xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision 4fc012daf9c074772421c904357abf586336b1ca)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15 
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21 
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46 
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49 
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC	10000
52 #define SI_USEC_PER_JIFFY	(1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
55 				      short timeout */
56 
57 enum si_intf_state {
58 	SI_NORMAL,
59 	SI_GETTING_FLAGS,
60 	SI_GETTING_EVENTS,
61 	SI_CLEARING_FLAGS,
62 	SI_GETTING_MESSAGES,
63 	SI_CHECKING_ENABLES,
64 	SI_SETTING_ENABLES
65 	/* FIXME - add watchdog stuff. */
66 };
67 
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG		2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
72 
73 /* 'invalid' to allow a firmware-specified interface to be disabled */
74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75 
76 const struct ipmi_match_info ipmi_kcs_si_info = { .type = SI_KCS };
77 const struct ipmi_match_info ipmi_smic_si_info = { .type = SI_SMIC };
78 const struct ipmi_match_info ipmi_bt_si_info = { .type = SI_BT };
79 
80 static bool initialized;
81 
82 /*
83  * Indexes into stats[] in smi_info below.
84  */
85 enum si_stat_indexes {
86 	/*
87 	 * Number of times the driver requested a timer while an operation
88 	 * was in progress.
89 	 */
90 	SI_STAT_short_timeouts = 0,
91 
92 	/*
93 	 * Number of times the driver requested a timer while nothing was in
94 	 * progress.
95 	 */
96 	SI_STAT_long_timeouts,
97 
98 	/* Number of times the interface was idle while being polled. */
99 	SI_STAT_idles,
100 
101 	/* Number of interrupts the driver handled. */
102 	SI_STAT_interrupts,
103 
104 	/* Number of time the driver got an ATTN from the hardware. */
105 	SI_STAT_attentions,
106 
107 	/* Number of times the driver requested flags from the hardware. */
108 	SI_STAT_flag_fetches,
109 
110 	/* Number of times the hardware didn't follow the state machine. */
111 	SI_STAT_hosed_count,
112 
113 	/* Number of completed messages. */
114 	SI_STAT_complete_transactions,
115 
116 	/* Number of IPMI events received from the hardware. */
117 	SI_STAT_events,
118 
119 	/* Number of watchdog pretimeouts. */
120 	SI_STAT_watchdog_pretimeouts,
121 
122 	/* Number of asynchronous messages received. */
123 	SI_STAT_incoming_messages,
124 
125 
126 	/* This *must* remain last, add new values above this. */
127 	SI_NUM_STATS
128 };
129 
130 struct smi_info {
131 	int                    si_num;
132 	struct ipmi_smi        *intf;
133 	struct si_sm_data      *si_sm;
134 	const struct si_sm_handlers *handlers;
135 	spinlock_t             si_lock;
136 	struct ipmi_smi_msg    *waiting_msg;
137 	struct ipmi_smi_msg    *curr_msg;
138 	enum si_intf_state     si_state;
139 
140 	/*
141 	 * Used to handle the various types of I/O that can occur with
142 	 * IPMI
143 	 */
144 	struct si_sm_io io;
145 
146 	/*
147 	 * Per-OEM handler, called from handle_flags().  Returns 1
148 	 * when handle_flags() needs to be re-run or 0 indicating it
149 	 * set si_state itself.
150 	 */
151 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
152 
153 	/*
154 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
155 	 * is set to hold the flags until we are done handling everything
156 	 * from the flags.
157 	 */
158 #define RECEIVE_MSG_AVAIL	0x01
159 #define EVENT_MSG_BUFFER_FULL	0x02
160 #define WDT_PRE_TIMEOUT_INT	0x08
161 #define OEM0_DATA_AVAIL     0x20
162 #define OEM1_DATA_AVAIL     0x40
163 #define OEM2_DATA_AVAIL     0x80
164 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
165 			     OEM1_DATA_AVAIL | \
166 			     OEM2_DATA_AVAIL)
167 	unsigned char       msg_flags;
168 
169 	/* Does the BMC have an event buffer? */
170 	bool		    has_event_buffer;
171 
172 	/*
173 	 * If set to true, this will request events the next time the
174 	 * state machine is idle.
175 	 */
176 	atomic_t            req_events;
177 
178 	/*
179 	 * If true, run the state machine to completion on every send
180 	 * call.  Generally used after a panic to make sure stuff goes
181 	 * out.
182 	 */
183 	bool                run_to_completion;
184 
185 	/* The timer for this si. */
186 	struct timer_list   si_timer;
187 
188 	/* This flag is set, if the timer can be set */
189 	bool		    timer_can_start;
190 
191 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
192 	bool		    timer_running;
193 
194 	/* The time (in jiffies) the last timeout occurred at. */
195 	unsigned long       last_timeout_jiffies;
196 
197 	/* Are we waiting for the events, pretimeouts, received msgs? */
198 	atomic_t            need_watch;
199 
200 	/*
201 	 * The driver will disable interrupts when it gets into a
202 	 * situation where it cannot handle messages due to lack of
203 	 * memory.  Once that situation clears up, it will re-enable
204 	 * interrupts.
205 	 */
206 	bool interrupt_disabled;
207 
208 	/*
209 	 * Does the BMC support events?
210 	 */
211 	bool supports_event_msg_buff;
212 
213 	/*
214 	 * Can we disable interrupts the global enables receive irq
215 	 * bit?  There are currently two forms of brokenness, some
216 	 * systems cannot disable the bit (which is technically within
217 	 * the spec but a bad idea) and some systems have the bit
218 	 * forced to zero even though interrupts work (which is
219 	 * clearly outside the spec).  The next bool tells which form
220 	 * of brokenness is present.
221 	 */
222 	bool cannot_disable_irq;
223 
224 	/*
225 	 * Some systems are broken and cannot set the irq enable
226 	 * bit, even if they support interrupts.
227 	 */
228 	bool irq_enable_broken;
229 
230 	/* Is the driver in maintenance mode? */
231 	bool in_maintenance_mode;
232 
233 	/*
234 	 * Did we get an attention that we did not handle?
235 	 */
236 	bool got_attn;
237 
238 	/* From the get device id response... */
239 	struct ipmi_device_id device_id;
240 
241 	/* Have we added the device group to the device? */
242 	bool dev_group_added;
243 
244 	/* Counters and things for the proc filesystem. */
245 	atomic_t stats[SI_NUM_STATS];
246 
247 	struct task_struct *thread;
248 
249 	struct list_head link;
250 };
251 
252 #define smi_inc_stat(smi, stat) \
253 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
254 #define smi_get_stat(smi, stat) \
255 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
256 
257 #define IPMI_MAX_INTFS 4
258 static int force_kipmid[IPMI_MAX_INTFS];
259 static int num_force_kipmid;
260 
261 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
262 static int num_max_busy_us;
263 
264 static bool unload_when_empty = true;
265 
266 static int try_smi_init(struct smi_info *smi);
267 static void cleanup_one_si(struct smi_info *smi_info);
268 static void cleanup_ipmi_si(void);
269 
270 #ifdef DEBUG_TIMING
271 void debug_timestamp(struct smi_info *smi_info, char *msg)
272 {
273 	struct timespec64 t;
274 
275 	ktime_get_ts64(&t);
276 	dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
277 		msg, t.tv_sec, t.tv_nsec);
278 }
279 #else
280 #define debug_timestamp(smi_info, x)
281 #endif
282 
283 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
284 static int register_xaction_notifier(struct notifier_block *nb)
285 {
286 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
287 }
288 
289 static void deliver_recv_msg(struct smi_info *smi_info,
290 			     struct ipmi_smi_msg *msg)
291 {
292 	/* Deliver the message to the upper layer. */
293 	ipmi_smi_msg_received(smi_info->intf, msg);
294 }
295 
296 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
297 {
298 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
299 
300 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
301 		cCode = IPMI_ERR_UNSPECIFIED;
302 	/* else use it as is */
303 
304 	/* Make it a response */
305 	msg->rsp[0] = msg->data[0] | 4;
306 	msg->rsp[1] = msg->data[1];
307 	msg->rsp[2] = cCode;
308 	msg->rsp_size = 3;
309 
310 	smi_info->curr_msg = NULL;
311 	deliver_recv_msg(smi_info, msg);
312 }
313 
314 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
315 {
316 	int              rv;
317 
318 	if (!smi_info->waiting_msg) {
319 		smi_info->curr_msg = NULL;
320 		rv = SI_SM_IDLE;
321 	} else {
322 		int err;
323 
324 		smi_info->curr_msg = smi_info->waiting_msg;
325 		smi_info->waiting_msg = NULL;
326 		debug_timestamp(smi_info, "Start2");
327 		err = atomic_notifier_call_chain(&xaction_notifier_list,
328 				0, smi_info);
329 		if (err & NOTIFY_STOP_MASK) {
330 			rv = SI_SM_CALL_WITHOUT_DELAY;
331 			goto out;
332 		}
333 		err = smi_info->handlers->start_transaction(
334 			smi_info->si_sm,
335 			smi_info->curr_msg->data,
336 			smi_info->curr_msg->data_size);
337 		if (err)
338 			return_hosed_msg(smi_info, err);
339 
340 		rv = SI_SM_CALL_WITHOUT_DELAY;
341 	}
342 out:
343 	return rv;
344 }
345 
346 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
347 {
348 	if (!smi_info->timer_can_start)
349 		return;
350 	smi_info->last_timeout_jiffies = jiffies;
351 	mod_timer(&smi_info->si_timer, new_val);
352 	smi_info->timer_running = true;
353 }
354 
355 /*
356  * Start a new message and (re)start the timer and thread.
357  */
358 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
359 			  unsigned int size)
360 {
361 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
362 
363 	if (smi_info->thread)
364 		wake_up_process(smi_info->thread);
365 
366 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
367 }
368 
369 static void start_check_enables(struct smi_info *smi_info)
370 {
371 	unsigned char msg[2];
372 
373 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
374 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
375 
376 	start_new_msg(smi_info, msg, 2);
377 	smi_info->si_state = SI_CHECKING_ENABLES;
378 }
379 
380 static void start_clear_flags(struct smi_info *smi_info)
381 {
382 	unsigned char msg[3];
383 
384 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
385 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
387 	msg[2] = WDT_PRE_TIMEOUT_INT;
388 
389 	start_new_msg(smi_info, msg, 3);
390 	smi_info->si_state = SI_CLEARING_FLAGS;
391 }
392 
393 static void start_getting_msg_queue(struct smi_info *smi_info)
394 {
395 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
396 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
397 	smi_info->curr_msg->data_size = 2;
398 
399 	start_new_msg(smi_info, smi_info->curr_msg->data,
400 		      smi_info->curr_msg->data_size);
401 	smi_info->si_state = SI_GETTING_MESSAGES;
402 }
403 
404 static void start_getting_events(struct smi_info *smi_info)
405 {
406 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
408 	smi_info->curr_msg->data_size = 2;
409 
410 	start_new_msg(smi_info, smi_info->curr_msg->data,
411 		      smi_info->curr_msg->data_size);
412 	smi_info->si_state = SI_GETTING_EVENTS;
413 }
414 
415 /*
416  * When we have a situtaion where we run out of memory and cannot
417  * allocate messages, we just leave them in the BMC and run the system
418  * polled until we can allocate some memory.  Once we have some
419  * memory, we will re-enable the interrupt.
420  *
421  * Note that we cannot just use disable_irq(), since the interrupt may
422  * be shared.
423  */
424 static inline bool disable_si_irq(struct smi_info *smi_info)
425 {
426 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
427 		smi_info->interrupt_disabled = true;
428 		start_check_enables(smi_info);
429 		return true;
430 	}
431 	return false;
432 }
433 
434 static inline bool enable_si_irq(struct smi_info *smi_info)
435 {
436 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
437 		smi_info->interrupt_disabled = false;
438 		start_check_enables(smi_info);
439 		return true;
440 	}
441 	return false;
442 }
443 
444 /*
445  * Allocate a message.  If unable to allocate, start the interrupt
446  * disable process and return NULL.  If able to allocate but
447  * interrupts are disabled, free the message and return NULL after
448  * starting the interrupt enable process.
449  */
450 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
451 {
452 	struct ipmi_smi_msg *msg;
453 
454 	msg = ipmi_alloc_smi_msg();
455 	if (!msg) {
456 		if (!disable_si_irq(smi_info))
457 			smi_info->si_state = SI_NORMAL;
458 	} else if (enable_si_irq(smi_info)) {
459 		ipmi_free_smi_msg(msg);
460 		msg = NULL;
461 	}
462 	return msg;
463 }
464 
465 static void handle_flags(struct smi_info *smi_info)
466 {
467 retry:
468 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
469 		/* Watchdog pre-timeout */
470 		smi_inc_stat(smi_info, watchdog_pretimeouts);
471 
472 		start_clear_flags(smi_info);
473 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
474 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
475 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
476 		/* Messages available. */
477 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
478 		if (!smi_info->curr_msg)
479 			return;
480 
481 		start_getting_msg_queue(smi_info);
482 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
483 		/* Events available. */
484 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
485 		if (!smi_info->curr_msg)
486 			return;
487 
488 		start_getting_events(smi_info);
489 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
490 		   smi_info->oem_data_avail_handler) {
491 		if (smi_info->oem_data_avail_handler(smi_info))
492 			goto retry;
493 	} else
494 		smi_info->si_state = SI_NORMAL;
495 }
496 
497 /*
498  * Global enables we care about.
499  */
500 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
501 			     IPMI_BMC_EVT_MSG_INTR)
502 
503 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
504 				 bool *irq_on)
505 {
506 	u8 enables = 0;
507 
508 	if (smi_info->supports_event_msg_buff)
509 		enables |= IPMI_BMC_EVT_MSG_BUFF;
510 
511 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
512 	     smi_info->cannot_disable_irq) &&
513 	    !smi_info->irq_enable_broken)
514 		enables |= IPMI_BMC_RCV_MSG_INTR;
515 
516 	if (smi_info->supports_event_msg_buff &&
517 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
518 	    !smi_info->irq_enable_broken)
519 		enables |= IPMI_BMC_EVT_MSG_INTR;
520 
521 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
522 
523 	return enables;
524 }
525 
526 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
527 {
528 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
529 
530 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
531 
532 	if ((bool)irqstate == irq_on)
533 		return;
534 
535 	if (irq_on)
536 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
537 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
538 	else
539 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
540 }
541 
542 static void handle_transaction_done(struct smi_info *smi_info)
543 {
544 	struct ipmi_smi_msg *msg;
545 
546 	debug_timestamp(smi_info, "Done");
547 	switch (smi_info->si_state) {
548 	case SI_NORMAL:
549 		if (!smi_info->curr_msg)
550 			break;
551 
552 		smi_info->curr_msg->rsp_size
553 			= smi_info->handlers->get_result(
554 				smi_info->si_sm,
555 				smi_info->curr_msg->rsp,
556 				IPMI_MAX_MSG_LENGTH);
557 
558 		/*
559 		 * Do this here becase deliver_recv_msg() releases the
560 		 * lock, and a new message can be put in during the
561 		 * time the lock is released.
562 		 */
563 		msg = smi_info->curr_msg;
564 		smi_info->curr_msg = NULL;
565 		deliver_recv_msg(smi_info, msg);
566 		break;
567 
568 	case SI_GETTING_FLAGS:
569 	{
570 		unsigned char msg[4];
571 		unsigned int  len;
572 
573 		/* We got the flags from the SMI, now handle them. */
574 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
575 		if (msg[2] != 0) {
576 			/* Error fetching flags, just give up for now. */
577 			smi_info->si_state = SI_NORMAL;
578 		} else if (len < 4) {
579 			/*
580 			 * Hmm, no flags.  That's technically illegal, but
581 			 * don't use uninitialized data.
582 			 */
583 			smi_info->si_state = SI_NORMAL;
584 		} else {
585 			smi_info->msg_flags = msg[3];
586 			handle_flags(smi_info);
587 		}
588 		break;
589 	}
590 
591 	case SI_CLEARING_FLAGS:
592 	{
593 		unsigned char msg[3];
594 
595 		/* We cleared the flags. */
596 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
597 		if (msg[2] != 0) {
598 			/* Error clearing flags */
599 			dev_warn_ratelimited(smi_info->io.dev,
600 				 "Error clearing flags: %2.2x\n", msg[2]);
601 		}
602 		smi_info->si_state = SI_NORMAL;
603 		break;
604 	}
605 
606 	case SI_GETTING_EVENTS:
607 	{
608 		smi_info->curr_msg->rsp_size
609 			= smi_info->handlers->get_result(
610 				smi_info->si_sm,
611 				smi_info->curr_msg->rsp,
612 				IPMI_MAX_MSG_LENGTH);
613 
614 		/*
615 		 * Do this here becase deliver_recv_msg() releases the
616 		 * lock, and a new message can be put in during the
617 		 * time the lock is released.
618 		 */
619 		msg = smi_info->curr_msg;
620 		smi_info->curr_msg = NULL;
621 		if (msg->rsp[2] != 0) {
622 			/* Error getting event, probably done. */
623 			msg->done(msg);
624 
625 			/* Take off the event flag. */
626 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
627 			handle_flags(smi_info);
628 		} else {
629 			smi_inc_stat(smi_info, events);
630 
631 			/*
632 			 * Do this before we deliver the message
633 			 * because delivering the message releases the
634 			 * lock and something else can mess with the
635 			 * state.
636 			 */
637 			handle_flags(smi_info);
638 
639 			deliver_recv_msg(smi_info, msg);
640 		}
641 		break;
642 	}
643 
644 	case SI_GETTING_MESSAGES:
645 	{
646 		smi_info->curr_msg->rsp_size
647 			= smi_info->handlers->get_result(
648 				smi_info->si_sm,
649 				smi_info->curr_msg->rsp,
650 				IPMI_MAX_MSG_LENGTH);
651 
652 		/*
653 		 * Do this here becase deliver_recv_msg() releases the
654 		 * lock, and a new message can be put in during the
655 		 * time the lock is released.
656 		 */
657 		msg = smi_info->curr_msg;
658 		smi_info->curr_msg = NULL;
659 		if (msg->rsp[2] != 0) {
660 			/* Error getting event, probably done. */
661 			msg->done(msg);
662 
663 			/* Take off the msg flag. */
664 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
665 			handle_flags(smi_info);
666 		} else {
667 			smi_inc_stat(smi_info, incoming_messages);
668 
669 			/*
670 			 * Do this before we deliver the message
671 			 * because delivering the message releases the
672 			 * lock and something else can mess with the
673 			 * state.
674 			 */
675 			handle_flags(smi_info);
676 
677 			deliver_recv_msg(smi_info, msg);
678 		}
679 		break;
680 	}
681 
682 	case SI_CHECKING_ENABLES:
683 	{
684 		unsigned char msg[4];
685 		u8 enables;
686 		bool irq_on;
687 
688 		/* We got the flags from the SMI, now handle them. */
689 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
690 		if (msg[2] != 0) {
691 			dev_warn_ratelimited(smi_info->io.dev,
692 				"Couldn't get irq info: %x,\n"
693 				"Maybe ok, but ipmi might run very slowly.\n",
694 				msg[2]);
695 			smi_info->si_state = SI_NORMAL;
696 			break;
697 		}
698 		enables = current_global_enables(smi_info, 0, &irq_on);
699 		if (smi_info->io.si_info->type == SI_BT)
700 			/* BT has its own interrupt enable bit. */
701 			check_bt_irq(smi_info, irq_on);
702 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
703 			/* Enables are not correct, fix them. */
704 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
705 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
706 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
707 			smi_info->handlers->start_transaction(
708 				smi_info->si_sm, msg, 3);
709 			smi_info->si_state = SI_SETTING_ENABLES;
710 		} else if (smi_info->supports_event_msg_buff) {
711 			smi_info->curr_msg = ipmi_alloc_smi_msg();
712 			if (!smi_info->curr_msg) {
713 				smi_info->si_state = SI_NORMAL;
714 				break;
715 			}
716 			start_getting_events(smi_info);
717 		} else {
718 			smi_info->si_state = SI_NORMAL;
719 		}
720 		break;
721 	}
722 
723 	case SI_SETTING_ENABLES:
724 	{
725 		unsigned char msg[4];
726 
727 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
728 		if (msg[2] != 0)
729 			dev_warn_ratelimited(smi_info->io.dev,
730 				 "Could not set the global enables: 0x%x.\n",
731 				 msg[2]);
732 
733 		if (smi_info->supports_event_msg_buff) {
734 			smi_info->curr_msg = ipmi_alloc_smi_msg();
735 			if (!smi_info->curr_msg) {
736 				smi_info->si_state = SI_NORMAL;
737 				break;
738 			}
739 			start_getting_events(smi_info);
740 		} else {
741 			smi_info->si_state = SI_NORMAL;
742 		}
743 		break;
744 	}
745 	}
746 }
747 
748 /*
749  * Called on timeouts and events.  Timeouts should pass the elapsed
750  * time, interrupts should pass in zero.  Must be called with
751  * si_lock held and interrupts disabled.
752  */
753 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
754 					   int time)
755 {
756 	enum si_sm_result si_sm_result;
757 
758 restart:
759 	/*
760 	 * There used to be a loop here that waited a little while
761 	 * (around 25us) before giving up.  That turned out to be
762 	 * pointless, the minimum delays I was seeing were in the 300us
763 	 * range, which is far too long to wait in an interrupt.  So
764 	 * we just run until the state machine tells us something
765 	 * happened or it needs a delay.
766 	 */
767 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
768 	time = 0;
769 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
770 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771 
772 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
773 		smi_inc_stat(smi_info, complete_transactions);
774 
775 		handle_transaction_done(smi_info);
776 		goto restart;
777 	} else if (si_sm_result == SI_SM_HOSED) {
778 		smi_inc_stat(smi_info, hosed_count);
779 
780 		/*
781 		 * Do the before return_hosed_msg, because that
782 		 * releases the lock.
783 		 */
784 		smi_info->si_state = SI_NORMAL;
785 		if (smi_info->curr_msg != NULL) {
786 			/*
787 			 * If we were handling a user message, format
788 			 * a response to send to the upper layer to
789 			 * tell it about the error.
790 			 */
791 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
792 		}
793 		goto restart;
794 	}
795 
796 	/*
797 	 * We prefer handling attn over new messages.  But don't do
798 	 * this if there is not yet an upper layer to handle anything.
799 	 */
800 	if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
801 		unsigned char msg[2];
802 
803 		if (smi_info->si_state != SI_NORMAL) {
804 			/*
805 			 * We got an ATTN, but we are doing something else.
806 			 * Handle the ATTN later.
807 			 */
808 			smi_info->got_attn = true;
809 		} else {
810 			smi_info->got_attn = false;
811 			smi_inc_stat(smi_info, attentions);
812 
813 			/*
814 			 * Got a attn, send down a get message flags to see
815 			 * what's causing it.  It would be better to handle
816 			 * this in the upper layer, but due to the way
817 			 * interrupts work with the SMI, that's not really
818 			 * possible.
819 			 */
820 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
821 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
822 
823 			start_new_msg(smi_info, msg, 2);
824 			smi_info->si_state = SI_GETTING_FLAGS;
825 			goto restart;
826 		}
827 	}
828 
829 	/* If we are currently idle, try to start the next message. */
830 	if (si_sm_result == SI_SM_IDLE) {
831 		smi_inc_stat(smi_info, idles);
832 
833 		si_sm_result = start_next_msg(smi_info);
834 		if (si_sm_result != SI_SM_IDLE)
835 			goto restart;
836 	}
837 
838 	if ((si_sm_result == SI_SM_IDLE)
839 	    && (atomic_read(&smi_info->req_events))) {
840 		/*
841 		 * We are idle and the upper layer requested that I fetch
842 		 * events, so do so.
843 		 */
844 		atomic_set(&smi_info->req_events, 0);
845 
846 		/*
847 		 * Take this opportunity to check the interrupt and
848 		 * message enable state for the BMC.  The BMC can be
849 		 * asynchronously reset, and may thus get interrupts
850 		 * disable and messages disabled.
851 		 */
852 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
853 			start_check_enables(smi_info);
854 		} else {
855 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
856 			if (!smi_info->curr_msg)
857 				goto out;
858 
859 			start_getting_events(smi_info);
860 		}
861 		goto restart;
862 	}
863 
864 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
865 		/* Ok it if fails, the timer will just go off. */
866 		if (timer_delete(&smi_info->si_timer))
867 			smi_info->timer_running = false;
868 	}
869 
870 out:
871 	return si_sm_result;
872 }
873 
874 static void check_start_timer_thread(struct smi_info *smi_info)
875 {
876 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
877 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
878 
879 		if (smi_info->thread)
880 			wake_up_process(smi_info->thread);
881 
882 		start_next_msg(smi_info);
883 		smi_event_handler(smi_info, 0);
884 	}
885 }
886 
887 static void flush_messages(void *send_info)
888 {
889 	struct smi_info *smi_info = send_info;
890 	enum si_sm_result result;
891 
892 	/*
893 	 * Currently, this function is called only in run-to-completion
894 	 * mode.  This means we are single-threaded, no need for locks.
895 	 */
896 	result = smi_event_handler(smi_info, 0);
897 	while (result != SI_SM_IDLE) {
898 		udelay(SI_SHORT_TIMEOUT_USEC);
899 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
900 	}
901 }
902 
903 static void sender(void                *send_info,
904 		   struct ipmi_smi_msg *msg)
905 {
906 	struct smi_info   *smi_info = send_info;
907 	unsigned long     flags;
908 
909 	debug_timestamp(smi_info, "Enqueue");
910 
911 	if (smi_info->run_to_completion) {
912 		/*
913 		 * If we are running to completion, start it.  Upper
914 		 * layer will call flush_messages to clear it out.
915 		 */
916 		smi_info->waiting_msg = msg;
917 		return;
918 	}
919 
920 	spin_lock_irqsave(&smi_info->si_lock, flags);
921 	/*
922 	 * The following two lines don't need to be under the lock for
923 	 * the lock's sake, but they do need SMP memory barriers to
924 	 * avoid getting things out of order.  We are already claiming
925 	 * the lock, anyway, so just do it under the lock to avoid the
926 	 * ordering problem.
927 	 */
928 	BUG_ON(smi_info->waiting_msg);
929 	smi_info->waiting_msg = msg;
930 	check_start_timer_thread(smi_info);
931 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
932 }
933 
934 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
935 {
936 	struct smi_info   *smi_info = send_info;
937 
938 	smi_info->run_to_completion = i_run_to_completion;
939 	if (i_run_to_completion)
940 		flush_messages(smi_info);
941 }
942 
943 /*
944  * Use -1 as a special constant to tell that we are spinning in kipmid
945  * looking for something and not delaying between checks
946  */
947 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
948 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 					 const struct smi_info *smi_info,
950 					 ktime_t *busy_until)
951 {
952 	unsigned int max_busy_us = 0;
953 
954 	if (smi_info->si_num < num_max_busy_us)
955 		max_busy_us = kipmid_max_busy_us[smi_info->si_num];
956 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 		*busy_until = IPMI_TIME_NOT_BUSY;
958 	else if (*busy_until == IPMI_TIME_NOT_BUSY) {
959 		*busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
960 	} else {
961 		if (unlikely(ktime_get() > *busy_until)) {
962 			*busy_until = IPMI_TIME_NOT_BUSY;
963 			return false;
964 		}
965 	}
966 	return true;
967 }
968 
969 
970 /*
971  * A busy-waiting loop for speeding up IPMI operation.
972  *
973  * Lousy hardware makes this hard.  This is only enabled for systems
974  * that are not BT and do not have interrupts.  It starts spinning
975  * when an operation is complete or until max_busy tells it to stop
976  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
977  * Documentation/driver-api/ipmi.rst for details.
978  */
979 static int ipmi_thread(void *data)
980 {
981 	struct smi_info *smi_info = data;
982 	unsigned long flags;
983 	enum si_sm_result smi_result;
984 	ktime_t busy_until = IPMI_TIME_NOT_BUSY;
985 
986 	set_user_nice(current, MAX_NICE);
987 	while (!kthread_should_stop()) {
988 		int busy_wait;
989 
990 		spin_lock_irqsave(&(smi_info->si_lock), flags);
991 		smi_result = smi_event_handler(smi_info, 0);
992 
993 		/*
994 		 * If the driver is doing something, there is a possible
995 		 * race with the timer.  If the timer handler see idle,
996 		 * and the thread here sees something else, the timer
997 		 * handler won't restart the timer even though it is
998 		 * required.  So start it here if necessary.
999 		 */
1000 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1001 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1002 
1003 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1004 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1005 						  &busy_until);
1006 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1007 			; /* do nothing */
1008 		} else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1009 			/*
1010 			 * In maintenance mode we run as fast as
1011 			 * possible to allow firmware updates to
1012 			 * complete as fast as possible, but normally
1013 			 * don't bang on the scheduler.
1014 			 */
1015 			if (smi_info->in_maintenance_mode)
1016 				schedule();
1017 			else
1018 				usleep_range(100, 200);
1019 		} else if (smi_result == SI_SM_IDLE) {
1020 			if (atomic_read(&smi_info->need_watch)) {
1021 				schedule_timeout_interruptible(100);
1022 			} else {
1023 				/* Wait to be woken up when we are needed. */
1024 				__set_current_state(TASK_INTERRUPTIBLE);
1025 				schedule();
1026 			}
1027 		} else {
1028 			schedule_timeout_interruptible(1);
1029 		}
1030 	}
1031 	return 0;
1032 }
1033 
1034 
1035 static void poll(void *send_info)
1036 {
1037 	struct smi_info *smi_info = send_info;
1038 	unsigned long flags = 0;
1039 	bool run_to_completion = smi_info->run_to_completion;
1040 
1041 	/*
1042 	 * Make sure there is some delay in the poll loop so we can
1043 	 * drive time forward and timeout things.
1044 	 */
1045 	udelay(10);
1046 	if (!run_to_completion)
1047 		spin_lock_irqsave(&smi_info->si_lock, flags);
1048 	smi_event_handler(smi_info, 10);
1049 	if (!run_to_completion)
1050 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 }
1052 
1053 static void request_events(void *send_info)
1054 {
1055 	struct smi_info *smi_info = send_info;
1056 
1057 	if (!smi_info->has_event_buffer)
1058 		return;
1059 
1060 	atomic_set(&smi_info->req_events, 1);
1061 }
1062 
1063 static void set_need_watch(void *send_info, unsigned int watch_mask)
1064 {
1065 	struct smi_info *smi_info = send_info;
1066 	unsigned long flags;
1067 	int enable;
1068 
1069 	enable = !!watch_mask;
1070 
1071 	atomic_set(&smi_info->need_watch, enable);
1072 	spin_lock_irqsave(&smi_info->si_lock, flags);
1073 	check_start_timer_thread(smi_info);
1074 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1075 }
1076 
1077 static void smi_timeout(struct timer_list *t)
1078 {
1079 	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1080 	enum si_sm_result smi_result;
1081 	unsigned long     flags;
1082 	unsigned long     jiffies_now;
1083 	long              time_diff;
1084 	long		  timeout;
1085 
1086 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1087 	debug_timestamp(smi_info, "Timer");
1088 
1089 	jiffies_now = jiffies;
1090 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1091 		     * SI_USEC_PER_JIFFY);
1092 	smi_result = smi_event_handler(smi_info, time_diff);
1093 
1094 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1095 		/* Running with interrupts, only do long timeouts. */
1096 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1097 		smi_inc_stat(smi_info, long_timeouts);
1098 		goto do_mod_timer;
1099 	}
1100 
1101 	/*
1102 	 * If the state machine asks for a short delay, then shorten
1103 	 * the timer timeout.
1104 	 */
1105 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1106 		smi_inc_stat(smi_info, short_timeouts);
1107 		timeout = jiffies + 1;
1108 	} else {
1109 		smi_inc_stat(smi_info, long_timeouts);
1110 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1111 	}
1112 
1113 do_mod_timer:
1114 	if (smi_result != SI_SM_IDLE)
1115 		smi_mod_timer(smi_info, timeout);
1116 	else
1117 		smi_info->timer_running = false;
1118 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1119 }
1120 
1121 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1122 {
1123 	struct smi_info *smi_info = data;
1124 	unsigned long   flags;
1125 
1126 	if (smi_info->io.si_info->type == SI_BT)
1127 		/* We need to clear the IRQ flag for the BT interface. */
1128 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1129 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1130 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1131 
1132 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1133 
1134 	smi_inc_stat(smi_info, interrupts);
1135 
1136 	debug_timestamp(smi_info, "Interrupt");
1137 
1138 	smi_event_handler(smi_info, 0);
1139 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1140 	return IRQ_HANDLED;
1141 }
1142 
1143 static int smi_start_processing(void            *send_info,
1144 				struct ipmi_smi *intf)
1145 {
1146 	struct smi_info *new_smi = send_info;
1147 	int             enable = 0;
1148 
1149 	new_smi->intf = intf;
1150 
1151 	/* Set up the timer that drives the interface. */
1152 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1153 	new_smi->timer_can_start = true;
1154 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1155 
1156 	/* Try to claim any interrupts. */
1157 	if (new_smi->io.irq_setup) {
1158 		new_smi->io.irq_handler_data = new_smi;
1159 		new_smi->io.irq_setup(&new_smi->io);
1160 	}
1161 
1162 	/*
1163 	 * Check if the user forcefully enabled the daemon.
1164 	 */
1165 	if (new_smi->si_num < num_force_kipmid)
1166 		enable = force_kipmid[new_smi->si_num];
1167 	/*
1168 	 * The BT interface is efficient enough to not need a thread,
1169 	 * and there is no need for a thread if we have interrupts.
1170 	 */
1171 	else if (new_smi->io.si_info->type != SI_BT && !new_smi->io.irq)
1172 		enable = 1;
1173 
1174 	if (enable) {
1175 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 					      "kipmi%d", new_smi->si_num);
1177 		if (IS_ERR(new_smi->thread)) {
1178 			dev_notice(new_smi->io.dev,
1179 				   "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1180 				   PTR_ERR(new_smi->thread));
1181 			new_smi->thread = NULL;
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1189 {
1190 	struct smi_info *smi = send_info;
1191 
1192 	data->addr_src = smi->io.addr_source;
1193 	data->dev = smi->io.dev;
1194 	data->addr_info = smi->io.addr_info;
1195 	get_device(smi->io.dev);
1196 
1197 	return 0;
1198 }
1199 
1200 static void set_maintenance_mode(void *send_info, bool enable)
1201 {
1202 	struct smi_info   *smi_info = send_info;
1203 
1204 	if (!enable)
1205 		atomic_set(&smi_info->req_events, 0);
1206 	smi_info->in_maintenance_mode = enable;
1207 }
1208 
1209 static void shutdown_smi(void *send_info);
1210 static const struct ipmi_smi_handlers handlers = {
1211 	.owner                  = THIS_MODULE,
1212 	.start_processing       = smi_start_processing,
1213 	.shutdown               = shutdown_smi,
1214 	.get_smi_info		= get_smi_info,
1215 	.sender			= sender,
1216 	.request_events		= request_events,
1217 	.set_need_watch		= set_need_watch,
1218 	.set_maintenance_mode   = set_maintenance_mode,
1219 	.set_run_to_completion  = set_run_to_completion,
1220 	.flush_messages		= flush_messages,
1221 	.poll			= poll,
1222 };
1223 
1224 static LIST_HEAD(smi_infos);
1225 static DEFINE_MUTEX(smi_infos_lock);
1226 static int smi_num; /* Used to sequence the SMIs */
1227 
1228 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1229 
1230 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1231 MODULE_PARM_DESC(force_kipmid,
1232 		 "Force the kipmi daemon to be enabled (1) or disabled(0).  Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1233 module_param(unload_when_empty, bool, 0);
1234 MODULE_PARM_DESC(unload_when_empty,
1235 		 "Unload the module if no interfaces are specified or found, default is 1.  Setting to 0 is useful for hot add of devices using hotmod.");
1236 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1237 MODULE_PARM_DESC(kipmid_max_busy_us,
1238 		 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1239 
1240 void ipmi_irq_finish_setup(struct si_sm_io *io)
1241 {
1242 	if (io->si_info->type == SI_BT)
1243 		/* Enable the interrupt in the BT interface. */
1244 		io->outputb(io, IPMI_BT_INTMASK_REG,
1245 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1246 }
1247 
1248 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1249 {
1250 	if (io->si_info->type == SI_BT)
1251 		/* Disable the interrupt in the BT interface. */
1252 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1253 }
1254 
1255 static void std_irq_cleanup(struct si_sm_io *io)
1256 {
1257 	ipmi_irq_start_cleanup(io);
1258 	free_irq(io->irq, io->irq_handler_data);
1259 }
1260 
1261 int ipmi_std_irq_setup(struct si_sm_io *io)
1262 {
1263 	int rv;
1264 
1265 	if (!io->irq)
1266 		return 0;
1267 
1268 	rv = request_irq(io->irq,
1269 			 ipmi_si_irq_handler,
1270 			 IRQF_SHARED,
1271 			 SI_DEVICE_NAME,
1272 			 io->irq_handler_data);
1273 	if (rv) {
1274 		dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1275 			 SI_DEVICE_NAME, io->irq);
1276 		io->irq = 0;
1277 	} else {
1278 		io->irq_cleanup = std_irq_cleanup;
1279 		ipmi_irq_finish_setup(io);
1280 		dev_info(io->dev, "Using irq %d\n", io->irq);
1281 	}
1282 
1283 	return rv;
1284 }
1285 
1286 static int wait_for_msg_done(struct smi_info *smi_info)
1287 {
1288 	enum si_sm_result     smi_result;
1289 
1290 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1291 	for (;;) {
1292 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1293 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1294 			schedule_timeout_uninterruptible(1);
1295 			smi_result = smi_info->handlers->event(
1296 				smi_info->si_sm, jiffies_to_usecs(1));
1297 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1298 			smi_result = smi_info->handlers->event(
1299 				smi_info->si_sm, 0);
1300 		} else
1301 			break;
1302 	}
1303 	if (smi_result == SI_SM_HOSED)
1304 		/*
1305 		 * We couldn't get the state machine to run, so whatever's at
1306 		 * the port is probably not an IPMI SMI interface.
1307 		 */
1308 		return -ENODEV;
1309 
1310 	return 0;
1311 }
1312 
1313 static int try_get_dev_id(struct smi_info *smi_info)
1314 {
1315 	unsigned char         msg[2];
1316 	unsigned char         *resp;
1317 	unsigned long         resp_len;
1318 	int                   rv = 0;
1319 	unsigned int          retry_count = 0;
1320 
1321 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1322 	if (!resp)
1323 		return -ENOMEM;
1324 
1325 	/*
1326 	 * Do a Get Device ID command, since it comes back with some
1327 	 * useful info.
1328 	 */
1329 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1330 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1331 
1332 retry:
1333 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1334 
1335 	rv = wait_for_msg_done(smi_info);
1336 	if (rv)
1337 		goto out;
1338 
1339 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1340 						  resp, IPMI_MAX_MSG_LENGTH);
1341 
1342 	/* Check and record info from the get device id, in case we need it. */
1343 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1344 			resp + 2, resp_len - 2, &smi_info->device_id);
1345 	if (rv) {
1346 		/* record completion code */
1347 		unsigned char cc = *(resp + 2);
1348 
1349 		if (cc != IPMI_CC_NO_ERROR &&
1350 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1351 			dev_warn_ratelimited(smi_info->io.dev,
1352 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
1353 			    cc);
1354 			goto retry;
1355 		}
1356 	}
1357 
1358 out:
1359 	kfree(resp);
1360 	return rv;
1361 }
1362 
1363 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1364 {
1365 	unsigned char         msg[3];
1366 	unsigned char         *resp;
1367 	unsigned long         resp_len;
1368 	int                   rv;
1369 
1370 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1371 	if (!resp)
1372 		return -ENOMEM;
1373 
1374 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1375 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1376 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1377 
1378 	rv = wait_for_msg_done(smi_info);
1379 	if (rv) {
1380 		dev_warn(smi_info->io.dev,
1381 			 "Error getting response from get global enables command: %d\n",
1382 			 rv);
1383 		goto out;
1384 	}
1385 
1386 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1387 						  resp, IPMI_MAX_MSG_LENGTH);
1388 
1389 	if (resp_len < 4 ||
1390 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1391 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1392 			resp[2] != 0) {
1393 		dev_warn(smi_info->io.dev,
1394 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1395 			 resp_len, resp[0], resp[1], resp[2]);
1396 		rv = -EINVAL;
1397 		goto out;
1398 	} else {
1399 		*enables = resp[3];
1400 	}
1401 
1402 out:
1403 	kfree(resp);
1404 	return rv;
1405 }
1406 
1407 /*
1408  * Returns 1 if it gets an error from the command.
1409  */
1410 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1411 {
1412 	unsigned char         msg[3];
1413 	unsigned char         *resp;
1414 	unsigned long         resp_len;
1415 	int                   rv;
1416 
1417 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1418 	if (!resp)
1419 		return -ENOMEM;
1420 
1421 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1422 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1423 	msg[2] = enables;
1424 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1425 
1426 	rv = wait_for_msg_done(smi_info);
1427 	if (rv) {
1428 		dev_warn(smi_info->io.dev,
1429 			 "Error getting response from set global enables command: %d\n",
1430 			 rv);
1431 		goto out;
1432 	}
1433 
1434 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1435 						  resp, IPMI_MAX_MSG_LENGTH);
1436 
1437 	if (resp_len < 3 ||
1438 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1439 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1440 		dev_warn(smi_info->io.dev,
1441 			 "Invalid return from set global enables command: %ld %x %x\n",
1442 			 resp_len, resp[0], resp[1]);
1443 		rv = -EINVAL;
1444 		goto out;
1445 	}
1446 
1447 	if (resp[2] != 0)
1448 		rv = 1;
1449 
1450 out:
1451 	kfree(resp);
1452 	return rv;
1453 }
1454 
1455 /*
1456  * Some BMCs do not support clearing the receive irq bit in the global
1457  * enables (even if they don't support interrupts on the BMC).  Check
1458  * for this and handle it properly.
1459  */
1460 static void check_clr_rcv_irq(struct smi_info *smi_info)
1461 {
1462 	u8 enables = 0;
1463 	int rv;
1464 
1465 	rv = get_global_enables(smi_info, &enables);
1466 	if (!rv) {
1467 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1468 			/* Already clear, should work ok. */
1469 			return;
1470 
1471 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1472 		rv = set_global_enables(smi_info, enables);
1473 	}
1474 
1475 	if (rv < 0) {
1476 		dev_err(smi_info->io.dev,
1477 			"Cannot check clearing the rcv irq: %d\n", rv);
1478 		return;
1479 	}
1480 
1481 	if (rv) {
1482 		/*
1483 		 * An error when setting the event buffer bit means
1484 		 * clearing the bit is not supported.
1485 		 */
1486 		dev_warn(smi_info->io.dev,
1487 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1488 		smi_info->cannot_disable_irq = true;
1489 	}
1490 }
1491 
1492 /*
1493  * Some BMCs do not support setting the interrupt bits in the global
1494  * enables even if they support interrupts.  Clearly bad, but we can
1495  * compensate.
1496  */
1497 static void check_set_rcv_irq(struct smi_info *smi_info)
1498 {
1499 	u8 enables = 0;
1500 	int rv;
1501 
1502 	if (!smi_info->io.irq)
1503 		return;
1504 
1505 	rv = get_global_enables(smi_info, &enables);
1506 	if (!rv) {
1507 		enables |= IPMI_BMC_RCV_MSG_INTR;
1508 		rv = set_global_enables(smi_info, enables);
1509 	}
1510 
1511 	if (rv < 0) {
1512 		dev_err(smi_info->io.dev,
1513 			"Cannot check setting the rcv irq: %d\n", rv);
1514 		return;
1515 	}
1516 
1517 	if (rv) {
1518 		/*
1519 		 * An error when setting the event buffer bit means
1520 		 * setting the bit is not supported.
1521 		 */
1522 		dev_warn(smi_info->io.dev,
1523 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1524 		smi_info->cannot_disable_irq = true;
1525 		smi_info->irq_enable_broken = true;
1526 	}
1527 }
1528 
1529 static int try_enable_event_buffer(struct smi_info *smi_info)
1530 {
1531 	unsigned char         msg[3];
1532 	unsigned char         *resp;
1533 	unsigned long         resp_len;
1534 	int                   rv = 0;
1535 
1536 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1537 	if (!resp)
1538 		return -ENOMEM;
1539 
1540 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1541 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1542 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1543 
1544 	rv = wait_for_msg_done(smi_info);
1545 	if (rv) {
1546 		pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1547 		goto out;
1548 	}
1549 
1550 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1551 						  resp, IPMI_MAX_MSG_LENGTH);
1552 
1553 	if (resp_len < 4 ||
1554 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1555 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1556 			resp[2] != 0) {
1557 		pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1558 		rv = -EINVAL;
1559 		goto out;
1560 	}
1561 
1562 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1563 		/* buffer is already enabled, nothing to do. */
1564 		smi_info->supports_event_msg_buff = true;
1565 		goto out;
1566 	}
1567 
1568 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1569 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1570 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1571 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1572 
1573 	rv = wait_for_msg_done(smi_info);
1574 	if (rv) {
1575 		pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1576 		goto out;
1577 	}
1578 
1579 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1580 						  resp, IPMI_MAX_MSG_LENGTH);
1581 
1582 	if (resp_len < 3 ||
1583 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1584 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1585 		pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1586 		rv = -EINVAL;
1587 		goto out;
1588 	}
1589 
1590 	if (resp[2] != 0)
1591 		/*
1592 		 * An error when setting the event buffer bit means
1593 		 * that the event buffer is not supported.
1594 		 */
1595 		rv = -ENOENT;
1596 	else
1597 		smi_info->supports_event_msg_buff = true;
1598 
1599 out:
1600 	kfree(resp);
1601 	return rv;
1602 }
1603 
1604 #define IPMI_SI_ATTR(name) \
1605 static ssize_t name##_show(struct device *dev,			\
1606 			   struct device_attribute *attr,		\
1607 			   char *buf)					\
1608 {									\
1609 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1610 									\
1611 	return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name));	\
1612 }									\
1613 static DEVICE_ATTR_RO(name)
1614 
1615 static ssize_t type_show(struct device *dev,
1616 			 struct device_attribute *attr,
1617 			 char *buf)
1618 {
1619 	struct smi_info *smi_info = dev_get_drvdata(dev);
1620 
1621 	return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_info->type]);
1622 }
1623 static DEVICE_ATTR_RO(type);
1624 
1625 static ssize_t interrupts_enabled_show(struct device *dev,
1626 				       struct device_attribute *attr,
1627 				       char *buf)
1628 {
1629 	struct smi_info *smi_info = dev_get_drvdata(dev);
1630 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1631 
1632 	return sysfs_emit(buf, "%d\n", enabled);
1633 }
1634 static DEVICE_ATTR_RO(interrupts_enabled);
1635 
1636 IPMI_SI_ATTR(short_timeouts);
1637 IPMI_SI_ATTR(long_timeouts);
1638 IPMI_SI_ATTR(idles);
1639 IPMI_SI_ATTR(interrupts);
1640 IPMI_SI_ATTR(attentions);
1641 IPMI_SI_ATTR(flag_fetches);
1642 IPMI_SI_ATTR(hosed_count);
1643 IPMI_SI_ATTR(complete_transactions);
1644 IPMI_SI_ATTR(events);
1645 IPMI_SI_ATTR(watchdog_pretimeouts);
1646 IPMI_SI_ATTR(incoming_messages);
1647 
1648 static ssize_t params_show(struct device *dev,
1649 			   struct device_attribute *attr,
1650 			   char *buf)
1651 {
1652 	struct smi_info *smi_info = dev_get_drvdata(dev);
1653 
1654 	return sysfs_emit(buf,
1655 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1656 			si_to_str[smi_info->io.si_info->type],
1657 			addr_space_to_str[smi_info->io.addr_space],
1658 			smi_info->io.addr_data,
1659 			smi_info->io.regspacing,
1660 			smi_info->io.regsize,
1661 			smi_info->io.regshift,
1662 			smi_info->io.irq,
1663 			smi_info->io.slave_addr);
1664 }
1665 static DEVICE_ATTR_RO(params);
1666 
1667 static struct attribute *ipmi_si_dev_attrs[] = {
1668 	&dev_attr_type.attr,
1669 	&dev_attr_interrupts_enabled.attr,
1670 	&dev_attr_short_timeouts.attr,
1671 	&dev_attr_long_timeouts.attr,
1672 	&dev_attr_idles.attr,
1673 	&dev_attr_interrupts.attr,
1674 	&dev_attr_attentions.attr,
1675 	&dev_attr_flag_fetches.attr,
1676 	&dev_attr_hosed_count.attr,
1677 	&dev_attr_complete_transactions.attr,
1678 	&dev_attr_events.attr,
1679 	&dev_attr_watchdog_pretimeouts.attr,
1680 	&dev_attr_incoming_messages.attr,
1681 	&dev_attr_params.attr,
1682 	NULL
1683 };
1684 
1685 static const struct attribute_group ipmi_si_dev_attr_group = {
1686 	.attrs		= ipmi_si_dev_attrs,
1687 };
1688 
1689 /*
1690  * oem_data_avail_to_receive_msg_avail
1691  * @info - smi_info structure with msg_flags set
1692  *
1693  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1694  * Returns 1 indicating need to re-run handle_flags().
1695  */
1696 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1697 {
1698 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1699 			       RECEIVE_MSG_AVAIL);
1700 	return 1;
1701 }
1702 
1703 /*
1704  * setup_dell_poweredge_oem_data_handler
1705  * @info - smi_info.device_id must be populated
1706  *
1707  * Systems that match, but have firmware version < 1.40 may assert
1708  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1709  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1710  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1711  * as RECEIVE_MSG_AVAIL instead.
1712  *
1713  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1714  * assert the OEM[012] bits, and if it did, the driver would have to
1715  * change to handle that properly, we don't actually check for the
1716  * firmware version.
1717  * Device ID = 0x20                BMC on PowerEdge 8G servers
1718  * Device Revision = 0x80
1719  * Firmware Revision1 = 0x01       BMC version 1.40
1720  * Firmware Revision2 = 0x40       BCD encoded
1721  * IPMI Version = 0x51             IPMI 1.5
1722  * Manufacturer ID = A2 02 00      Dell IANA
1723  *
1724  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1725  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1726  *
1727  */
1728 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1729 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1730 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1731 #define DELL_IANA_MFR_ID 0x0002a2
1732 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1733 {
1734 	struct ipmi_device_id *id = &smi_info->device_id;
1735 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1736 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1737 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1738 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1739 			smi_info->oem_data_avail_handler =
1740 				oem_data_avail_to_receive_msg_avail;
1741 		} else if (ipmi_version_major(id) < 1 ||
1742 			   (ipmi_version_major(id) == 1 &&
1743 			    ipmi_version_minor(id) < 5)) {
1744 			smi_info->oem_data_avail_handler =
1745 				oem_data_avail_to_receive_msg_avail;
1746 		}
1747 	}
1748 }
1749 
1750 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1751 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1752 {
1753 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1754 
1755 	/* Make it a response */
1756 	msg->rsp[0] = msg->data[0] | 4;
1757 	msg->rsp[1] = msg->data[1];
1758 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1759 	msg->rsp_size = 3;
1760 	smi_info->curr_msg = NULL;
1761 	deliver_recv_msg(smi_info, msg);
1762 }
1763 
1764 /*
1765  * dell_poweredge_bt_xaction_handler
1766  * @info - smi_info.device_id must be populated
1767  *
1768  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1769  * not respond to a Get SDR command if the length of the data
1770  * requested is exactly 0x3A, which leads to command timeouts and no
1771  * data returned.  This intercepts such commands, and causes userspace
1772  * callers to try again with a different-sized buffer, which succeeds.
1773  */
1774 
1775 #define STORAGE_NETFN 0x0A
1776 #define STORAGE_CMD_GET_SDR 0x23
1777 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1778 					     unsigned long unused,
1779 					     void *in)
1780 {
1781 	struct smi_info *smi_info = in;
1782 	unsigned char *data = smi_info->curr_msg->data;
1783 	unsigned int size   = smi_info->curr_msg->data_size;
1784 	if (size >= 8 &&
1785 	    (data[0]>>2) == STORAGE_NETFN &&
1786 	    data[1] == STORAGE_CMD_GET_SDR &&
1787 	    data[7] == 0x3A) {
1788 		return_hosed_msg_badsize(smi_info);
1789 		return NOTIFY_STOP;
1790 	}
1791 	return NOTIFY_DONE;
1792 }
1793 
1794 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1795 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1796 };
1797 
1798 /*
1799  * setup_dell_poweredge_bt_xaction_handler
1800  * @info - smi_info.device_id must be filled in already
1801  *
1802  * Fills in smi_info.device_id.start_transaction_pre_hook
1803  * when we know what function to use there.
1804  */
1805 static void
1806 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1807 {
1808 	struct ipmi_device_id *id = &smi_info->device_id;
1809 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1810 	    smi_info->io.si_info->type == SI_BT)
1811 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1812 }
1813 
1814 /*
1815  * setup_oem_data_handler
1816  * @info - smi_info.device_id must be filled in already
1817  *
1818  * Fills in smi_info.device_id.oem_data_available_handler
1819  * when we know what function to use there.
1820  */
1821 
1822 static void setup_oem_data_handler(struct smi_info *smi_info)
1823 {
1824 	setup_dell_poweredge_oem_data_handler(smi_info);
1825 }
1826 
1827 static void setup_xaction_handlers(struct smi_info *smi_info)
1828 {
1829 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1830 }
1831 
1832 static void check_for_broken_irqs(struct smi_info *smi_info)
1833 {
1834 	check_clr_rcv_irq(smi_info);
1835 	check_set_rcv_irq(smi_info);
1836 }
1837 
1838 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1839 {
1840 	if (smi_info->thread != NULL) {
1841 		kthread_stop(smi_info->thread);
1842 		smi_info->thread = NULL;
1843 	}
1844 
1845 	smi_info->timer_can_start = false;
1846 	timer_delete_sync(&smi_info->si_timer);
1847 }
1848 
1849 static struct smi_info *find_dup_si(struct smi_info *info)
1850 {
1851 	struct smi_info *e;
1852 
1853 	list_for_each_entry(e, &smi_infos, link) {
1854 		if (e->io.addr_space != info->io.addr_space)
1855 			continue;
1856 		if (e->io.addr_data == info->io.addr_data) {
1857 			/*
1858 			 * This is a cheap hack, ACPI doesn't have a defined
1859 			 * slave address but SMBIOS does.  Pick it up from
1860 			 * any source that has it available.
1861 			 */
1862 			if (info->io.slave_addr && !e->io.slave_addr)
1863 				e->io.slave_addr = info->io.slave_addr;
1864 			return e;
1865 		}
1866 	}
1867 
1868 	return NULL;
1869 }
1870 
1871 int ipmi_si_add_smi(struct si_sm_io *io)
1872 {
1873 	int rv = 0;
1874 	struct smi_info *new_smi, *dup;
1875 
1876 	/*
1877 	 * If the user gave us a hard-coded device at the same
1878 	 * address, they presumably want us to use it and not what is
1879 	 * in the firmware.
1880 	 */
1881 	if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1882 	    ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1883 		dev_info(io->dev,
1884 			 "Hard-coded device at this address already exists");
1885 		return -ENODEV;
1886 	}
1887 
1888 	if (!io->io_setup) {
1889 		if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1890 		    io->addr_space == IPMI_IO_ADDR_SPACE) {
1891 			io->io_setup = ipmi_si_port_setup;
1892 		} else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1893 			io->io_setup = ipmi_si_mem_setup;
1894 		} else {
1895 			return -EINVAL;
1896 		}
1897 	}
1898 
1899 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1900 	if (!new_smi)
1901 		return -ENOMEM;
1902 	spin_lock_init(&new_smi->si_lock);
1903 
1904 	new_smi->io = *io;
1905 
1906 	mutex_lock(&smi_infos_lock);
1907 	dup = find_dup_si(new_smi);
1908 	if (dup) {
1909 		if (new_smi->io.addr_source == SI_ACPI &&
1910 		    dup->io.addr_source == SI_SMBIOS) {
1911 			/* We prefer ACPI over SMBIOS. */
1912 			dev_info(dup->io.dev,
1913 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1914 				 si_to_str[new_smi->io.si_info->type]);
1915 			cleanup_one_si(dup);
1916 		} else {
1917 			dev_info(new_smi->io.dev,
1918 				 "%s-specified %s state machine: duplicate\n",
1919 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1920 				 si_to_str[new_smi->io.si_info->type]);
1921 			rv = -EBUSY;
1922 			kfree(new_smi);
1923 			goto out_err;
1924 		}
1925 	}
1926 
1927 	pr_info("Adding %s-specified %s state machine\n",
1928 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1929 		si_to_str[new_smi->io.si_info->type]);
1930 
1931 	list_add_tail(&new_smi->link, &smi_infos);
1932 
1933 	if (initialized)
1934 		rv = try_smi_init(new_smi);
1935 out_err:
1936 	mutex_unlock(&smi_infos_lock);
1937 	return rv;
1938 }
1939 
1940 /*
1941  * Try to start up an interface.  Must be called with smi_infos_lock
1942  * held, primarily to keep smi_num consistent, we only one to do these
1943  * one at a time.
1944  */
1945 static int try_smi_init(struct smi_info *new_smi)
1946 {
1947 	int rv = 0;
1948 	int i;
1949 
1950 	pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1951 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1952 		si_to_str[new_smi->io.si_info->type],
1953 		addr_space_to_str[new_smi->io.addr_space],
1954 		new_smi->io.addr_data,
1955 		new_smi->io.slave_addr, new_smi->io.irq);
1956 
1957 	switch (new_smi->io.si_info->type) {
1958 	case SI_KCS:
1959 		new_smi->handlers = &kcs_smi_handlers;
1960 		break;
1961 
1962 	case SI_SMIC:
1963 		new_smi->handlers = &smic_smi_handlers;
1964 		break;
1965 
1966 	case SI_BT:
1967 		new_smi->handlers = &bt_smi_handlers;
1968 		break;
1969 
1970 	default:
1971 		/* No support for anything else yet. */
1972 		rv = -EIO;
1973 		goto out_err;
1974 	}
1975 
1976 	new_smi->si_num = smi_num;
1977 
1978 	/* Do this early so it's available for logs. */
1979 	if (!new_smi->io.dev) {
1980 		pr_err("IPMI interface added with no device\n");
1981 		rv = -EIO;
1982 		goto out_err;
1983 	}
1984 
1985 	/* Allocate the state machine's data and initialize it. */
1986 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1987 	if (!new_smi->si_sm) {
1988 		rv = -ENOMEM;
1989 		goto out_err;
1990 	}
1991 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1992 							   &new_smi->io);
1993 
1994 	/* Now that we know the I/O size, we can set up the I/O. */
1995 	rv = new_smi->io.io_setup(&new_smi->io);
1996 	if (rv) {
1997 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1998 		goto out_err;
1999 	}
2000 
2001 	/* Do low-level detection first. */
2002 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2003 		if (new_smi->io.addr_source)
2004 			dev_err(new_smi->io.dev,
2005 				"Interface detection failed\n");
2006 		rv = -ENODEV;
2007 		goto out_err;
2008 	}
2009 
2010 	/*
2011 	 * Attempt a get device id command.  If it fails, we probably
2012 	 * don't have a BMC here.
2013 	 */
2014 	rv = try_get_dev_id(new_smi);
2015 	if (rv) {
2016 		if (new_smi->io.addr_source)
2017 			dev_err(new_smi->io.dev,
2018 			       "There appears to be no BMC at this location\n");
2019 		goto out_err;
2020 	}
2021 
2022 	setup_oem_data_handler(new_smi);
2023 	setup_xaction_handlers(new_smi);
2024 	check_for_broken_irqs(new_smi);
2025 
2026 	new_smi->waiting_msg = NULL;
2027 	new_smi->curr_msg = NULL;
2028 	atomic_set(&new_smi->req_events, 0);
2029 	new_smi->run_to_completion = false;
2030 	for (i = 0; i < SI_NUM_STATS; i++)
2031 		atomic_set(&new_smi->stats[i], 0);
2032 
2033 	new_smi->interrupt_disabled = true;
2034 	atomic_set(&new_smi->need_watch, 0);
2035 
2036 	rv = try_enable_event_buffer(new_smi);
2037 	if (rv == 0)
2038 		new_smi->has_event_buffer = true;
2039 
2040 	/*
2041 	 * Start clearing the flags before we enable interrupts or the
2042 	 * timer to avoid racing with the timer.
2043 	 */
2044 	start_clear_flags(new_smi);
2045 
2046 	/*
2047 	 * IRQ is defined to be set when non-zero.  req_events will
2048 	 * cause a global flags check that will enable interrupts.
2049 	 */
2050 	if (new_smi->io.irq) {
2051 		new_smi->interrupt_disabled = false;
2052 		atomic_set(&new_smi->req_events, 1);
2053 	}
2054 
2055 	dev_set_drvdata(new_smi->io.dev, new_smi);
2056 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2057 	if (rv) {
2058 		dev_err(new_smi->io.dev,
2059 			"Unable to add device attributes: error %d\n",
2060 			rv);
2061 		goto out_err;
2062 	}
2063 	new_smi->dev_group_added = true;
2064 
2065 	rv = ipmi_register_smi(&handlers,
2066 			       new_smi,
2067 			       new_smi->io.dev,
2068 			       new_smi->io.slave_addr);
2069 	if (rv) {
2070 		dev_err(new_smi->io.dev,
2071 			"Unable to register device: error %d\n",
2072 			rv);
2073 		goto out_err;
2074 	}
2075 
2076 	/* Don't increment till we know we have succeeded. */
2077 	smi_num++;
2078 
2079 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2080 		 si_to_str[new_smi->io.si_info->type]);
2081 
2082 	WARN_ON(new_smi->io.dev->init_name != NULL);
2083 
2084  out_err:
2085 	if (rv && new_smi->io.io_cleanup) {
2086 		new_smi->io.io_cleanup(&new_smi->io);
2087 		new_smi->io.io_cleanup = NULL;
2088 	}
2089 
2090 	if (rv && new_smi->si_sm) {
2091 		kfree(new_smi->si_sm);
2092 		new_smi->si_sm = NULL;
2093 	}
2094 
2095 	return rv;
2096 }
2097 
2098 /*
2099  * Devices in the same address space at the same address are the same.
2100  */
2101 static bool __init ipmi_smi_info_same(struct smi_info *e1, struct smi_info *e2)
2102 {
2103 	return (e1->io.addr_space == e2->io.addr_space &&
2104 		e1->io.addr_data == e2->io.addr_data);
2105 }
2106 
2107 static int __init init_ipmi_si(void)
2108 {
2109 	struct smi_info *e, *e2;
2110 	enum ipmi_addr_src type = SI_INVALID;
2111 
2112 	if (initialized)
2113 		return 0;
2114 
2115 	ipmi_hardcode_init();
2116 
2117 	pr_info("IPMI System Interface driver\n");
2118 
2119 	ipmi_si_platform_init();
2120 
2121 	ipmi_si_pci_init();
2122 
2123 	ipmi_si_parisc_init();
2124 
2125 	mutex_lock(&smi_infos_lock);
2126 
2127 	/*
2128 	 * Scan through all the devices.  We prefer devices with
2129 	 * interrupts, so go through those first in case there are any
2130 	 * duplicates that don't have the interrupt set.
2131 	 */
2132 	list_for_each_entry(e, &smi_infos, link) {
2133 		bool dup = false;
2134 
2135 		/* Register ones with interrupts first. */
2136 		if (!e->io.irq)
2137 			continue;
2138 
2139 		/*
2140 		 * Go through the ones we have already seen to see if this
2141 		 * is a dup.
2142 		 */
2143 		list_for_each_entry(e2, &smi_infos, link) {
2144 			if (e2 == e)
2145 				break;
2146 			if (e2->io.irq && ipmi_smi_info_same(e, e2)) {
2147 				dup = true;
2148 				break;
2149 			}
2150 		}
2151 		if (!dup)
2152 			try_smi_init(e);
2153 	}
2154 
2155 	/*
2156 	 * Now try devices without interrupts.
2157 	 */
2158 	list_for_each_entry(e, &smi_infos, link) {
2159 		bool dup = false;
2160 
2161 		if (e->io.irq)
2162 			continue;
2163 
2164 		/*
2165 		 * Go through the ones we have already seen to see if
2166 		 * this is a dup.  We have already looked at the ones
2167 		 * with interrupts.
2168 		 */
2169 		list_for_each_entry(e2, &smi_infos, link) {
2170 			if (!e2->io.irq)
2171 				continue;
2172 			if (ipmi_smi_info_same(e, e2)) {
2173 				dup = true;
2174 				break;
2175 			}
2176 		}
2177 		list_for_each_entry(e2, &smi_infos, link) {
2178 			if (e2 == e)
2179 				break;
2180 			if (ipmi_smi_info_same(e, e2)) {
2181 				dup = true;
2182 				break;
2183 			}
2184 		}
2185 		if (!dup)
2186 			try_smi_init(e);
2187 	}
2188 
2189 	initialized = true;
2190 	mutex_unlock(&smi_infos_lock);
2191 
2192 	if (type)
2193 		return 0;
2194 
2195 	mutex_lock(&smi_infos_lock);
2196 	if (unload_when_empty && list_empty(&smi_infos)) {
2197 		mutex_unlock(&smi_infos_lock);
2198 		cleanup_ipmi_si();
2199 		pr_warn("Unable to find any System Interface(s)\n");
2200 		return -ENODEV;
2201 	} else {
2202 		mutex_unlock(&smi_infos_lock);
2203 		return 0;
2204 	}
2205 }
2206 module_init(init_ipmi_si);
2207 
2208 static void wait_msg_processed(struct smi_info *smi_info)
2209 {
2210 	unsigned long jiffies_now;
2211 	long time_diff;
2212 
2213 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2214 		jiffies_now = jiffies;
2215 		time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2216 		     * SI_USEC_PER_JIFFY);
2217 		smi_event_handler(smi_info, time_diff);
2218 		schedule_timeout_uninterruptible(1);
2219 	}
2220 }
2221 
2222 static void shutdown_smi(void *send_info)
2223 {
2224 	struct smi_info *smi_info = send_info;
2225 
2226 	if (smi_info->dev_group_added) {
2227 		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2228 		smi_info->dev_group_added = false;
2229 	}
2230 	if (smi_info->io.dev)
2231 		dev_set_drvdata(smi_info->io.dev, NULL);
2232 
2233 	/*
2234 	 * Make sure that interrupts, the timer and the thread are
2235 	 * stopped and will not run again.
2236 	 */
2237 	smi_info->interrupt_disabled = true;
2238 	if (smi_info->io.irq_cleanup) {
2239 		smi_info->io.irq_cleanup(&smi_info->io);
2240 		smi_info->io.irq_cleanup = NULL;
2241 	}
2242 	stop_timer_and_thread(smi_info);
2243 
2244 	/*
2245 	 * Wait until we know that we are out of any interrupt
2246 	 * handlers might have been running before we freed the
2247 	 * interrupt.
2248 	 */
2249 	synchronize_rcu();
2250 
2251 	/*
2252 	 * Timeouts are stopped, now make sure the interrupts are off
2253 	 * in the BMC.  Note that timers and CPU interrupts are off,
2254 	 * so no need for locks.
2255 	 */
2256 	wait_msg_processed(smi_info);
2257 
2258 	if (smi_info->handlers)
2259 		disable_si_irq(smi_info);
2260 
2261 	wait_msg_processed(smi_info);
2262 
2263 	if (smi_info->handlers)
2264 		smi_info->handlers->cleanup(smi_info->si_sm);
2265 
2266 	if (smi_info->io.io_cleanup) {
2267 		smi_info->io.io_cleanup(&smi_info->io);
2268 		smi_info->io.io_cleanup = NULL;
2269 	}
2270 
2271 	kfree(smi_info->si_sm);
2272 	smi_info->si_sm = NULL;
2273 
2274 	smi_info->intf = NULL;
2275 }
2276 
2277 /*
2278  * Must be called with smi_infos_lock held, to serialize the
2279  * smi_info->intf check.
2280  */
2281 static void cleanup_one_si(struct smi_info *smi_info)
2282 {
2283 	if (!smi_info)
2284 		return;
2285 
2286 	list_del(&smi_info->link);
2287 	ipmi_unregister_smi(smi_info->intf);
2288 	kfree(smi_info);
2289 }
2290 
2291 void ipmi_si_remove_by_dev(struct device *dev)
2292 {
2293 	struct smi_info *e;
2294 
2295 	mutex_lock(&smi_infos_lock);
2296 	list_for_each_entry(e, &smi_infos, link) {
2297 		if (e->io.dev == dev) {
2298 			cleanup_one_si(e);
2299 			break;
2300 		}
2301 	}
2302 	mutex_unlock(&smi_infos_lock);
2303 }
2304 
2305 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2306 				      unsigned long addr)
2307 {
2308 	/* remove */
2309 	struct smi_info *e, *tmp_e;
2310 	struct device *dev = NULL;
2311 
2312 	mutex_lock(&smi_infos_lock);
2313 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2314 		if (e->io.addr_space != addr_space)
2315 			continue;
2316 		if (e->io.si_info->type != si_type)
2317 			continue;
2318 		if (e->io.addr_data == addr) {
2319 			dev = get_device(e->io.dev);
2320 			cleanup_one_si(e);
2321 		}
2322 	}
2323 	mutex_unlock(&smi_infos_lock);
2324 
2325 	return dev;
2326 }
2327 
2328 static void cleanup_ipmi_si(void)
2329 {
2330 	struct smi_info *e, *tmp_e;
2331 
2332 	if (!initialized)
2333 		return;
2334 
2335 	ipmi_si_pci_shutdown();
2336 
2337 	ipmi_si_parisc_shutdown();
2338 
2339 	ipmi_si_platform_shutdown();
2340 
2341 	mutex_lock(&smi_infos_lock);
2342 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2343 		cleanup_one_si(e);
2344 	mutex_unlock(&smi_infos_lock);
2345 
2346 	ipmi_si_hardcode_exit();
2347 	ipmi_si_hotmod_exit();
2348 }
2349 module_exit(cleanup_ipmi_si);
2350 
2351 MODULE_ALIAS("platform:dmi-ipmi-si");
2352 MODULE_LICENSE("GPL");
2353 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2354 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2355