xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119 	/*
120 	 * Number of times the driver requested a timer while an operation
121 	 * was in progress.
122 	 */
123 	SI_STAT_short_timeouts = 0,
124 
125 	/*
126 	 * Number of times the driver requested a timer while nothing was in
127 	 * progress.
128 	 */
129 	SI_STAT_long_timeouts,
130 
131 	/* Number of times the interface was idle while being polled. */
132 	SI_STAT_idles,
133 
134 	/* Number of interrupts the driver handled. */
135 	SI_STAT_interrupts,
136 
137 	/* Number of time the driver got an ATTN from the hardware. */
138 	SI_STAT_attentions,
139 
140 	/* Number of times the driver requested flags from the hardware. */
141 	SI_STAT_flag_fetches,
142 
143 	/* Number of times the hardware didn't follow the state machine. */
144 	SI_STAT_hosed_count,
145 
146 	/* Number of completed messages. */
147 	SI_STAT_complete_transactions,
148 
149 	/* Number of IPMI events received from the hardware. */
150 	SI_STAT_events,
151 
152 	/* Number of watchdog pretimeouts. */
153 	SI_STAT_watchdog_pretimeouts,
154 
155 	/* Number of asynchronous messages received. */
156 	SI_STAT_incoming_messages,
157 
158 
159 	/* This *must* remain last, add new values above this. */
160 	SI_NUM_STATS
161 };
162 
163 struct smi_info {
164 	int                    intf_num;
165 	ipmi_smi_t             intf;
166 	struct si_sm_data      *si_sm;
167 	struct si_sm_handlers  *handlers;
168 	enum si_type           si_type;
169 	spinlock_t             si_lock;
170 	struct ipmi_smi_msg    *waiting_msg;
171 	struct ipmi_smi_msg    *curr_msg;
172 	enum si_intf_state     si_state;
173 
174 	/*
175 	 * Used to handle the various types of I/O that can occur with
176 	 * IPMI
177 	 */
178 	struct si_sm_io io;
179 	int (*io_setup)(struct smi_info *info);
180 	void (*io_cleanup)(struct smi_info *info);
181 	int (*irq_setup)(struct smi_info *info);
182 	void (*irq_cleanup)(struct smi_info *info);
183 	unsigned int io_size;
184 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 	void (*addr_source_cleanup)(struct smi_info *info);
186 	void *addr_source_data;
187 
188 	/*
189 	 * Per-OEM handler, called from handle_flags().  Returns 1
190 	 * when handle_flags() needs to be re-run or 0 indicating it
191 	 * set si_state itself.
192 	 */
193 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195 	/*
196 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 	 * is set to hold the flags until we are done handling everything
198 	 * from the flags.
199 	 */
200 #define RECEIVE_MSG_AVAIL	0x01
201 #define EVENT_MSG_BUFFER_FULL	0x02
202 #define WDT_PRE_TIMEOUT_INT	0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207 			     OEM1_DATA_AVAIL | \
208 			     OEM2_DATA_AVAIL)
209 	unsigned char       msg_flags;
210 
211 	/* Does the BMC have an event buffer? */
212 	bool		    has_event_buffer;
213 
214 	/*
215 	 * If set to true, this will request events the next time the
216 	 * state machine is idle.
217 	 */
218 	atomic_t            req_events;
219 
220 	/*
221 	 * If true, run the state machine to completion on every send
222 	 * call.  Generally used after a panic to make sure stuff goes
223 	 * out.
224 	 */
225 	bool                run_to_completion;
226 
227 	/* The I/O port of an SI interface. */
228 	int                 port;
229 
230 	/*
231 	 * The space between start addresses of the two ports.  For
232 	 * instance, if the first port is 0xca2 and the spacing is 4, then
233 	 * the second port is 0xca6.
234 	 */
235 	unsigned int        spacing;
236 
237 	/* zero if no irq; */
238 	int                 irq;
239 
240 	/* The timer for this si. */
241 	struct timer_list   si_timer;
242 
243 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 	bool		    timer_running;
245 
246 	/* The time (in jiffies) the last timeout occurred at. */
247 	unsigned long       last_timeout_jiffies;
248 
249 	/* Are we waiting for the events, pretimeouts, received msgs? */
250 	atomic_t            need_watch;
251 
252 	/*
253 	 * The driver will disable interrupts when it gets into a
254 	 * situation where it cannot handle messages due to lack of
255 	 * memory.  Once that situation clears up, it will re-enable
256 	 * interrupts.
257 	 */
258 	bool interrupt_disabled;
259 
260 	/*
261 	 * Does the BMC support events?
262 	 */
263 	bool supports_event_msg_buff;
264 
265 	/*
266 	 * Can we clear the global enables receive irq bit?
267 	 */
268 	bool cannot_clear_recv_irq_bit;
269 
270 	/*
271 	 * Did we get an attention that we did not handle?
272 	 */
273 	bool got_attn;
274 
275 	/* From the get device id response... */
276 	struct ipmi_device_id device_id;
277 
278 	/* Driver model stuff. */
279 	struct device *dev;
280 	struct platform_device *pdev;
281 
282 	/*
283 	 * True if we allocated the device, false if it came from
284 	 * someplace else (like PCI).
285 	 */
286 	bool dev_registered;
287 
288 	/* Slave address, could be reported from DMI. */
289 	unsigned char slave_addr;
290 
291 	/* Counters and things for the proc filesystem. */
292 	atomic_t stats[SI_NUM_STATS];
293 
294 	struct task_struct *thread;
295 
296 	struct list_head link;
297 	union ipmi_smi_info_union addr_info;
298 };
299 
300 #define smi_inc_stat(smi, stat) \
301 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302 #define smi_get_stat(smi, stat) \
303 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304 
305 #define SI_MAX_PARMS 4
306 
307 static int force_kipmid[SI_MAX_PARMS];
308 static int num_force_kipmid;
309 #ifdef CONFIG_PCI
310 static bool pci_registered;
311 #endif
312 #ifdef CONFIG_ACPI
313 static bool pnp_registered;
314 #endif
315 #ifdef CONFIG_PARISC
316 static bool parisc_registered;
317 #endif
318 
319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320 static int num_max_busy_us;
321 
322 static bool unload_when_empty = true;
323 
324 static int add_smi(struct smi_info *smi);
325 static int try_smi_init(struct smi_info *smi);
326 static void cleanup_one_si(struct smi_info *to_clean);
327 static void cleanup_ipmi_si(void);
328 
329 #ifdef DEBUG_TIMING
330 void debug_timestamp(char *msg)
331 {
332 	struct timespec64 t;
333 
334 	getnstimeofday64(&t);
335 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336 }
337 #else
338 #define debug_timestamp(x)
339 #endif
340 
341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
342 static int register_xaction_notifier(struct notifier_block *nb)
343 {
344 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345 }
346 
347 static void deliver_recv_msg(struct smi_info *smi_info,
348 			     struct ipmi_smi_msg *msg)
349 {
350 	/* Deliver the message to the upper layer. */
351 	if (smi_info->intf)
352 		ipmi_smi_msg_received(smi_info->intf, msg);
353 	else
354 		ipmi_free_smi_msg(msg);
355 }
356 
357 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358 {
359 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
360 
361 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362 		cCode = IPMI_ERR_UNSPECIFIED;
363 	/* else use it as is */
364 
365 	/* Make it a response */
366 	msg->rsp[0] = msg->data[0] | 4;
367 	msg->rsp[1] = msg->data[1];
368 	msg->rsp[2] = cCode;
369 	msg->rsp_size = 3;
370 
371 	smi_info->curr_msg = NULL;
372 	deliver_recv_msg(smi_info, msg);
373 }
374 
375 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376 {
377 	int              rv;
378 
379 	if (!smi_info->waiting_msg) {
380 		smi_info->curr_msg = NULL;
381 		rv = SI_SM_IDLE;
382 	} else {
383 		int err;
384 
385 		smi_info->curr_msg = smi_info->waiting_msg;
386 		smi_info->waiting_msg = NULL;
387 		debug_timestamp("Start2");
388 		err = atomic_notifier_call_chain(&xaction_notifier_list,
389 				0, smi_info);
390 		if (err & NOTIFY_STOP_MASK) {
391 			rv = SI_SM_CALL_WITHOUT_DELAY;
392 			goto out;
393 		}
394 		err = smi_info->handlers->start_transaction(
395 			smi_info->si_sm,
396 			smi_info->curr_msg->data,
397 			smi_info->curr_msg->data_size);
398 		if (err)
399 			return_hosed_msg(smi_info, err);
400 
401 		rv = SI_SM_CALL_WITHOUT_DELAY;
402 	}
403  out:
404 	return rv;
405 }
406 
407 static void start_check_enables(struct smi_info *smi_info)
408 {
409 	unsigned char msg[2];
410 
411 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413 
414 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
415 	smi_info->si_state = SI_CHECKING_ENABLES;
416 }
417 
418 static void start_clear_flags(struct smi_info *smi_info)
419 {
420 	unsigned char msg[3];
421 
422 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
423 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
425 	msg[2] = WDT_PRE_TIMEOUT_INT;
426 
427 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
428 	smi_info->si_state = SI_CLEARING_FLAGS;
429 }
430 
431 static void start_getting_msg_queue(struct smi_info *smi_info)
432 {
433 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
434 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
435 	smi_info->curr_msg->data_size = 2;
436 
437 	smi_info->handlers->start_transaction(
438 		smi_info->si_sm,
439 		smi_info->curr_msg->data,
440 		smi_info->curr_msg->data_size);
441 	smi_info->si_state = SI_GETTING_MESSAGES;
442 }
443 
444 static void start_getting_events(struct smi_info *smi_info)
445 {
446 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
447 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
448 	smi_info->curr_msg->data_size = 2;
449 
450 	smi_info->handlers->start_transaction(
451 		smi_info->si_sm,
452 		smi_info->curr_msg->data,
453 		smi_info->curr_msg->data_size);
454 	smi_info->si_state = SI_GETTING_EVENTS;
455 }
456 
457 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
458 {
459 	smi_info->last_timeout_jiffies = jiffies;
460 	mod_timer(&smi_info->si_timer, new_val);
461 	smi_info->timer_running = true;
462 }
463 
464 /*
465  * When we have a situtaion where we run out of memory and cannot
466  * allocate messages, we just leave them in the BMC and run the system
467  * polled until we can allocate some memory.  Once we have some
468  * memory, we will re-enable the interrupt.
469  *
470  * Note that we cannot just use disable_irq(), since the interrupt may
471  * be shared.
472  */
473 static inline bool disable_si_irq(struct smi_info *smi_info)
474 {
475 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
476 		smi_info->interrupt_disabled = true;
477 		start_check_enables(smi_info);
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static inline bool enable_si_irq(struct smi_info *smi_info)
484 {
485 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
486 		smi_info->interrupt_disabled = false;
487 		start_check_enables(smi_info);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 /*
494  * Allocate a message.  If unable to allocate, start the interrupt
495  * disable process and return NULL.  If able to allocate but
496  * interrupts are disabled, free the message and return NULL after
497  * starting the interrupt enable process.
498  */
499 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
500 {
501 	struct ipmi_smi_msg *msg;
502 
503 	msg = ipmi_alloc_smi_msg();
504 	if (!msg) {
505 		if (!disable_si_irq(smi_info))
506 			smi_info->si_state = SI_NORMAL;
507 	} else if (enable_si_irq(smi_info)) {
508 		ipmi_free_smi_msg(msg);
509 		msg = NULL;
510 	}
511 	return msg;
512 }
513 
514 static void handle_flags(struct smi_info *smi_info)
515 {
516  retry:
517 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
518 		/* Watchdog pre-timeout */
519 		smi_inc_stat(smi_info, watchdog_pretimeouts);
520 
521 		start_clear_flags(smi_info);
522 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
523 		if (smi_info->intf)
524 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
525 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
526 		/* Messages available. */
527 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
528 		if (!smi_info->curr_msg)
529 			return;
530 
531 		start_getting_msg_queue(smi_info);
532 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
533 		/* Events available. */
534 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
535 		if (!smi_info->curr_msg)
536 			return;
537 
538 		start_getting_events(smi_info);
539 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
540 		   smi_info->oem_data_avail_handler) {
541 		if (smi_info->oem_data_avail_handler(smi_info))
542 			goto retry;
543 	} else
544 		smi_info->si_state = SI_NORMAL;
545 }
546 
547 /*
548  * Global enables we care about.
549  */
550 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
551 			     IPMI_BMC_EVT_MSG_INTR)
552 
553 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
554 				 bool *irq_on)
555 {
556 	u8 enables = 0;
557 
558 	if (smi_info->supports_event_msg_buff)
559 		enables |= IPMI_BMC_EVT_MSG_BUFF;
560 
561 	if ((smi_info->irq && !smi_info->interrupt_disabled) ||
562 	    smi_info->cannot_clear_recv_irq_bit)
563 		enables |= IPMI_BMC_RCV_MSG_INTR;
564 
565 	if (smi_info->supports_event_msg_buff &&
566 	    smi_info->irq && !smi_info->interrupt_disabled)
567 
568 		enables |= IPMI_BMC_EVT_MSG_INTR;
569 
570 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
571 
572 	return enables;
573 }
574 
575 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
576 {
577 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
578 
579 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
580 
581 	if ((bool)irqstate == irq_on)
582 		return;
583 
584 	if (irq_on)
585 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
586 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
587 	else
588 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
589 }
590 
591 static void handle_transaction_done(struct smi_info *smi_info)
592 {
593 	struct ipmi_smi_msg *msg;
594 
595 	debug_timestamp("Done");
596 	switch (smi_info->si_state) {
597 	case SI_NORMAL:
598 		if (!smi_info->curr_msg)
599 			break;
600 
601 		smi_info->curr_msg->rsp_size
602 			= smi_info->handlers->get_result(
603 				smi_info->si_sm,
604 				smi_info->curr_msg->rsp,
605 				IPMI_MAX_MSG_LENGTH);
606 
607 		/*
608 		 * Do this here becase deliver_recv_msg() releases the
609 		 * lock, and a new message can be put in during the
610 		 * time the lock is released.
611 		 */
612 		msg = smi_info->curr_msg;
613 		smi_info->curr_msg = NULL;
614 		deliver_recv_msg(smi_info, msg);
615 		break;
616 
617 	case SI_GETTING_FLAGS:
618 	{
619 		unsigned char msg[4];
620 		unsigned int  len;
621 
622 		/* We got the flags from the SMI, now handle them. */
623 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
624 		if (msg[2] != 0) {
625 			/* Error fetching flags, just give up for now. */
626 			smi_info->si_state = SI_NORMAL;
627 		} else if (len < 4) {
628 			/*
629 			 * Hmm, no flags.  That's technically illegal, but
630 			 * don't use uninitialized data.
631 			 */
632 			smi_info->si_state = SI_NORMAL;
633 		} else {
634 			smi_info->msg_flags = msg[3];
635 			handle_flags(smi_info);
636 		}
637 		break;
638 	}
639 
640 	case SI_CLEARING_FLAGS:
641 	{
642 		unsigned char msg[3];
643 
644 		/* We cleared the flags. */
645 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
646 		if (msg[2] != 0) {
647 			/* Error clearing flags */
648 			dev_warn(smi_info->dev,
649 				 "Error clearing flags: %2.2x\n", msg[2]);
650 		}
651 		smi_info->si_state = SI_NORMAL;
652 		break;
653 	}
654 
655 	case SI_GETTING_EVENTS:
656 	{
657 		smi_info->curr_msg->rsp_size
658 			= smi_info->handlers->get_result(
659 				smi_info->si_sm,
660 				smi_info->curr_msg->rsp,
661 				IPMI_MAX_MSG_LENGTH);
662 
663 		/*
664 		 * Do this here becase deliver_recv_msg() releases the
665 		 * lock, and a new message can be put in during the
666 		 * time the lock is released.
667 		 */
668 		msg = smi_info->curr_msg;
669 		smi_info->curr_msg = NULL;
670 		if (msg->rsp[2] != 0) {
671 			/* Error getting event, probably done. */
672 			msg->done(msg);
673 
674 			/* Take off the event flag. */
675 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
676 			handle_flags(smi_info);
677 		} else {
678 			smi_inc_stat(smi_info, events);
679 
680 			/*
681 			 * Do this before we deliver the message
682 			 * because delivering the message releases the
683 			 * lock and something else can mess with the
684 			 * state.
685 			 */
686 			handle_flags(smi_info);
687 
688 			deliver_recv_msg(smi_info, msg);
689 		}
690 		break;
691 	}
692 
693 	case SI_GETTING_MESSAGES:
694 	{
695 		smi_info->curr_msg->rsp_size
696 			= smi_info->handlers->get_result(
697 				smi_info->si_sm,
698 				smi_info->curr_msg->rsp,
699 				IPMI_MAX_MSG_LENGTH);
700 
701 		/*
702 		 * Do this here becase deliver_recv_msg() releases the
703 		 * lock, and a new message can be put in during the
704 		 * time the lock is released.
705 		 */
706 		msg = smi_info->curr_msg;
707 		smi_info->curr_msg = NULL;
708 		if (msg->rsp[2] != 0) {
709 			/* Error getting event, probably done. */
710 			msg->done(msg);
711 
712 			/* Take off the msg flag. */
713 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
714 			handle_flags(smi_info);
715 		} else {
716 			smi_inc_stat(smi_info, incoming_messages);
717 
718 			/*
719 			 * Do this before we deliver the message
720 			 * because delivering the message releases the
721 			 * lock and something else can mess with the
722 			 * state.
723 			 */
724 			handle_flags(smi_info);
725 
726 			deliver_recv_msg(smi_info, msg);
727 		}
728 		break;
729 	}
730 
731 	case SI_CHECKING_ENABLES:
732 	{
733 		unsigned char msg[4];
734 		u8 enables;
735 		bool irq_on;
736 
737 		/* We got the flags from the SMI, now handle them. */
738 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
739 		if (msg[2] != 0) {
740 			dev_warn(smi_info->dev,
741 				 "Couldn't get irq info: %x.\n", msg[2]);
742 			dev_warn(smi_info->dev,
743 				 "Maybe ok, but ipmi might run very slowly.\n");
744 			smi_info->si_state = SI_NORMAL;
745 			break;
746 		}
747 		enables = current_global_enables(smi_info, 0, &irq_on);
748 		if (smi_info->si_type == SI_BT)
749 			/* BT has its own interrupt enable bit. */
750 			check_bt_irq(smi_info, irq_on);
751 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
752 			/* Enables are not correct, fix them. */
753 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
754 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
755 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
756 			smi_info->handlers->start_transaction(
757 				smi_info->si_sm, msg, 3);
758 			smi_info->si_state = SI_SETTING_ENABLES;
759 		} else if (smi_info->supports_event_msg_buff) {
760 			smi_info->curr_msg = ipmi_alloc_smi_msg();
761 			if (!smi_info->curr_msg) {
762 				smi_info->si_state = SI_NORMAL;
763 				break;
764 			}
765 			start_getting_msg_queue(smi_info);
766 		} else {
767 			smi_info->si_state = SI_NORMAL;
768 		}
769 		break;
770 	}
771 
772 	case SI_SETTING_ENABLES:
773 	{
774 		unsigned char msg[4];
775 
776 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
777 		if (msg[2] != 0)
778 			dev_warn(smi_info->dev,
779 				 "Could not set the global enables: 0x%x.\n",
780 				 msg[2]);
781 
782 		if (smi_info->supports_event_msg_buff) {
783 			smi_info->curr_msg = ipmi_alloc_smi_msg();
784 			if (!smi_info->curr_msg) {
785 				smi_info->si_state = SI_NORMAL;
786 				break;
787 			}
788 			start_getting_msg_queue(smi_info);
789 		} else {
790 			smi_info->si_state = SI_NORMAL;
791 		}
792 		break;
793 	}
794 	}
795 }
796 
797 /*
798  * Called on timeouts and events.  Timeouts should pass the elapsed
799  * time, interrupts should pass in zero.  Must be called with
800  * si_lock held and interrupts disabled.
801  */
802 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
803 					   int time)
804 {
805 	enum si_sm_result si_sm_result;
806 
807  restart:
808 	/*
809 	 * There used to be a loop here that waited a little while
810 	 * (around 25us) before giving up.  That turned out to be
811 	 * pointless, the minimum delays I was seeing were in the 300us
812 	 * range, which is far too long to wait in an interrupt.  So
813 	 * we just run until the state machine tells us something
814 	 * happened or it needs a delay.
815 	 */
816 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
817 	time = 0;
818 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
819 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
820 
821 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
822 		smi_inc_stat(smi_info, complete_transactions);
823 
824 		handle_transaction_done(smi_info);
825 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
826 	} else if (si_sm_result == SI_SM_HOSED) {
827 		smi_inc_stat(smi_info, hosed_count);
828 
829 		/*
830 		 * Do the before return_hosed_msg, because that
831 		 * releases the lock.
832 		 */
833 		smi_info->si_state = SI_NORMAL;
834 		if (smi_info->curr_msg != NULL) {
835 			/*
836 			 * If we were handling a user message, format
837 			 * a response to send to the upper layer to
838 			 * tell it about the error.
839 			 */
840 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
841 		}
842 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
843 	}
844 
845 	/*
846 	 * We prefer handling attn over new messages.  But don't do
847 	 * this if there is not yet an upper layer to handle anything.
848 	 */
849 	if (likely(smi_info->intf) &&
850 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
851 		unsigned char msg[2];
852 
853 		if (smi_info->si_state != SI_NORMAL) {
854 			/*
855 			 * We got an ATTN, but we are doing something else.
856 			 * Handle the ATTN later.
857 			 */
858 			smi_info->got_attn = true;
859 		} else {
860 			smi_info->got_attn = false;
861 			smi_inc_stat(smi_info, attentions);
862 
863 			/*
864 			 * Got a attn, send down a get message flags to see
865 			 * what's causing it.  It would be better to handle
866 			 * this in the upper layer, but due to the way
867 			 * interrupts work with the SMI, that's not really
868 			 * possible.
869 			 */
870 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
871 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
872 
873 			smi_info->handlers->start_transaction(
874 				smi_info->si_sm, msg, 2);
875 			smi_info->si_state = SI_GETTING_FLAGS;
876 			goto restart;
877 		}
878 	}
879 
880 	/* If we are currently idle, try to start the next message. */
881 	if (si_sm_result == SI_SM_IDLE) {
882 		smi_inc_stat(smi_info, idles);
883 
884 		si_sm_result = start_next_msg(smi_info);
885 		if (si_sm_result != SI_SM_IDLE)
886 			goto restart;
887 	}
888 
889 	if ((si_sm_result == SI_SM_IDLE)
890 	    && (atomic_read(&smi_info->req_events))) {
891 		/*
892 		 * We are idle and the upper layer requested that I fetch
893 		 * events, so do so.
894 		 */
895 		atomic_set(&smi_info->req_events, 0);
896 
897 		/*
898 		 * Take this opportunity to check the interrupt and
899 		 * message enable state for the BMC.  The BMC can be
900 		 * asynchronously reset, and may thus get interrupts
901 		 * disable and messages disabled.
902 		 */
903 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
904 			start_check_enables(smi_info);
905 		} else {
906 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
907 			if (!smi_info->curr_msg)
908 				goto out;
909 
910 			start_getting_events(smi_info);
911 		}
912 		goto restart;
913 	}
914  out:
915 	return si_sm_result;
916 }
917 
918 static void check_start_timer_thread(struct smi_info *smi_info)
919 {
920 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
921 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
922 
923 		if (smi_info->thread)
924 			wake_up_process(smi_info->thread);
925 
926 		start_next_msg(smi_info);
927 		smi_event_handler(smi_info, 0);
928 	}
929 }
930 
931 static void sender(void                *send_info,
932 		   struct ipmi_smi_msg *msg)
933 {
934 	struct smi_info   *smi_info = send_info;
935 	enum si_sm_result result;
936 	unsigned long     flags;
937 
938 	debug_timestamp("Enqueue");
939 
940 	if (smi_info->run_to_completion) {
941 		/*
942 		 * If we are running to completion, start it and run
943 		 * transactions until everything is clear.
944 		 */
945 		smi_info->curr_msg = msg;
946 		smi_info->waiting_msg = NULL;
947 
948 		/*
949 		 * Run to completion means we are single-threaded, no
950 		 * need for locks.
951 		 */
952 
953 		result = smi_event_handler(smi_info, 0);
954 		while (result != SI_SM_IDLE) {
955 			udelay(SI_SHORT_TIMEOUT_USEC);
956 			result = smi_event_handler(smi_info,
957 						   SI_SHORT_TIMEOUT_USEC);
958 		}
959 		return;
960 	}
961 
962 	spin_lock_irqsave(&smi_info->si_lock, flags);
963 	/*
964 	 * The following two lines don't need to be under the lock for
965 	 * the lock's sake, but they do need SMP memory barriers to
966 	 * avoid getting things out of order.  We are already claiming
967 	 * the lock, anyway, so just do it under the lock to avoid the
968 	 * ordering problem.
969 	 */
970 	BUG_ON(smi_info->waiting_msg);
971 	smi_info->waiting_msg = msg;
972 	check_start_timer_thread(smi_info);
973 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
974 }
975 
976 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
977 {
978 	struct smi_info   *smi_info = send_info;
979 	enum si_sm_result result;
980 
981 	smi_info->run_to_completion = i_run_to_completion;
982 	if (i_run_to_completion) {
983 		result = smi_event_handler(smi_info, 0);
984 		while (result != SI_SM_IDLE) {
985 			udelay(SI_SHORT_TIMEOUT_USEC);
986 			result = smi_event_handler(smi_info,
987 						   SI_SHORT_TIMEOUT_USEC);
988 		}
989 	}
990 }
991 
992 /*
993  * Use -1 in the nsec value of the busy waiting timespec to tell that
994  * we are spinning in kipmid looking for something and not delaying
995  * between checks
996  */
997 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
998 {
999 	ts->tv_nsec = -1;
1000 }
1001 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1002 {
1003 	return ts->tv_nsec != -1;
1004 }
1005 
1006 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1007 					const struct smi_info *smi_info,
1008 					struct timespec64 *busy_until)
1009 {
1010 	unsigned int max_busy_us = 0;
1011 
1012 	if (smi_info->intf_num < num_max_busy_us)
1013 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1014 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1015 		ipmi_si_set_not_busy(busy_until);
1016 	else if (!ipmi_si_is_busy(busy_until)) {
1017 		getnstimeofday64(busy_until);
1018 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1019 	} else {
1020 		struct timespec64 now;
1021 
1022 		getnstimeofday64(&now);
1023 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1024 			ipmi_si_set_not_busy(busy_until);
1025 			return 0;
1026 		}
1027 	}
1028 	return 1;
1029 }
1030 
1031 
1032 /*
1033  * A busy-waiting loop for speeding up IPMI operation.
1034  *
1035  * Lousy hardware makes this hard.  This is only enabled for systems
1036  * that are not BT and do not have interrupts.  It starts spinning
1037  * when an operation is complete or until max_busy tells it to stop
1038  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1039  * Documentation/IPMI.txt for details.
1040  */
1041 static int ipmi_thread(void *data)
1042 {
1043 	struct smi_info *smi_info = data;
1044 	unsigned long flags;
1045 	enum si_sm_result smi_result;
1046 	struct timespec64 busy_until;
1047 
1048 	ipmi_si_set_not_busy(&busy_until);
1049 	set_user_nice(current, MAX_NICE);
1050 	while (!kthread_should_stop()) {
1051 		int busy_wait;
1052 
1053 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1054 		smi_result = smi_event_handler(smi_info, 0);
1055 
1056 		/*
1057 		 * If the driver is doing something, there is a possible
1058 		 * race with the timer.  If the timer handler see idle,
1059 		 * and the thread here sees something else, the timer
1060 		 * handler won't restart the timer even though it is
1061 		 * required.  So start it here if necessary.
1062 		 */
1063 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1064 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1065 
1066 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1067 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1068 						  &busy_until);
1069 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1070 			; /* do nothing */
1071 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1072 			schedule();
1073 		else if (smi_result == SI_SM_IDLE) {
1074 			if (atomic_read(&smi_info->need_watch)) {
1075 				schedule_timeout_interruptible(100);
1076 			} else {
1077 				/* Wait to be woken up when we are needed. */
1078 				__set_current_state(TASK_INTERRUPTIBLE);
1079 				schedule();
1080 			}
1081 		} else
1082 			schedule_timeout_interruptible(1);
1083 	}
1084 	return 0;
1085 }
1086 
1087 
1088 static void poll(void *send_info)
1089 {
1090 	struct smi_info *smi_info = send_info;
1091 	unsigned long flags = 0;
1092 	bool run_to_completion = smi_info->run_to_completion;
1093 
1094 	/*
1095 	 * Make sure there is some delay in the poll loop so we can
1096 	 * drive time forward and timeout things.
1097 	 */
1098 	udelay(10);
1099 	if (!run_to_completion)
1100 		spin_lock_irqsave(&smi_info->si_lock, flags);
1101 	smi_event_handler(smi_info, 10);
1102 	if (!run_to_completion)
1103 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1104 }
1105 
1106 static void request_events(void *send_info)
1107 {
1108 	struct smi_info *smi_info = send_info;
1109 
1110 	if (!smi_info->has_event_buffer)
1111 		return;
1112 
1113 	atomic_set(&smi_info->req_events, 1);
1114 }
1115 
1116 static void set_need_watch(void *send_info, bool enable)
1117 {
1118 	struct smi_info *smi_info = send_info;
1119 	unsigned long flags;
1120 
1121 	atomic_set(&smi_info->need_watch, enable);
1122 	spin_lock_irqsave(&smi_info->si_lock, flags);
1123 	check_start_timer_thread(smi_info);
1124 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1125 }
1126 
1127 static int initialized;
1128 
1129 static void smi_timeout(unsigned long data)
1130 {
1131 	struct smi_info   *smi_info = (struct smi_info *) data;
1132 	enum si_sm_result smi_result;
1133 	unsigned long     flags;
1134 	unsigned long     jiffies_now;
1135 	long              time_diff;
1136 	long		  timeout;
1137 
1138 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1139 	debug_timestamp("Timer");
1140 
1141 	jiffies_now = jiffies;
1142 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1143 		     * SI_USEC_PER_JIFFY);
1144 	smi_result = smi_event_handler(smi_info, time_diff);
1145 
1146 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1147 		/* Running with interrupts, only do long timeouts. */
1148 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1149 		smi_inc_stat(smi_info, long_timeouts);
1150 		goto do_mod_timer;
1151 	}
1152 
1153 	/*
1154 	 * If the state machine asks for a short delay, then shorten
1155 	 * the timer timeout.
1156 	 */
1157 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1158 		smi_inc_stat(smi_info, short_timeouts);
1159 		timeout = jiffies + 1;
1160 	} else {
1161 		smi_inc_stat(smi_info, long_timeouts);
1162 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1163 	}
1164 
1165  do_mod_timer:
1166 	if (smi_result != SI_SM_IDLE)
1167 		smi_mod_timer(smi_info, timeout);
1168 	else
1169 		smi_info->timer_running = false;
1170 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1171 }
1172 
1173 static irqreturn_t si_irq_handler(int irq, void *data)
1174 {
1175 	struct smi_info *smi_info = data;
1176 	unsigned long   flags;
1177 
1178 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1179 
1180 	smi_inc_stat(smi_info, interrupts);
1181 
1182 	debug_timestamp("Interrupt");
1183 
1184 	smi_event_handler(smi_info, 0);
1185 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1186 	return IRQ_HANDLED;
1187 }
1188 
1189 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1190 {
1191 	struct smi_info *smi_info = data;
1192 	/* We need to clear the IRQ flag for the BT interface. */
1193 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1194 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1195 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1196 	return si_irq_handler(irq, data);
1197 }
1198 
1199 static int smi_start_processing(void       *send_info,
1200 				ipmi_smi_t intf)
1201 {
1202 	struct smi_info *new_smi = send_info;
1203 	int             enable = 0;
1204 
1205 	new_smi->intf = intf;
1206 
1207 	/* Try to claim any interrupts. */
1208 	if (new_smi->irq_setup)
1209 		new_smi->irq_setup(new_smi);
1210 
1211 	/* Set up the timer that drives the interface. */
1212 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1213 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1214 
1215 	/*
1216 	 * Check if the user forcefully enabled the daemon.
1217 	 */
1218 	if (new_smi->intf_num < num_force_kipmid)
1219 		enable = force_kipmid[new_smi->intf_num];
1220 	/*
1221 	 * The BT interface is efficient enough to not need a thread,
1222 	 * and there is no need for a thread if we have interrupts.
1223 	 */
1224 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1225 		enable = 1;
1226 
1227 	if (enable) {
1228 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1229 					      "kipmi%d", new_smi->intf_num);
1230 		if (IS_ERR(new_smi->thread)) {
1231 			dev_notice(new_smi->dev, "Could not start"
1232 				   " kernel thread due to error %ld, only using"
1233 				   " timers to drive the interface\n",
1234 				   PTR_ERR(new_smi->thread));
1235 			new_smi->thread = NULL;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1243 {
1244 	struct smi_info *smi = send_info;
1245 
1246 	data->addr_src = smi->addr_source;
1247 	data->dev = smi->dev;
1248 	data->addr_info = smi->addr_info;
1249 	get_device(smi->dev);
1250 
1251 	return 0;
1252 }
1253 
1254 static void set_maintenance_mode(void *send_info, bool enable)
1255 {
1256 	struct smi_info   *smi_info = send_info;
1257 
1258 	if (!enable)
1259 		atomic_set(&smi_info->req_events, 0);
1260 }
1261 
1262 static struct ipmi_smi_handlers handlers = {
1263 	.owner                  = THIS_MODULE,
1264 	.start_processing       = smi_start_processing,
1265 	.get_smi_info		= get_smi_info,
1266 	.sender			= sender,
1267 	.request_events		= request_events,
1268 	.set_need_watch		= set_need_watch,
1269 	.set_maintenance_mode   = set_maintenance_mode,
1270 	.set_run_to_completion  = set_run_to_completion,
1271 	.poll			= poll,
1272 };
1273 
1274 /*
1275  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1276  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1277  */
1278 
1279 static LIST_HEAD(smi_infos);
1280 static DEFINE_MUTEX(smi_infos_lock);
1281 static int smi_num; /* Used to sequence the SMIs */
1282 
1283 #define DEFAULT_REGSPACING	1
1284 #define DEFAULT_REGSIZE		1
1285 
1286 #ifdef CONFIG_ACPI
1287 static bool          si_tryacpi = 1;
1288 #endif
1289 #ifdef CONFIG_DMI
1290 static bool          si_trydmi = 1;
1291 #endif
1292 static bool          si_tryplatform = 1;
1293 #ifdef CONFIG_PCI
1294 static bool          si_trypci = 1;
1295 #endif
1296 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1297 static char          *si_type[SI_MAX_PARMS];
1298 #define MAX_SI_TYPE_STR 30
1299 static char          si_type_str[MAX_SI_TYPE_STR];
1300 static unsigned long addrs[SI_MAX_PARMS];
1301 static unsigned int num_addrs;
1302 static unsigned int  ports[SI_MAX_PARMS];
1303 static unsigned int num_ports;
1304 static int           irqs[SI_MAX_PARMS];
1305 static unsigned int num_irqs;
1306 static int           regspacings[SI_MAX_PARMS];
1307 static unsigned int num_regspacings;
1308 static int           regsizes[SI_MAX_PARMS];
1309 static unsigned int num_regsizes;
1310 static int           regshifts[SI_MAX_PARMS];
1311 static unsigned int num_regshifts;
1312 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1313 static unsigned int num_slave_addrs;
1314 
1315 #define IPMI_IO_ADDR_SPACE  0
1316 #define IPMI_MEM_ADDR_SPACE 1
1317 static char *addr_space_to_str[] = { "i/o", "mem" };
1318 
1319 static int hotmod_handler(const char *val, struct kernel_param *kp);
1320 
1321 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1322 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1323 		 " Documentation/IPMI.txt in the kernel sources for the"
1324 		 " gory details.");
1325 
1326 #ifdef CONFIG_ACPI
1327 module_param_named(tryacpi, si_tryacpi, bool, 0);
1328 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1329 		 " default scan of the interfaces identified via ACPI");
1330 #endif
1331 #ifdef CONFIG_DMI
1332 module_param_named(trydmi, si_trydmi, bool, 0);
1333 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1334 		 " default scan of the interfaces identified via DMI");
1335 #endif
1336 module_param_named(tryplatform, si_tryplatform, bool, 0);
1337 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1338 		 " default scan of the interfaces identified via platform"
1339 		 " interfaces like openfirmware");
1340 #ifdef CONFIG_PCI
1341 module_param_named(trypci, si_trypci, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343 		 " default scan of the interfaces identified via pci");
1344 #endif
1345 module_param_named(trydefaults, si_trydefaults, bool, 0);
1346 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1347 		 " default scan of the KCS and SMIC interface at the standard"
1348 		 " address");
1349 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1350 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1351 		 " interface separated by commas.  The types are 'kcs',"
1352 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1353 		 " the first interface to kcs and the second to bt");
1354 module_param_array(addrs, ulong, &num_addrs, 0);
1355 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1356 		 " addresses separated by commas.  Only use if an interface"
1357 		 " is in memory.  Otherwise, set it to zero or leave"
1358 		 " it blank.");
1359 module_param_array(ports, uint, &num_ports, 0);
1360 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1361 		 " addresses separated by commas.  Only use if an interface"
1362 		 " is a port.  Otherwise, set it to zero or leave"
1363 		 " it blank.");
1364 module_param_array(irqs, int, &num_irqs, 0);
1365 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1366 		 " addresses separated by commas.  Only use if an interface"
1367 		 " has an interrupt.  Otherwise, set it to zero or leave"
1368 		 " it blank.");
1369 module_param_array(regspacings, int, &num_regspacings, 0);
1370 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1371 		 " and each successive register used by the interface.  For"
1372 		 " instance, if the start address is 0xca2 and the spacing"
1373 		 " is 2, then the second address is at 0xca4.  Defaults"
1374 		 " to 1.");
1375 module_param_array(regsizes, int, &num_regsizes, 0);
1376 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1377 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1378 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1379 		 " the 8-bit IPMI register has to be read from a larger"
1380 		 " register.");
1381 module_param_array(regshifts, int, &num_regshifts, 0);
1382 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1383 		 " IPMI register, in bits.  For instance, if the data"
1384 		 " is read from a 32-bit word and the IPMI data is in"
1385 		 " bit 8-15, then the shift would be 8");
1386 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1387 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1388 		 " the controller.  Normally this is 0x20, but can be"
1389 		 " overridden by this parm.  This is an array indexed"
1390 		 " by interface number.");
1391 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1392 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1393 		 " disabled(0).  Normally the IPMI driver auto-detects"
1394 		 " this, but the value may be overridden by this parm.");
1395 module_param(unload_when_empty, bool, 0);
1396 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1397 		 " specified or found, default is 1.  Setting to 0"
1398 		 " is useful for hot add of devices using hotmod.");
1399 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1400 MODULE_PARM_DESC(kipmid_max_busy_us,
1401 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1402 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1403 		 " if kipmid is using up a lot of CPU time.");
1404 
1405 
1406 static void std_irq_cleanup(struct smi_info *info)
1407 {
1408 	if (info->si_type == SI_BT)
1409 		/* Disable the interrupt in the BT interface. */
1410 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1411 	free_irq(info->irq, info);
1412 }
1413 
1414 static int std_irq_setup(struct smi_info *info)
1415 {
1416 	int rv;
1417 
1418 	if (!info->irq)
1419 		return 0;
1420 
1421 	if (info->si_type == SI_BT) {
1422 		rv = request_irq(info->irq,
1423 				 si_bt_irq_handler,
1424 				 IRQF_SHARED,
1425 				 DEVICE_NAME,
1426 				 info);
1427 		if (!rv)
1428 			/* Enable the interrupt in the BT interface. */
1429 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1430 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1431 	} else
1432 		rv = request_irq(info->irq,
1433 				 si_irq_handler,
1434 				 IRQF_SHARED,
1435 				 DEVICE_NAME,
1436 				 info);
1437 	if (rv) {
1438 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1439 			 " running polled\n",
1440 			 DEVICE_NAME, info->irq);
1441 		info->irq = 0;
1442 	} else {
1443 		info->irq_cleanup = std_irq_cleanup;
1444 		dev_info(info->dev, "Using irq %d\n", info->irq);
1445 	}
1446 
1447 	return rv;
1448 }
1449 
1450 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1451 {
1452 	unsigned int addr = io->addr_data;
1453 
1454 	return inb(addr + (offset * io->regspacing));
1455 }
1456 
1457 static void port_outb(struct si_sm_io *io, unsigned int offset,
1458 		      unsigned char b)
1459 {
1460 	unsigned int addr = io->addr_data;
1461 
1462 	outb(b, addr + (offset * io->regspacing));
1463 }
1464 
1465 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1466 {
1467 	unsigned int addr = io->addr_data;
1468 
1469 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1470 }
1471 
1472 static void port_outw(struct si_sm_io *io, unsigned int offset,
1473 		      unsigned char b)
1474 {
1475 	unsigned int addr = io->addr_data;
1476 
1477 	outw(b << io->regshift, addr + (offset * io->regspacing));
1478 }
1479 
1480 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1481 {
1482 	unsigned int addr = io->addr_data;
1483 
1484 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1485 }
1486 
1487 static void port_outl(struct si_sm_io *io, unsigned int offset,
1488 		      unsigned char b)
1489 {
1490 	unsigned int addr = io->addr_data;
1491 
1492 	outl(b << io->regshift, addr+(offset * io->regspacing));
1493 }
1494 
1495 static void port_cleanup(struct smi_info *info)
1496 {
1497 	unsigned int addr = info->io.addr_data;
1498 	int          idx;
1499 
1500 	if (addr) {
1501 		for (idx = 0; idx < info->io_size; idx++)
1502 			release_region(addr + idx * info->io.regspacing,
1503 				       info->io.regsize);
1504 	}
1505 }
1506 
1507 static int port_setup(struct smi_info *info)
1508 {
1509 	unsigned int addr = info->io.addr_data;
1510 	int          idx;
1511 
1512 	if (!addr)
1513 		return -ENODEV;
1514 
1515 	info->io_cleanup = port_cleanup;
1516 
1517 	/*
1518 	 * Figure out the actual inb/inw/inl/etc routine to use based
1519 	 * upon the register size.
1520 	 */
1521 	switch (info->io.regsize) {
1522 	case 1:
1523 		info->io.inputb = port_inb;
1524 		info->io.outputb = port_outb;
1525 		break;
1526 	case 2:
1527 		info->io.inputb = port_inw;
1528 		info->io.outputb = port_outw;
1529 		break;
1530 	case 4:
1531 		info->io.inputb = port_inl;
1532 		info->io.outputb = port_outl;
1533 		break;
1534 	default:
1535 		dev_warn(info->dev, "Invalid register size: %d\n",
1536 			 info->io.regsize);
1537 		return -EINVAL;
1538 	}
1539 
1540 	/*
1541 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1542 	 * tables.  This causes problems when trying to register the
1543 	 * entire I/O region.  Therefore we must register each I/O
1544 	 * port separately.
1545 	 */
1546 	for (idx = 0; idx < info->io_size; idx++) {
1547 		if (request_region(addr + idx * info->io.regspacing,
1548 				   info->io.regsize, DEVICE_NAME) == NULL) {
1549 			/* Undo allocations */
1550 			while (idx--) {
1551 				release_region(addr + idx * info->io.regspacing,
1552 					       info->io.regsize);
1553 			}
1554 			return -EIO;
1555 		}
1556 	}
1557 	return 0;
1558 }
1559 
1560 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1561 {
1562 	return readb((io->addr)+(offset * io->regspacing));
1563 }
1564 
1565 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1566 		     unsigned char b)
1567 {
1568 	writeb(b, (io->addr)+(offset * io->regspacing));
1569 }
1570 
1571 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1572 {
1573 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1574 		& 0xff;
1575 }
1576 
1577 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1578 		     unsigned char b)
1579 {
1580 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1581 }
1582 
1583 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1584 {
1585 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1586 		& 0xff;
1587 }
1588 
1589 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1590 		     unsigned char b)
1591 {
1592 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1593 }
1594 
1595 #ifdef readq
1596 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1597 {
1598 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599 		& 0xff;
1600 }
1601 
1602 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1603 		     unsigned char b)
1604 {
1605 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606 }
1607 #endif
1608 
1609 static void mem_cleanup(struct smi_info *info)
1610 {
1611 	unsigned long addr = info->io.addr_data;
1612 	int           mapsize;
1613 
1614 	if (info->io.addr) {
1615 		iounmap(info->io.addr);
1616 
1617 		mapsize = ((info->io_size * info->io.regspacing)
1618 			   - (info->io.regspacing - info->io.regsize));
1619 
1620 		release_mem_region(addr, mapsize);
1621 	}
1622 }
1623 
1624 static int mem_setup(struct smi_info *info)
1625 {
1626 	unsigned long addr = info->io.addr_data;
1627 	int           mapsize;
1628 
1629 	if (!addr)
1630 		return -ENODEV;
1631 
1632 	info->io_cleanup = mem_cleanup;
1633 
1634 	/*
1635 	 * Figure out the actual readb/readw/readl/etc routine to use based
1636 	 * upon the register size.
1637 	 */
1638 	switch (info->io.regsize) {
1639 	case 1:
1640 		info->io.inputb = intf_mem_inb;
1641 		info->io.outputb = intf_mem_outb;
1642 		break;
1643 	case 2:
1644 		info->io.inputb = intf_mem_inw;
1645 		info->io.outputb = intf_mem_outw;
1646 		break;
1647 	case 4:
1648 		info->io.inputb = intf_mem_inl;
1649 		info->io.outputb = intf_mem_outl;
1650 		break;
1651 #ifdef readq
1652 	case 8:
1653 		info->io.inputb = mem_inq;
1654 		info->io.outputb = mem_outq;
1655 		break;
1656 #endif
1657 	default:
1658 		dev_warn(info->dev, "Invalid register size: %d\n",
1659 			 info->io.regsize);
1660 		return -EINVAL;
1661 	}
1662 
1663 	/*
1664 	 * Calculate the total amount of memory to claim.  This is an
1665 	 * unusual looking calculation, but it avoids claiming any
1666 	 * more memory than it has to.  It will claim everything
1667 	 * between the first address to the end of the last full
1668 	 * register.
1669 	 */
1670 	mapsize = ((info->io_size * info->io.regspacing)
1671 		   - (info->io.regspacing - info->io.regsize));
1672 
1673 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1674 		return -EIO;
1675 
1676 	info->io.addr = ioremap(addr, mapsize);
1677 	if (info->io.addr == NULL) {
1678 		release_mem_region(addr, mapsize);
1679 		return -EIO;
1680 	}
1681 	return 0;
1682 }
1683 
1684 /*
1685  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1686  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1687  * Options are:
1688  *   rsp=<regspacing>
1689  *   rsi=<regsize>
1690  *   rsh=<regshift>
1691  *   irq=<irq>
1692  *   ipmb=<ipmb addr>
1693  */
1694 enum hotmod_op { HM_ADD, HM_REMOVE };
1695 struct hotmod_vals {
1696 	char *name;
1697 	int  val;
1698 };
1699 static struct hotmod_vals hotmod_ops[] = {
1700 	{ "add",	HM_ADD },
1701 	{ "remove",	HM_REMOVE },
1702 	{ NULL }
1703 };
1704 static struct hotmod_vals hotmod_si[] = {
1705 	{ "kcs",	SI_KCS },
1706 	{ "smic",	SI_SMIC },
1707 	{ "bt",		SI_BT },
1708 	{ NULL }
1709 };
1710 static struct hotmod_vals hotmod_as[] = {
1711 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1712 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1713 	{ NULL }
1714 };
1715 
1716 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1717 {
1718 	char *s;
1719 	int  i;
1720 
1721 	s = strchr(*curr, ',');
1722 	if (!s) {
1723 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1724 		return -EINVAL;
1725 	}
1726 	*s = '\0';
1727 	s++;
1728 	for (i = 0; v[i].name; i++) {
1729 		if (strcmp(*curr, v[i].name) == 0) {
1730 			*val = v[i].val;
1731 			*curr = s;
1732 			return 0;
1733 		}
1734 	}
1735 
1736 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1737 	return -EINVAL;
1738 }
1739 
1740 static int check_hotmod_int_op(const char *curr, const char *option,
1741 			       const char *name, int *val)
1742 {
1743 	char *n;
1744 
1745 	if (strcmp(curr, name) == 0) {
1746 		if (!option) {
1747 			printk(KERN_WARNING PFX
1748 			       "No option given for '%s'\n",
1749 			       curr);
1750 			return -EINVAL;
1751 		}
1752 		*val = simple_strtoul(option, &n, 0);
1753 		if ((*n != '\0') || (*option == '\0')) {
1754 			printk(KERN_WARNING PFX
1755 			       "Bad option given for '%s'\n",
1756 			       curr);
1757 			return -EINVAL;
1758 		}
1759 		return 1;
1760 	}
1761 	return 0;
1762 }
1763 
1764 static struct smi_info *smi_info_alloc(void)
1765 {
1766 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1767 
1768 	if (info)
1769 		spin_lock_init(&info->si_lock);
1770 	return info;
1771 }
1772 
1773 static int hotmod_handler(const char *val, struct kernel_param *kp)
1774 {
1775 	char *str = kstrdup(val, GFP_KERNEL);
1776 	int  rv;
1777 	char *next, *curr, *s, *n, *o;
1778 	enum hotmod_op op;
1779 	enum si_type si_type;
1780 	int  addr_space;
1781 	unsigned long addr;
1782 	int regspacing;
1783 	int regsize;
1784 	int regshift;
1785 	int irq;
1786 	int ipmb;
1787 	int ival;
1788 	int len;
1789 	struct smi_info *info;
1790 
1791 	if (!str)
1792 		return -ENOMEM;
1793 
1794 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1795 	len = strlen(str);
1796 	ival = len - 1;
1797 	while ((ival >= 0) && isspace(str[ival])) {
1798 		str[ival] = '\0';
1799 		ival--;
1800 	}
1801 
1802 	for (curr = str; curr; curr = next) {
1803 		regspacing = 1;
1804 		regsize = 1;
1805 		regshift = 0;
1806 		irq = 0;
1807 		ipmb = 0; /* Choose the default if not specified */
1808 
1809 		next = strchr(curr, ':');
1810 		if (next) {
1811 			*next = '\0';
1812 			next++;
1813 		}
1814 
1815 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1816 		if (rv)
1817 			break;
1818 		op = ival;
1819 
1820 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1821 		if (rv)
1822 			break;
1823 		si_type = ival;
1824 
1825 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1826 		if (rv)
1827 			break;
1828 
1829 		s = strchr(curr, ',');
1830 		if (s) {
1831 			*s = '\0';
1832 			s++;
1833 		}
1834 		addr = simple_strtoul(curr, &n, 0);
1835 		if ((*n != '\0') || (*curr == '\0')) {
1836 			printk(KERN_WARNING PFX "Invalid hotmod address"
1837 			       " '%s'\n", curr);
1838 			break;
1839 		}
1840 
1841 		while (s) {
1842 			curr = s;
1843 			s = strchr(curr, ',');
1844 			if (s) {
1845 				*s = '\0';
1846 				s++;
1847 			}
1848 			o = strchr(curr, '=');
1849 			if (o) {
1850 				*o = '\0';
1851 				o++;
1852 			}
1853 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1854 			if (rv < 0)
1855 				goto out;
1856 			else if (rv)
1857 				continue;
1858 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1859 			if (rv < 0)
1860 				goto out;
1861 			else if (rv)
1862 				continue;
1863 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1864 			if (rv < 0)
1865 				goto out;
1866 			else if (rv)
1867 				continue;
1868 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1869 			if (rv < 0)
1870 				goto out;
1871 			else if (rv)
1872 				continue;
1873 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1874 			if (rv < 0)
1875 				goto out;
1876 			else if (rv)
1877 				continue;
1878 
1879 			rv = -EINVAL;
1880 			printk(KERN_WARNING PFX
1881 			       "Invalid hotmod option '%s'\n",
1882 			       curr);
1883 			goto out;
1884 		}
1885 
1886 		if (op == HM_ADD) {
1887 			info = smi_info_alloc();
1888 			if (!info) {
1889 				rv = -ENOMEM;
1890 				goto out;
1891 			}
1892 
1893 			info->addr_source = SI_HOTMOD;
1894 			info->si_type = si_type;
1895 			info->io.addr_data = addr;
1896 			info->io.addr_type = addr_space;
1897 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1898 				info->io_setup = mem_setup;
1899 			else
1900 				info->io_setup = port_setup;
1901 
1902 			info->io.addr = NULL;
1903 			info->io.regspacing = regspacing;
1904 			if (!info->io.regspacing)
1905 				info->io.regspacing = DEFAULT_REGSPACING;
1906 			info->io.regsize = regsize;
1907 			if (!info->io.regsize)
1908 				info->io.regsize = DEFAULT_REGSPACING;
1909 			info->io.regshift = regshift;
1910 			info->irq = irq;
1911 			if (info->irq)
1912 				info->irq_setup = std_irq_setup;
1913 			info->slave_addr = ipmb;
1914 
1915 			rv = add_smi(info);
1916 			if (rv) {
1917 				kfree(info);
1918 				goto out;
1919 			}
1920 			rv = try_smi_init(info);
1921 			if (rv) {
1922 				cleanup_one_si(info);
1923 				goto out;
1924 			}
1925 		} else {
1926 			/* remove */
1927 			struct smi_info *e, *tmp_e;
1928 
1929 			mutex_lock(&smi_infos_lock);
1930 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1931 				if (e->io.addr_type != addr_space)
1932 					continue;
1933 				if (e->si_type != si_type)
1934 					continue;
1935 				if (e->io.addr_data == addr)
1936 					cleanup_one_si(e);
1937 			}
1938 			mutex_unlock(&smi_infos_lock);
1939 		}
1940 	}
1941 	rv = len;
1942  out:
1943 	kfree(str);
1944 	return rv;
1945 }
1946 
1947 static int hardcode_find_bmc(void)
1948 {
1949 	int ret = -ENODEV;
1950 	int             i;
1951 	struct smi_info *info;
1952 
1953 	for (i = 0; i < SI_MAX_PARMS; i++) {
1954 		if (!ports[i] && !addrs[i])
1955 			continue;
1956 
1957 		info = smi_info_alloc();
1958 		if (!info)
1959 			return -ENOMEM;
1960 
1961 		info->addr_source = SI_HARDCODED;
1962 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1963 
1964 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1965 			info->si_type = SI_KCS;
1966 		} else if (strcmp(si_type[i], "smic") == 0) {
1967 			info->si_type = SI_SMIC;
1968 		} else if (strcmp(si_type[i], "bt") == 0) {
1969 			info->si_type = SI_BT;
1970 		} else {
1971 			printk(KERN_WARNING PFX "Interface type specified "
1972 			       "for interface %d, was invalid: %s\n",
1973 			       i, si_type[i]);
1974 			kfree(info);
1975 			continue;
1976 		}
1977 
1978 		if (ports[i]) {
1979 			/* An I/O port */
1980 			info->io_setup = port_setup;
1981 			info->io.addr_data = ports[i];
1982 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1983 		} else if (addrs[i]) {
1984 			/* A memory port */
1985 			info->io_setup = mem_setup;
1986 			info->io.addr_data = addrs[i];
1987 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1988 		} else {
1989 			printk(KERN_WARNING PFX "Interface type specified "
1990 			       "for interface %d, but port and address were "
1991 			       "not set or set to zero.\n", i);
1992 			kfree(info);
1993 			continue;
1994 		}
1995 
1996 		info->io.addr = NULL;
1997 		info->io.regspacing = regspacings[i];
1998 		if (!info->io.regspacing)
1999 			info->io.regspacing = DEFAULT_REGSPACING;
2000 		info->io.regsize = regsizes[i];
2001 		if (!info->io.regsize)
2002 			info->io.regsize = DEFAULT_REGSPACING;
2003 		info->io.regshift = regshifts[i];
2004 		info->irq = irqs[i];
2005 		if (info->irq)
2006 			info->irq_setup = std_irq_setup;
2007 		info->slave_addr = slave_addrs[i];
2008 
2009 		if (!add_smi(info)) {
2010 			if (try_smi_init(info))
2011 				cleanup_one_si(info);
2012 			ret = 0;
2013 		} else {
2014 			kfree(info);
2015 		}
2016 	}
2017 	return ret;
2018 }
2019 
2020 #ifdef CONFIG_ACPI
2021 
2022 #include <linux/acpi.h>
2023 
2024 /*
2025  * Once we get an ACPI failure, we don't try any more, because we go
2026  * through the tables sequentially.  Once we don't find a table, there
2027  * are no more.
2028  */
2029 static int acpi_failure;
2030 
2031 /* For GPE-type interrupts. */
2032 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2033 	u32 gpe_number, void *context)
2034 {
2035 	struct smi_info *smi_info = context;
2036 	unsigned long   flags;
2037 
2038 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2039 
2040 	smi_inc_stat(smi_info, interrupts);
2041 
2042 	debug_timestamp("ACPI_GPE");
2043 
2044 	smi_event_handler(smi_info, 0);
2045 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2046 
2047 	return ACPI_INTERRUPT_HANDLED;
2048 }
2049 
2050 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2051 {
2052 	if (!info->irq)
2053 		return;
2054 
2055 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2056 }
2057 
2058 static int acpi_gpe_irq_setup(struct smi_info *info)
2059 {
2060 	acpi_status status;
2061 
2062 	if (!info->irq)
2063 		return 0;
2064 
2065 	status = acpi_install_gpe_handler(NULL,
2066 					  info->irq,
2067 					  ACPI_GPE_LEVEL_TRIGGERED,
2068 					  &ipmi_acpi_gpe,
2069 					  info);
2070 	if (status != AE_OK) {
2071 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2072 			 " running polled\n", DEVICE_NAME, info->irq);
2073 		info->irq = 0;
2074 		return -EINVAL;
2075 	} else {
2076 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2077 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2078 		return 0;
2079 	}
2080 }
2081 
2082 /*
2083  * Defined at
2084  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2085  */
2086 struct SPMITable {
2087 	s8	Signature[4];
2088 	u32	Length;
2089 	u8	Revision;
2090 	u8	Checksum;
2091 	s8	OEMID[6];
2092 	s8	OEMTableID[8];
2093 	s8	OEMRevision[4];
2094 	s8	CreatorID[4];
2095 	s8	CreatorRevision[4];
2096 	u8	InterfaceType;
2097 	u8	IPMIlegacy;
2098 	s16	SpecificationRevision;
2099 
2100 	/*
2101 	 * Bit 0 - SCI interrupt supported
2102 	 * Bit 1 - I/O APIC/SAPIC
2103 	 */
2104 	u8	InterruptType;
2105 
2106 	/*
2107 	 * If bit 0 of InterruptType is set, then this is the SCI
2108 	 * interrupt in the GPEx_STS register.
2109 	 */
2110 	u8	GPE;
2111 
2112 	s16	Reserved;
2113 
2114 	/*
2115 	 * If bit 1 of InterruptType is set, then this is the I/O
2116 	 * APIC/SAPIC interrupt.
2117 	 */
2118 	u32	GlobalSystemInterrupt;
2119 
2120 	/* The actual register address. */
2121 	struct acpi_generic_address addr;
2122 
2123 	u8	UID[4];
2124 
2125 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2126 };
2127 
2128 static int try_init_spmi(struct SPMITable *spmi)
2129 {
2130 	struct smi_info  *info;
2131 	int rv;
2132 
2133 	if (spmi->IPMIlegacy != 1) {
2134 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2135 		return -ENODEV;
2136 	}
2137 
2138 	info = smi_info_alloc();
2139 	if (!info) {
2140 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2141 		return -ENOMEM;
2142 	}
2143 
2144 	info->addr_source = SI_SPMI;
2145 	printk(KERN_INFO PFX "probing via SPMI\n");
2146 
2147 	/* Figure out the interface type. */
2148 	switch (spmi->InterfaceType) {
2149 	case 1:	/* KCS */
2150 		info->si_type = SI_KCS;
2151 		break;
2152 	case 2:	/* SMIC */
2153 		info->si_type = SI_SMIC;
2154 		break;
2155 	case 3:	/* BT */
2156 		info->si_type = SI_BT;
2157 		break;
2158 	case 4: /* SSIF, just ignore */
2159 		kfree(info);
2160 		return -EIO;
2161 	default:
2162 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2163 		       spmi->InterfaceType);
2164 		kfree(info);
2165 		return -EIO;
2166 	}
2167 
2168 	if (spmi->InterruptType & 1) {
2169 		/* We've got a GPE interrupt. */
2170 		info->irq = spmi->GPE;
2171 		info->irq_setup = acpi_gpe_irq_setup;
2172 	} else if (spmi->InterruptType & 2) {
2173 		/* We've got an APIC/SAPIC interrupt. */
2174 		info->irq = spmi->GlobalSystemInterrupt;
2175 		info->irq_setup = std_irq_setup;
2176 	} else {
2177 		/* Use the default interrupt setting. */
2178 		info->irq = 0;
2179 		info->irq_setup = NULL;
2180 	}
2181 
2182 	if (spmi->addr.bit_width) {
2183 		/* A (hopefully) properly formed register bit width. */
2184 		info->io.regspacing = spmi->addr.bit_width / 8;
2185 	} else {
2186 		info->io.regspacing = DEFAULT_REGSPACING;
2187 	}
2188 	info->io.regsize = info->io.regspacing;
2189 	info->io.regshift = spmi->addr.bit_offset;
2190 
2191 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2192 		info->io_setup = mem_setup;
2193 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2194 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2195 		info->io_setup = port_setup;
2196 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2197 	} else {
2198 		kfree(info);
2199 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2200 		return -EIO;
2201 	}
2202 	info->io.addr_data = spmi->addr.address;
2203 
2204 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2205 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2206 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2207 		 info->irq);
2208 
2209 	rv = add_smi(info);
2210 	if (rv)
2211 		kfree(info);
2212 
2213 	return rv;
2214 }
2215 
2216 static void spmi_find_bmc(void)
2217 {
2218 	acpi_status      status;
2219 	struct SPMITable *spmi;
2220 	int              i;
2221 
2222 	if (acpi_disabled)
2223 		return;
2224 
2225 	if (acpi_failure)
2226 		return;
2227 
2228 	for (i = 0; ; i++) {
2229 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2230 					(struct acpi_table_header **)&spmi);
2231 		if (status != AE_OK)
2232 			return;
2233 
2234 		try_init_spmi(spmi);
2235 	}
2236 }
2237 
2238 static int ipmi_pnp_probe(struct pnp_dev *dev,
2239 				    const struct pnp_device_id *dev_id)
2240 {
2241 	struct acpi_device *acpi_dev;
2242 	struct smi_info *info;
2243 	struct resource *res, *res_second;
2244 	acpi_handle handle;
2245 	acpi_status status;
2246 	unsigned long long tmp;
2247 	int rv;
2248 
2249 	acpi_dev = pnp_acpi_device(dev);
2250 	if (!acpi_dev)
2251 		return -ENODEV;
2252 
2253 	info = smi_info_alloc();
2254 	if (!info)
2255 		return -ENOMEM;
2256 
2257 	info->addr_source = SI_ACPI;
2258 	printk(KERN_INFO PFX "probing via ACPI\n");
2259 
2260 	handle = acpi_dev->handle;
2261 	info->addr_info.acpi_info.acpi_handle = handle;
2262 
2263 	/* _IFT tells us the interface type: KCS, BT, etc */
2264 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2265 	if (ACPI_FAILURE(status))
2266 		goto err_free;
2267 
2268 	switch (tmp) {
2269 	case 1:
2270 		info->si_type = SI_KCS;
2271 		break;
2272 	case 2:
2273 		info->si_type = SI_SMIC;
2274 		break;
2275 	case 3:
2276 		info->si_type = SI_BT;
2277 		break;
2278 	case 4: /* SSIF, just ignore */
2279 		goto err_free;
2280 	default:
2281 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2282 		goto err_free;
2283 	}
2284 
2285 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2286 	if (res) {
2287 		info->io_setup = port_setup;
2288 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2289 	} else {
2290 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2291 		if (res) {
2292 			info->io_setup = mem_setup;
2293 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2294 		}
2295 	}
2296 	if (!res) {
2297 		dev_err(&dev->dev, "no I/O or memory address\n");
2298 		goto err_free;
2299 	}
2300 	info->io.addr_data = res->start;
2301 
2302 	info->io.regspacing = DEFAULT_REGSPACING;
2303 	res_second = pnp_get_resource(dev,
2304 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2305 					IORESOURCE_IO : IORESOURCE_MEM,
2306 			       1);
2307 	if (res_second) {
2308 		if (res_second->start > info->io.addr_data)
2309 			info->io.regspacing = res_second->start - info->io.addr_data;
2310 	}
2311 	info->io.regsize = DEFAULT_REGSPACING;
2312 	info->io.regshift = 0;
2313 
2314 	/* If _GPE exists, use it; otherwise use standard interrupts */
2315 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2316 	if (ACPI_SUCCESS(status)) {
2317 		info->irq = tmp;
2318 		info->irq_setup = acpi_gpe_irq_setup;
2319 	} else if (pnp_irq_valid(dev, 0)) {
2320 		info->irq = pnp_irq(dev, 0);
2321 		info->irq_setup = std_irq_setup;
2322 	}
2323 
2324 	info->dev = &dev->dev;
2325 	pnp_set_drvdata(dev, info);
2326 
2327 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2328 		 res, info->io.regsize, info->io.regspacing,
2329 		 info->irq);
2330 
2331 	rv = add_smi(info);
2332 	if (rv)
2333 		kfree(info);
2334 
2335 	return rv;
2336 
2337 err_free:
2338 	kfree(info);
2339 	return -EINVAL;
2340 }
2341 
2342 static void ipmi_pnp_remove(struct pnp_dev *dev)
2343 {
2344 	struct smi_info *info = pnp_get_drvdata(dev);
2345 
2346 	cleanup_one_si(info);
2347 }
2348 
2349 static const struct pnp_device_id pnp_dev_table[] = {
2350 	{"IPI0001", 0},
2351 	{"", 0},
2352 };
2353 
2354 static struct pnp_driver ipmi_pnp_driver = {
2355 	.name		= DEVICE_NAME,
2356 	.probe		= ipmi_pnp_probe,
2357 	.remove		= ipmi_pnp_remove,
2358 	.id_table	= pnp_dev_table,
2359 };
2360 
2361 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2362 #endif
2363 
2364 #ifdef CONFIG_DMI
2365 struct dmi_ipmi_data {
2366 	u8   		type;
2367 	u8   		addr_space;
2368 	unsigned long	base_addr;
2369 	u8   		irq;
2370 	u8              offset;
2371 	u8              slave_addr;
2372 };
2373 
2374 static int decode_dmi(const struct dmi_header *dm,
2375 				struct dmi_ipmi_data *dmi)
2376 {
2377 	const u8	*data = (const u8 *)dm;
2378 	unsigned long  	base_addr;
2379 	u8		reg_spacing;
2380 	u8              len = dm->length;
2381 
2382 	dmi->type = data[4];
2383 
2384 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2385 	if (len >= 0x11) {
2386 		if (base_addr & 1) {
2387 			/* I/O */
2388 			base_addr &= 0xFFFE;
2389 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2390 		} else
2391 			/* Memory */
2392 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2393 
2394 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2395 		   is odd. */
2396 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2397 
2398 		dmi->irq = data[0x11];
2399 
2400 		/* The top two bits of byte 0x10 hold the register spacing. */
2401 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2402 		switch (reg_spacing) {
2403 		case 0x00: /* Byte boundaries */
2404 		    dmi->offset = 1;
2405 		    break;
2406 		case 0x01: /* 32-bit boundaries */
2407 		    dmi->offset = 4;
2408 		    break;
2409 		case 0x02: /* 16-byte boundaries */
2410 		    dmi->offset = 16;
2411 		    break;
2412 		default:
2413 		    /* Some other interface, just ignore it. */
2414 		    return -EIO;
2415 		}
2416 	} else {
2417 		/* Old DMI spec. */
2418 		/*
2419 		 * Note that technically, the lower bit of the base
2420 		 * address should be 1 if the address is I/O and 0 if
2421 		 * the address is in memory.  So many systems get that
2422 		 * wrong (and all that I have seen are I/O) so we just
2423 		 * ignore that bit and assume I/O.  Systems that use
2424 		 * memory should use the newer spec, anyway.
2425 		 */
2426 		dmi->base_addr = base_addr & 0xfffe;
2427 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2428 		dmi->offset = 1;
2429 	}
2430 
2431 	dmi->slave_addr = data[6];
2432 
2433 	return 0;
2434 }
2435 
2436 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2437 {
2438 	struct smi_info *info;
2439 
2440 	info = smi_info_alloc();
2441 	if (!info) {
2442 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2443 		return;
2444 	}
2445 
2446 	info->addr_source = SI_SMBIOS;
2447 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2448 
2449 	switch (ipmi_data->type) {
2450 	case 0x01: /* KCS */
2451 		info->si_type = SI_KCS;
2452 		break;
2453 	case 0x02: /* SMIC */
2454 		info->si_type = SI_SMIC;
2455 		break;
2456 	case 0x03: /* BT */
2457 		info->si_type = SI_BT;
2458 		break;
2459 	default:
2460 		kfree(info);
2461 		return;
2462 	}
2463 
2464 	switch (ipmi_data->addr_space) {
2465 	case IPMI_MEM_ADDR_SPACE:
2466 		info->io_setup = mem_setup;
2467 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2468 		break;
2469 
2470 	case IPMI_IO_ADDR_SPACE:
2471 		info->io_setup = port_setup;
2472 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2473 		break;
2474 
2475 	default:
2476 		kfree(info);
2477 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2478 		       ipmi_data->addr_space);
2479 		return;
2480 	}
2481 	info->io.addr_data = ipmi_data->base_addr;
2482 
2483 	info->io.regspacing = ipmi_data->offset;
2484 	if (!info->io.regspacing)
2485 		info->io.regspacing = DEFAULT_REGSPACING;
2486 	info->io.regsize = DEFAULT_REGSPACING;
2487 	info->io.regshift = 0;
2488 
2489 	info->slave_addr = ipmi_data->slave_addr;
2490 
2491 	info->irq = ipmi_data->irq;
2492 	if (info->irq)
2493 		info->irq_setup = std_irq_setup;
2494 
2495 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2496 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2497 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2498 		 info->irq);
2499 
2500 	if (add_smi(info))
2501 		kfree(info);
2502 }
2503 
2504 static void dmi_find_bmc(void)
2505 {
2506 	const struct dmi_device *dev = NULL;
2507 	struct dmi_ipmi_data data;
2508 	int                  rv;
2509 
2510 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2511 		memset(&data, 0, sizeof(data));
2512 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2513 				&data);
2514 		if (!rv)
2515 			try_init_dmi(&data);
2516 	}
2517 }
2518 #endif /* CONFIG_DMI */
2519 
2520 #ifdef CONFIG_PCI
2521 
2522 #define PCI_ERMC_CLASSCODE		0x0C0700
2523 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2524 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2525 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2526 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2527 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2528 
2529 #define PCI_HP_VENDOR_ID    0x103C
2530 #define PCI_MMC_DEVICE_ID   0x121A
2531 #define PCI_MMC_ADDR_CW     0x10
2532 
2533 static void ipmi_pci_cleanup(struct smi_info *info)
2534 {
2535 	struct pci_dev *pdev = info->addr_source_data;
2536 
2537 	pci_disable_device(pdev);
2538 }
2539 
2540 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2541 {
2542 	if (info->si_type == SI_KCS) {
2543 		unsigned char	status;
2544 		int		regspacing;
2545 
2546 		info->io.regsize = DEFAULT_REGSIZE;
2547 		info->io.regshift = 0;
2548 		info->io_size = 2;
2549 		info->handlers = &kcs_smi_handlers;
2550 
2551 		/* detect 1, 4, 16byte spacing */
2552 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2553 			info->io.regspacing = regspacing;
2554 			if (info->io_setup(info)) {
2555 				dev_err(info->dev,
2556 					"Could not setup I/O space\n");
2557 				return DEFAULT_REGSPACING;
2558 			}
2559 			/* write invalid cmd */
2560 			info->io.outputb(&info->io, 1, 0x10);
2561 			/* read status back */
2562 			status = info->io.inputb(&info->io, 1);
2563 			info->io_cleanup(info);
2564 			if (status)
2565 				return regspacing;
2566 			regspacing *= 4;
2567 		}
2568 	}
2569 	return DEFAULT_REGSPACING;
2570 }
2571 
2572 static int ipmi_pci_probe(struct pci_dev *pdev,
2573 				    const struct pci_device_id *ent)
2574 {
2575 	int rv;
2576 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2577 	struct smi_info *info;
2578 
2579 	info = smi_info_alloc();
2580 	if (!info)
2581 		return -ENOMEM;
2582 
2583 	info->addr_source = SI_PCI;
2584 	dev_info(&pdev->dev, "probing via PCI");
2585 
2586 	switch (class_type) {
2587 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2588 		info->si_type = SI_SMIC;
2589 		break;
2590 
2591 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2592 		info->si_type = SI_KCS;
2593 		break;
2594 
2595 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2596 		info->si_type = SI_BT;
2597 		break;
2598 
2599 	default:
2600 		kfree(info);
2601 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2602 		return -ENOMEM;
2603 	}
2604 
2605 	rv = pci_enable_device(pdev);
2606 	if (rv) {
2607 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2608 		kfree(info);
2609 		return rv;
2610 	}
2611 
2612 	info->addr_source_cleanup = ipmi_pci_cleanup;
2613 	info->addr_source_data = pdev;
2614 
2615 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2616 		info->io_setup = port_setup;
2617 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2618 	} else {
2619 		info->io_setup = mem_setup;
2620 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2621 	}
2622 	info->io.addr_data = pci_resource_start(pdev, 0);
2623 
2624 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2625 	info->io.regsize = DEFAULT_REGSIZE;
2626 	info->io.regshift = 0;
2627 
2628 	info->irq = pdev->irq;
2629 	if (info->irq)
2630 		info->irq_setup = std_irq_setup;
2631 
2632 	info->dev = &pdev->dev;
2633 	pci_set_drvdata(pdev, info);
2634 
2635 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2636 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2637 		info->irq);
2638 
2639 	rv = add_smi(info);
2640 	if (rv) {
2641 		kfree(info);
2642 		pci_disable_device(pdev);
2643 	}
2644 
2645 	return rv;
2646 }
2647 
2648 static void ipmi_pci_remove(struct pci_dev *pdev)
2649 {
2650 	struct smi_info *info = pci_get_drvdata(pdev);
2651 	cleanup_one_si(info);
2652 	pci_disable_device(pdev);
2653 }
2654 
2655 static struct pci_device_id ipmi_pci_devices[] = {
2656 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2657 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2658 	{ 0, }
2659 };
2660 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2661 
2662 static struct pci_driver ipmi_pci_driver = {
2663 	.name =         DEVICE_NAME,
2664 	.id_table =     ipmi_pci_devices,
2665 	.probe =        ipmi_pci_probe,
2666 	.remove =       ipmi_pci_remove,
2667 };
2668 #endif /* CONFIG_PCI */
2669 
2670 static struct of_device_id ipmi_match[];
2671 static int ipmi_probe(struct platform_device *dev)
2672 {
2673 #ifdef CONFIG_OF
2674 	const struct of_device_id *match;
2675 	struct smi_info *info;
2676 	struct resource resource;
2677 	const __be32 *regsize, *regspacing, *regshift;
2678 	struct device_node *np = dev->dev.of_node;
2679 	int ret;
2680 	int proplen;
2681 
2682 	dev_info(&dev->dev, "probing via device tree\n");
2683 
2684 	match = of_match_device(ipmi_match, &dev->dev);
2685 	if (!match)
2686 		return -EINVAL;
2687 
2688 	if (!of_device_is_available(np))
2689 		return -EINVAL;
2690 
2691 	ret = of_address_to_resource(np, 0, &resource);
2692 	if (ret) {
2693 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2694 		return ret;
2695 	}
2696 
2697 	regsize = of_get_property(np, "reg-size", &proplen);
2698 	if (regsize && proplen != 4) {
2699 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2700 		return -EINVAL;
2701 	}
2702 
2703 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2704 	if (regspacing && proplen != 4) {
2705 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2706 		return -EINVAL;
2707 	}
2708 
2709 	regshift = of_get_property(np, "reg-shift", &proplen);
2710 	if (regshift && proplen != 4) {
2711 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2712 		return -EINVAL;
2713 	}
2714 
2715 	info = smi_info_alloc();
2716 
2717 	if (!info) {
2718 		dev_err(&dev->dev,
2719 			"could not allocate memory for OF probe\n");
2720 		return -ENOMEM;
2721 	}
2722 
2723 	info->si_type		= (enum si_type) match->data;
2724 	info->addr_source	= SI_DEVICETREE;
2725 	info->irq_setup		= std_irq_setup;
2726 
2727 	if (resource.flags & IORESOURCE_IO) {
2728 		info->io_setup		= port_setup;
2729 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2730 	} else {
2731 		info->io_setup		= mem_setup;
2732 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2733 	}
2734 
2735 	info->io.addr_data	= resource.start;
2736 
2737 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2738 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2739 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2740 
2741 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2742 	info->dev		= &dev->dev;
2743 
2744 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2745 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2746 		info->irq);
2747 
2748 	dev_set_drvdata(&dev->dev, info);
2749 
2750 	ret = add_smi(info);
2751 	if (ret) {
2752 		kfree(info);
2753 		return ret;
2754 	}
2755 #endif
2756 	return 0;
2757 }
2758 
2759 static int ipmi_remove(struct platform_device *dev)
2760 {
2761 #ifdef CONFIG_OF
2762 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2763 #endif
2764 	return 0;
2765 }
2766 
2767 static struct of_device_id ipmi_match[] =
2768 {
2769 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2770 	  .data = (void *)(unsigned long) SI_KCS },
2771 	{ .type = "ipmi", .compatible = "ipmi-smic",
2772 	  .data = (void *)(unsigned long) SI_SMIC },
2773 	{ .type = "ipmi", .compatible = "ipmi-bt",
2774 	  .data = (void *)(unsigned long) SI_BT },
2775 	{},
2776 };
2777 
2778 static struct platform_driver ipmi_driver = {
2779 	.driver = {
2780 		.name = DEVICE_NAME,
2781 		.of_match_table = ipmi_match,
2782 	},
2783 	.probe		= ipmi_probe,
2784 	.remove		= ipmi_remove,
2785 };
2786 
2787 #ifdef CONFIG_PARISC
2788 static int ipmi_parisc_probe(struct parisc_device *dev)
2789 {
2790 	struct smi_info *info;
2791 	int rv;
2792 
2793 	info = smi_info_alloc();
2794 
2795 	if (!info) {
2796 		dev_err(&dev->dev,
2797 			"could not allocate memory for PARISC probe\n");
2798 		return -ENOMEM;
2799 	}
2800 
2801 	info->si_type		= SI_KCS;
2802 	info->addr_source	= SI_DEVICETREE;
2803 	info->io_setup		= mem_setup;
2804 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2805 	info->io.addr_data	= dev->hpa.start;
2806 	info->io.regsize	= 1;
2807 	info->io.regspacing	= 1;
2808 	info->io.regshift	= 0;
2809 	info->irq		= 0; /* no interrupt */
2810 	info->irq_setup		= NULL;
2811 	info->dev		= &dev->dev;
2812 
2813 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2814 
2815 	dev_set_drvdata(&dev->dev, info);
2816 
2817 	rv = add_smi(info);
2818 	if (rv) {
2819 		kfree(info);
2820 		return rv;
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 static int ipmi_parisc_remove(struct parisc_device *dev)
2827 {
2828 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2829 	return 0;
2830 }
2831 
2832 static struct parisc_device_id ipmi_parisc_tbl[] = {
2833 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2834 	{ 0, }
2835 };
2836 
2837 static struct parisc_driver ipmi_parisc_driver = {
2838 	.name =		"ipmi",
2839 	.id_table =	ipmi_parisc_tbl,
2840 	.probe =	ipmi_parisc_probe,
2841 	.remove =	ipmi_parisc_remove,
2842 };
2843 #endif /* CONFIG_PARISC */
2844 
2845 static int wait_for_msg_done(struct smi_info *smi_info)
2846 {
2847 	enum si_sm_result     smi_result;
2848 
2849 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2850 	for (;;) {
2851 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2852 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2853 			schedule_timeout_uninterruptible(1);
2854 			smi_result = smi_info->handlers->event(
2855 				smi_info->si_sm, jiffies_to_usecs(1));
2856 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2857 			smi_result = smi_info->handlers->event(
2858 				smi_info->si_sm, 0);
2859 		} else
2860 			break;
2861 	}
2862 	if (smi_result == SI_SM_HOSED)
2863 		/*
2864 		 * We couldn't get the state machine to run, so whatever's at
2865 		 * the port is probably not an IPMI SMI interface.
2866 		 */
2867 		return -ENODEV;
2868 
2869 	return 0;
2870 }
2871 
2872 static int try_get_dev_id(struct smi_info *smi_info)
2873 {
2874 	unsigned char         msg[2];
2875 	unsigned char         *resp;
2876 	unsigned long         resp_len;
2877 	int                   rv = 0;
2878 
2879 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2880 	if (!resp)
2881 		return -ENOMEM;
2882 
2883 	/*
2884 	 * Do a Get Device ID command, since it comes back with some
2885 	 * useful info.
2886 	 */
2887 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2888 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2889 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2890 
2891 	rv = wait_for_msg_done(smi_info);
2892 	if (rv)
2893 		goto out;
2894 
2895 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2896 						  resp, IPMI_MAX_MSG_LENGTH);
2897 
2898 	/* Check and record info from the get device id, in case we need it. */
2899 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2900 
2901  out:
2902 	kfree(resp);
2903 	return rv;
2904 }
2905 
2906 /*
2907  * Some BMCs do not support clearing the receive irq bit in the global
2908  * enables (even if they don't support interrupts on the BMC).  Check
2909  * for this and handle it properly.
2910  */
2911 static void check_clr_rcv_irq(struct smi_info *smi_info)
2912 {
2913 	unsigned char         msg[3];
2914 	unsigned char         *resp;
2915 	unsigned long         resp_len;
2916 	int                   rv;
2917 
2918 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2919 	if (!resp) {
2920 		printk(KERN_WARNING PFX "Out of memory allocating response for"
2921 		       " global enables command, cannot check recv irq bit"
2922 		       " handling.\n");
2923 		return;
2924 	}
2925 
2926 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2927 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2928 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2929 
2930 	rv = wait_for_msg_done(smi_info);
2931 	if (rv) {
2932 		printk(KERN_WARNING PFX "Error getting response from get"
2933 		       " global enables command, cannot check recv irq bit"
2934 		       " handling.\n");
2935 		goto out;
2936 	}
2937 
2938 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2939 						  resp, IPMI_MAX_MSG_LENGTH);
2940 
2941 	if (resp_len < 4 ||
2942 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2943 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2944 			resp[2] != 0) {
2945 		printk(KERN_WARNING PFX "Invalid return from get global"
2946 		       " enables command, cannot check recv irq bit"
2947 		       " handling.\n");
2948 		rv = -EINVAL;
2949 		goto out;
2950 	}
2951 
2952 	if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2953 		/* Already clear, should work ok. */
2954 		goto out;
2955 
2956 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2957 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2958 	msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2959 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2960 
2961 	rv = wait_for_msg_done(smi_info);
2962 	if (rv) {
2963 		printk(KERN_WARNING PFX "Error getting response from set"
2964 		       " global enables command, cannot check recv irq bit"
2965 		       " handling.\n");
2966 		goto out;
2967 	}
2968 
2969 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2970 						  resp, IPMI_MAX_MSG_LENGTH);
2971 
2972 	if (resp_len < 3 ||
2973 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2974 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2975 		printk(KERN_WARNING PFX "Invalid return from get global"
2976 		       " enables command, cannot check recv irq bit"
2977 		       " handling.\n");
2978 		rv = -EINVAL;
2979 		goto out;
2980 	}
2981 
2982 	if (resp[2] != 0) {
2983 		/*
2984 		 * An error when setting the event buffer bit means
2985 		 * clearing the bit is not supported.
2986 		 */
2987 		printk(KERN_WARNING PFX "The BMC does not support clearing"
2988 		       " the recv irq bit, compensating, but the BMC needs to"
2989 		       " be fixed.\n");
2990 		smi_info->cannot_clear_recv_irq_bit = true;
2991 	}
2992  out:
2993 	kfree(resp);
2994 }
2995 
2996 static int try_enable_event_buffer(struct smi_info *smi_info)
2997 {
2998 	unsigned char         msg[3];
2999 	unsigned char         *resp;
3000 	unsigned long         resp_len;
3001 	int                   rv = 0;
3002 
3003 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3004 	if (!resp)
3005 		return -ENOMEM;
3006 
3007 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3008 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3009 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3010 
3011 	rv = wait_for_msg_done(smi_info);
3012 	if (rv) {
3013 		printk(KERN_WARNING PFX "Error getting response from get"
3014 		       " global enables command, the event buffer is not"
3015 		       " enabled.\n");
3016 		goto out;
3017 	}
3018 
3019 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3020 						  resp, IPMI_MAX_MSG_LENGTH);
3021 
3022 	if (resp_len < 4 ||
3023 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3024 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3025 			resp[2] != 0) {
3026 		printk(KERN_WARNING PFX "Invalid return from get global"
3027 		       " enables command, cannot enable the event buffer.\n");
3028 		rv = -EINVAL;
3029 		goto out;
3030 	}
3031 
3032 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3033 		/* buffer is already enabled, nothing to do. */
3034 		smi_info->supports_event_msg_buff = true;
3035 		goto out;
3036 	}
3037 
3038 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3039 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3040 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3041 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3042 
3043 	rv = wait_for_msg_done(smi_info);
3044 	if (rv) {
3045 		printk(KERN_WARNING PFX "Error getting response from set"
3046 		       " global, enables command, the event buffer is not"
3047 		       " enabled.\n");
3048 		goto out;
3049 	}
3050 
3051 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3052 						  resp, IPMI_MAX_MSG_LENGTH);
3053 
3054 	if (resp_len < 3 ||
3055 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3056 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3057 		printk(KERN_WARNING PFX "Invalid return from get global,"
3058 		       "enables command, not enable the event buffer.\n");
3059 		rv = -EINVAL;
3060 		goto out;
3061 	}
3062 
3063 	if (resp[2] != 0)
3064 		/*
3065 		 * An error when setting the event buffer bit means
3066 		 * that the event buffer is not supported.
3067 		 */
3068 		rv = -ENOENT;
3069 	else
3070 		smi_info->supports_event_msg_buff = true;
3071 
3072  out:
3073 	kfree(resp);
3074 	return rv;
3075 }
3076 
3077 static int smi_type_proc_show(struct seq_file *m, void *v)
3078 {
3079 	struct smi_info *smi = m->private;
3080 
3081 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3082 
3083 	return seq_has_overflowed(m);
3084 }
3085 
3086 static int smi_type_proc_open(struct inode *inode, struct file *file)
3087 {
3088 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3089 }
3090 
3091 static const struct file_operations smi_type_proc_ops = {
3092 	.open		= smi_type_proc_open,
3093 	.read		= seq_read,
3094 	.llseek		= seq_lseek,
3095 	.release	= single_release,
3096 };
3097 
3098 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3099 {
3100 	struct smi_info *smi = m->private;
3101 
3102 	seq_printf(m, "interrupts_enabled:    %d\n",
3103 		       smi->irq && !smi->interrupt_disabled);
3104 	seq_printf(m, "short_timeouts:        %u\n",
3105 		       smi_get_stat(smi, short_timeouts));
3106 	seq_printf(m, "long_timeouts:         %u\n",
3107 		       smi_get_stat(smi, long_timeouts));
3108 	seq_printf(m, "idles:                 %u\n",
3109 		       smi_get_stat(smi, idles));
3110 	seq_printf(m, "interrupts:            %u\n",
3111 		       smi_get_stat(smi, interrupts));
3112 	seq_printf(m, "attentions:            %u\n",
3113 		       smi_get_stat(smi, attentions));
3114 	seq_printf(m, "flag_fetches:          %u\n",
3115 		       smi_get_stat(smi, flag_fetches));
3116 	seq_printf(m, "hosed_count:           %u\n",
3117 		       smi_get_stat(smi, hosed_count));
3118 	seq_printf(m, "complete_transactions: %u\n",
3119 		       smi_get_stat(smi, complete_transactions));
3120 	seq_printf(m, "events:                %u\n",
3121 		       smi_get_stat(smi, events));
3122 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3123 		       smi_get_stat(smi, watchdog_pretimeouts));
3124 	seq_printf(m, "incoming_messages:     %u\n",
3125 		       smi_get_stat(smi, incoming_messages));
3126 	return 0;
3127 }
3128 
3129 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3130 {
3131 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3132 }
3133 
3134 static const struct file_operations smi_si_stats_proc_ops = {
3135 	.open		= smi_si_stats_proc_open,
3136 	.read		= seq_read,
3137 	.llseek		= seq_lseek,
3138 	.release	= single_release,
3139 };
3140 
3141 static int smi_params_proc_show(struct seq_file *m, void *v)
3142 {
3143 	struct smi_info *smi = m->private;
3144 
3145 	seq_printf(m,
3146 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3147 		   si_to_str[smi->si_type],
3148 		   addr_space_to_str[smi->io.addr_type],
3149 		   smi->io.addr_data,
3150 		   smi->io.regspacing,
3151 		   smi->io.regsize,
3152 		   smi->io.regshift,
3153 		   smi->irq,
3154 		   smi->slave_addr);
3155 
3156 	return seq_has_overflowed(m);
3157 }
3158 
3159 static int smi_params_proc_open(struct inode *inode, struct file *file)
3160 {
3161 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3162 }
3163 
3164 static const struct file_operations smi_params_proc_ops = {
3165 	.open		= smi_params_proc_open,
3166 	.read		= seq_read,
3167 	.llseek		= seq_lseek,
3168 	.release	= single_release,
3169 };
3170 
3171 /*
3172  * oem_data_avail_to_receive_msg_avail
3173  * @info - smi_info structure with msg_flags set
3174  *
3175  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3176  * Returns 1 indicating need to re-run handle_flags().
3177  */
3178 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3179 {
3180 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3181 			       RECEIVE_MSG_AVAIL);
3182 	return 1;
3183 }
3184 
3185 /*
3186  * setup_dell_poweredge_oem_data_handler
3187  * @info - smi_info.device_id must be populated
3188  *
3189  * Systems that match, but have firmware version < 1.40 may assert
3190  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3191  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3192  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3193  * as RECEIVE_MSG_AVAIL instead.
3194  *
3195  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3196  * assert the OEM[012] bits, and if it did, the driver would have to
3197  * change to handle that properly, we don't actually check for the
3198  * firmware version.
3199  * Device ID = 0x20                BMC on PowerEdge 8G servers
3200  * Device Revision = 0x80
3201  * Firmware Revision1 = 0x01       BMC version 1.40
3202  * Firmware Revision2 = 0x40       BCD encoded
3203  * IPMI Version = 0x51             IPMI 1.5
3204  * Manufacturer ID = A2 02 00      Dell IANA
3205  *
3206  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3207  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3208  *
3209  */
3210 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3211 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3212 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3213 #define DELL_IANA_MFR_ID 0x0002a2
3214 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3215 {
3216 	struct ipmi_device_id *id = &smi_info->device_id;
3217 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3218 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3219 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3220 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3221 			smi_info->oem_data_avail_handler =
3222 				oem_data_avail_to_receive_msg_avail;
3223 		} else if (ipmi_version_major(id) < 1 ||
3224 			   (ipmi_version_major(id) == 1 &&
3225 			    ipmi_version_minor(id) < 5)) {
3226 			smi_info->oem_data_avail_handler =
3227 				oem_data_avail_to_receive_msg_avail;
3228 		}
3229 	}
3230 }
3231 
3232 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3233 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3234 {
3235 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3236 
3237 	/* Make it a response */
3238 	msg->rsp[0] = msg->data[0] | 4;
3239 	msg->rsp[1] = msg->data[1];
3240 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3241 	msg->rsp_size = 3;
3242 	smi_info->curr_msg = NULL;
3243 	deliver_recv_msg(smi_info, msg);
3244 }
3245 
3246 /*
3247  * dell_poweredge_bt_xaction_handler
3248  * @info - smi_info.device_id must be populated
3249  *
3250  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3251  * not respond to a Get SDR command if the length of the data
3252  * requested is exactly 0x3A, which leads to command timeouts and no
3253  * data returned.  This intercepts such commands, and causes userspace
3254  * callers to try again with a different-sized buffer, which succeeds.
3255  */
3256 
3257 #define STORAGE_NETFN 0x0A
3258 #define STORAGE_CMD_GET_SDR 0x23
3259 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3260 					     unsigned long unused,
3261 					     void *in)
3262 {
3263 	struct smi_info *smi_info = in;
3264 	unsigned char *data = smi_info->curr_msg->data;
3265 	unsigned int size   = smi_info->curr_msg->data_size;
3266 	if (size >= 8 &&
3267 	    (data[0]>>2) == STORAGE_NETFN &&
3268 	    data[1] == STORAGE_CMD_GET_SDR &&
3269 	    data[7] == 0x3A) {
3270 		return_hosed_msg_badsize(smi_info);
3271 		return NOTIFY_STOP;
3272 	}
3273 	return NOTIFY_DONE;
3274 }
3275 
3276 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3277 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3278 };
3279 
3280 /*
3281  * setup_dell_poweredge_bt_xaction_handler
3282  * @info - smi_info.device_id must be filled in already
3283  *
3284  * Fills in smi_info.device_id.start_transaction_pre_hook
3285  * when we know what function to use there.
3286  */
3287 static void
3288 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3289 {
3290 	struct ipmi_device_id *id = &smi_info->device_id;
3291 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3292 	    smi_info->si_type == SI_BT)
3293 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3294 }
3295 
3296 /*
3297  * setup_oem_data_handler
3298  * @info - smi_info.device_id must be filled in already
3299  *
3300  * Fills in smi_info.device_id.oem_data_available_handler
3301  * when we know what function to use there.
3302  */
3303 
3304 static void setup_oem_data_handler(struct smi_info *smi_info)
3305 {
3306 	setup_dell_poweredge_oem_data_handler(smi_info);
3307 }
3308 
3309 static void setup_xaction_handlers(struct smi_info *smi_info)
3310 {
3311 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3312 }
3313 
3314 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3315 {
3316 	if (smi_info->thread != NULL)
3317 		kthread_stop(smi_info->thread);
3318 	if (smi_info->timer_running)
3319 		del_timer_sync(&smi_info->si_timer);
3320 }
3321 
3322 static struct ipmi_default_vals
3323 {
3324 	int type;
3325 	int port;
3326 } ipmi_defaults[] =
3327 {
3328 	{ .type = SI_KCS, .port = 0xca2 },
3329 	{ .type = SI_SMIC, .port = 0xca9 },
3330 	{ .type = SI_BT, .port = 0xe4 },
3331 	{ .port = 0 }
3332 };
3333 
3334 static void default_find_bmc(void)
3335 {
3336 	struct smi_info *info;
3337 	int             i;
3338 
3339 	for (i = 0; ; i++) {
3340 		if (!ipmi_defaults[i].port)
3341 			break;
3342 #ifdef CONFIG_PPC
3343 		if (check_legacy_ioport(ipmi_defaults[i].port))
3344 			continue;
3345 #endif
3346 		info = smi_info_alloc();
3347 		if (!info)
3348 			return;
3349 
3350 		info->addr_source = SI_DEFAULT;
3351 
3352 		info->si_type = ipmi_defaults[i].type;
3353 		info->io_setup = port_setup;
3354 		info->io.addr_data = ipmi_defaults[i].port;
3355 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3356 
3357 		info->io.addr = NULL;
3358 		info->io.regspacing = DEFAULT_REGSPACING;
3359 		info->io.regsize = DEFAULT_REGSPACING;
3360 		info->io.regshift = 0;
3361 
3362 		if (add_smi(info) == 0) {
3363 			if ((try_smi_init(info)) == 0) {
3364 				/* Found one... */
3365 				printk(KERN_INFO PFX "Found default %s"
3366 				" state machine at %s address 0x%lx\n",
3367 				si_to_str[info->si_type],
3368 				addr_space_to_str[info->io.addr_type],
3369 				info->io.addr_data);
3370 			} else
3371 				cleanup_one_si(info);
3372 		} else {
3373 			kfree(info);
3374 		}
3375 	}
3376 }
3377 
3378 static int is_new_interface(struct smi_info *info)
3379 {
3380 	struct smi_info *e;
3381 
3382 	list_for_each_entry(e, &smi_infos, link) {
3383 		if (e->io.addr_type != info->io.addr_type)
3384 			continue;
3385 		if (e->io.addr_data == info->io.addr_data)
3386 			return 0;
3387 	}
3388 
3389 	return 1;
3390 }
3391 
3392 static int add_smi(struct smi_info *new_smi)
3393 {
3394 	int rv = 0;
3395 
3396 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3397 	       ipmi_addr_src_to_str(new_smi->addr_source),
3398 	       si_to_str[new_smi->si_type]);
3399 	mutex_lock(&smi_infos_lock);
3400 	if (!is_new_interface(new_smi)) {
3401 		printk(KERN_CONT " duplicate interface\n");
3402 		rv = -EBUSY;
3403 		goto out_err;
3404 	}
3405 
3406 	printk(KERN_CONT "\n");
3407 
3408 	/* So we know not to free it unless we have allocated one. */
3409 	new_smi->intf = NULL;
3410 	new_smi->si_sm = NULL;
3411 	new_smi->handlers = NULL;
3412 
3413 	list_add_tail(&new_smi->link, &smi_infos);
3414 
3415 out_err:
3416 	mutex_unlock(&smi_infos_lock);
3417 	return rv;
3418 }
3419 
3420 static int try_smi_init(struct smi_info *new_smi)
3421 {
3422 	int rv = 0;
3423 	int i;
3424 
3425 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3426 	       " machine at %s address 0x%lx, slave address 0x%x,"
3427 	       " irq %d\n",
3428 	       ipmi_addr_src_to_str(new_smi->addr_source),
3429 	       si_to_str[new_smi->si_type],
3430 	       addr_space_to_str[new_smi->io.addr_type],
3431 	       new_smi->io.addr_data,
3432 	       new_smi->slave_addr, new_smi->irq);
3433 
3434 	switch (new_smi->si_type) {
3435 	case SI_KCS:
3436 		new_smi->handlers = &kcs_smi_handlers;
3437 		break;
3438 
3439 	case SI_SMIC:
3440 		new_smi->handlers = &smic_smi_handlers;
3441 		break;
3442 
3443 	case SI_BT:
3444 		new_smi->handlers = &bt_smi_handlers;
3445 		break;
3446 
3447 	default:
3448 		/* No support for anything else yet. */
3449 		rv = -EIO;
3450 		goto out_err;
3451 	}
3452 
3453 	/* Allocate the state machine's data and initialize it. */
3454 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3455 	if (!new_smi->si_sm) {
3456 		printk(KERN_ERR PFX
3457 		       "Could not allocate state machine memory\n");
3458 		rv = -ENOMEM;
3459 		goto out_err;
3460 	}
3461 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3462 							&new_smi->io);
3463 
3464 	/* Now that we know the I/O size, we can set up the I/O. */
3465 	rv = new_smi->io_setup(new_smi);
3466 	if (rv) {
3467 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3468 		goto out_err;
3469 	}
3470 
3471 	/* Do low-level detection first. */
3472 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3473 		if (new_smi->addr_source)
3474 			printk(KERN_INFO PFX "Interface detection failed\n");
3475 		rv = -ENODEV;
3476 		goto out_err;
3477 	}
3478 
3479 	/*
3480 	 * Attempt a get device id command.  If it fails, we probably
3481 	 * don't have a BMC here.
3482 	 */
3483 	rv = try_get_dev_id(new_smi);
3484 	if (rv) {
3485 		if (new_smi->addr_source)
3486 			printk(KERN_INFO PFX "There appears to be no BMC"
3487 			       " at this location\n");
3488 		goto out_err;
3489 	}
3490 
3491 	check_clr_rcv_irq(new_smi);
3492 
3493 	setup_oem_data_handler(new_smi);
3494 	setup_xaction_handlers(new_smi);
3495 
3496 	new_smi->waiting_msg = NULL;
3497 	new_smi->curr_msg = NULL;
3498 	atomic_set(&new_smi->req_events, 0);
3499 	new_smi->run_to_completion = false;
3500 	for (i = 0; i < SI_NUM_STATS; i++)
3501 		atomic_set(&new_smi->stats[i], 0);
3502 
3503 	new_smi->interrupt_disabled = true;
3504 	atomic_set(&new_smi->need_watch, 0);
3505 	new_smi->intf_num = smi_num;
3506 	smi_num++;
3507 
3508 	rv = try_enable_event_buffer(new_smi);
3509 	if (rv == 0)
3510 		new_smi->has_event_buffer = true;
3511 
3512 	/*
3513 	 * Start clearing the flags before we enable interrupts or the
3514 	 * timer to avoid racing with the timer.
3515 	 */
3516 	start_clear_flags(new_smi);
3517 
3518 	/*
3519 	 * IRQ is defined to be set when non-zero.  req_events will
3520 	 * cause a global flags check that will enable interrupts.
3521 	 */
3522 	if (new_smi->irq) {
3523 		new_smi->interrupt_disabled = false;
3524 		atomic_set(&new_smi->req_events, 1);
3525 	}
3526 
3527 	if (!new_smi->dev) {
3528 		/*
3529 		 * If we don't already have a device from something
3530 		 * else (like PCI), then register a new one.
3531 		 */
3532 		new_smi->pdev = platform_device_alloc("ipmi_si",
3533 						      new_smi->intf_num);
3534 		if (!new_smi->pdev) {
3535 			printk(KERN_ERR PFX
3536 			       "Unable to allocate platform device\n");
3537 			goto out_err;
3538 		}
3539 		new_smi->dev = &new_smi->pdev->dev;
3540 		new_smi->dev->driver = &ipmi_driver.driver;
3541 
3542 		rv = platform_device_add(new_smi->pdev);
3543 		if (rv) {
3544 			printk(KERN_ERR PFX
3545 			       "Unable to register system interface device:"
3546 			       " %d\n",
3547 			       rv);
3548 			goto out_err;
3549 		}
3550 		new_smi->dev_registered = true;
3551 	}
3552 
3553 	rv = ipmi_register_smi(&handlers,
3554 			       new_smi,
3555 			       &new_smi->device_id,
3556 			       new_smi->dev,
3557 			       new_smi->slave_addr);
3558 	if (rv) {
3559 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3560 			rv);
3561 		goto out_err_stop_timer;
3562 	}
3563 
3564 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3565 				     &smi_type_proc_ops,
3566 				     new_smi);
3567 	if (rv) {
3568 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3569 		goto out_err_stop_timer;
3570 	}
3571 
3572 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3573 				     &smi_si_stats_proc_ops,
3574 				     new_smi);
3575 	if (rv) {
3576 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3577 		goto out_err_stop_timer;
3578 	}
3579 
3580 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3581 				     &smi_params_proc_ops,
3582 				     new_smi);
3583 	if (rv) {
3584 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3585 		goto out_err_stop_timer;
3586 	}
3587 
3588 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3589 		 si_to_str[new_smi->si_type]);
3590 
3591 	return 0;
3592 
3593  out_err_stop_timer:
3594 	wait_for_timer_and_thread(new_smi);
3595 
3596  out_err:
3597 	new_smi->interrupt_disabled = true;
3598 
3599 	if (new_smi->intf) {
3600 		ipmi_smi_t intf = new_smi->intf;
3601 		new_smi->intf = NULL;
3602 		ipmi_unregister_smi(intf);
3603 	}
3604 
3605 	if (new_smi->irq_cleanup) {
3606 		new_smi->irq_cleanup(new_smi);
3607 		new_smi->irq_cleanup = NULL;
3608 	}
3609 
3610 	/*
3611 	 * Wait until we know that we are out of any interrupt
3612 	 * handlers might have been running before we freed the
3613 	 * interrupt.
3614 	 */
3615 	synchronize_sched();
3616 
3617 	if (new_smi->si_sm) {
3618 		if (new_smi->handlers)
3619 			new_smi->handlers->cleanup(new_smi->si_sm);
3620 		kfree(new_smi->si_sm);
3621 		new_smi->si_sm = NULL;
3622 	}
3623 	if (new_smi->addr_source_cleanup) {
3624 		new_smi->addr_source_cleanup(new_smi);
3625 		new_smi->addr_source_cleanup = NULL;
3626 	}
3627 	if (new_smi->io_cleanup) {
3628 		new_smi->io_cleanup(new_smi);
3629 		new_smi->io_cleanup = NULL;
3630 	}
3631 
3632 	if (new_smi->dev_registered) {
3633 		platform_device_unregister(new_smi->pdev);
3634 		new_smi->dev_registered = false;
3635 	}
3636 
3637 	return rv;
3638 }
3639 
3640 static int init_ipmi_si(void)
3641 {
3642 	int  i;
3643 	char *str;
3644 	int  rv;
3645 	struct smi_info *e;
3646 	enum ipmi_addr_src type = SI_INVALID;
3647 
3648 	if (initialized)
3649 		return 0;
3650 	initialized = 1;
3651 
3652 	if (si_tryplatform) {
3653 		rv = platform_driver_register(&ipmi_driver);
3654 		if (rv) {
3655 			printk(KERN_ERR PFX "Unable to register "
3656 			       "driver: %d\n", rv);
3657 			return rv;
3658 		}
3659 	}
3660 
3661 	/* Parse out the si_type string into its components. */
3662 	str = si_type_str;
3663 	if (*str != '\0') {
3664 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3665 			si_type[i] = str;
3666 			str = strchr(str, ',');
3667 			if (str) {
3668 				*str = '\0';
3669 				str++;
3670 			} else {
3671 				break;
3672 			}
3673 		}
3674 	}
3675 
3676 	printk(KERN_INFO "IPMI System Interface driver.\n");
3677 
3678 	/* If the user gave us a device, they presumably want us to use it */
3679 	if (!hardcode_find_bmc())
3680 		return 0;
3681 
3682 #ifdef CONFIG_PCI
3683 	if (si_trypci) {
3684 		rv = pci_register_driver(&ipmi_pci_driver);
3685 		if (rv)
3686 			printk(KERN_ERR PFX "Unable to register "
3687 			       "PCI driver: %d\n", rv);
3688 		else
3689 			pci_registered = true;
3690 	}
3691 #endif
3692 
3693 #ifdef CONFIG_ACPI
3694 	if (si_tryacpi) {
3695 		pnp_register_driver(&ipmi_pnp_driver);
3696 		pnp_registered = true;
3697 	}
3698 #endif
3699 
3700 #ifdef CONFIG_DMI
3701 	if (si_trydmi)
3702 		dmi_find_bmc();
3703 #endif
3704 
3705 #ifdef CONFIG_ACPI
3706 	if (si_tryacpi)
3707 		spmi_find_bmc();
3708 #endif
3709 
3710 #ifdef CONFIG_PARISC
3711 	register_parisc_driver(&ipmi_parisc_driver);
3712 	parisc_registered = true;
3713 	/* poking PC IO addresses will crash machine, don't do it */
3714 	si_trydefaults = 0;
3715 #endif
3716 
3717 	/* We prefer devices with interrupts, but in the case of a machine
3718 	   with multiple BMCs we assume that there will be several instances
3719 	   of a given type so if we succeed in registering a type then also
3720 	   try to register everything else of the same type */
3721 
3722 	mutex_lock(&smi_infos_lock);
3723 	list_for_each_entry(e, &smi_infos, link) {
3724 		/* Try to register a device if it has an IRQ and we either
3725 		   haven't successfully registered a device yet or this
3726 		   device has the same type as one we successfully registered */
3727 		if (e->irq && (!type || e->addr_source == type)) {
3728 			if (!try_smi_init(e)) {
3729 				type = e->addr_source;
3730 			}
3731 		}
3732 	}
3733 
3734 	/* type will only have been set if we successfully registered an si */
3735 	if (type) {
3736 		mutex_unlock(&smi_infos_lock);
3737 		return 0;
3738 	}
3739 
3740 	/* Fall back to the preferred device */
3741 
3742 	list_for_each_entry(e, &smi_infos, link) {
3743 		if (!e->irq && (!type || e->addr_source == type)) {
3744 			if (!try_smi_init(e)) {
3745 				type = e->addr_source;
3746 			}
3747 		}
3748 	}
3749 	mutex_unlock(&smi_infos_lock);
3750 
3751 	if (type)
3752 		return 0;
3753 
3754 	if (si_trydefaults) {
3755 		mutex_lock(&smi_infos_lock);
3756 		if (list_empty(&smi_infos)) {
3757 			/* No BMC was found, try defaults. */
3758 			mutex_unlock(&smi_infos_lock);
3759 			default_find_bmc();
3760 		} else
3761 			mutex_unlock(&smi_infos_lock);
3762 	}
3763 
3764 	mutex_lock(&smi_infos_lock);
3765 	if (unload_when_empty && list_empty(&smi_infos)) {
3766 		mutex_unlock(&smi_infos_lock);
3767 		cleanup_ipmi_si();
3768 		printk(KERN_WARNING PFX
3769 		       "Unable to find any System Interface(s)\n");
3770 		return -ENODEV;
3771 	} else {
3772 		mutex_unlock(&smi_infos_lock);
3773 		return 0;
3774 	}
3775 }
3776 module_init(init_ipmi_si);
3777 
3778 static void cleanup_one_si(struct smi_info *to_clean)
3779 {
3780 	int           rv = 0;
3781 
3782 	if (!to_clean)
3783 		return;
3784 
3785 	if (to_clean->intf) {
3786 		ipmi_smi_t intf = to_clean->intf;
3787 
3788 		to_clean->intf = NULL;
3789 		rv = ipmi_unregister_smi(intf);
3790 		if (rv) {
3791 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3792 			       rv);
3793 		}
3794 	}
3795 
3796 	if (to_clean->dev)
3797 		dev_set_drvdata(to_clean->dev, NULL);
3798 
3799 	list_del(&to_clean->link);
3800 
3801 	/*
3802 	 * Make sure that interrupts, the timer and the thread are
3803 	 * stopped and will not run again.
3804 	 */
3805 	if (to_clean->irq_cleanup)
3806 		to_clean->irq_cleanup(to_clean);
3807 	wait_for_timer_and_thread(to_clean);
3808 
3809 	/*
3810 	 * Timeouts are stopped, now make sure the interrupts are off
3811 	 * in the BMC.  Note that timers and CPU interrupts are off,
3812 	 * so no need for locks.
3813 	 */
3814 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3815 		poll(to_clean);
3816 		schedule_timeout_uninterruptible(1);
3817 	}
3818 	disable_si_irq(to_clean);
3819 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3820 		poll(to_clean);
3821 		schedule_timeout_uninterruptible(1);
3822 	}
3823 
3824 	if (to_clean->handlers)
3825 		to_clean->handlers->cleanup(to_clean->si_sm);
3826 
3827 	kfree(to_clean->si_sm);
3828 
3829 	if (to_clean->addr_source_cleanup)
3830 		to_clean->addr_source_cleanup(to_clean);
3831 	if (to_clean->io_cleanup)
3832 		to_clean->io_cleanup(to_clean);
3833 
3834 	if (to_clean->dev_registered)
3835 		platform_device_unregister(to_clean->pdev);
3836 
3837 	kfree(to_clean);
3838 }
3839 
3840 static void cleanup_ipmi_si(void)
3841 {
3842 	struct smi_info *e, *tmp_e;
3843 
3844 	if (!initialized)
3845 		return;
3846 
3847 #ifdef CONFIG_PCI
3848 	if (pci_registered)
3849 		pci_unregister_driver(&ipmi_pci_driver);
3850 #endif
3851 #ifdef CONFIG_ACPI
3852 	if (pnp_registered)
3853 		pnp_unregister_driver(&ipmi_pnp_driver);
3854 #endif
3855 #ifdef CONFIG_PARISC
3856 	if (parisc_registered)
3857 		unregister_parisc_driver(&ipmi_parisc_driver);
3858 #endif
3859 
3860 	platform_driver_unregister(&ipmi_driver);
3861 
3862 	mutex_lock(&smi_infos_lock);
3863 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3864 		cleanup_one_si(e);
3865 	mutex_unlock(&smi_infos_lock);
3866 }
3867 module_exit(cleanup_ipmi_si);
3868 
3869 MODULE_LICENSE("GPL");
3870 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3871 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3872 		   " system interfaces.");
3873