  Returns 1
150 	 * when handle_flags() needs to be re-run or 0 indicating it
151 	 * set si_state itself.
152 	 */
153 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
154 
155 	/*
156 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
157 	 * is set to hold the flags until we are done handling everything
158 	 * from the flags.
159 	 */
160 #define RECEIVE_MSG_AVAIL	0x01
161 #define EVENT_MSG_BUFFER_FULL	0x02
162 #define WDT_PRE_TIMEOUT_INT	0x08
163 #define OEM0_DATA_AVAIL     0x20
164 #define OEM1_DATA_AVAIL     0x40
165 #define OEM2_DATA_AVAIL     0x80
166 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
167 			     OEM1_DATA_AVAIL | \
168 			     OEM2_DATA_AVAIL)
169 	unsigned char       msg_flags;
170 
171 	/* Does the BMC have an event buffer? */
172 	bool		    has_event_buffer;
173 
174 	/*
175 	 * If set to true, this will request events the next time the
176 	 * state machine is idle.
177 	 */
178 	atomic_t            req_events;
179 
180 	/*
181 	 * If true, run the state machine to completion on every send
182 	 * call.  Generally used after a panic to make sure stuff goes
183 	 * out.
184 	 */
185 	bool                run_to_completion;
186 
187 	/* The timer for this si. */
188 	struct timer_list   si_timer;
189 
190 	/* This flag is set, if the timer can be set */
191 	bool		    timer_can_start;
192 
193 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
194 	bool		    timer_running;
195 
196 	/* The time (in jiffies) the last timeout occurred at. */
197 	unsigned long       last_timeout_jiffies;
198 
199 	/* Are we waiting for the events, pretimeouts, received msgs? */
200 	atomic_t            need_watch;
201 
202 	/*
203 	 * The driver will disable interrupts when it gets into a
204 	 * situation where it cannot handle messages due to lack of
205 	 * memory.  Once that situation clears up, it will re-enable
206 	 * interrupts.
207 	 */
208 	bool interrupt_disabled;
209 
210 	/*
211 	 * Does the BMC support events?
212 	 */
213 	bool supports_event_msg_buff;
214 
215 	/*
216 	 * Can we disable interrupts the global enables receive irq
217 	 * bit?  There are currently two forms of brokenness, some
218 	 * systems cannot disable the bit (which is technically within
219 	 * the spec but a bad idea) and some systems have the bit
220 	 * forced to zero even though interrupts work (which is
221 	 * clearly outside the spec).  The next bool tells which form
222 	 * of brokenness is present.
223 	 */
224 	bool cannot_disable_irq;
225 
226 	/*
227 	 * Some systems are broken and cannot set the irq enable
228 	 * bit, even if they support interrupts.
229 	 */
230 	bool irq_enable_broken;
231 
232 	/* Is the driver in maintenance mode? */
233 	bool in_maintenance_mode;
234 
235 	/*
236 	 * Did we get an attention that we did not handle?
237 	 */
238 	bool got_attn;
239 
240 	/* From the get device id response... */
241 	struct ipmi_device_id device_id;
242 
243 	/* Have we added the device group to the device? */
244 	bool dev_group_added;
245 
246 	/* Counters and things for the proc filesystem. */
247 	atomic_t stats[SI_NUM_STATS];
248 
249 	struct task_struct *thread;
250 
251 	struct list_head link;
252 };
253 
254 #define smi_inc_stat(smi, stat) \
255 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
256 #define smi_get_stat(smi, stat) \
257 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
258 
259 #define IPMI_MAX_INTFS 4
260 static int force_kipmid[IPMI_MAX_INTFS];
261 static int num_force_kipmid;
262 
263 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
264 static int num_max_busy_us;
265 
266 static bool unload_when_empty = true;
267 
268 static int try_smi_init(struct smi_info *smi);
269 static void cleanup_one_si(struct smi_info *smi_info);
270 static void cleanup_ipmi_si(void);
271 
272 #ifdef DEBUG_TIMING
273 void debug_timestamp(struct smi_info *smi_info, char *msg)
274 {
275 	struct timespec64 t;
276 
277 	ktime_get_ts64(&t);
278 	dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
279 		msg, t.tv_sec, t.tv_nsec);
280 }
281 #else
282 #define debug_timestamp(smi_info, x)
283 #endif
284 
285 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
286 static int register_xaction_notifier(struct notifier_block *nb)
287 {
288 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
289 }
290 
291 static void deliver_recv_msg(struct smi_info *smi_info,
292 			     struct ipmi_smi_msg *msg)
293 {
294 	/* Deliver the message to the upper layer. */
295 	ipmi_smi_msg_received(smi_info->intf, msg);
296 }
297 
298 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
299 {
300 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
301 
302 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
303 		cCode = IPMI_ERR_UNSPECIFIED;
304 	/* else use it as is */
305 
306 	/* Make it a response */
307 	msg->rsp[0] = msg->data[0] | 4;
308 	msg->rsp[1] = msg->data[1];
309 	msg->rsp[2] = cCode;
310 	msg->rsp_size = 3;
311 
312 	smi_info->curr_msg = NULL;
313 	deliver_recv_msg(smi_info, msg);
314 }
315 
316 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
317 {
318 	int rv;
319 
320 	if (!smi_info->waiting_msg) {
321 		smi_info->curr_msg = NULL;
322 		rv = SI_SM_IDLE;
323 	} else {
324 		int err;
325 
326 		smi_info->curr_msg = smi_info->waiting_msg;
327 		smi_info->waiting_msg = NULL;
328 		debug_timestamp(smi_info, "Start2");
329 		err = atomic_notifier_call_chain(&xaction_notifier_list,
330 				0, smi_info);
331 		if (err & NOTIFY_STOP_MASK) {
332 			rv = SI_SM_CALL_WITHOUT_DELAY;
333 			goto out;
334 		}
335 		err = smi_info->handlers->start_transaction(
336 			smi_info->si_sm,
337 			smi_info->curr_msg->data,
338 			smi_info->curr_msg->data_size);
339 		if (err)
340 			return_hosed_msg(smi_info, err);
341 
342 		rv = SI_SM_CALL_WITHOUT_DELAY;
343 	}
344 out:
345 	return rv;
346 }
347 
348 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
349 {
350 	if (!smi_info->timer_can_start)
351 		return;
352 	smi_info->last_timeout_jiffies = jiffies;
353 	mod_timer(&smi_info->si_timer, new_val);
354 	smi_info->timer_running = true;
355 }
356 
357 /*
358  * Start a new message and (re)start the timer and thread.
359  */
360 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
361 			  unsigned int size)
362 {
363 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
364 
365 	if (smi_info->thread)
366 		wake_up_process(smi_info->thread);
367 
368 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
369 }
370 
371 static void start_check_enables(struct smi_info *smi_info)
372 {
373 	unsigned char msg[2];
374 
375 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
376 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
377 
378 	start_new_msg(smi_info, msg, 2);
379 	smi_info->si_state = SI_CHECKING_ENABLES;
380 }
381 
382 static void start_clear_flags(struct smi_info *smi_info)
383 {
384 	unsigned char msg[3];
385 
386 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
387 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
388 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
389 	msg[2] = WDT_PRE_TIMEOUT_INT;
390 
391 	start_new_msg(smi_info, msg, 3);
392 	smi_info->si_state = SI_CLEARING_FLAGS;
393 }
394 
395 static void start_get_flags(struct smi_info *smi_info)
396 {
397 	unsigned char msg[2];
398 
399 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 	msg[1] = IPMI_GET_MSG_FLAGS_CMD;
401 
402 	start_new_msg(smi_info, msg, 2);
403 	smi_info->si_state = SI_GETTING_FLAGS;
404 }
405 
406 static void start_getting_msg_queue(struct smi_info *smi_info)
407 {
408 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
409 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
410 	smi_info->curr_msg->data_size = 2;
411 
412 	start_new_msg(smi_info, smi_info->curr_msg->data,
413 		      smi_info->curr_msg->data_size);
414 	smi_info->si_state = SI_GETTING_MESSAGES;
415 }
416 
417 static void start_getting_events(struct smi_info *smi_info)
418 {
419 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
421 	smi_info->curr_msg->data_size = 2;
422 
423 	start_new_msg(smi_info, smi_info->curr_msg->data,
424 		      smi_info->curr_msg->data_size);
425 	smi_info->si_state = SI_GETTING_EVENTS;
426 }
427 
428 /*
429  * When we have a situtaion where we run out of memory and cannot
430  * allocate messages, we just leave them in the BMC and run the system
431  * polled until we can allocate some memory.  Once we have some
432  * memory, we will re-enable the interrupt.
433  *
434  * Note that we cannot just use disable_irq(), since the interrupt may
435  * be shared.
436  */
437 static inline bool disable_si_irq(struct smi_info *smi_info)
438 {
439 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
440 		smi_info->interrupt_disabled = true;
441 		start_check_enables(smi_info);
442 		return true;
443 	}
444 	return false;
445 }
446 
447 static inline bool enable_si_irq(struct smi_info *smi_info)
448 {
449 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
450 		smi_info->interrupt_disabled = false;
451 		start_check_enables(smi_info);
452 		return true;
453 	}
454 	return false;
455 }
456 
457 /*
458  * Allocate a message.  If unable to allocate, start the interrupt
459  * disable process and return NULL.  If able to allocate but
460  * interrupts are disabled, free the message and return NULL after
461  * starting the interrupt enable process.
462  */
463 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
464 {
465 	struct ipmi_smi_msg *msg;
466 
467 	msg = ipmi_alloc_smi_msg();
468 	if (!msg) {
469 		if (!disable_si_irq(smi_info))
470 			smi_info->si_state = SI_NORMAL;
471 	} else if (enable_si_irq(smi_info)) {
472 		ipmi_free_smi_msg(msg);
473 		msg = NULL;
474 	}
475 	return msg;
476 }
477 
478 static void handle_flags(struct smi_info *smi_info)
479 {
480 retry:
481 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
482 		/* Watchdog pre-timeout */
483 		smi_inc_stat(smi_info, watchdog_pretimeouts);
484 
485 		start_clear_flags(smi_info);
486 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
487 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
488 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
489 		/* Messages available. */
490 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
491 		if (!smi_info->curr_msg)
492 			return;
493 
494 		start_getting_msg_queue(smi_info);
495 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
496 		/* Events available. */
497 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
498 		if (!smi_info->curr_msg)
499 			return;
500 
501 		start_getting_events(smi_info);
502 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
503 		   smi_info->oem_data_avail_handler) {
504 		if (smi_info->oem_data_avail_handler(smi_info))
505 			goto retry;
506 	} else
507 		smi_info->si_state = SI_NORMAL;
508 }
509 
510 /*
511  * Global enables we care about.
512  */
513 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
514 			     IPMI_BMC_EVT_MSG_INTR)
515 
516 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
517 				 bool *irq_on)
518 {
519 	u8 enables = 0;
520 
521 	if (smi_info->supports_event_msg_buff)
522 		enables |= IPMI_BMC_EVT_MSG_BUFF;
523 
524 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
525 	     smi_info->cannot_disable_irq) &&
526 	    !smi_info->irq_enable_broken)
527 		enables |= IPMI_BMC_RCV_MSG_INTR;
528 
529 	if (smi_info->supports_event_msg_buff &&
530 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
531 	    !smi_info->irq_enable_broken)
532 		enables |= IPMI_BMC_EVT_MSG_INTR;
533 
534 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
535 
536 	return enables;
537 }
538 
539 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
540 {
541 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
542 
543 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
544 
545 	if ((bool)irqstate == irq_on)
546 		return;
547 
548 	if (irq_on)
549 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
550 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
551 	else
552 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
553 }
554 
555 static void handle_transaction_done(struct smi_info *smi_info)
556 {
557 	struct ipmi_smi_msg *msg;
558 
559 	debug_timestamp(smi_info, "Done");
560 	switch (smi_info->si_state) {
561 	case SI_NORMAL:
562 		if (!smi_info->curr_msg)
563 			break;
564 
565 		smi_info->curr_msg->rsp_size
566 			= smi_info->handlers->get_result(
567 				smi_info->si_sm,
568 				smi_info->curr_msg->rsp,
569 				IPMI_MAX_MSG_LENGTH);
570 
571 		/*
572 		 * Do this here becase deliver_recv_msg() releases the
573 		 * lock, and a new message can be put in during the
574 		 * time the lock is released.
575 		 */
576 		msg = smi_info->curr_msg;
577 		smi_info->curr_msg = NULL;
578 		deliver_recv_msg(smi_info, msg);
579 		break;
580 
581 	case SI_GETTING_FLAGS:
582 	{
583 		unsigned char msg[4];
584 		unsigned int  len;
585 
586 		/* We got the flags from the SMI, now handle them. */
587 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
588 		if (msg[2] != 0) {
589 			/* Error fetching flags, just give up for now. */
590 			smi_info->si_state = SI_NORMAL;
591 		} else if (len < 4) {
592 			/*
593 			 * Hmm, no flags.  That's technically illegal, but
594 			 * don't use uninitialized data.
595 			 */
596 			smi_info->si_state = SI_NORMAL;
597 		} else {
598 			smi_info->msg_flags = msg[3];
599 			handle_flags(smi_info);
600 		}
601 		break;
602 	}
603 
604 	case SI_CLEARING_FLAGS:
605 	{
606 		unsigned char msg[3];
607 
608 		/* We cleared the flags. */
609 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
610 		if (msg[2] != 0) {
611 			/* Error clearing flags */
612 			dev_warn_ratelimited(smi_info->io.dev,
613 				 "Error clearing flags: %2.2x\n", msg[2]);
614 		}
615 		smi_info->si_state = SI_NORMAL;
616 		break;
617 	}
618 
619 	case SI_GETTING_EVENTS:
620 	{
621 		smi_info->curr_msg->rsp_size
622 			= smi_info->handlers->get_result(
623 				smi_info->si_sm,
624 				smi_info->curr_msg->rsp,
625 				IPMI_MAX_MSG_LENGTH);
626 
627 		/*
628 		 * Do this here becase deliver_recv_msg() releases the
629 		 * lock, and a new message can be put in during the
630 		 * time the lock is released.
631 		 */
632 		msg = smi_info->curr_msg;
633 		smi_info->curr_msg = NULL;
634 		if (msg->rsp[2] != 0) {
635 			/* Error getting event, probably done. */
636 			msg->done(msg);
637 
638 			/* Take off the event flag. */
639 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
640 			handle_flags(smi_info);
641 		} else {
642 			smi_inc_stat(smi_info, events);
643 
644 			/*
645 			 * Do this before we deliver the message
646 			 * because delivering the message releases the
647 			 * lock and something else can mess with the
648 			 * state.
649 			 */
650 			handle_flags(smi_info);
651 
652 			deliver_recv_msg(smi_info, msg);
653 		}
654 		break;
655 	}
656 
657 	case SI_GETTING_MESSAGES:
658 	{
659 		smi_info->curr_msg->rsp_size
660 			= smi_info->handlers->get_result(
661 				smi_info->si_sm,
662 				smi_info->curr_msg->rsp,
663 				IPMI_MAX_MSG_LENGTH);
664 
665 		/*
666 		 * Do this here becase deliver_recv_msg() releases the
667 		 * lock, and a new message can be put in during the
668 		 * time the lock is released.
669 		 */
670 		msg = smi_info->curr_msg;
671 		smi_info->curr_msg = NULL;
672 		if (msg->rsp[2] != 0) {
673 			/* Error getting event, probably done. */
674 			msg->done(msg);
675 
676 			/* Take off the msg flag. */
677 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
678 			handle_flags(smi_info);
679 		} else {
680 			smi_inc_stat(smi_info, incoming_messages);
681 
682 			/*
683 			 * Do this before we deliver the message
684 			 * because delivering the message releases the
685 			 * lock and something else can mess with the
686 			 * state.
687 			 */
688 			handle_flags(smi_info);
689 
690 			deliver_recv_msg(smi_info, msg);
691 		}
692 		break;
693 	}
694 
695 	case SI_CHECKING_ENABLES:
696 	{
697 		unsigned char msg[4];
698 		u8 enables;
699 		bool irq_on;
700 
701 		/* We got the flags from the SMI, now handle them. */
702 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 		if (msg[2] != 0) {
704 			dev_warn_ratelimited(smi_info->io.dev,
705 				"Couldn't get irq info: %x,\n"
706 				"Maybe ok, but ipmi might run very slowly.\n",
707 				msg[2]);
708 			smi_info->si_state = SI_NORMAL;
709 			break;
710 		}
711 		enables = current_global_enables(smi_info, 0, &irq_on);
712 		if (smi_info->io.si_info->type == SI_BT)
713 			/* BT has its own interrupt enable bit. */
714 			check_bt_irq(smi_info, irq_on);
715 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
716 			/* Enables are not correct, fix them. */
717 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
718 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
720 			smi_info->handlers->start_transaction(
721 				smi_info->si_sm, msg, 3);
722 			smi_info->si_state = SI_SETTING_ENABLES;
723 		} else if (smi_info->supports_event_msg_buff) {
724 			smi_info->curr_msg = ipmi_alloc_smi_msg();
725 			if (!smi_info->curr_msg) {
726 				smi_info->si_state = SI_NORMAL;
727 				break;
728 			}
729 			start_getting_events(smi_info);
730 		} else {
731 			smi_info->si_state = SI_NORMAL;
732 		}
733 		break;
734 	}
735 
736 	case SI_SETTING_ENABLES:
737 	{
738 		unsigned char msg[4];
739 
740 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
741 		if (msg[2] != 0)
742 			dev_warn_ratelimited(smi_info->io.dev,
743 				 "Could not set the global enables: 0x%x.\n",
744 				 msg[2]);
745 
746 		if (smi_info->supports_event_msg_buff) {
747 			smi_info->curr_msg = ipmi_alloc_smi_msg();
748 			if (!smi_info->curr_msg) {
749 				smi_info->si_state = SI_NORMAL;
750 				break;
751 			}
752 			start_getting_events(smi_info);
753 		} else {
754 			smi_info->si_state = SI_NORMAL;
755 		}
756 		break;
757 	}
758 	case SI_HOSED: /* Shouldn't happen. */
759 		break;
760 	}
761 }
762 
763 /*
764  * Called on timeouts and events.  Timeouts should pass the elapsed
765  * time, interrupts should pass in zero.  Must be called with
766  * si_lock held and interrupts disabled.
767  */
768 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
769 					   int time)
770 {
771 	enum si_sm_result si_sm_result;
772 
773 restart:
774 	if (smi_info->si_state == SI_HOSED)
775 		/* Just in case, hosed state is only left from the timeout. */
776 		return SI_SM_HOSED;
777 
778 	/*
779 	 * There used to be a loop here that waited a little while
780 	 * (around 25us) before giving up.  That turned out to be
781 	 * pointless, the minimum delays I was seeing were in the 300us
782 	 * range, which is far too long to wait in an interrupt.  So
783 	 * we just run until the state machine tells us something
784 	 * happened or it needs a delay.
785 	 */
786 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
787 	time = 0;
788 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
789 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
790 
791 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
792 		smi_inc_stat(smi_info, complete_transactions);
793 
794 		handle_transaction_done(smi_info);
795 		goto restart;
796 	} else if (si_sm_result == SI_SM_HOSED) {
797 		smi_inc_stat(smi_info, hosed_count);
798 
799 		/*
800 		 * Do the before return_hosed_msg, because that
801 		 * releases the lock.  We just disable operations for
802 		 * a while and retry in hosed state.
803 		 */
804 		smi_info->si_state = SI_HOSED;
805 		if (smi_info->curr_msg != NULL) {
806 			/*
807 			 * If we were handling a user message, format
808 			 * a response to send to the upper layer to
809 			 * tell it about the error.
810 			 */
811 			return_hosed_msg(smi_info, IPMI_BUS_ERR);
812 		}
813 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_HOSED);
814 		goto out;
815 	}
816 
817 	/*
818 	 * We prefer handling attn over new messages.  But don't do
819 	 * this if there is not yet an upper layer to handle anything.
820 	 */
821 	if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
822 		if (smi_info->si_state != SI_NORMAL) {
823 			/*
824 			 * We got an ATTN, but we are doing something else.
825 			 * Handle the ATTN later.
826 			 */
827 			smi_info->got_attn = true;
828 		} else {
829 			smi_info->got_attn = false;
830 			smi_inc_stat(smi_info, attentions);
831 
832 			/*
833 			 * Got a attn, send down a get message flags to see
834 			 * what's causing it.  It would be better to handle
835 			 * this in the upper layer, but due to the way
836 			 * interrupts work with the SMI, that's not really
837 			 * possible.
838 			 */
839 			start_get_flags(smi_info);
840 			goto restart;
841 		}
842 	}
843 
844 	/* If we are currently idle, try to start the next message. */
845 	if (si_sm_result == SI_SM_IDLE) {
846 		smi_inc_stat(smi_info, idles);
847 
848 		si_sm_result = start_next_msg(smi_info);
849 		if (si_sm_result != SI_SM_IDLE)
850 			goto restart;
851 	}
852 
853 	if ((si_sm_result == SI_SM_IDLE)
854 	    && (atomic_read(&smi_info->req_events))) {
855 		/*
856 		 * We are idle and the upper layer requested that I fetch
857 		 * events, so do so.
858 		 */
859 		atomic_set(&smi_info->req_events, 0);
860 
861 		/*
862 		 * Take this opportunity to check the interrupt and
863 		 * message enable state for the BMC.  The BMC can be
864 		 * asynchronously reset, and may thus get interrupts
865 		 * disable and messages disabled.
866 		 */
867 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
868 			start_check_enables(smi_info);
869 		} else {
870 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
871 			if (!smi_info->curr_msg)
872 				goto out;
873 
874 			start_getting_events(smi_info);
875 		}
876 		goto restart;
877 	}
878 
879 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
880 		/* Ok it if fails, the timer will just go off. */
881 		if (timer_delete(&smi_info->si_timer))
882 			smi_info->timer_running = false;
883 	}
884 
885 out:
886 	return si_sm_result;
887 }
888 
889 static void check_start_timer_thread(struct smi_info *smi_info)
890 {
891 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
892 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
893 
894 		if (smi_info->thread)
895 			wake_up_process(smi_info->thread);
896 
897 		start_next_msg(smi_info);
898 		smi_event_handler(smi_info, 0);
899 	}
900 }
901 
902 static void flush_messages(void *send_info)
903 {
904 	struct smi_info *smi_info = send_info;
905 	enum si_sm_result result;
906 
907 	/*
908 	 * Currently, this function is called only in run-to-completion
909 	 * mode.  This means we are single-threaded, no need for locks.
910 	 */
911 	result = smi_event_handler(smi_info, 0);
912 	while (result != SI_SM_IDLE && result != SI_SM_HOSED) {
913 		udelay(SI_SHORT_TIMEOUT_USEC);
914 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
915 	}
916 }
917 
918 static int sender(void *send_info, struct ipmi_smi_msg *msg)
919 {
920 	struct smi_info   *smi_info = send_info;
921 	unsigned long     flags;
922 
923 	debug_timestamp(smi_info, "Enqueue");
924 
925 	if (smi_info->si_state == SI_HOSED)
926 		return IPMI_BUS_ERR;
927 
928 	if (smi_info->run_to_completion) {
929 		/*
930 		 * If we are running to completion, start it.  Upper
931 		 * layer will call flush_messages to clear it out.
932 		 */
933 		smi_info->waiting_msg = msg;
934 		return IPMI_CC_NO_ERROR;
935 	}
936 
937 	spin_lock_irqsave(&smi_info->si_lock, flags);
938 	/*
939 	 * The following two lines don't need to be under the lock for
940 	 * the lock's sake, but they do need SMP memory barriers to
941 	 * avoid getting things out of order.  We are already claiming
942 	 * the lock, anyway, so just do it under the lock to avoid the
943 	 * ordering problem.
944 	 */
945 	BUG_ON(smi_info->waiting_msg);
946 	smi_info->waiting_msg = msg;
947 	check_start_timer_thread(smi_info);
948 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
949 	return IPMI_CC_NO_ERROR;
950 }
951 
952 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
953 {
954 	struct smi_info   *smi_info = send_info;
955 
956 	smi_info->run_to_completion = i_run_to_completion;
957 	if (i_run_to_completion)
958 		flush_messages(smi_info);
959 }
960 
961 /*
962  * Use -1 as a special constant to tell that we are spinning in kipmid
963  * looking for something and not delaying between checks
964  */
965 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
966 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
967 					 const struct smi_info *smi_info,
968 					 ktime_t *busy_until)
969 {
970 	unsigned int max_busy_us = 0;
971 
972 	if (smi_info->si_num < num_max_busy_us)
973 		max_busy_us = kipmid_max_busy_us[smi_info->si_num];
974 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
975 		*busy_until = IPMI_TIME_NOT_BUSY;
976 	else if (*busy_until == IPMI_TIME_NOT_BUSY) {
977 		*busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
978 	} else {
979 		if (unlikely(ktime_get() > *busy_until)) {
980 			*busy_until = IPMI_TIME_NOT_BUSY;
981 			return false;
982 		}
983 	}
984 	return true;
985 }
986 
987 
988 /*
989  * A busy-waiting loop for speeding up IPMI operation.
990  *
991  * Lousy hardware makes this hard.  This is only enabled for systems
992  * that are not BT and do not have interrupts.  It starts spinning
993  * when an operation is complete or until max_busy tells it to stop
994  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
995  * Documentation/driver-api/ipmi.rst for details.
996  */
997 static int ipmi_thread(void *data)
998 {
999 	struct smi_info *smi_info = data;
1000 	unsigned long flags;
1001 	enum si_sm_result smi_result;
1002 	ktime_t busy_until = IPMI_TIME_NOT_BUSY;
1003 
1004 	set_user_nice(current, MAX_NICE);
1005 	while (!kthread_should_stop()) {
1006 		int busy_wait;
1007 
1008 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1009 		smi_result = smi_event_handler(smi_info, 0);
1010 
1011 		/*
1012 		 * If the driver is doing something, there is a possible
1013 		 * race with the timer.  If the timer handler see idle,
1014 		 * and the thread here sees something else, the timer
1015 		 * handler won't restart the timer even though it is
1016 		 * required.  So start it here if necessary.
1017 		 */
1018 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1019 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1020 
1021 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1022 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1023 						  &busy_until);
1024 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1025 			; /* do nothing */
1026 		} else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1027 			/*
1028 			 * In maintenance mode we run as fast as
1029 			 * possible to allow firmware updates to
1030 			 * complete as fast as possible, but normally
1031 			 * don't bang on the scheduler.
1032 			 */
1033 			if (smi_info->in_maintenance_mode)
1034 				schedule();
1035 			else
1036 				usleep_range(100, 200);
1037 		} else if (smi_result == SI_SM_IDLE) {
1038 			if (atomic_read(&smi_info->need_watch)) {
1039 				schedule_timeout_interruptible(100);
1040 			} else {
1041 				/* Wait to be woken up when we are needed. */
1042 				__set_current_state(TASK_INTERRUPTIBLE);
1043 				schedule();
1044 			}
1045 		} else {
1046 			schedule_timeout_interruptible(1);
1047 		}
1048 	}
1049 	return 0;
1050 }
1051 
1052 
1053 static void poll(void *send_info)
1054 {
1055 	struct smi_info *smi_info = send_info;
1056 	unsigned long flags = 0;
1057 	bool run_to_completion = smi_info->run_to_completion;
1058 
1059 	/*
1060 	 * Make sure there is some delay in the poll loop so we can
1061 	 * drive time forward and timeout things.
1062 	 */
1063 	udelay(10);
1064 	if (!run_to_completion)
1065 		spin_lock_irqsave(&smi_info->si_lock, flags);
1066 	smi_event_handler(smi_info, 10);
1067 	if (!run_to_completion)
1068 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1069 }
1070 
1071 static void request_events(void *send_info)
1072 {
1073 	struct smi_info *smi_info = send_info;
1074 
1075 	if (!smi_info->has_event_buffer)
1076 		return;
1077 
1078 	atomic_set(&smi_info->req_events, 1);
1079 }
1080 
1081 static void set_need_watch(void *send_info, unsigned int watch_mask)
1082 {
1083 	struct smi_info *smi_info = send_info;
1084 	unsigned long flags;
1085 	int enable;
1086 
1087 	enable = !!watch_mask;
1088 
1089 	atomic_set(&smi_info->need_watch, enable);
1090 	spin_lock_irqsave(&smi_info->si_lock, flags);
1091 	check_start_timer_thread(smi_info);
1092 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1093 }
1094 
1095 static void smi_timeout(struct timer_list *t)
1096 {
1097 	struct smi_info   *smi_info = timer_container_of(smi_info, t,
1098 							 si_timer);
1099 	enum si_sm_result smi_result;
1100 	unsigned long     flags;
1101 	unsigned long     jiffies_now;
1102 	long              time_diff;
1103 	long		  timeout;
1104 
1105 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1106 	debug_timestamp(smi_info, "Timer");
1107 
1108 	if (smi_info->si_state == SI_HOSED)
1109 		/* Try something to see if the BMC is now operational. */
1110 		start_get_flags(smi_info);
1111 
1112 	jiffies_now = jiffies;
1113 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1114 		     * SI_USEC_PER_JIFFY);
1115 	smi_result = smi_event_handler(smi_info, time_diff);
1116 
1117 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1118 		/* Running with interrupts, only do long timeouts. */
1119 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1120 		smi_inc_stat(smi_info, long_timeouts);
1121 	} else if (smi_result == SI_SM_CALL_WITH_DELAY) {
1122 		/*
1123 		 * If the state machine asks for a short delay, then shorten
1124 		 * the timer timeout.
1125 		 */
1126 		smi_inc_stat(smi_info, short_timeouts);
1127 		timeout = jiffies + 1;
1128 	} else {
1129 		smi_inc_stat(smi_info, long_timeouts);
1130 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1131 	}
1132 
1133 	if (smi_result != SI_SM_IDLE)
1134 		smi_mod_timer(smi_info, timeout);
1135 	else
1136 		smi_info->timer_running = false;
1137 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1138 }
1139 
1140 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1141 {
1142 	struct smi_info *smi_info = data;
1143 	unsigned long   flags;
1144 
1145 	if (smi_info->io.si_info->type == SI_BT)
1146 		/* We need to clear the IRQ flag for the BT interface. */
1147 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1148 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1149 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1150 
1151 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1152 
1153 	smi_inc_stat(smi_info, interrupts);
1154 
1155 	debug_timestamp(smi_info, "Interrupt");
1156 
1157 	smi_event_handler(smi_info, 0);
1158 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1159 	return IRQ_HANDLED;
1160 }
1161 
1162 static int smi_start_processing(void            *send_info,
1163 				struct ipmi_smi *intf)
1164 {
1165 	struct smi_info *new_smi = send_info;
1166 	int             enable = 0;
1167 
1168 	new_smi->intf = intf;
1169 
1170 	/* Set up the timer that drives the interface. */
1171 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1172 	new_smi->timer_can_start = true;
1173 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1174 
1175 	/* Try to claim any interrupts. */
1176 	if (new_smi->io.irq_setup) {
1177 		new_smi->io.irq_handler_data = new_smi;
1178 		new_smi->io.irq_setup(&new_smi->io);
1179 	}
1180 
1181 	/*
1182 	 * Check if the user forcefully enabled the daemon.
1183 	 */
1184 	if (new_smi->si_num < num_force_kipmid)
1185 		enable = force_kipmid[new_smi->si_num];
1186 	/*
1187 	 * The BT interface is efficient enough to not need a thread,
1188 	 * and there is no need for a thread if we have interrupts.
1189 	 */
1190 	else if (new_smi->io.si_info->type != SI_BT && !new_smi->io.irq)
1191 		enable = 1;
1192 
1193 	if (enable) {
1194 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1195 					      "kipmi%d", new_smi->si_num);
1196 		if (IS_ERR(new_smi->thread)) {
1197 			dev_notice(new_smi->io.dev,
1198 				   "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1199 				   PTR_ERR(new_smi->thread));
1200 			new_smi->thread = NULL;
1201 		}
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1208 {
1209 	struct smi_info *smi = send_info;
1210 
1211 	data->addr_src = smi->io.addr_source;
1212 	data->dev = smi->io.dev;
1213 	data->addr_info = smi->io.addr_info;
1214 	get_device(smi->io.dev);
1215 
1216 	return 0;
1217 }
1218 
1219 static void set_maintenance_mode(void *send_info, bool enable)
1220 {
1221 	struct smi_info   *smi_info = send_info;
1222 
1223 	if (!enable)
1224 		atomic_set(&smi_info->req_events, 0);
1225 	smi_info->in_maintenance_mode = enable;
1226 }
1227 
1228 static void shutdown_smi(void *send_info);
1229 static const struct ipmi_smi_handlers handlers = {
1230 	.owner                  = THIS_MODULE,
1231 	.start_processing       = smi_start_processing,
1232 	.shutdown               = shutdown_smi,
1233 	.get_smi_info		= get_smi_info,
1234 	.sender			= sender,
1235 	.request_events		= request_events,
1236 	.set_need_watch		= set_need_watch,
1237 	.set_maintenance_mode   = set_maintenance_mode,
1238 	.set_run_to_completion  = set_run_to_completion,
1239 	.flush_messages		= flush_messages,
1240 	.poll			= poll,
1241 };
1242 
1243 static LIST_HEAD(smi_infos);
1244 static DEFINE_MUTEX(smi_infos_lock);
1245 static int smi_num; /* Used to sequence the SMIs */
1246 
1247 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1248 
1249 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1250 MODULE_PARM_DESC(force_kipmid,
1251 		 "Force the kipmi daemon to be enabled (1) or disabled(0).  Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1252 module_param(unload_when_empty, bool, 0);
1253 MODULE_PARM_DESC(unload_when_empty,
1254 		 "Unload the module if no interfaces are specified or found, default is 1.  Setting to 0 is useful for hot add of devices using hotmod.");
1255 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1256 MODULE_PARM_DESC(kipmid_max_busy_us,
1257 		 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1258 
1259 void ipmi_irq_finish_setup(struct si_sm_io *io)
1260 {
1261 	if (io->si_info->type == SI_BT)
1262 		/* Enable the interrupt in the BT interface. */
1263 		io->outputb(io, IPMI_BT_INTMASK_REG,
1264 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1265 }
1266 
1267 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1268 {
1269 	if (io->si_info->type == SI_BT)
1270 		/* Disable the interrupt in the BT interface. */
1271 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1272 }
1273 
1274 static void std_irq_cleanup(struct si_sm_io *io)
1275 {
1276 	ipmi_irq_start_cleanup(io);
1277 	free_irq(io->irq, io->irq_handler_data);
1278 }
1279 
1280 int ipmi_std_irq_setup(struct si_sm_io *io)
1281 {
1282 	int rv;
1283 
1284 	if (!io->irq)
1285 		return 0;
1286 
1287 	rv = request_irq(io->irq,
1288 			 ipmi_si_irq_handler,
1289 			 IRQF_SHARED,
1290 			 SI_DEVICE_NAME,
1291 			 io->irq_handler_data);
1292 	if (rv) {
1293 		dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1294 			 SI_DEVICE_NAME, io->irq);
1295 		io->irq = 0;
1296 	} else {
1297 		io->irq_cleanup = std_irq_cleanup;
1298 		ipmi_irq_finish_setup(io);
1299 		dev_info(io->dev, "Using irq %d\n", io->irq);
1300 	}
1301 
1302 	return rv;
1303 }
1304 
1305 static int wait_for_msg_done(struct smi_info *smi_info)
1306 {
1307 	enum si_sm_result     smi_result;
1308 
1309 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1310 	for (;;) {
1311 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1312 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1313 			schedule_timeout_uninterruptible(1);
1314 			smi_result = smi_info->handlers->event(
1315 				smi_info->si_sm, jiffies_to_usecs(1));
1316 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1317 			smi_result = smi_info->handlers->event(
1318 				smi_info->si_sm, 0);
1319 		} else
1320 			break;
1321 	}
1322 	if (smi_result == SI_SM_HOSED)
1323 		/*
1324 		 * We couldn't get the state machine to run, so whatever's at
1325 		 * the port is probably not an IPMI SMI interface.
1326 		 */
1327 		return -ENODEV;
1328 
1329 	return 0;
1330 }
1331 
1332 static int try_get_dev_id(struct smi_info *smi_info)
1333 {
1334 	unsigned char         msg[2];
1335 	unsigned char         *resp;
1336 	unsigned long         resp_len;
1337 	int                   rv = 0;
1338 	unsigned int          retry_count = 0;
1339 
1340 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1341 	if (!resp)
1342 		return -ENOMEM;
1343 
1344 	/*
1345 	 * Do a Get Device ID command, since it comes back with some
1346 	 * useful info.
1347 	 */
1348 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1349 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1350 
1351 retry:
1352 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1353 
1354 	rv = wait_for_msg_done(smi_info);
1355 	if (rv)
1356 		goto out;
1357 
1358 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1359 						  resp, IPMI_MAX_MSG_LENGTH);
1360 
1361 	/* Check and record info from the get device id, in case we need it. */
1362 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1363 			resp + 2, resp_len - 2, &smi_info->device_id);
1364 	if (rv) {
1365 		/* record completion code */
1366 		unsigned char cc = *(resp + 2);
1367 
1368 		if (cc != IPMI_CC_NO_ERROR &&
1369 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1370 			dev_warn_ratelimited(smi_info->io.dev,
1371 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
1372 			    cc);
1373 			goto retry;
1374 		}
1375 	}
1376 
1377 out:
1378 	kfree(resp);
1379 	return rv;
1380 }
1381 
1382 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1383 {
1384 	unsigned char         msg[3];
1385 	unsigned char         *resp;
1386 	unsigned long         resp_len;
1387 	int                   rv;
1388 
1389 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1390 	if (!resp)
1391 		return -ENOMEM;
1392 
1393 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1394 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1395 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1396 
1397 	rv = wait_for_msg_done(smi_info);
1398 	if (rv) {
1399 		dev_warn(smi_info->io.dev,
1400 			 "Error getting response from get global enables command: %d\n",
1401 			 rv);
1402 		goto out;
1403 	}
1404 
1405 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1406 						  resp, IPMI_MAX_MSG_LENGTH);
1407 
1408 	if (resp_len < 4 ||
1409 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1410 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1411 			resp[2] != 0) {
1412 		dev_warn(smi_info->io.dev,
1413 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1414 			 resp_len, resp[0], resp[1], resp[2]);
1415 		rv = -EINVAL;
1416 		goto out;
1417 	} else {
1418 		*enables = resp[3];
1419 	}
1420 
1421 out:
1422 	kfree(resp);
1423 	return rv;
1424 }
1425 
1426 /*
1427  * Returns 1 if it gets an error from the command.
1428  */
1429 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1430 {
1431 	unsigned char         msg[3];
1432 	unsigned char         *resp;
1433 	unsigned long         resp_len;
1434 	int                   rv;
1435 
1436 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1437 	if (!resp)
1438 		return -ENOMEM;
1439 
1440 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1441 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1442 	msg[2] = enables;
1443 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1444 
1445 	rv = wait_for_msg_done(smi_info);
1446 	if (rv) {
1447 		dev_warn(smi_info->io.dev,
1448 			 "Error getting response from set global enables command: %d\n",
1449 			 rv);
1450 		goto out;
1451 	}
1452 
1453 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1454 						  resp, IPMI_MAX_MSG_LENGTH);
1455 
1456 	if (resp_len < 3 ||
1457 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1458 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1459 		dev_warn(smi_info->io.dev,
1460 			 "Invalid return from set global enables command: %ld %x %x\n",
1461 			 resp_len, resp[0], resp[1]);
1462 		rv = -EINVAL;
1463 		goto out;
1464 	}
1465 
1466 	if (resp[2] != 0)
1467 		rv = 1;
1468 
1469 out:
1470 	kfree(resp);
1471 	return rv;
1472 }
1473 
1474 /*
1475  * Some BMCs do not support clearing the receive irq bit in the global
1476  * enables (even if they don't support interrupts on the BMC).  Check
1477  * for this and handle it properly.
1478  */
1479 static void check_clr_rcv_irq(struct smi_info *smi_info)
1480 {
1481 	u8 enables = 0;
1482 	int rv;
1483 
1484 	rv = get_global_enables(smi_info, &enables);
1485 	if (!rv) {
1486 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1487 			/* Already clear, should work ok. */
1488 			return;
1489 
1490 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1491 		rv = set_global_enables(smi_info, enables);
1492 	}
1493 
1494 	if (rv < 0) {
1495 		dev_err(smi_info->io.dev,
1496 			"Cannot check clearing the rcv irq: %d\n", rv);
1497 		return;
1498 	}
1499 
1500 	if (rv) {
1501 		/*
1502 		 * An error when setting the event buffer bit means
1503 		 * clearing the bit is not supported.
1504 		 */
1505 		dev_warn(smi_info->io.dev,
1506 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1507 		smi_info->cannot_disable_irq = true;
1508 	}
1509 }
1510 
1511 /*
1512  * Some BMCs do not support setting the interrupt bits in the global
1513  * enables even if they support interrupts.  Clearly bad, but we can
1514  * compensate.
1515  */
1516 static void check_set_rcv_irq(struct smi_info *smi_info)
1517 {
1518 	u8 enables = 0;
1519 	int rv;
1520 
1521 	if (!smi_info->io.irq)
1522 		return;
1523 
1524 	rv = get_global_enables(smi_info, &enables);
1525 	if (!rv) {
1526 		enables |= IPMI_BMC_RCV_MSG_INTR;
1527 		rv = set_global_enables(smi_info, enables);
1528 	}
1529 
1530 	if (rv < 0) {
1531 		dev_err(smi_info->io.dev,
1532 			"Cannot check setting the rcv irq: %d\n", rv);
1533 		return;
1534 	}
1535 
1536 	if (rv) {
1537 		/*
1538 		 * An error when setting the event buffer bit means
1539 		 * setting the bit is not supported.
1540 		 */
1541 		dev_warn(smi_info->io.dev,
1542 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1543 		smi_info->cannot_disable_irq = true;
1544 		smi_info->irq_enable_broken = true;
1545 	}
1546 }
1547 
1548 static int try_enable_event_buffer(struct smi_info *smi_info)
1549 {
1550 	unsigned char         msg[3];
1551 	unsigned char         *resp;
1552 	unsigned long         resp_len;
1553 	int                   rv = 0;
1554 
1555 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1556 	if (!resp)
1557 		return -ENOMEM;
1558 
1559 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1560 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1561 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1562 
1563 	rv = wait_for_msg_done(smi_info);
1564 	if (rv) {
1565 		pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1566 		goto out;
1567 	}
1568 
1569 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1570 						  resp, IPMI_MAX_MSG_LENGTH);
1571 
1572 	if (resp_len < 4 ||
1573 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1574 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1575 			resp[2] != 0) {
1576 		pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1577 		rv = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1582 		/* buffer is already enabled, nothing to do. */
1583 		smi_info->supports_event_msg_buff = true;
1584 		goto out;
1585 	}
1586 
1587 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1588 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1589 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1590 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1591 
1592 	rv = wait_for_msg_done(smi_info);
1593 	if (rv) {
1594 		pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1595 		goto out;
1596 	}
1597 
1598 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1599 						  resp, IPMI_MAX_MSG_LENGTH);
1600 
1601 	if (resp_len < 3 ||
1602 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1603 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1604 		pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1605 		rv = -EINVAL;
1606 		goto out;
1607 	}
1608 
1609 	if (resp[2] != 0)
1610 		/*
1611 		 * An error when setting the event buffer bit means
1612 		 * that the event buffer is not supported.
1613 		 */
1614 		rv = -ENOENT;
1615 	else
1616 		smi_info->supports_event_msg_buff = true;
1617 
1618 out:
1619 	kfree(resp);
1620 	return rv;
1621 }
1622 
1623 #define IPMI_SI_ATTR(name) \
1624 static ssize_t name##_show(struct device *dev,			\
1625 			   struct device_attribute *attr,		\
1626 			   char *buf)					\
1627 {									\
1628 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1629 									\
1630 	return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name));	\
1631 }									\
1632 static DEVICE_ATTR_RO(name)
1633 
1634 static ssize_t type_show(struct device *dev,
1635 			 struct device_attribute *attr,
1636 			 char *buf)
1637 {
1638 	struct smi_info *smi_info = dev_get_drvdata(dev);
1639 
1640 	return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_info->type]);
1641 }
1642 static DEVICE_ATTR_RO(type);
1643 
1644 static ssize_t interrupts_enabled_show(struct device *dev,
1645 				       struct device_attribute *attr,
1646 				       char *buf)
1647 {
1648 	struct smi_info *smi_info = dev_get_drvdata(dev);
1649 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1650 
1651 	return sysfs_emit(buf, "%d\n", enabled);
1652 }
1653 static DEVICE_ATTR_RO(interrupts_enabled);
1654 
1655 IPMI_SI_ATTR(short_timeouts);
1656 IPMI_SI_ATTR(long_timeouts);
1657 IPMI_SI_ATTR(idles);
1658 IPMI_SI_ATTR(interrupts);
1659 IPMI_SI_ATTR(attentions);
1660 IPMI_SI_ATTR(flag_fetches);
1661 IPMI_SI_ATTR(hosed_count);
1662 IPMI_SI_ATTR(complete_transactions);
1663 IPMI_SI_ATTR(events);
1664 IPMI_SI_ATTR(watchdog_pretimeouts);
1665 IPMI_SI_ATTR(incoming_messages);
1666 
1667 static ssize_t params_show(struct device *dev,
1668 			   struct device_attribute *attr,
1669 			   char *buf)
1670 {
1671 	struct smi_info *smi_info = dev_get_drvdata(dev);
1672 
1673 	return sysfs_emit(buf,
1674 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1675 			si_to_str[smi_info->io.si_info->type],
1676 			addr_space_to_str[smi_info->io.addr_space],
1677 			smi_info->io.addr_data,
1678 			smi_info->io.regspacing,
1679 			smi_info->io.regsize,
1680 			smi_info->io.regshift,
1681 			smi_info->io.irq,
1682 			smi_info->io.slave_addr);
1683 }
1684 static DEVICE_ATTR_RO(params);
1685 
1686 static struct attribute *ipmi_si_dev_attrs[] = {
1687 	&dev_attr_type.attr,
1688 	&dev_attr_interrupts_enabled.attr,
1689 	&dev_attr_short_timeouts.attr,
1690 	&dev_attr_long_timeouts.attr,
1691 	&dev_attr_idles.attr,
1692 	&dev_attr_interrupts.attr,
1693 	&dev_attr_attentions.attr,
1694 	&dev_attr_flag_fetches.attr,
1695 	&dev_attr_hosed_count.attr,
1696 	&dev_attr_complete_transactions.attr,
1697 	&dev_attr_events.attr,
1698 	&dev_attr_watchdog_pretimeouts.attr,
1699 	&dev_attr_incoming_messages.attr,
1700 	&dev_attr_params.attr,
1701 	NULL
1702 };
1703 
1704 static const struct attribute_group ipmi_si_dev_attr_group = {
1705 	.attrs		= ipmi_si_dev_attrs,
1706 };
1707 
1708 /*
1709  * oem_data_avail_to_receive_msg_avail
1710  * @info - smi_info structure with msg_flags set
1711  *
1712  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1713  * Returns 1 indicating need to re-run handle_flags().
1714  */
1715 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1716 {
1717 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1718 			       RECEIVE_MSG_AVAIL);
1719 	return 1;
1720 }
1721 
1722 /*
1723  * setup_dell_poweredge_oem_data_handler
1724  * @info - smi_info.device_id must be populated
1725  *
1726  * Systems that match, but have firmware version < 1.40 may assert
1727  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1728  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1729  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1730  * as RECEIVE_MSG_AVAIL instead.
1731  *
1732  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1733  * assert the OEM[012] bits, and if it did, the driver would have to
1734  * change to handle that properly, we don't actually check for the
1735  * firmware version.
1736  * Device ID = 0x20                BMC on PowerEdge 8G servers
1737  * Device Revision = 0x80
1738  * Firmware Revision1 = 0x01       BMC version 1.40
1739  * Firmware Revision2 = 0x40       BCD encoded
1740  * IPMI Version = 0x51             IPMI 1.5
1741  * Manufacturer ID = A2 02 00      Dell IANA
1742  *
1743  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1744  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1745  *
1746  */
1747 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1748 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1749 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1750 #define DELL_IANA_MFR_ID 0x0002a2
1751 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1752 {
1753 	struct ipmi_device_id *id = &smi_info->device_id;
1754 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1755 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1756 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1757 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1758 			smi_info->oem_data_avail_handler =
1759 				oem_data_avail_to_receive_msg_avail;
1760 		} else if (ipmi_version_major(id) < 1 ||
1761 			   (ipmi_version_major(id) == 1 &&
1762 			    ipmi_version_minor(id) < 5)) {
1763 			smi_info->oem_data_avail_handler =
1764 				oem_data_avail_to_receive_msg_avail;
1765 		}
1766 	}
1767 }
1768 
1769 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1770 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1771 {
1772 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1773 
1774 	/* Make it a response */
1775 	msg->rsp[0] = msg->data[0] | 4;
1776 	msg->rsp[1] = msg->data[1];
1777 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1778 	msg->rsp_size = 3;
1779 	smi_info->curr_msg = NULL;
1780 	deliver_recv_msg(smi_info, msg);
1781 }
1782 
1783 /*
1784  * dell_poweredge_bt_xaction_handler
1785  * @info - smi_info.device_id must be populated
1786  *
1787  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1788  * not respond to a Get SDR command if the length of the data
1789  * requested is exactly 0x3A, which leads to command timeouts and no
1790  * data returned.  This intercepts such commands, and causes userspace
1791  * callers to try again with a different-sized buffer, which succeeds.
1792  */
1793 
1794 #define STORAGE_NETFN 0x0A
1795 #define STORAGE_CMD_GET_SDR 0x23
1796 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1797 					     unsigned long unused,
1798 					     void *in)
1799 {
1800 	struct smi_info *smi_info = in;
1801 	unsigned char *data = smi_info->curr_msg->data;
1802 	unsigned int size   = smi_info->curr_msg->data_size;
1803 	if (size >= 8 &&
1804 	    (data[0]>>2) == STORAGE_NETFN &&
1805 	    data[1] == STORAGE_CMD_GET_SDR &&
1806 	    data[7] == 0x3A) {
1807 		return_hosed_msg_badsize(smi_info);
1808 		return NOTIFY_STOP;
1809 	}
1810 	return NOTIFY_DONE;
1811 }
1812 
1813 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1814 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1815 };
1816 
1817 /*
1818  * setup_dell_poweredge_bt_xaction_handler
1819  * @info - smi_info.device_id must be filled in already
1820  *
1821  * Fills in smi_info.device_id.start_transaction_pre_hook
1822  * when we know what function to use there.
1823  */
1824 static void
1825 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1826 {
1827 	struct ipmi_device_id *id = &smi_info->device_id;
1828 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1829 	    smi_info->io.si_info->type == SI_BT)
1830 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1831 }
1832 
1833 /*
1834  * setup_oem_data_handler
1835  * @info - smi_info.device_id must be filled in already
1836  *
1837  * Fills in smi_info.device_id.oem_data_available_handler
1838  * when we know what function to use there.
1839  */
1840 
1841 static void setup_oem_data_handler(struct smi_info *smi_info)
1842 {
1843 	setup_dell_poweredge_oem_data_handler(smi_info);
1844 }
1845 
1846 static void setup_xaction_handlers(struct smi_info *smi_info)
1847 {
1848 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1849 }
1850 
1851 static void check_for_broken_irqs(struct smi_info *smi_info)
1852 {
1853 	check_clr_rcv_irq(smi_info);
1854 	check_set_rcv_irq(smi_info);
1855 }
1856 
1857 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1858 {
1859 	if (smi_info->thread != NULL) {
1860 		kthread_stop(smi_info->thread);
1861 		smi_info->thread = NULL;
1862 	}
1863 
1864 	smi_info->timer_can_start = false;
1865 	timer_delete_sync(&smi_info->si_timer);
1866 }
1867 
1868 static struct smi_info *find_dup_si(struct smi_info *info)
1869 {
1870 	struct smi_info *e;
1871 
1872 	list_for_each_entry(e, &smi_infos, link) {
1873 		if (e->io.addr_space != info->io.addr_space)
1874 			continue;
1875 		if (e->io.addr_data == info->io.addr_data) {
1876 			/*
1877 			 * This is a cheap hack, ACPI doesn't have a defined
1878 			 * slave address but SMBIOS does.  Pick it up from
1879 			 * any source that has it available.
1880 			 */
1881 			if (info->io.slave_addr && !e->io.slave_addr)
1882 				e->io.slave_addr = info->io.slave_addr;
1883 			return e;
1884 		}
1885 	}
1886 
1887 	return NULL;
1888 }
1889 
1890 int ipmi_si_add_smi(struct si_sm_io *io)
1891 {
1892 	int rv = 0;
1893 	struct smi_info *new_smi, *dup;
1894 
1895 	/*
1896 	 * If the user gave us a hard-coded device at the same
1897 	 * address, they presumably want us to use it and not what is
1898 	 * in the firmware.
1899 	 */
1900 	if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1901 	    ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1902 		dev_info(io->dev,
1903 			 "Hard-coded device at this address already exists");
1904 		return -ENODEV;
1905 	}
1906 
1907 	if (!io->io_setup) {
1908 		if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1909 		    io->addr_space == IPMI_IO_ADDR_SPACE) {
1910 			io->io_setup = ipmi_si_port_setup;
1911 		} else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1912 			io->io_setup = ipmi_si_mem_setup;
1913 		} else {
1914 			return -EINVAL;
1915 		}
1916 	}
1917 
1918 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1919 	if (!new_smi)
1920 		return -ENOMEM;
1921 	spin_lock_init(&new_smi->si_lock);
1922 
1923 	new_smi->io = *io;
1924 
1925 	mutex_lock(&smi_infos_lock);
1926 	dup = find_dup_si(new_smi);
1927 	if (dup) {
1928 		if (new_smi->io.addr_source == SI_ACPI &&
1929 		    dup->io.addr_source == SI_SMBIOS) {
1930 			/* We prefer ACPI over SMBIOS. */
1931 			dev_info(dup->io.dev,
1932 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1933 				 si_to_str[new_smi->io.si_info->type]);
1934 			cleanup_one_si(dup);
1935 		} else {
1936 			dev_info(new_smi->io.dev,
1937 				 "%s-specified %s state machine: duplicate\n",
1938 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1939 				 si_to_str[new_smi->io.si_info->type]);
1940 			rv = -EBUSY;
1941 			kfree(new_smi);
1942 			goto out_err;
1943 		}
1944 	}
1945 
1946 	pr_info("Adding %s-specified %s state machine\n",
1947 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1948 		si_to_str[new_smi->io.si_info->type]);
1949 
1950 	list_add_tail(&new_smi->link, &smi_infos);
1951 
1952 	if (initialized)
1953 		rv = try_smi_init(new_smi);
1954 out_err:
1955 	mutex_unlock(&smi_infos_lock);
1956 	return rv;
1957 }
1958 
1959 /*
1960  * Try to start up an interface.  Must be called with smi_infos_lock
1961  * held, primarily to keep smi_num consistent, we only one to do these
1962  * one at a time.
1963  */
1964 static int try_smi_init(struct smi_info *new_smi)
1965 {
1966 	int rv = 0;
1967 	int i;
1968 
1969 	pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1970 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1971 		si_to_str[new_smi->io.si_info->type],
1972 		addr_space_to_str[new_smi->io.addr_space],
1973 		new_smi->io.addr_data,
1974 		new_smi->io.slave_addr, new_smi->io.irq);
1975 
1976 	switch (new_smi->io.si_info->type) {
1977 	case SI_KCS:
1978 		new_smi->handlers = &kcs_smi_handlers;
1979 		break;
1980 
1981 	case SI_SMIC:
1982 		new_smi->handlers = &smic_smi_handlers;
1983 		break;
1984 
1985 	case SI_BT:
1986 		new_smi->handlers = &bt_smi_handlers;
1987 		break;
1988 
1989 	default:
1990 		/* No support for anything else yet. */
1991 		rv = -EIO;
1992 		goto out_err;
1993 	}
1994 
1995 	new_smi->si_num = smi_num;
1996 
1997 	/* Do this early so it's available for logs. */
1998 	if (!new_smi->io.dev) {
1999 		pr_err("IPMI interface added with no device\n");
2000 		rv = -EIO;
2001 		goto out_err;
2002 	}
2003 
2004 	/* Allocate the state machine's data and initialize it. */
2005 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2006 	if (!new_smi->si_sm) {
2007 		rv = -ENOMEM;
2008 		goto out_err;
2009 	}
2010 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2011 							   &new_smi->io);
2012 
2013 	/* Now that we know the I/O size, we can set up the I/O. */
2014 	rv = new_smi->io.io_setup(&new_smi->io);
2015 	if (rv) {
2016 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2017 		goto out_err;
2018 	}
2019 
2020 	/* Do low-level detection first. */
2021 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2022 		if (new_smi->io.addr_source)
2023 			dev_err(new_smi->io.dev,
2024 				"Interface detection failed\n");
2025 		rv = -ENODEV;
2026 		goto out_err;
2027 	}
2028 
2029 	/*
2030 	 * Attempt a get device id command.  If it fails, we probably
2031 	 * don't have a BMC here.
2032 	 */
2033 	rv = try_get_dev_id(new_smi);
2034 	if (rv) {
2035 		if (new_smi->io.addr_source)
2036 			dev_err(new_smi->io.dev,
2037 			       "There appears to be no BMC at this location\n");
2038 		goto out_err;
2039 	}
2040 
2041 	setup_oem_data_handler(new_smi);
2042 	setup_xaction_handlers(new_smi);
2043 	check_for_broken_irqs(new_smi);
2044 
2045 	new_smi->waiting_msg = NULL;
2046 	new_smi->curr_msg = NULL;
2047 	atomic_set(&new_smi->req_events, 0);
2048 	new_smi->run_to_completion = false;
2049 	for (i = 0; i < SI_NUM_STATS; i++)
2050 		atomic_set(&new_smi->stats[i], 0);
2051 
2052 	new_smi->interrupt_disabled = true;
2053 	atomic_set(&new_smi->need_watch, 0);
2054 
2055 	rv = try_enable_event_buffer(new_smi);
2056 	if (rv == 0)
2057 		new_smi->has_event_buffer = true;
2058 
2059 	/*
2060 	 * Start clearing the flags before we enable interrupts or the
2061 	 * timer to avoid racing with the timer.
2062 	 */
2063 	start_clear_flags(new_smi);
2064 
2065 	/*
2066 	 * IRQ is defined to be set when non-zero.  req_events will
2067 	 * cause a global flags check that will enable interrupts.
2068 	 */
2069 	if (new_smi->io.irq) {
2070 		new_smi->interrupt_disabled = false;
2071 		atomic_set(&new_smi->req_events, 1);
2072 	}
2073 
2074 	dev_set_drvdata(new_smi->io.dev, new_smi);
2075 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2076 	if (rv) {
2077 		dev_err(new_smi->io.dev,
2078 			"Unable to add device attributes: error %d\n",
2079 			rv);
2080 		goto out_err;
2081 	}
2082 	new_smi->dev_group_added = true;
2083 
2084 	rv = ipmi_register_smi(&handlers,
2085 			       new_smi,
2086 			       new_smi->io.dev,
2087 			       new_smi->io.slave_addr);
2088 	if (rv) {
2089 		dev_err(new_smi->io.dev,
2090 			"Unable to register device: error %d\n",
2091 			rv);
2092 		goto out_err;
2093 	}
2094 
2095 	/* Don't increment till we know we have succeeded. */
2096 	smi_num++;
2097 
2098 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2099 		 si_to_str[new_smi->io.si_info->type]);
2100 
2101 	WARN_ON(new_smi->io.dev->init_name != NULL);
2102 
2103  out_err:
2104 	if (rv && new_smi->io.io_cleanup) {
2105 		new_smi->io.io_cleanup(&new_smi->io);
2106 		new_smi->io.io_cleanup = NULL;
2107 	}
2108 
2109 	if (rv && new_smi->si_sm) {
2110 		kfree(new_smi->si_sm);
2111 		new_smi->si_sm = NULL;
2112 	}
2113 
2114 	return rv;
2115 }
2116 
2117 /*
2118  * Devices in the same address space at the same address are the same.
2119  */
2120 static bool __init ipmi_smi_info_same(struct smi_info *e1, struct smi_info *e2)
2121 {
2122 	return (e1->io.addr_space == e2->io.addr_space &&
2123 		e1->io.addr_data == e2->io.addr_data);
2124 }
2125 
2126 static int __init init_ipmi_si(void)
2127 {
2128 	struct smi_info *e, *e2;
2129 
2130 	if (initialized)
2131 		return 0;
2132 
2133 	ipmi_hardcode_init();
2134 
2135 	pr_info("IPMI System Interface driver\n");
2136 
2137 	ipmi_si_platform_init();
2138 
2139 	ipmi_si_pci_init();
2140 
2141 	ipmi_si_ls2k_init();
2142 
2143 	ipmi_si_parisc_init();
2144 
2145 	mutex_lock(&smi_infos_lock);
2146 
2147 	/*
2148 	 * Scan through all the devices.  We prefer devices with
2149 	 * interrupts, so go through those first in case there are any
2150 	 * duplicates that don't have the interrupt set.
2151 	 */
2152 	list_for_each_entry(e, &smi_infos, link) {
2153 		bool dup = false;
2154 
2155 		/* Register ones with interrupts first. */
2156 		if (!e->io.irq)
2157 			continue;
2158 
2159 		/*
2160 		 * Go through the ones we have already seen to see if this
2161 		 * is a dup.
2162 		 */
2163 		list_for_each_entry(e2, &smi_infos, link) {
2164 			if (e2 == e)
2165 				break;
2166 			if (e2->io.irq && ipmi_smi_info_same(e, e2)) {
2167 				dup = true;
2168 				break;
2169 			}
2170 		}
2171 		if (!dup)
2172 			try_smi_init(e);
2173 	}
2174 
2175 	/*
2176 	 * Now try devices without interrupts.
2177 	 */
2178 	list_for_each_entry(e, &smi_infos, link) {
2179 		bool dup = false;
2180 
2181 		if (e->io.irq)
2182 			continue;
2183 
2184 		/*
2185 		 * Go through the ones we have already seen to see if
2186 		 * this is a dup.  We have already looked at the ones
2187 		 * with interrupts.
2188 		 */
2189 		list_for_each_entry(e2, &smi_infos, link) {
2190 			if (!e2->io.irq)
2191 				continue;
2192 			if (ipmi_smi_info_same(e, e2)) {
2193 				dup = true;
2194 				break;
2195 			}
2196 		}
2197 		list_for_each_entry(e2, &smi_infos, link) {
2198 			if (e2 == e)
2199 				break;
2200 			if (ipmi_smi_info_same(e, e2)) {
2201 				dup = true;
2202 				break;
2203 			}
2204 		}
2205 		if (!dup)
2206 			try_smi_init(e);
2207 	}
2208 
2209 	initialized = true;
2210 	mutex_unlock(&smi_infos_lock);
2211 
2212 	mutex_lock(&smi_infos_lock);
2213 	if (unload_when_empty && list_empty(&smi_infos)) {
2214 		mutex_unlock(&smi_infos_lock);
2215 		cleanup_ipmi_si();
2216 		pr_warn("Unable to find any System Interface(s)\n");
2217 		return -ENODEV;
2218 	} else {
2219 		mutex_unlock(&smi_infos_lock);
2220 		return 0;
2221 	}
2222 }
2223 module_init(init_ipmi_si);
2224 
2225 static void wait_msg_processed(struct smi_info *smi_info)
2226 {
2227 	unsigned long jiffies_now;
2228 	long time_diff;
2229 
2230 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2231 		jiffies_now = jiffies;
2232 		time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2233 		     * SI_USEC_PER_JIFFY);
2234 		smi_event_handler(smi_info, time_diff);
2235 		schedule_timeout_uninterruptible(1);
2236 	}
2237 }
2238 
2239 static void shutdown_smi(void *send_info)
2240 {
2241 	struct smi_info *smi_info = send_info;
2242 
2243 	if (smi_info->dev_group_added) {
2244 		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2245 		smi_info->dev_group_added = false;
2246 	}
2247 	if (smi_info->io.dev)
2248 		dev_set_drvdata(smi_info->io.dev, NULL);
2249 
2250 	/*
2251 	 * Make sure that interrupts, the timer and the thread are
2252 	 * stopped and will not run again.
2253 	 */
2254 	smi_info->interrupt_disabled = true;
2255 	if (smi_info->io.irq_cleanup) {
2256 		smi_info->io.irq_cleanup(&smi_info->io);
2257 		smi_info->io.irq_cleanup = NULL;
2258 	}
2259 	stop_timer_and_thread(smi_info);
2260 
2261 	/*
2262 	 * Wait until we know that we are out of any interrupt
2263 	 * handlers might have been running before we freed the
2264 	 * interrupt.
2265 	 */
2266 	synchronize_rcu();
2267 
2268 	/*
2269 	 * Timeouts are stopped, now make sure the interrupts are off
2270 	 * in the BMC.  Note that timers and CPU interrupts are off,
2271 	 * so no need for locks.
2272 	 */
2273 	wait_msg_processed(smi_info);
2274 
2275 	if (smi_info->handlers)
2276 		disable_si_irq(smi_info);
2277 
2278 	wait_msg_processed(smi_info);
2279 
2280 	if (smi_info->handlers)
2281 		smi_info->handlers->cleanup(smi_info->si_sm);
2282 
2283 	if (smi_info->io.io_cleanup) {
2284 		smi_info->io.io_cleanup(&smi_info->io);
2285 		smi_info->io.io_cleanup = NULL;
2286 	}
2287 
2288 	kfree(smi_info->si_sm);
2289 	smi_info->si_sm = NULL;
2290 
2291 	smi_info->intf = NULL;
2292 }
2293 
2294 /*
2295  * Must be called with smi_infos_lock held, to serialize the
2296  * smi_info->intf check.
2297  */
2298 static void cleanup_one_si(struct smi_info *smi_info)
2299 {
2300 	if (!smi_info)
2301 		return;
2302 
2303 	list_del(&smi_info->link);
2304 	ipmi_unregister_smi(smi_info->intf);
2305 	kfree(smi_info);
2306 }
2307 
2308 void ipmi_si_remove_by_dev(struct device *dev)
2309 {
2310 	struct smi_info *e;
2311 
2312 	mutex_lock(&smi_infos_lock);
2313 	list_for_each_entry(e, &smi_infos, link) {
2314 		if (e->io.dev == dev) {
2315 			cleanup_one_si(e);
2316 			break;
2317 		}
2318 	}
2319 	mutex_unlock(&smi_infos_lock);
2320 }
2321 
2322 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2323 				      unsigned long addr)
2324 {
2325 	/* remove */
2326 	struct smi_info *e, *tmp_e;
2327 	struct device *dev = NULL;
2328 
2329 	mutex_lock(&smi_infos_lock);
2330 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2331 		if (e->io.addr_space != addr_space)
2332 			continue;
2333 		if (e->io.si_info->type != si_type)
2334 			continue;
2335 		if (e->io.addr_data == addr) {
2336 			dev = get_device(e->io.dev);
2337 			cleanup_one_si(e);
2338 		}
2339 	}
2340 	mutex_unlock(&smi_infos_lock);
2341 
2342 	return dev;
2343 }
2344 
2345 static void cleanup_ipmi_si(void)
2346 {
2347 	struct smi_info *e, *tmp_e;
2348 
2349 	if (!initialized)
2350 		return;
2351 
2352 	ipmi_si_pci_shutdown();
2353 
2354 	ipmi_si_ls2k_shutdown();
2355 
2356 	ipmi_si_parisc_shutdown();
2357 
2358 	ipmi_si_platform_shutdown();
2359 
2360 	mutex_lock(&smi_infos_lock);
2361 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2362 		cleanup_one_si(e);
2363 	mutex_unlock(&smi_infos_lock);
2364 
2365 	ipmi_si_hardcode_exit();
2366 	ipmi_si_hotmod_exit();
2367 }
2368 module_exit(cleanup_ipmi_si);
2369 
2370 MODULE_ALIAS("platform:dmi-ipmi-si");
2371 MODULE_LICENSE("GPL");
2372 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2373 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2374