1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/init.h> 65 #include <linux/dmi.h> 66 #include <linux/string.h> 67 #include <linux/ctype.h> 68 #include <linux/pnp.h> 69 #include <linux/of_device.h> 70 #include <linux/of_platform.h> 71 #include <linux/of_address.h> 72 #include <linux/of_irq.h> 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 111 "ACPI", "SMBIOS", "PCI", 112 "device-tree", "default" }; 113 114 #define DEVICE_NAME "ipmi_si" 115 116 static struct platform_driver ipmi_driver; 117 118 /* 119 * Indexes into stats[] in smi_info below. 120 */ 121 enum si_stat_indexes { 122 /* 123 * Number of times the driver requested a timer while an operation 124 * was in progress. 125 */ 126 SI_STAT_short_timeouts = 0, 127 128 /* 129 * Number of times the driver requested a timer while nothing was in 130 * progress. 131 */ 132 SI_STAT_long_timeouts, 133 134 /* Number of times the interface was idle while being polled. */ 135 SI_STAT_idles, 136 137 /* Number of interrupts the driver handled. */ 138 SI_STAT_interrupts, 139 140 /* Number of time the driver got an ATTN from the hardware. */ 141 SI_STAT_attentions, 142 143 /* Number of times the driver requested flags from the hardware. */ 144 SI_STAT_flag_fetches, 145 146 /* Number of times the hardware didn't follow the state machine. */ 147 SI_STAT_hosed_count, 148 149 /* Number of completed messages. */ 150 SI_STAT_complete_transactions, 151 152 /* Number of IPMI events received from the hardware. */ 153 SI_STAT_events, 154 155 /* Number of watchdog pretimeouts. */ 156 SI_STAT_watchdog_pretimeouts, 157 158 /* Number of asynchronous messages received. */ 159 SI_STAT_incoming_messages, 160 161 162 /* This *must* remain last, add new values above this. */ 163 SI_NUM_STATS 164 }; 165 166 struct smi_info { 167 int intf_num; 168 ipmi_smi_t intf; 169 struct si_sm_data *si_sm; 170 struct si_sm_handlers *handlers; 171 enum si_type si_type; 172 spinlock_t si_lock; 173 struct list_head xmit_msgs; 174 struct list_head hp_xmit_msgs; 175 struct ipmi_smi_msg *curr_msg; 176 enum si_intf_state si_state; 177 178 /* 179 * Used to handle the various types of I/O that can occur with 180 * IPMI 181 */ 182 struct si_sm_io io; 183 int (*io_setup)(struct smi_info *info); 184 void (*io_cleanup)(struct smi_info *info); 185 int (*irq_setup)(struct smi_info *info); 186 void (*irq_cleanup)(struct smi_info *info); 187 unsigned int io_size; 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 189 void (*addr_source_cleanup)(struct smi_info *info); 190 void *addr_source_data; 191 192 /* 193 * Per-OEM handler, called from handle_flags(). Returns 1 194 * when handle_flags() needs to be re-run or 0 indicating it 195 * set si_state itself. 196 */ 197 int (*oem_data_avail_handler)(struct smi_info *smi_info); 198 199 /* 200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 201 * is set to hold the flags until we are done handling everything 202 * from the flags. 203 */ 204 #define RECEIVE_MSG_AVAIL 0x01 205 #define EVENT_MSG_BUFFER_FULL 0x02 206 #define WDT_PRE_TIMEOUT_INT 0x08 207 #define OEM0_DATA_AVAIL 0x20 208 #define OEM1_DATA_AVAIL 0x40 209 #define OEM2_DATA_AVAIL 0x80 210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 211 OEM1_DATA_AVAIL | \ 212 OEM2_DATA_AVAIL) 213 unsigned char msg_flags; 214 215 /* Does the BMC have an event buffer? */ 216 char has_event_buffer; 217 218 /* 219 * If set to true, this will request events the next time the 220 * state machine is idle. 221 */ 222 atomic_t req_events; 223 224 /* 225 * If true, run the state machine to completion on every send 226 * call. Generally used after a panic to make sure stuff goes 227 * out. 228 */ 229 int run_to_completion; 230 231 /* The I/O port of an SI interface. */ 232 int port; 233 234 /* 235 * The space between start addresses of the two ports. For 236 * instance, if the first port is 0xca2 and the spacing is 4, then 237 * the second port is 0xca6. 238 */ 239 unsigned int spacing; 240 241 /* zero if no irq; */ 242 int irq; 243 244 /* The timer for this si. */ 245 struct timer_list si_timer; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Used to gracefully stop the timer without race conditions. */ 251 atomic_t stop_operation; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 int interrupt_disabled; 260 261 /* From the get device id response... */ 262 struct ipmi_device_id device_id; 263 264 /* Driver model stuff. */ 265 struct device *dev; 266 struct platform_device *pdev; 267 268 /* 269 * True if we allocated the device, false if it came from 270 * someplace else (like PCI). 271 */ 272 int dev_registered; 273 274 /* Slave address, could be reported from DMI. */ 275 unsigned char slave_addr; 276 277 /* Counters and things for the proc filesystem. */ 278 atomic_t stats[SI_NUM_STATS]; 279 280 struct task_struct *thread; 281 282 struct list_head link; 283 union ipmi_smi_info_union addr_info; 284 }; 285 286 #define smi_inc_stat(smi, stat) \ 287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 288 #define smi_get_stat(smi, stat) \ 289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 290 291 #define SI_MAX_PARMS 4 292 293 static int force_kipmid[SI_MAX_PARMS]; 294 static int num_force_kipmid; 295 #ifdef CONFIG_PCI 296 static int pci_registered; 297 #endif 298 #ifdef CONFIG_ACPI 299 static int pnp_registered; 300 #endif 301 302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 303 static int num_max_busy_us; 304 305 static int unload_when_empty = 1; 306 307 static int add_smi(struct smi_info *smi); 308 static int try_smi_init(struct smi_info *smi); 309 static void cleanup_one_si(struct smi_info *to_clean); 310 static void cleanup_ipmi_si(void); 311 312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 313 static int register_xaction_notifier(struct notifier_block *nb) 314 { 315 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 316 } 317 318 static void deliver_recv_msg(struct smi_info *smi_info, 319 struct ipmi_smi_msg *msg) 320 { 321 /* Deliver the message to the upper layer. */ 322 ipmi_smi_msg_received(smi_info->intf, msg); 323 } 324 325 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 326 { 327 struct ipmi_smi_msg *msg = smi_info->curr_msg; 328 329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 330 cCode = IPMI_ERR_UNSPECIFIED; 331 /* else use it as is */ 332 333 /* Make it a response */ 334 msg->rsp[0] = msg->data[0] | 4; 335 msg->rsp[1] = msg->data[1]; 336 msg->rsp[2] = cCode; 337 msg->rsp_size = 3; 338 339 smi_info->curr_msg = NULL; 340 deliver_recv_msg(smi_info, msg); 341 } 342 343 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 344 { 345 int rv; 346 struct list_head *entry = NULL; 347 #ifdef DEBUG_TIMING 348 struct timeval t; 349 #endif 350 351 /* Pick the high priority queue first. */ 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 353 entry = smi_info->hp_xmit_msgs.next; 354 } else if (!list_empty(&(smi_info->xmit_msgs))) { 355 entry = smi_info->xmit_msgs.next; 356 } 357 358 if (!entry) { 359 smi_info->curr_msg = NULL; 360 rv = SI_SM_IDLE; 361 } else { 362 int err; 363 364 list_del(entry); 365 smi_info->curr_msg = list_entry(entry, 366 struct ipmi_smi_msg, 367 link); 368 #ifdef DEBUG_TIMING 369 do_gettimeofday(&t); 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 371 #endif 372 err = atomic_notifier_call_chain(&xaction_notifier_list, 373 0, smi_info); 374 if (err & NOTIFY_STOP_MASK) { 375 rv = SI_SM_CALL_WITHOUT_DELAY; 376 goto out; 377 } 378 err = smi_info->handlers->start_transaction( 379 smi_info->si_sm, 380 smi_info->curr_msg->data, 381 smi_info->curr_msg->data_size); 382 if (err) 383 return_hosed_msg(smi_info, err); 384 385 rv = SI_SM_CALL_WITHOUT_DELAY; 386 } 387 out: 388 return rv; 389 } 390 391 static void start_enable_irq(struct smi_info *smi_info) 392 { 393 unsigned char msg[2]; 394 395 /* 396 * If we are enabling interrupts, we have to tell the 397 * BMC to use them. 398 */ 399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 401 402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 403 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 404 } 405 406 static void start_disable_irq(struct smi_info *smi_info) 407 { 408 unsigned char msg[2]; 409 410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 412 413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 414 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 415 } 416 417 static void start_clear_flags(struct smi_info *smi_info) 418 { 419 unsigned char msg[3]; 420 421 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 424 msg[2] = WDT_PRE_TIMEOUT_INT; 425 426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 427 smi_info->si_state = SI_CLEARING_FLAGS; 428 } 429 430 /* 431 * When we have a situtaion where we run out of memory and cannot 432 * allocate messages, we just leave them in the BMC and run the system 433 * polled until we can allocate some memory. Once we have some 434 * memory, we will re-enable the interrupt. 435 */ 436 static inline void disable_si_irq(struct smi_info *smi_info) 437 { 438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 439 start_disable_irq(smi_info); 440 smi_info->interrupt_disabled = 1; 441 if (!atomic_read(&smi_info->stop_operation)) 442 mod_timer(&smi_info->si_timer, 443 jiffies + SI_TIMEOUT_JIFFIES); 444 } 445 } 446 447 static inline void enable_si_irq(struct smi_info *smi_info) 448 { 449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 450 start_enable_irq(smi_info); 451 smi_info->interrupt_disabled = 0; 452 } 453 } 454 455 static void handle_flags(struct smi_info *smi_info) 456 { 457 retry: 458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 /* Watchdog pre-timeout */ 460 smi_inc_stat(smi_info, watchdog_pretimeouts); 461 462 start_clear_flags(smi_info); 463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 464 ipmi_smi_watchdog_pretimeout(smi_info->intf); 465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 466 /* Messages available. */ 467 smi_info->curr_msg = ipmi_alloc_smi_msg(); 468 if (!smi_info->curr_msg) { 469 disable_si_irq(smi_info); 470 smi_info->si_state = SI_NORMAL; 471 return; 472 } 473 enable_si_irq(smi_info); 474 475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 477 smi_info->curr_msg->data_size = 2; 478 479 smi_info->handlers->start_transaction( 480 smi_info->si_sm, 481 smi_info->curr_msg->data, 482 smi_info->curr_msg->data_size); 483 smi_info->si_state = SI_GETTING_MESSAGES; 484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 485 /* Events available. */ 486 smi_info->curr_msg = ipmi_alloc_smi_msg(); 487 if (!smi_info->curr_msg) { 488 disable_si_irq(smi_info); 489 smi_info->si_state = SI_NORMAL; 490 return; 491 } 492 enable_si_irq(smi_info); 493 494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 496 smi_info->curr_msg->data_size = 2; 497 498 smi_info->handlers->start_transaction( 499 smi_info->si_sm, 500 smi_info->curr_msg->data, 501 smi_info->curr_msg->data_size); 502 smi_info->si_state = SI_GETTING_EVENTS; 503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 504 smi_info->oem_data_avail_handler) { 505 if (smi_info->oem_data_avail_handler(smi_info)) 506 goto retry; 507 } else 508 smi_info->si_state = SI_NORMAL; 509 } 510 511 static void handle_transaction_done(struct smi_info *smi_info) 512 { 513 struct ipmi_smi_msg *msg; 514 #ifdef DEBUG_TIMING 515 struct timeval t; 516 517 do_gettimeofday(&t); 518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 519 #endif 520 switch (smi_info->si_state) { 521 case SI_NORMAL: 522 if (!smi_info->curr_msg) 523 break; 524 525 smi_info->curr_msg->rsp_size 526 = smi_info->handlers->get_result( 527 smi_info->si_sm, 528 smi_info->curr_msg->rsp, 529 IPMI_MAX_MSG_LENGTH); 530 531 /* 532 * Do this here becase deliver_recv_msg() releases the 533 * lock, and a new message can be put in during the 534 * time the lock is released. 535 */ 536 msg = smi_info->curr_msg; 537 smi_info->curr_msg = NULL; 538 deliver_recv_msg(smi_info, msg); 539 break; 540 541 case SI_GETTING_FLAGS: 542 { 543 unsigned char msg[4]; 544 unsigned int len; 545 546 /* We got the flags from the SMI, now handle them. */ 547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 548 if (msg[2] != 0) { 549 /* Error fetching flags, just give up for now. */ 550 smi_info->si_state = SI_NORMAL; 551 } else if (len < 4) { 552 /* 553 * Hmm, no flags. That's technically illegal, but 554 * don't use uninitialized data. 555 */ 556 smi_info->si_state = SI_NORMAL; 557 } else { 558 smi_info->msg_flags = msg[3]; 559 handle_flags(smi_info); 560 } 561 break; 562 } 563 564 case SI_CLEARING_FLAGS: 565 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 566 { 567 unsigned char msg[3]; 568 569 /* We cleared the flags. */ 570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 571 if (msg[2] != 0) { 572 /* Error clearing flags */ 573 dev_warn(smi_info->dev, 574 "Error clearing flags: %2.2x\n", msg[2]); 575 } 576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 577 start_enable_irq(smi_info); 578 else 579 smi_info->si_state = SI_NORMAL; 580 break; 581 } 582 583 case SI_GETTING_EVENTS: 584 { 585 smi_info->curr_msg->rsp_size 586 = smi_info->handlers->get_result( 587 smi_info->si_sm, 588 smi_info->curr_msg->rsp, 589 IPMI_MAX_MSG_LENGTH); 590 591 /* 592 * Do this here becase deliver_recv_msg() releases the 593 * lock, and a new message can be put in during the 594 * time the lock is released. 595 */ 596 msg = smi_info->curr_msg; 597 smi_info->curr_msg = NULL; 598 if (msg->rsp[2] != 0) { 599 /* Error getting event, probably done. */ 600 msg->done(msg); 601 602 /* Take off the event flag. */ 603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 604 handle_flags(smi_info); 605 } else { 606 smi_inc_stat(smi_info, events); 607 608 /* 609 * Do this before we deliver the message 610 * because delivering the message releases the 611 * lock and something else can mess with the 612 * state. 613 */ 614 handle_flags(smi_info); 615 616 deliver_recv_msg(smi_info, msg); 617 } 618 break; 619 } 620 621 case SI_GETTING_MESSAGES: 622 { 623 smi_info->curr_msg->rsp_size 624 = smi_info->handlers->get_result( 625 smi_info->si_sm, 626 smi_info->curr_msg->rsp, 627 IPMI_MAX_MSG_LENGTH); 628 629 /* 630 * Do this here becase deliver_recv_msg() releases the 631 * lock, and a new message can be put in during the 632 * time the lock is released. 633 */ 634 msg = smi_info->curr_msg; 635 smi_info->curr_msg = NULL; 636 if (msg->rsp[2] != 0) { 637 /* Error getting event, probably done. */ 638 msg->done(msg); 639 640 /* Take off the msg flag. */ 641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 642 handle_flags(smi_info); 643 } else { 644 smi_inc_stat(smi_info, incoming_messages); 645 646 /* 647 * Do this before we deliver the message 648 * because delivering the message releases the 649 * lock and something else can mess with the 650 * state. 651 */ 652 handle_flags(smi_info); 653 654 deliver_recv_msg(smi_info, msg); 655 } 656 break; 657 } 658 659 case SI_ENABLE_INTERRUPTS1: 660 { 661 unsigned char msg[4]; 662 663 /* We got the flags from the SMI, now handle them. */ 664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 665 if (msg[2] != 0) { 666 dev_warn(smi_info->dev, "Could not enable interrupts" 667 ", failed get, using polled mode.\n"); 668 smi_info->si_state = SI_NORMAL; 669 } else { 670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 672 msg[2] = (msg[3] | 673 IPMI_BMC_RCV_MSG_INTR | 674 IPMI_BMC_EVT_MSG_INTR); 675 smi_info->handlers->start_transaction( 676 smi_info->si_sm, msg, 3); 677 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 678 } 679 break; 680 } 681 682 case SI_ENABLE_INTERRUPTS2: 683 { 684 unsigned char msg[4]; 685 686 /* We got the flags from the SMI, now handle them. */ 687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 688 if (msg[2] != 0) 689 dev_warn(smi_info->dev, "Could not enable interrupts" 690 ", failed set, using polled mode.\n"); 691 else 692 smi_info->interrupt_disabled = 0; 693 smi_info->si_state = SI_NORMAL; 694 break; 695 } 696 697 case SI_DISABLE_INTERRUPTS1: 698 { 699 unsigned char msg[4]; 700 701 /* We got the flags from the SMI, now handle them. */ 702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 703 if (msg[2] != 0) { 704 dev_warn(smi_info->dev, "Could not disable interrupts" 705 ", failed get.\n"); 706 smi_info->si_state = SI_NORMAL; 707 } else { 708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 710 msg[2] = (msg[3] & 711 ~(IPMI_BMC_RCV_MSG_INTR | 712 IPMI_BMC_EVT_MSG_INTR)); 713 smi_info->handlers->start_transaction( 714 smi_info->si_sm, msg, 3); 715 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 716 } 717 break; 718 } 719 720 case SI_DISABLE_INTERRUPTS2: 721 { 722 unsigned char msg[4]; 723 724 /* We got the flags from the SMI, now handle them. */ 725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 726 if (msg[2] != 0) { 727 dev_warn(smi_info->dev, "Could not disable interrupts" 728 ", failed set.\n"); 729 } 730 smi_info->si_state = SI_NORMAL; 731 break; 732 } 733 } 734 } 735 736 /* 737 * Called on timeouts and events. Timeouts should pass the elapsed 738 * time, interrupts should pass in zero. Must be called with 739 * si_lock held and interrupts disabled. 740 */ 741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 742 int time) 743 { 744 enum si_sm_result si_sm_result; 745 746 restart: 747 /* 748 * There used to be a loop here that waited a little while 749 * (around 25us) before giving up. That turned out to be 750 * pointless, the minimum delays I was seeing were in the 300us 751 * range, which is far too long to wait in an interrupt. So 752 * we just run until the state machine tells us something 753 * happened or it needs a delay. 754 */ 755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 756 time = 0; 757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 759 760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 761 smi_inc_stat(smi_info, complete_transactions); 762 763 handle_transaction_done(smi_info); 764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 765 } else if (si_sm_result == SI_SM_HOSED) { 766 smi_inc_stat(smi_info, hosed_count); 767 768 /* 769 * Do the before return_hosed_msg, because that 770 * releases the lock. 771 */ 772 smi_info->si_state = SI_NORMAL; 773 if (smi_info->curr_msg != NULL) { 774 /* 775 * If we were handling a user message, format 776 * a response to send to the upper layer to 777 * tell it about the error. 778 */ 779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 780 } 781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 782 } 783 784 /* 785 * We prefer handling attn over new messages. But don't do 786 * this if there is not yet an upper layer to handle anything. 787 */ 788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 789 unsigned char msg[2]; 790 791 smi_inc_stat(smi_info, attentions); 792 793 /* 794 * Got a attn, send down a get message flags to see 795 * what's causing it. It would be better to handle 796 * this in the upper layer, but due to the way 797 * interrupts work with the SMI, that's not really 798 * possible. 799 */ 800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 801 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 802 803 smi_info->handlers->start_transaction( 804 smi_info->si_sm, msg, 2); 805 smi_info->si_state = SI_GETTING_FLAGS; 806 goto restart; 807 } 808 809 /* If we are currently idle, try to start the next message. */ 810 if (si_sm_result == SI_SM_IDLE) { 811 smi_inc_stat(smi_info, idles); 812 813 si_sm_result = start_next_msg(smi_info); 814 if (si_sm_result != SI_SM_IDLE) 815 goto restart; 816 } 817 818 if ((si_sm_result == SI_SM_IDLE) 819 && (atomic_read(&smi_info->req_events))) { 820 /* 821 * We are idle and the upper layer requested that I fetch 822 * events, so do so. 823 */ 824 atomic_set(&smi_info->req_events, 0); 825 826 smi_info->curr_msg = ipmi_alloc_smi_msg(); 827 if (!smi_info->curr_msg) 828 goto out; 829 830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 832 smi_info->curr_msg->data_size = 2; 833 834 smi_info->handlers->start_transaction( 835 smi_info->si_sm, 836 smi_info->curr_msg->data, 837 smi_info->curr_msg->data_size); 838 smi_info->si_state = SI_GETTING_EVENTS; 839 goto restart; 840 } 841 out: 842 return si_sm_result; 843 } 844 845 static void sender(void *send_info, 846 struct ipmi_smi_msg *msg, 847 int priority) 848 { 849 struct smi_info *smi_info = send_info; 850 enum si_sm_result result; 851 unsigned long flags; 852 #ifdef DEBUG_TIMING 853 struct timeval t; 854 #endif 855 856 if (atomic_read(&smi_info->stop_operation)) { 857 msg->rsp[0] = msg->data[0] | 4; 858 msg->rsp[1] = msg->data[1]; 859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 860 msg->rsp_size = 3; 861 deliver_recv_msg(smi_info, msg); 862 return; 863 } 864 865 #ifdef DEBUG_TIMING 866 do_gettimeofday(&t); 867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 868 #endif 869 870 if (smi_info->run_to_completion) { 871 /* 872 * If we are running to completion, then throw it in 873 * the list and run transactions until everything is 874 * clear. Priority doesn't matter here. 875 */ 876 877 /* 878 * Run to completion means we are single-threaded, no 879 * need for locks. 880 */ 881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 882 883 result = smi_event_handler(smi_info, 0); 884 while (result != SI_SM_IDLE) { 885 udelay(SI_SHORT_TIMEOUT_USEC); 886 result = smi_event_handler(smi_info, 887 SI_SHORT_TIMEOUT_USEC); 888 } 889 return; 890 } 891 892 spin_lock_irqsave(&smi_info->si_lock, flags); 893 if (priority > 0) 894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 895 else 896 list_add_tail(&msg->link, &smi_info->xmit_msgs); 897 898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 899 /* 900 * last_timeout_jiffies is updated here to avoid 901 * smi_timeout() handler passing very large time_diff 902 * value to smi_event_handler() that causes 903 * the send command to abort. 904 */ 905 smi_info->last_timeout_jiffies = jiffies; 906 907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 908 909 if (smi_info->thread) 910 wake_up_process(smi_info->thread); 911 912 start_next_msg(smi_info); 913 smi_event_handler(smi_info, 0); 914 } 915 spin_unlock_irqrestore(&smi_info->si_lock, flags); 916 } 917 918 static void set_run_to_completion(void *send_info, int i_run_to_completion) 919 { 920 struct smi_info *smi_info = send_info; 921 enum si_sm_result result; 922 923 smi_info->run_to_completion = i_run_to_completion; 924 if (i_run_to_completion) { 925 result = smi_event_handler(smi_info, 0); 926 while (result != SI_SM_IDLE) { 927 udelay(SI_SHORT_TIMEOUT_USEC); 928 result = smi_event_handler(smi_info, 929 SI_SHORT_TIMEOUT_USEC); 930 } 931 } 932 } 933 934 /* 935 * Use -1 in the nsec value of the busy waiting timespec to tell that 936 * we are spinning in kipmid looking for something and not delaying 937 * between checks 938 */ 939 static inline void ipmi_si_set_not_busy(struct timespec *ts) 940 { 941 ts->tv_nsec = -1; 942 } 943 static inline int ipmi_si_is_busy(struct timespec *ts) 944 { 945 return ts->tv_nsec != -1; 946 } 947 948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 949 const struct smi_info *smi_info, 950 struct timespec *busy_until) 951 { 952 unsigned int max_busy_us = 0; 953 954 if (smi_info->intf_num < num_max_busy_us) 955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 957 ipmi_si_set_not_busy(busy_until); 958 else if (!ipmi_si_is_busy(busy_until)) { 959 getnstimeofday(busy_until); 960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 961 } else { 962 struct timespec now; 963 getnstimeofday(&now); 964 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 965 ipmi_si_set_not_busy(busy_until); 966 return 0; 967 } 968 } 969 return 1; 970 } 971 972 973 /* 974 * A busy-waiting loop for speeding up IPMI operation. 975 * 976 * Lousy hardware makes this hard. This is only enabled for systems 977 * that are not BT and do not have interrupts. It starts spinning 978 * when an operation is complete or until max_busy tells it to stop 979 * (if that is enabled). See the paragraph on kimid_max_busy_us in 980 * Documentation/IPMI.txt for details. 981 */ 982 static int ipmi_thread(void *data) 983 { 984 struct smi_info *smi_info = data; 985 unsigned long flags; 986 enum si_sm_result smi_result; 987 struct timespec busy_until; 988 989 ipmi_si_set_not_busy(&busy_until); 990 set_user_nice(current, 19); 991 while (!kthread_should_stop()) { 992 int busy_wait; 993 994 spin_lock_irqsave(&(smi_info->si_lock), flags); 995 smi_result = smi_event_handler(smi_info, 0); 996 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 998 &busy_until); 999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1000 ; /* do nothing */ 1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1002 schedule(); 1003 else if (smi_result == SI_SM_IDLE) 1004 schedule_timeout_interruptible(100); 1005 else 1006 schedule_timeout_interruptible(1); 1007 } 1008 return 0; 1009 } 1010 1011 1012 static void poll(void *send_info) 1013 { 1014 struct smi_info *smi_info = send_info; 1015 unsigned long flags = 0; 1016 int run_to_completion = smi_info->run_to_completion; 1017 1018 /* 1019 * Make sure there is some delay in the poll loop so we can 1020 * drive time forward and timeout things. 1021 */ 1022 udelay(10); 1023 if (!run_to_completion) 1024 spin_lock_irqsave(&smi_info->si_lock, flags); 1025 smi_event_handler(smi_info, 10); 1026 if (!run_to_completion) 1027 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1028 } 1029 1030 static void request_events(void *send_info) 1031 { 1032 struct smi_info *smi_info = send_info; 1033 1034 if (atomic_read(&smi_info->stop_operation) || 1035 !smi_info->has_event_buffer) 1036 return; 1037 1038 atomic_set(&smi_info->req_events, 1); 1039 } 1040 1041 static int initialized; 1042 1043 static void smi_timeout(unsigned long data) 1044 { 1045 struct smi_info *smi_info = (struct smi_info *) data; 1046 enum si_sm_result smi_result; 1047 unsigned long flags; 1048 unsigned long jiffies_now; 1049 long time_diff; 1050 long timeout; 1051 #ifdef DEBUG_TIMING 1052 struct timeval t; 1053 #endif 1054 1055 spin_lock_irqsave(&(smi_info->si_lock), flags); 1056 #ifdef DEBUG_TIMING 1057 do_gettimeofday(&t); 1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1059 #endif 1060 jiffies_now = jiffies; 1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1062 * SI_USEC_PER_JIFFY); 1063 smi_result = smi_event_handler(smi_info, time_diff); 1064 1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1066 1067 smi_info->last_timeout_jiffies = jiffies_now; 1068 1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1070 /* Running with interrupts, only do long timeouts. */ 1071 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1072 smi_inc_stat(smi_info, long_timeouts); 1073 goto do_mod_timer; 1074 } 1075 1076 /* 1077 * If the state machine asks for a short delay, then shorten 1078 * the timer timeout. 1079 */ 1080 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1081 smi_inc_stat(smi_info, short_timeouts); 1082 timeout = jiffies + 1; 1083 } else { 1084 smi_inc_stat(smi_info, long_timeouts); 1085 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1086 } 1087 1088 do_mod_timer: 1089 if (smi_result != SI_SM_IDLE) 1090 mod_timer(&(smi_info->si_timer), timeout); 1091 } 1092 1093 static irqreturn_t si_irq_handler(int irq, void *data) 1094 { 1095 struct smi_info *smi_info = data; 1096 unsigned long flags; 1097 #ifdef DEBUG_TIMING 1098 struct timeval t; 1099 #endif 1100 1101 spin_lock_irqsave(&(smi_info->si_lock), flags); 1102 1103 smi_inc_stat(smi_info, interrupts); 1104 1105 #ifdef DEBUG_TIMING 1106 do_gettimeofday(&t); 1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1108 #endif 1109 smi_event_handler(smi_info, 0); 1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1111 return IRQ_HANDLED; 1112 } 1113 1114 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1115 { 1116 struct smi_info *smi_info = data; 1117 /* We need to clear the IRQ flag for the BT interface. */ 1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1121 return si_irq_handler(irq, data); 1122 } 1123 1124 static int smi_start_processing(void *send_info, 1125 ipmi_smi_t intf) 1126 { 1127 struct smi_info *new_smi = send_info; 1128 int enable = 0; 1129 1130 new_smi->intf = intf; 1131 1132 /* Try to claim any interrupts. */ 1133 if (new_smi->irq_setup) 1134 new_smi->irq_setup(new_smi); 1135 1136 /* Set up the timer that drives the interface. */ 1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1138 new_smi->last_timeout_jiffies = jiffies; 1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1140 1141 /* 1142 * Check if the user forcefully enabled the daemon. 1143 */ 1144 if (new_smi->intf_num < num_force_kipmid) 1145 enable = force_kipmid[new_smi->intf_num]; 1146 /* 1147 * The BT interface is efficient enough to not need a thread, 1148 * and there is no need for a thread if we have interrupts. 1149 */ 1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1151 enable = 1; 1152 1153 if (enable) { 1154 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1155 "kipmi%d", new_smi->intf_num); 1156 if (IS_ERR(new_smi->thread)) { 1157 dev_notice(new_smi->dev, "Could not start" 1158 " kernel thread due to error %ld, only using" 1159 " timers to drive the interface\n", 1160 PTR_ERR(new_smi->thread)); 1161 new_smi->thread = NULL; 1162 } 1163 } 1164 1165 return 0; 1166 } 1167 1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1169 { 1170 struct smi_info *smi = send_info; 1171 1172 data->addr_src = smi->addr_source; 1173 data->dev = smi->dev; 1174 data->addr_info = smi->addr_info; 1175 get_device(smi->dev); 1176 1177 return 0; 1178 } 1179 1180 static void set_maintenance_mode(void *send_info, int enable) 1181 { 1182 struct smi_info *smi_info = send_info; 1183 1184 if (!enable) 1185 atomic_set(&smi_info->req_events, 0); 1186 } 1187 1188 static struct ipmi_smi_handlers handlers = { 1189 .owner = THIS_MODULE, 1190 .start_processing = smi_start_processing, 1191 .get_smi_info = get_smi_info, 1192 .sender = sender, 1193 .request_events = request_events, 1194 .set_maintenance_mode = set_maintenance_mode, 1195 .set_run_to_completion = set_run_to_completion, 1196 .poll = poll, 1197 }; 1198 1199 /* 1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1202 */ 1203 1204 static LIST_HEAD(smi_infos); 1205 static DEFINE_MUTEX(smi_infos_lock); 1206 static int smi_num; /* Used to sequence the SMIs */ 1207 1208 #define DEFAULT_REGSPACING 1 1209 #define DEFAULT_REGSIZE 1 1210 1211 static bool si_trydefaults = 1; 1212 static char *si_type[SI_MAX_PARMS]; 1213 #define MAX_SI_TYPE_STR 30 1214 static char si_type_str[MAX_SI_TYPE_STR]; 1215 static unsigned long addrs[SI_MAX_PARMS]; 1216 static unsigned int num_addrs; 1217 static unsigned int ports[SI_MAX_PARMS]; 1218 static unsigned int num_ports; 1219 static int irqs[SI_MAX_PARMS]; 1220 static unsigned int num_irqs; 1221 static int regspacings[SI_MAX_PARMS]; 1222 static unsigned int num_regspacings; 1223 static int regsizes[SI_MAX_PARMS]; 1224 static unsigned int num_regsizes; 1225 static int regshifts[SI_MAX_PARMS]; 1226 static unsigned int num_regshifts; 1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1228 static unsigned int num_slave_addrs; 1229 1230 #define IPMI_IO_ADDR_SPACE 0 1231 #define IPMI_MEM_ADDR_SPACE 1 1232 static char *addr_space_to_str[] = { "i/o", "mem" }; 1233 1234 static int hotmod_handler(const char *val, struct kernel_param *kp); 1235 1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1238 " Documentation/IPMI.txt in the kernel sources for the" 1239 " gory details."); 1240 1241 module_param_named(trydefaults, si_trydefaults, bool, 0); 1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1243 " default scan of the KCS and SMIC interface at the standard" 1244 " address"); 1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1247 " interface separated by commas. The types are 'kcs'," 1248 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1249 " the first interface to kcs and the second to bt"); 1250 module_param_array(addrs, ulong, &num_addrs, 0); 1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1252 " addresses separated by commas. Only use if an interface" 1253 " is in memory. Otherwise, set it to zero or leave" 1254 " it blank."); 1255 module_param_array(ports, uint, &num_ports, 0); 1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1257 " addresses separated by commas. Only use if an interface" 1258 " is a port. Otherwise, set it to zero or leave" 1259 " it blank."); 1260 module_param_array(irqs, int, &num_irqs, 0); 1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1262 " addresses separated by commas. Only use if an interface" 1263 " has an interrupt. Otherwise, set it to zero or leave" 1264 " it blank."); 1265 module_param_array(regspacings, int, &num_regspacings, 0); 1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1267 " and each successive register used by the interface. For" 1268 " instance, if the start address is 0xca2 and the spacing" 1269 " is 2, then the second address is at 0xca4. Defaults" 1270 " to 1."); 1271 module_param_array(regsizes, int, &num_regsizes, 0); 1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1273 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1274 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1275 " the 8-bit IPMI register has to be read from a larger" 1276 " register."); 1277 module_param_array(regshifts, int, &num_regshifts, 0); 1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1279 " IPMI register, in bits. For instance, if the data" 1280 " is read from a 32-bit word and the IPMI data is in" 1281 " bit 8-15, then the shift would be 8"); 1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1284 " the controller. Normally this is 0x20, but can be" 1285 " overridden by this parm. This is an array indexed" 1286 " by interface number."); 1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1289 " disabled(0). Normally the IPMI driver auto-detects" 1290 " this, but the value may be overridden by this parm."); 1291 module_param(unload_when_empty, int, 0); 1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1293 " specified or found, default is 1. Setting to 0" 1294 " is useful for hot add of devices using hotmod."); 1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1296 MODULE_PARM_DESC(kipmid_max_busy_us, 1297 "Max time (in microseconds) to busy-wait for IPMI data before" 1298 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1299 " if kipmid is using up a lot of CPU time."); 1300 1301 1302 static void std_irq_cleanup(struct smi_info *info) 1303 { 1304 if (info->si_type == SI_BT) 1305 /* Disable the interrupt in the BT interface. */ 1306 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1307 free_irq(info->irq, info); 1308 } 1309 1310 static int std_irq_setup(struct smi_info *info) 1311 { 1312 int rv; 1313 1314 if (!info->irq) 1315 return 0; 1316 1317 if (info->si_type == SI_BT) { 1318 rv = request_irq(info->irq, 1319 si_bt_irq_handler, 1320 IRQF_SHARED | IRQF_DISABLED, 1321 DEVICE_NAME, 1322 info); 1323 if (!rv) 1324 /* Enable the interrupt in the BT interface. */ 1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1326 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1327 } else 1328 rv = request_irq(info->irq, 1329 si_irq_handler, 1330 IRQF_SHARED | IRQF_DISABLED, 1331 DEVICE_NAME, 1332 info); 1333 if (rv) { 1334 dev_warn(info->dev, "%s unable to claim interrupt %d," 1335 " running polled\n", 1336 DEVICE_NAME, info->irq); 1337 info->irq = 0; 1338 } else { 1339 info->irq_cleanup = std_irq_cleanup; 1340 dev_info(info->dev, "Using irq %d\n", info->irq); 1341 } 1342 1343 return rv; 1344 } 1345 1346 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1347 { 1348 unsigned int addr = io->addr_data; 1349 1350 return inb(addr + (offset * io->regspacing)); 1351 } 1352 1353 static void port_outb(struct si_sm_io *io, unsigned int offset, 1354 unsigned char b) 1355 { 1356 unsigned int addr = io->addr_data; 1357 1358 outb(b, addr + (offset * io->regspacing)); 1359 } 1360 1361 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1362 { 1363 unsigned int addr = io->addr_data; 1364 1365 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1366 } 1367 1368 static void port_outw(struct si_sm_io *io, unsigned int offset, 1369 unsigned char b) 1370 { 1371 unsigned int addr = io->addr_data; 1372 1373 outw(b << io->regshift, addr + (offset * io->regspacing)); 1374 } 1375 1376 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1377 { 1378 unsigned int addr = io->addr_data; 1379 1380 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1381 } 1382 1383 static void port_outl(struct si_sm_io *io, unsigned int offset, 1384 unsigned char b) 1385 { 1386 unsigned int addr = io->addr_data; 1387 1388 outl(b << io->regshift, addr+(offset * io->regspacing)); 1389 } 1390 1391 static void port_cleanup(struct smi_info *info) 1392 { 1393 unsigned int addr = info->io.addr_data; 1394 int idx; 1395 1396 if (addr) { 1397 for (idx = 0; idx < info->io_size; idx++) 1398 release_region(addr + idx * info->io.regspacing, 1399 info->io.regsize); 1400 } 1401 } 1402 1403 static int port_setup(struct smi_info *info) 1404 { 1405 unsigned int addr = info->io.addr_data; 1406 int idx; 1407 1408 if (!addr) 1409 return -ENODEV; 1410 1411 info->io_cleanup = port_cleanup; 1412 1413 /* 1414 * Figure out the actual inb/inw/inl/etc routine to use based 1415 * upon the register size. 1416 */ 1417 switch (info->io.regsize) { 1418 case 1: 1419 info->io.inputb = port_inb; 1420 info->io.outputb = port_outb; 1421 break; 1422 case 2: 1423 info->io.inputb = port_inw; 1424 info->io.outputb = port_outw; 1425 break; 1426 case 4: 1427 info->io.inputb = port_inl; 1428 info->io.outputb = port_outl; 1429 break; 1430 default: 1431 dev_warn(info->dev, "Invalid register size: %d\n", 1432 info->io.regsize); 1433 return -EINVAL; 1434 } 1435 1436 /* 1437 * Some BIOSes reserve disjoint I/O regions in their ACPI 1438 * tables. This causes problems when trying to register the 1439 * entire I/O region. Therefore we must register each I/O 1440 * port separately. 1441 */ 1442 for (idx = 0; idx < info->io_size; idx++) { 1443 if (request_region(addr + idx * info->io.regspacing, 1444 info->io.regsize, DEVICE_NAME) == NULL) { 1445 /* Undo allocations */ 1446 while (idx--) { 1447 release_region(addr + idx * info->io.regspacing, 1448 info->io.regsize); 1449 } 1450 return -EIO; 1451 } 1452 } 1453 return 0; 1454 } 1455 1456 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1457 { 1458 return readb((io->addr)+(offset * io->regspacing)); 1459 } 1460 1461 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1462 unsigned char b) 1463 { 1464 writeb(b, (io->addr)+(offset * io->regspacing)); 1465 } 1466 1467 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1468 { 1469 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1470 & 0xff; 1471 } 1472 1473 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1474 unsigned char b) 1475 { 1476 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1477 } 1478 1479 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1480 { 1481 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1482 & 0xff; 1483 } 1484 1485 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1486 unsigned char b) 1487 { 1488 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1489 } 1490 1491 #ifdef readq 1492 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1493 { 1494 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1495 & 0xff; 1496 } 1497 1498 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1499 unsigned char b) 1500 { 1501 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1502 } 1503 #endif 1504 1505 static void mem_cleanup(struct smi_info *info) 1506 { 1507 unsigned long addr = info->io.addr_data; 1508 int mapsize; 1509 1510 if (info->io.addr) { 1511 iounmap(info->io.addr); 1512 1513 mapsize = ((info->io_size * info->io.regspacing) 1514 - (info->io.regspacing - info->io.regsize)); 1515 1516 release_mem_region(addr, mapsize); 1517 } 1518 } 1519 1520 static int mem_setup(struct smi_info *info) 1521 { 1522 unsigned long addr = info->io.addr_data; 1523 int mapsize; 1524 1525 if (!addr) 1526 return -ENODEV; 1527 1528 info->io_cleanup = mem_cleanup; 1529 1530 /* 1531 * Figure out the actual readb/readw/readl/etc routine to use based 1532 * upon the register size. 1533 */ 1534 switch (info->io.regsize) { 1535 case 1: 1536 info->io.inputb = intf_mem_inb; 1537 info->io.outputb = intf_mem_outb; 1538 break; 1539 case 2: 1540 info->io.inputb = intf_mem_inw; 1541 info->io.outputb = intf_mem_outw; 1542 break; 1543 case 4: 1544 info->io.inputb = intf_mem_inl; 1545 info->io.outputb = intf_mem_outl; 1546 break; 1547 #ifdef readq 1548 case 8: 1549 info->io.inputb = mem_inq; 1550 info->io.outputb = mem_outq; 1551 break; 1552 #endif 1553 default: 1554 dev_warn(info->dev, "Invalid register size: %d\n", 1555 info->io.regsize); 1556 return -EINVAL; 1557 } 1558 1559 /* 1560 * Calculate the total amount of memory to claim. This is an 1561 * unusual looking calculation, but it avoids claiming any 1562 * more memory than it has to. It will claim everything 1563 * between the first address to the end of the last full 1564 * register. 1565 */ 1566 mapsize = ((info->io_size * info->io.regspacing) 1567 - (info->io.regspacing - info->io.regsize)); 1568 1569 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1570 return -EIO; 1571 1572 info->io.addr = ioremap(addr, mapsize); 1573 if (info->io.addr == NULL) { 1574 release_mem_region(addr, mapsize); 1575 return -EIO; 1576 } 1577 return 0; 1578 } 1579 1580 /* 1581 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1582 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1583 * Options are: 1584 * rsp=<regspacing> 1585 * rsi=<regsize> 1586 * rsh=<regshift> 1587 * irq=<irq> 1588 * ipmb=<ipmb addr> 1589 */ 1590 enum hotmod_op { HM_ADD, HM_REMOVE }; 1591 struct hotmod_vals { 1592 char *name; 1593 int val; 1594 }; 1595 static struct hotmod_vals hotmod_ops[] = { 1596 { "add", HM_ADD }, 1597 { "remove", HM_REMOVE }, 1598 { NULL } 1599 }; 1600 static struct hotmod_vals hotmod_si[] = { 1601 { "kcs", SI_KCS }, 1602 { "smic", SI_SMIC }, 1603 { "bt", SI_BT }, 1604 { NULL } 1605 }; 1606 static struct hotmod_vals hotmod_as[] = { 1607 { "mem", IPMI_MEM_ADDR_SPACE }, 1608 { "i/o", IPMI_IO_ADDR_SPACE }, 1609 { NULL } 1610 }; 1611 1612 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1613 { 1614 char *s; 1615 int i; 1616 1617 s = strchr(*curr, ','); 1618 if (!s) { 1619 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1620 return -EINVAL; 1621 } 1622 *s = '\0'; 1623 s++; 1624 for (i = 0; hotmod_ops[i].name; i++) { 1625 if (strcmp(*curr, v[i].name) == 0) { 1626 *val = v[i].val; 1627 *curr = s; 1628 return 0; 1629 } 1630 } 1631 1632 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1633 return -EINVAL; 1634 } 1635 1636 static int check_hotmod_int_op(const char *curr, const char *option, 1637 const char *name, int *val) 1638 { 1639 char *n; 1640 1641 if (strcmp(curr, name) == 0) { 1642 if (!option) { 1643 printk(KERN_WARNING PFX 1644 "No option given for '%s'\n", 1645 curr); 1646 return -EINVAL; 1647 } 1648 *val = simple_strtoul(option, &n, 0); 1649 if ((*n != '\0') || (*option == '\0')) { 1650 printk(KERN_WARNING PFX 1651 "Bad option given for '%s'\n", 1652 curr); 1653 return -EINVAL; 1654 } 1655 return 1; 1656 } 1657 return 0; 1658 } 1659 1660 static struct smi_info *smi_info_alloc(void) 1661 { 1662 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1663 1664 if (info) 1665 spin_lock_init(&info->si_lock); 1666 return info; 1667 } 1668 1669 static int hotmod_handler(const char *val, struct kernel_param *kp) 1670 { 1671 char *str = kstrdup(val, GFP_KERNEL); 1672 int rv; 1673 char *next, *curr, *s, *n, *o; 1674 enum hotmod_op op; 1675 enum si_type si_type; 1676 int addr_space; 1677 unsigned long addr; 1678 int regspacing; 1679 int regsize; 1680 int regshift; 1681 int irq; 1682 int ipmb; 1683 int ival; 1684 int len; 1685 struct smi_info *info; 1686 1687 if (!str) 1688 return -ENOMEM; 1689 1690 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1691 len = strlen(str); 1692 ival = len - 1; 1693 while ((ival >= 0) && isspace(str[ival])) { 1694 str[ival] = '\0'; 1695 ival--; 1696 } 1697 1698 for (curr = str; curr; curr = next) { 1699 regspacing = 1; 1700 regsize = 1; 1701 regshift = 0; 1702 irq = 0; 1703 ipmb = 0; /* Choose the default if not specified */ 1704 1705 next = strchr(curr, ':'); 1706 if (next) { 1707 *next = '\0'; 1708 next++; 1709 } 1710 1711 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1712 if (rv) 1713 break; 1714 op = ival; 1715 1716 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1717 if (rv) 1718 break; 1719 si_type = ival; 1720 1721 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1722 if (rv) 1723 break; 1724 1725 s = strchr(curr, ','); 1726 if (s) { 1727 *s = '\0'; 1728 s++; 1729 } 1730 addr = simple_strtoul(curr, &n, 0); 1731 if ((*n != '\0') || (*curr == '\0')) { 1732 printk(KERN_WARNING PFX "Invalid hotmod address" 1733 " '%s'\n", curr); 1734 break; 1735 } 1736 1737 while (s) { 1738 curr = s; 1739 s = strchr(curr, ','); 1740 if (s) { 1741 *s = '\0'; 1742 s++; 1743 } 1744 o = strchr(curr, '='); 1745 if (o) { 1746 *o = '\0'; 1747 o++; 1748 } 1749 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1750 if (rv < 0) 1751 goto out; 1752 else if (rv) 1753 continue; 1754 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1755 if (rv < 0) 1756 goto out; 1757 else if (rv) 1758 continue; 1759 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1760 if (rv < 0) 1761 goto out; 1762 else if (rv) 1763 continue; 1764 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1765 if (rv < 0) 1766 goto out; 1767 else if (rv) 1768 continue; 1769 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1770 if (rv < 0) 1771 goto out; 1772 else if (rv) 1773 continue; 1774 1775 rv = -EINVAL; 1776 printk(KERN_WARNING PFX 1777 "Invalid hotmod option '%s'\n", 1778 curr); 1779 goto out; 1780 } 1781 1782 if (op == HM_ADD) { 1783 info = smi_info_alloc(); 1784 if (!info) { 1785 rv = -ENOMEM; 1786 goto out; 1787 } 1788 1789 info->addr_source = SI_HOTMOD; 1790 info->si_type = si_type; 1791 info->io.addr_data = addr; 1792 info->io.addr_type = addr_space; 1793 if (addr_space == IPMI_MEM_ADDR_SPACE) 1794 info->io_setup = mem_setup; 1795 else 1796 info->io_setup = port_setup; 1797 1798 info->io.addr = NULL; 1799 info->io.regspacing = regspacing; 1800 if (!info->io.regspacing) 1801 info->io.regspacing = DEFAULT_REGSPACING; 1802 info->io.regsize = regsize; 1803 if (!info->io.regsize) 1804 info->io.regsize = DEFAULT_REGSPACING; 1805 info->io.regshift = regshift; 1806 info->irq = irq; 1807 if (info->irq) 1808 info->irq_setup = std_irq_setup; 1809 info->slave_addr = ipmb; 1810 1811 if (!add_smi(info)) { 1812 if (try_smi_init(info)) 1813 cleanup_one_si(info); 1814 } else { 1815 kfree(info); 1816 } 1817 } else { 1818 /* remove */ 1819 struct smi_info *e, *tmp_e; 1820 1821 mutex_lock(&smi_infos_lock); 1822 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1823 if (e->io.addr_type != addr_space) 1824 continue; 1825 if (e->si_type != si_type) 1826 continue; 1827 if (e->io.addr_data == addr) 1828 cleanup_one_si(e); 1829 } 1830 mutex_unlock(&smi_infos_lock); 1831 } 1832 } 1833 rv = len; 1834 out: 1835 kfree(str); 1836 return rv; 1837 } 1838 1839 static int hardcode_find_bmc(void) 1840 { 1841 int ret = -ENODEV; 1842 int i; 1843 struct smi_info *info; 1844 1845 for (i = 0; i < SI_MAX_PARMS; i++) { 1846 if (!ports[i] && !addrs[i]) 1847 continue; 1848 1849 info = smi_info_alloc(); 1850 if (!info) 1851 return -ENOMEM; 1852 1853 info->addr_source = SI_HARDCODED; 1854 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1855 1856 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1857 info->si_type = SI_KCS; 1858 } else if (strcmp(si_type[i], "smic") == 0) { 1859 info->si_type = SI_SMIC; 1860 } else if (strcmp(si_type[i], "bt") == 0) { 1861 info->si_type = SI_BT; 1862 } else { 1863 printk(KERN_WARNING PFX "Interface type specified " 1864 "for interface %d, was invalid: %s\n", 1865 i, si_type[i]); 1866 kfree(info); 1867 continue; 1868 } 1869 1870 if (ports[i]) { 1871 /* An I/O port */ 1872 info->io_setup = port_setup; 1873 info->io.addr_data = ports[i]; 1874 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1875 } else if (addrs[i]) { 1876 /* A memory port */ 1877 info->io_setup = mem_setup; 1878 info->io.addr_data = addrs[i]; 1879 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1880 } else { 1881 printk(KERN_WARNING PFX "Interface type specified " 1882 "for interface %d, but port and address were " 1883 "not set or set to zero.\n", i); 1884 kfree(info); 1885 continue; 1886 } 1887 1888 info->io.addr = NULL; 1889 info->io.regspacing = regspacings[i]; 1890 if (!info->io.regspacing) 1891 info->io.regspacing = DEFAULT_REGSPACING; 1892 info->io.regsize = regsizes[i]; 1893 if (!info->io.regsize) 1894 info->io.regsize = DEFAULT_REGSPACING; 1895 info->io.regshift = regshifts[i]; 1896 info->irq = irqs[i]; 1897 if (info->irq) 1898 info->irq_setup = std_irq_setup; 1899 info->slave_addr = slave_addrs[i]; 1900 1901 if (!add_smi(info)) { 1902 if (try_smi_init(info)) 1903 cleanup_one_si(info); 1904 ret = 0; 1905 } else { 1906 kfree(info); 1907 } 1908 } 1909 return ret; 1910 } 1911 1912 #ifdef CONFIG_ACPI 1913 1914 #include <linux/acpi.h> 1915 1916 /* 1917 * Once we get an ACPI failure, we don't try any more, because we go 1918 * through the tables sequentially. Once we don't find a table, there 1919 * are no more. 1920 */ 1921 static int acpi_failure; 1922 1923 /* For GPE-type interrupts. */ 1924 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1925 u32 gpe_number, void *context) 1926 { 1927 struct smi_info *smi_info = context; 1928 unsigned long flags; 1929 #ifdef DEBUG_TIMING 1930 struct timeval t; 1931 #endif 1932 1933 spin_lock_irqsave(&(smi_info->si_lock), flags); 1934 1935 smi_inc_stat(smi_info, interrupts); 1936 1937 #ifdef DEBUG_TIMING 1938 do_gettimeofday(&t); 1939 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1940 #endif 1941 smi_event_handler(smi_info, 0); 1942 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1943 1944 return ACPI_INTERRUPT_HANDLED; 1945 } 1946 1947 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1948 { 1949 if (!info->irq) 1950 return; 1951 1952 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1953 } 1954 1955 static int acpi_gpe_irq_setup(struct smi_info *info) 1956 { 1957 acpi_status status; 1958 1959 if (!info->irq) 1960 return 0; 1961 1962 /* FIXME - is level triggered right? */ 1963 status = acpi_install_gpe_handler(NULL, 1964 info->irq, 1965 ACPI_GPE_LEVEL_TRIGGERED, 1966 &ipmi_acpi_gpe, 1967 info); 1968 if (status != AE_OK) { 1969 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1970 " running polled\n", DEVICE_NAME, info->irq); 1971 info->irq = 0; 1972 return -EINVAL; 1973 } else { 1974 info->irq_cleanup = acpi_gpe_irq_cleanup; 1975 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1976 return 0; 1977 } 1978 } 1979 1980 /* 1981 * Defined at 1982 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 1983 */ 1984 struct SPMITable { 1985 s8 Signature[4]; 1986 u32 Length; 1987 u8 Revision; 1988 u8 Checksum; 1989 s8 OEMID[6]; 1990 s8 OEMTableID[8]; 1991 s8 OEMRevision[4]; 1992 s8 CreatorID[4]; 1993 s8 CreatorRevision[4]; 1994 u8 InterfaceType; 1995 u8 IPMIlegacy; 1996 s16 SpecificationRevision; 1997 1998 /* 1999 * Bit 0 - SCI interrupt supported 2000 * Bit 1 - I/O APIC/SAPIC 2001 */ 2002 u8 InterruptType; 2003 2004 /* 2005 * If bit 0 of InterruptType is set, then this is the SCI 2006 * interrupt in the GPEx_STS register. 2007 */ 2008 u8 GPE; 2009 2010 s16 Reserved; 2011 2012 /* 2013 * If bit 1 of InterruptType is set, then this is the I/O 2014 * APIC/SAPIC interrupt. 2015 */ 2016 u32 GlobalSystemInterrupt; 2017 2018 /* The actual register address. */ 2019 struct acpi_generic_address addr; 2020 2021 u8 UID[4]; 2022 2023 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2024 }; 2025 2026 static int try_init_spmi(struct SPMITable *spmi) 2027 { 2028 struct smi_info *info; 2029 2030 if (spmi->IPMIlegacy != 1) { 2031 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2032 return -ENODEV; 2033 } 2034 2035 info = smi_info_alloc(); 2036 if (!info) { 2037 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2038 return -ENOMEM; 2039 } 2040 2041 info->addr_source = SI_SPMI; 2042 printk(KERN_INFO PFX "probing via SPMI\n"); 2043 2044 /* Figure out the interface type. */ 2045 switch (spmi->InterfaceType) { 2046 case 1: /* KCS */ 2047 info->si_type = SI_KCS; 2048 break; 2049 case 2: /* SMIC */ 2050 info->si_type = SI_SMIC; 2051 break; 2052 case 3: /* BT */ 2053 info->si_type = SI_BT; 2054 break; 2055 default: 2056 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2057 spmi->InterfaceType); 2058 kfree(info); 2059 return -EIO; 2060 } 2061 2062 if (spmi->InterruptType & 1) { 2063 /* We've got a GPE interrupt. */ 2064 info->irq = spmi->GPE; 2065 info->irq_setup = acpi_gpe_irq_setup; 2066 } else if (spmi->InterruptType & 2) { 2067 /* We've got an APIC/SAPIC interrupt. */ 2068 info->irq = spmi->GlobalSystemInterrupt; 2069 info->irq_setup = std_irq_setup; 2070 } else { 2071 /* Use the default interrupt setting. */ 2072 info->irq = 0; 2073 info->irq_setup = NULL; 2074 } 2075 2076 if (spmi->addr.bit_width) { 2077 /* A (hopefully) properly formed register bit width. */ 2078 info->io.regspacing = spmi->addr.bit_width / 8; 2079 } else { 2080 info->io.regspacing = DEFAULT_REGSPACING; 2081 } 2082 info->io.regsize = info->io.regspacing; 2083 info->io.regshift = spmi->addr.bit_offset; 2084 2085 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2086 info->io_setup = mem_setup; 2087 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2088 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2089 info->io_setup = port_setup; 2090 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2091 } else { 2092 kfree(info); 2093 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2094 return -EIO; 2095 } 2096 info->io.addr_data = spmi->addr.address; 2097 2098 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2099 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2100 info->io.addr_data, info->io.regsize, info->io.regspacing, 2101 info->irq); 2102 2103 if (add_smi(info)) 2104 kfree(info); 2105 2106 return 0; 2107 } 2108 2109 static void spmi_find_bmc(void) 2110 { 2111 acpi_status status; 2112 struct SPMITable *spmi; 2113 int i; 2114 2115 if (acpi_disabled) 2116 return; 2117 2118 if (acpi_failure) 2119 return; 2120 2121 for (i = 0; ; i++) { 2122 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2123 (struct acpi_table_header **)&spmi); 2124 if (status != AE_OK) 2125 return; 2126 2127 try_init_spmi(spmi); 2128 } 2129 } 2130 2131 static int ipmi_pnp_probe(struct pnp_dev *dev, 2132 const struct pnp_device_id *dev_id) 2133 { 2134 struct acpi_device *acpi_dev; 2135 struct smi_info *info; 2136 struct resource *res, *res_second; 2137 acpi_handle handle; 2138 acpi_status status; 2139 unsigned long long tmp; 2140 2141 acpi_dev = pnp_acpi_device(dev); 2142 if (!acpi_dev) 2143 return -ENODEV; 2144 2145 info = smi_info_alloc(); 2146 if (!info) 2147 return -ENOMEM; 2148 2149 info->addr_source = SI_ACPI; 2150 printk(KERN_INFO PFX "probing via ACPI\n"); 2151 2152 handle = acpi_dev->handle; 2153 info->addr_info.acpi_info.acpi_handle = handle; 2154 2155 /* _IFT tells us the interface type: KCS, BT, etc */ 2156 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2157 if (ACPI_FAILURE(status)) 2158 goto err_free; 2159 2160 switch (tmp) { 2161 case 1: 2162 info->si_type = SI_KCS; 2163 break; 2164 case 2: 2165 info->si_type = SI_SMIC; 2166 break; 2167 case 3: 2168 info->si_type = SI_BT; 2169 break; 2170 default: 2171 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2172 goto err_free; 2173 } 2174 2175 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2176 if (res) { 2177 info->io_setup = port_setup; 2178 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2179 } else { 2180 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2181 if (res) { 2182 info->io_setup = mem_setup; 2183 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2184 } 2185 } 2186 if (!res) { 2187 dev_err(&dev->dev, "no I/O or memory address\n"); 2188 goto err_free; 2189 } 2190 info->io.addr_data = res->start; 2191 2192 info->io.regspacing = DEFAULT_REGSPACING; 2193 res_second = pnp_get_resource(dev, 2194 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2195 IORESOURCE_IO : IORESOURCE_MEM, 2196 1); 2197 if (res_second) { 2198 if (res_second->start > info->io.addr_data) 2199 info->io.regspacing = res_second->start - info->io.addr_data; 2200 } 2201 info->io.regsize = DEFAULT_REGSPACING; 2202 info->io.regshift = 0; 2203 2204 /* If _GPE exists, use it; otherwise use standard interrupts */ 2205 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2206 if (ACPI_SUCCESS(status)) { 2207 info->irq = tmp; 2208 info->irq_setup = acpi_gpe_irq_setup; 2209 } else if (pnp_irq_valid(dev, 0)) { 2210 info->irq = pnp_irq(dev, 0); 2211 info->irq_setup = std_irq_setup; 2212 } 2213 2214 info->dev = &dev->dev; 2215 pnp_set_drvdata(dev, info); 2216 2217 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2218 res, info->io.regsize, info->io.regspacing, 2219 info->irq); 2220 2221 if (add_smi(info)) 2222 goto err_free; 2223 2224 return 0; 2225 2226 err_free: 2227 kfree(info); 2228 return -EINVAL; 2229 } 2230 2231 static void ipmi_pnp_remove(struct pnp_dev *dev) 2232 { 2233 struct smi_info *info = pnp_get_drvdata(dev); 2234 2235 cleanup_one_si(info); 2236 } 2237 2238 static const struct pnp_device_id pnp_dev_table[] = { 2239 {"IPI0001", 0}, 2240 {"", 0}, 2241 }; 2242 2243 static struct pnp_driver ipmi_pnp_driver = { 2244 .name = DEVICE_NAME, 2245 .probe = ipmi_pnp_probe, 2246 .remove = __devexit_p(ipmi_pnp_remove), 2247 .id_table = pnp_dev_table, 2248 }; 2249 #endif 2250 2251 #ifdef CONFIG_DMI 2252 struct dmi_ipmi_data { 2253 u8 type; 2254 u8 addr_space; 2255 unsigned long base_addr; 2256 u8 irq; 2257 u8 offset; 2258 u8 slave_addr; 2259 }; 2260 2261 static int decode_dmi(const struct dmi_header *dm, 2262 struct dmi_ipmi_data *dmi) 2263 { 2264 const u8 *data = (const u8 *)dm; 2265 unsigned long base_addr; 2266 u8 reg_spacing; 2267 u8 len = dm->length; 2268 2269 dmi->type = data[4]; 2270 2271 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2272 if (len >= 0x11) { 2273 if (base_addr & 1) { 2274 /* I/O */ 2275 base_addr &= 0xFFFE; 2276 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2277 } else 2278 /* Memory */ 2279 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2280 2281 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2282 is odd. */ 2283 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2284 2285 dmi->irq = data[0x11]; 2286 2287 /* The top two bits of byte 0x10 hold the register spacing. */ 2288 reg_spacing = (data[0x10] & 0xC0) >> 6; 2289 switch (reg_spacing) { 2290 case 0x00: /* Byte boundaries */ 2291 dmi->offset = 1; 2292 break; 2293 case 0x01: /* 32-bit boundaries */ 2294 dmi->offset = 4; 2295 break; 2296 case 0x02: /* 16-byte boundaries */ 2297 dmi->offset = 16; 2298 break; 2299 default: 2300 /* Some other interface, just ignore it. */ 2301 return -EIO; 2302 } 2303 } else { 2304 /* Old DMI spec. */ 2305 /* 2306 * Note that technically, the lower bit of the base 2307 * address should be 1 if the address is I/O and 0 if 2308 * the address is in memory. So many systems get that 2309 * wrong (and all that I have seen are I/O) so we just 2310 * ignore that bit and assume I/O. Systems that use 2311 * memory should use the newer spec, anyway. 2312 */ 2313 dmi->base_addr = base_addr & 0xfffe; 2314 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2315 dmi->offset = 1; 2316 } 2317 2318 dmi->slave_addr = data[6]; 2319 2320 return 0; 2321 } 2322 2323 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2324 { 2325 struct smi_info *info; 2326 2327 info = smi_info_alloc(); 2328 if (!info) { 2329 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2330 return; 2331 } 2332 2333 info->addr_source = SI_SMBIOS; 2334 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2335 2336 switch (ipmi_data->type) { 2337 case 0x01: /* KCS */ 2338 info->si_type = SI_KCS; 2339 break; 2340 case 0x02: /* SMIC */ 2341 info->si_type = SI_SMIC; 2342 break; 2343 case 0x03: /* BT */ 2344 info->si_type = SI_BT; 2345 break; 2346 default: 2347 kfree(info); 2348 return; 2349 } 2350 2351 switch (ipmi_data->addr_space) { 2352 case IPMI_MEM_ADDR_SPACE: 2353 info->io_setup = mem_setup; 2354 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2355 break; 2356 2357 case IPMI_IO_ADDR_SPACE: 2358 info->io_setup = port_setup; 2359 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2360 break; 2361 2362 default: 2363 kfree(info); 2364 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2365 ipmi_data->addr_space); 2366 return; 2367 } 2368 info->io.addr_data = ipmi_data->base_addr; 2369 2370 info->io.regspacing = ipmi_data->offset; 2371 if (!info->io.regspacing) 2372 info->io.regspacing = DEFAULT_REGSPACING; 2373 info->io.regsize = DEFAULT_REGSPACING; 2374 info->io.regshift = 0; 2375 2376 info->slave_addr = ipmi_data->slave_addr; 2377 2378 info->irq = ipmi_data->irq; 2379 if (info->irq) 2380 info->irq_setup = std_irq_setup; 2381 2382 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2383 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2384 info->io.addr_data, info->io.regsize, info->io.regspacing, 2385 info->irq); 2386 2387 if (add_smi(info)) 2388 kfree(info); 2389 } 2390 2391 static void dmi_find_bmc(void) 2392 { 2393 const struct dmi_device *dev = NULL; 2394 struct dmi_ipmi_data data; 2395 int rv; 2396 2397 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2398 memset(&data, 0, sizeof(data)); 2399 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2400 &data); 2401 if (!rv) 2402 try_init_dmi(&data); 2403 } 2404 } 2405 #endif /* CONFIG_DMI */ 2406 2407 #ifdef CONFIG_PCI 2408 2409 #define PCI_ERMC_CLASSCODE 0x0C0700 2410 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2414 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2415 2416 #define PCI_HP_VENDOR_ID 0x103C 2417 #define PCI_MMC_DEVICE_ID 0x121A 2418 #define PCI_MMC_ADDR_CW 0x10 2419 2420 static void ipmi_pci_cleanup(struct smi_info *info) 2421 { 2422 struct pci_dev *pdev = info->addr_source_data; 2423 2424 pci_disable_device(pdev); 2425 } 2426 2427 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2428 { 2429 if (info->si_type == SI_KCS) { 2430 unsigned char status; 2431 int regspacing; 2432 2433 info->io.regsize = DEFAULT_REGSIZE; 2434 info->io.regshift = 0; 2435 info->io_size = 2; 2436 info->handlers = &kcs_smi_handlers; 2437 2438 /* detect 1, 4, 16byte spacing */ 2439 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2440 info->io.regspacing = regspacing; 2441 if (info->io_setup(info)) { 2442 dev_err(info->dev, 2443 "Could not setup I/O space\n"); 2444 return DEFAULT_REGSPACING; 2445 } 2446 /* write invalid cmd */ 2447 info->io.outputb(&info->io, 1, 0x10); 2448 /* read status back */ 2449 status = info->io.inputb(&info->io, 1); 2450 info->io_cleanup(info); 2451 if (status) 2452 return regspacing; 2453 regspacing *= 4; 2454 } 2455 } 2456 return DEFAULT_REGSPACING; 2457 } 2458 2459 static int ipmi_pci_probe(struct pci_dev *pdev, 2460 const struct pci_device_id *ent) 2461 { 2462 int rv; 2463 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2464 struct smi_info *info; 2465 2466 info = smi_info_alloc(); 2467 if (!info) 2468 return -ENOMEM; 2469 2470 info->addr_source = SI_PCI; 2471 dev_info(&pdev->dev, "probing via PCI"); 2472 2473 switch (class_type) { 2474 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2475 info->si_type = SI_SMIC; 2476 break; 2477 2478 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2479 info->si_type = SI_KCS; 2480 break; 2481 2482 case PCI_ERMC_CLASSCODE_TYPE_BT: 2483 info->si_type = SI_BT; 2484 break; 2485 2486 default: 2487 kfree(info); 2488 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2489 return -ENOMEM; 2490 } 2491 2492 rv = pci_enable_device(pdev); 2493 if (rv) { 2494 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2495 kfree(info); 2496 return rv; 2497 } 2498 2499 info->addr_source_cleanup = ipmi_pci_cleanup; 2500 info->addr_source_data = pdev; 2501 2502 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2503 info->io_setup = port_setup; 2504 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2505 } else { 2506 info->io_setup = mem_setup; 2507 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2508 } 2509 info->io.addr_data = pci_resource_start(pdev, 0); 2510 2511 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2512 info->io.regsize = DEFAULT_REGSIZE; 2513 info->io.regshift = 0; 2514 2515 info->irq = pdev->irq; 2516 if (info->irq) 2517 info->irq_setup = std_irq_setup; 2518 2519 info->dev = &pdev->dev; 2520 pci_set_drvdata(pdev, info); 2521 2522 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2523 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2524 info->irq); 2525 2526 if (add_smi(info)) 2527 kfree(info); 2528 2529 return 0; 2530 } 2531 2532 static void ipmi_pci_remove(struct pci_dev *pdev) 2533 { 2534 struct smi_info *info = pci_get_drvdata(pdev); 2535 cleanup_one_si(info); 2536 } 2537 2538 static struct pci_device_id ipmi_pci_devices[] = { 2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2541 { 0, } 2542 }; 2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2544 2545 static struct pci_driver ipmi_pci_driver = { 2546 .name = DEVICE_NAME, 2547 .id_table = ipmi_pci_devices, 2548 .probe = ipmi_pci_probe, 2549 .remove = __devexit_p(ipmi_pci_remove), 2550 }; 2551 #endif /* CONFIG_PCI */ 2552 2553 static struct of_device_id ipmi_match[]; 2554 static int ipmi_probe(struct platform_device *dev) 2555 { 2556 #ifdef CONFIG_OF 2557 const struct of_device_id *match; 2558 struct smi_info *info; 2559 struct resource resource; 2560 const __be32 *regsize, *regspacing, *regshift; 2561 struct device_node *np = dev->dev.of_node; 2562 int ret; 2563 int proplen; 2564 2565 dev_info(&dev->dev, "probing via device tree\n"); 2566 2567 match = of_match_device(ipmi_match, &dev->dev); 2568 if (!match) 2569 return -EINVAL; 2570 2571 ret = of_address_to_resource(np, 0, &resource); 2572 if (ret) { 2573 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2574 return ret; 2575 } 2576 2577 regsize = of_get_property(np, "reg-size", &proplen); 2578 if (regsize && proplen != 4) { 2579 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2580 return -EINVAL; 2581 } 2582 2583 regspacing = of_get_property(np, "reg-spacing", &proplen); 2584 if (regspacing && proplen != 4) { 2585 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2586 return -EINVAL; 2587 } 2588 2589 regshift = of_get_property(np, "reg-shift", &proplen); 2590 if (regshift && proplen != 4) { 2591 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2592 return -EINVAL; 2593 } 2594 2595 info = smi_info_alloc(); 2596 2597 if (!info) { 2598 dev_err(&dev->dev, 2599 "could not allocate memory for OF probe\n"); 2600 return -ENOMEM; 2601 } 2602 2603 info->si_type = (enum si_type) match->data; 2604 info->addr_source = SI_DEVICETREE; 2605 info->irq_setup = std_irq_setup; 2606 2607 if (resource.flags & IORESOURCE_IO) { 2608 info->io_setup = port_setup; 2609 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2610 } else { 2611 info->io_setup = mem_setup; 2612 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2613 } 2614 2615 info->io.addr_data = resource.start; 2616 2617 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2618 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2619 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2620 2621 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2622 info->dev = &dev->dev; 2623 2624 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2625 info->io.addr_data, info->io.regsize, info->io.regspacing, 2626 info->irq); 2627 2628 dev_set_drvdata(&dev->dev, info); 2629 2630 if (add_smi(info)) { 2631 kfree(info); 2632 return -EBUSY; 2633 } 2634 #endif 2635 return 0; 2636 } 2637 2638 static int ipmi_remove(struct platform_device *dev) 2639 { 2640 #ifdef CONFIG_OF 2641 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2642 #endif 2643 return 0; 2644 } 2645 2646 static struct of_device_id ipmi_match[] = 2647 { 2648 { .type = "ipmi", .compatible = "ipmi-kcs", 2649 .data = (void *)(unsigned long) SI_KCS }, 2650 { .type = "ipmi", .compatible = "ipmi-smic", 2651 .data = (void *)(unsigned long) SI_SMIC }, 2652 { .type = "ipmi", .compatible = "ipmi-bt", 2653 .data = (void *)(unsigned long) SI_BT }, 2654 {}, 2655 }; 2656 2657 static struct platform_driver ipmi_driver = { 2658 .driver = { 2659 .name = DEVICE_NAME, 2660 .owner = THIS_MODULE, 2661 .of_match_table = ipmi_match, 2662 }, 2663 .probe = ipmi_probe, 2664 .remove = __devexit_p(ipmi_remove), 2665 }; 2666 2667 static int wait_for_msg_done(struct smi_info *smi_info) 2668 { 2669 enum si_sm_result smi_result; 2670 2671 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2672 for (;;) { 2673 if (smi_result == SI_SM_CALL_WITH_DELAY || 2674 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2675 schedule_timeout_uninterruptible(1); 2676 smi_result = smi_info->handlers->event( 2677 smi_info->si_sm, 100); 2678 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2679 smi_result = smi_info->handlers->event( 2680 smi_info->si_sm, 0); 2681 } else 2682 break; 2683 } 2684 if (smi_result == SI_SM_HOSED) 2685 /* 2686 * We couldn't get the state machine to run, so whatever's at 2687 * the port is probably not an IPMI SMI interface. 2688 */ 2689 return -ENODEV; 2690 2691 return 0; 2692 } 2693 2694 static int try_get_dev_id(struct smi_info *smi_info) 2695 { 2696 unsigned char msg[2]; 2697 unsigned char *resp; 2698 unsigned long resp_len; 2699 int rv = 0; 2700 2701 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2702 if (!resp) 2703 return -ENOMEM; 2704 2705 /* 2706 * Do a Get Device ID command, since it comes back with some 2707 * useful info. 2708 */ 2709 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2710 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2711 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2712 2713 rv = wait_for_msg_done(smi_info); 2714 if (rv) 2715 goto out; 2716 2717 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2718 resp, IPMI_MAX_MSG_LENGTH); 2719 2720 /* Check and record info from the get device id, in case we need it. */ 2721 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2722 2723 out: 2724 kfree(resp); 2725 return rv; 2726 } 2727 2728 static int try_enable_event_buffer(struct smi_info *smi_info) 2729 { 2730 unsigned char msg[3]; 2731 unsigned char *resp; 2732 unsigned long resp_len; 2733 int rv = 0; 2734 2735 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2736 if (!resp) 2737 return -ENOMEM; 2738 2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2740 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2741 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2742 2743 rv = wait_for_msg_done(smi_info); 2744 if (rv) { 2745 printk(KERN_WARNING PFX "Error getting response from get" 2746 " global enables command, the event buffer is not" 2747 " enabled.\n"); 2748 goto out; 2749 } 2750 2751 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2752 resp, IPMI_MAX_MSG_LENGTH); 2753 2754 if (resp_len < 4 || 2755 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2756 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2757 resp[2] != 0) { 2758 printk(KERN_WARNING PFX "Invalid return from get global" 2759 " enables command, cannot enable the event buffer.\n"); 2760 rv = -EINVAL; 2761 goto out; 2762 } 2763 2764 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2765 /* buffer is already enabled, nothing to do. */ 2766 goto out; 2767 2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2769 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2770 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2771 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2772 2773 rv = wait_for_msg_done(smi_info); 2774 if (rv) { 2775 printk(KERN_WARNING PFX "Error getting response from set" 2776 " global, enables command, the event buffer is not" 2777 " enabled.\n"); 2778 goto out; 2779 } 2780 2781 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2782 resp, IPMI_MAX_MSG_LENGTH); 2783 2784 if (resp_len < 3 || 2785 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2786 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2787 printk(KERN_WARNING PFX "Invalid return from get global," 2788 "enables command, not enable the event buffer.\n"); 2789 rv = -EINVAL; 2790 goto out; 2791 } 2792 2793 if (resp[2] != 0) 2794 /* 2795 * An error when setting the event buffer bit means 2796 * that the event buffer is not supported. 2797 */ 2798 rv = -ENOENT; 2799 out: 2800 kfree(resp); 2801 return rv; 2802 } 2803 2804 static int smi_type_proc_show(struct seq_file *m, void *v) 2805 { 2806 struct smi_info *smi = m->private; 2807 2808 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2809 } 2810 2811 static int smi_type_proc_open(struct inode *inode, struct file *file) 2812 { 2813 return single_open(file, smi_type_proc_show, PDE(inode)->data); 2814 } 2815 2816 static const struct file_operations smi_type_proc_ops = { 2817 .open = smi_type_proc_open, 2818 .read = seq_read, 2819 .llseek = seq_lseek, 2820 .release = single_release, 2821 }; 2822 2823 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2824 { 2825 struct smi_info *smi = m->private; 2826 2827 seq_printf(m, "interrupts_enabled: %d\n", 2828 smi->irq && !smi->interrupt_disabled); 2829 seq_printf(m, "short_timeouts: %u\n", 2830 smi_get_stat(smi, short_timeouts)); 2831 seq_printf(m, "long_timeouts: %u\n", 2832 smi_get_stat(smi, long_timeouts)); 2833 seq_printf(m, "idles: %u\n", 2834 smi_get_stat(smi, idles)); 2835 seq_printf(m, "interrupts: %u\n", 2836 smi_get_stat(smi, interrupts)); 2837 seq_printf(m, "attentions: %u\n", 2838 smi_get_stat(smi, attentions)); 2839 seq_printf(m, "flag_fetches: %u\n", 2840 smi_get_stat(smi, flag_fetches)); 2841 seq_printf(m, "hosed_count: %u\n", 2842 smi_get_stat(smi, hosed_count)); 2843 seq_printf(m, "complete_transactions: %u\n", 2844 smi_get_stat(smi, complete_transactions)); 2845 seq_printf(m, "events: %u\n", 2846 smi_get_stat(smi, events)); 2847 seq_printf(m, "watchdog_pretimeouts: %u\n", 2848 smi_get_stat(smi, watchdog_pretimeouts)); 2849 seq_printf(m, "incoming_messages: %u\n", 2850 smi_get_stat(smi, incoming_messages)); 2851 return 0; 2852 } 2853 2854 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 2855 { 2856 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data); 2857 } 2858 2859 static const struct file_operations smi_si_stats_proc_ops = { 2860 .open = smi_si_stats_proc_open, 2861 .read = seq_read, 2862 .llseek = seq_lseek, 2863 .release = single_release, 2864 }; 2865 2866 static int smi_params_proc_show(struct seq_file *m, void *v) 2867 { 2868 struct smi_info *smi = m->private; 2869 2870 return seq_printf(m, 2871 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2872 si_to_str[smi->si_type], 2873 addr_space_to_str[smi->io.addr_type], 2874 smi->io.addr_data, 2875 smi->io.regspacing, 2876 smi->io.regsize, 2877 smi->io.regshift, 2878 smi->irq, 2879 smi->slave_addr); 2880 } 2881 2882 static int smi_params_proc_open(struct inode *inode, struct file *file) 2883 { 2884 return single_open(file, smi_params_proc_show, PDE(inode)->data); 2885 } 2886 2887 static const struct file_operations smi_params_proc_ops = { 2888 .open = smi_params_proc_open, 2889 .read = seq_read, 2890 .llseek = seq_lseek, 2891 .release = single_release, 2892 }; 2893 2894 /* 2895 * oem_data_avail_to_receive_msg_avail 2896 * @info - smi_info structure with msg_flags set 2897 * 2898 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2899 * Returns 1 indicating need to re-run handle_flags(). 2900 */ 2901 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2902 { 2903 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2904 RECEIVE_MSG_AVAIL); 2905 return 1; 2906 } 2907 2908 /* 2909 * setup_dell_poweredge_oem_data_handler 2910 * @info - smi_info.device_id must be populated 2911 * 2912 * Systems that match, but have firmware version < 1.40 may assert 2913 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2914 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2915 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2916 * as RECEIVE_MSG_AVAIL instead. 2917 * 2918 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2919 * assert the OEM[012] bits, and if it did, the driver would have to 2920 * change to handle that properly, we don't actually check for the 2921 * firmware version. 2922 * Device ID = 0x20 BMC on PowerEdge 8G servers 2923 * Device Revision = 0x80 2924 * Firmware Revision1 = 0x01 BMC version 1.40 2925 * Firmware Revision2 = 0x40 BCD encoded 2926 * IPMI Version = 0x51 IPMI 1.5 2927 * Manufacturer ID = A2 02 00 Dell IANA 2928 * 2929 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2930 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2931 * 2932 */ 2933 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2934 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2935 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2936 #define DELL_IANA_MFR_ID 0x0002a2 2937 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2938 { 2939 struct ipmi_device_id *id = &smi_info->device_id; 2940 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2941 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2942 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2943 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2944 smi_info->oem_data_avail_handler = 2945 oem_data_avail_to_receive_msg_avail; 2946 } else if (ipmi_version_major(id) < 1 || 2947 (ipmi_version_major(id) == 1 && 2948 ipmi_version_minor(id) < 5)) { 2949 smi_info->oem_data_avail_handler = 2950 oem_data_avail_to_receive_msg_avail; 2951 } 2952 } 2953 } 2954 2955 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2956 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2957 { 2958 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2959 2960 /* Make it a response */ 2961 msg->rsp[0] = msg->data[0] | 4; 2962 msg->rsp[1] = msg->data[1]; 2963 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2964 msg->rsp_size = 3; 2965 smi_info->curr_msg = NULL; 2966 deliver_recv_msg(smi_info, msg); 2967 } 2968 2969 /* 2970 * dell_poweredge_bt_xaction_handler 2971 * @info - smi_info.device_id must be populated 2972 * 2973 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2974 * not respond to a Get SDR command if the length of the data 2975 * requested is exactly 0x3A, which leads to command timeouts and no 2976 * data returned. This intercepts such commands, and causes userspace 2977 * callers to try again with a different-sized buffer, which succeeds. 2978 */ 2979 2980 #define STORAGE_NETFN 0x0A 2981 #define STORAGE_CMD_GET_SDR 0x23 2982 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2983 unsigned long unused, 2984 void *in) 2985 { 2986 struct smi_info *smi_info = in; 2987 unsigned char *data = smi_info->curr_msg->data; 2988 unsigned int size = smi_info->curr_msg->data_size; 2989 if (size >= 8 && 2990 (data[0]>>2) == STORAGE_NETFN && 2991 data[1] == STORAGE_CMD_GET_SDR && 2992 data[7] == 0x3A) { 2993 return_hosed_msg_badsize(smi_info); 2994 return NOTIFY_STOP; 2995 } 2996 return NOTIFY_DONE; 2997 } 2998 2999 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3000 .notifier_call = dell_poweredge_bt_xaction_handler, 3001 }; 3002 3003 /* 3004 * setup_dell_poweredge_bt_xaction_handler 3005 * @info - smi_info.device_id must be filled in already 3006 * 3007 * Fills in smi_info.device_id.start_transaction_pre_hook 3008 * when we know what function to use there. 3009 */ 3010 static void 3011 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3012 { 3013 struct ipmi_device_id *id = &smi_info->device_id; 3014 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3015 smi_info->si_type == SI_BT) 3016 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3017 } 3018 3019 /* 3020 * setup_oem_data_handler 3021 * @info - smi_info.device_id must be filled in already 3022 * 3023 * Fills in smi_info.device_id.oem_data_available_handler 3024 * when we know what function to use there. 3025 */ 3026 3027 static void setup_oem_data_handler(struct smi_info *smi_info) 3028 { 3029 setup_dell_poweredge_oem_data_handler(smi_info); 3030 } 3031 3032 static void setup_xaction_handlers(struct smi_info *smi_info) 3033 { 3034 setup_dell_poweredge_bt_xaction_handler(smi_info); 3035 } 3036 3037 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3038 { 3039 if (smi_info->intf) { 3040 /* 3041 * The timer and thread are only running if the 3042 * interface has been started up and registered. 3043 */ 3044 if (smi_info->thread != NULL) 3045 kthread_stop(smi_info->thread); 3046 del_timer_sync(&smi_info->si_timer); 3047 } 3048 } 3049 3050 static struct ipmi_default_vals 3051 { 3052 int type; 3053 int port; 3054 } ipmi_defaults[] = 3055 { 3056 { .type = SI_KCS, .port = 0xca2 }, 3057 { .type = SI_SMIC, .port = 0xca9 }, 3058 { .type = SI_BT, .port = 0xe4 }, 3059 { .port = 0 } 3060 }; 3061 3062 static void default_find_bmc(void) 3063 { 3064 struct smi_info *info; 3065 int i; 3066 3067 for (i = 0; ; i++) { 3068 if (!ipmi_defaults[i].port) 3069 break; 3070 #ifdef CONFIG_PPC 3071 if (check_legacy_ioport(ipmi_defaults[i].port)) 3072 continue; 3073 #endif 3074 info = smi_info_alloc(); 3075 if (!info) 3076 return; 3077 3078 info->addr_source = SI_DEFAULT; 3079 3080 info->si_type = ipmi_defaults[i].type; 3081 info->io_setup = port_setup; 3082 info->io.addr_data = ipmi_defaults[i].port; 3083 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3084 3085 info->io.addr = NULL; 3086 info->io.regspacing = DEFAULT_REGSPACING; 3087 info->io.regsize = DEFAULT_REGSPACING; 3088 info->io.regshift = 0; 3089 3090 if (add_smi(info) == 0) { 3091 if ((try_smi_init(info)) == 0) { 3092 /* Found one... */ 3093 printk(KERN_INFO PFX "Found default %s" 3094 " state machine at %s address 0x%lx\n", 3095 si_to_str[info->si_type], 3096 addr_space_to_str[info->io.addr_type], 3097 info->io.addr_data); 3098 } else 3099 cleanup_one_si(info); 3100 } else { 3101 kfree(info); 3102 } 3103 } 3104 } 3105 3106 static int is_new_interface(struct smi_info *info) 3107 { 3108 struct smi_info *e; 3109 3110 list_for_each_entry(e, &smi_infos, link) { 3111 if (e->io.addr_type != info->io.addr_type) 3112 continue; 3113 if (e->io.addr_data == info->io.addr_data) 3114 return 0; 3115 } 3116 3117 return 1; 3118 } 3119 3120 static int add_smi(struct smi_info *new_smi) 3121 { 3122 int rv = 0; 3123 3124 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3125 ipmi_addr_src_to_str[new_smi->addr_source], 3126 si_to_str[new_smi->si_type]); 3127 mutex_lock(&smi_infos_lock); 3128 if (!is_new_interface(new_smi)) { 3129 printk(KERN_CONT " duplicate interface\n"); 3130 rv = -EBUSY; 3131 goto out_err; 3132 } 3133 3134 printk(KERN_CONT "\n"); 3135 3136 /* So we know not to free it unless we have allocated one. */ 3137 new_smi->intf = NULL; 3138 new_smi->si_sm = NULL; 3139 new_smi->handlers = NULL; 3140 3141 list_add_tail(&new_smi->link, &smi_infos); 3142 3143 out_err: 3144 mutex_unlock(&smi_infos_lock); 3145 return rv; 3146 } 3147 3148 static int try_smi_init(struct smi_info *new_smi) 3149 { 3150 int rv = 0; 3151 int i; 3152 3153 printk(KERN_INFO PFX "Trying %s-specified %s state" 3154 " machine at %s address 0x%lx, slave address 0x%x," 3155 " irq %d\n", 3156 ipmi_addr_src_to_str[new_smi->addr_source], 3157 si_to_str[new_smi->si_type], 3158 addr_space_to_str[new_smi->io.addr_type], 3159 new_smi->io.addr_data, 3160 new_smi->slave_addr, new_smi->irq); 3161 3162 switch (new_smi->si_type) { 3163 case SI_KCS: 3164 new_smi->handlers = &kcs_smi_handlers; 3165 break; 3166 3167 case SI_SMIC: 3168 new_smi->handlers = &smic_smi_handlers; 3169 break; 3170 3171 case SI_BT: 3172 new_smi->handlers = &bt_smi_handlers; 3173 break; 3174 3175 default: 3176 /* No support for anything else yet. */ 3177 rv = -EIO; 3178 goto out_err; 3179 } 3180 3181 /* Allocate the state machine's data and initialize it. */ 3182 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3183 if (!new_smi->si_sm) { 3184 printk(KERN_ERR PFX 3185 "Could not allocate state machine memory\n"); 3186 rv = -ENOMEM; 3187 goto out_err; 3188 } 3189 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3190 &new_smi->io); 3191 3192 /* Now that we know the I/O size, we can set up the I/O. */ 3193 rv = new_smi->io_setup(new_smi); 3194 if (rv) { 3195 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3196 goto out_err; 3197 } 3198 3199 /* Do low-level detection first. */ 3200 if (new_smi->handlers->detect(new_smi->si_sm)) { 3201 if (new_smi->addr_source) 3202 printk(KERN_INFO PFX "Interface detection failed\n"); 3203 rv = -ENODEV; 3204 goto out_err; 3205 } 3206 3207 /* 3208 * Attempt a get device id command. If it fails, we probably 3209 * don't have a BMC here. 3210 */ 3211 rv = try_get_dev_id(new_smi); 3212 if (rv) { 3213 if (new_smi->addr_source) 3214 printk(KERN_INFO PFX "There appears to be no BMC" 3215 " at this location\n"); 3216 goto out_err; 3217 } 3218 3219 setup_oem_data_handler(new_smi); 3220 setup_xaction_handlers(new_smi); 3221 3222 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3223 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3224 new_smi->curr_msg = NULL; 3225 atomic_set(&new_smi->req_events, 0); 3226 new_smi->run_to_completion = 0; 3227 for (i = 0; i < SI_NUM_STATS; i++) 3228 atomic_set(&new_smi->stats[i], 0); 3229 3230 new_smi->interrupt_disabled = 1; 3231 atomic_set(&new_smi->stop_operation, 0); 3232 new_smi->intf_num = smi_num; 3233 smi_num++; 3234 3235 rv = try_enable_event_buffer(new_smi); 3236 if (rv == 0) 3237 new_smi->has_event_buffer = 1; 3238 3239 /* 3240 * Start clearing the flags before we enable interrupts or the 3241 * timer to avoid racing with the timer. 3242 */ 3243 start_clear_flags(new_smi); 3244 /* IRQ is defined to be set when non-zero. */ 3245 if (new_smi->irq) 3246 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3247 3248 if (!new_smi->dev) { 3249 /* 3250 * If we don't already have a device from something 3251 * else (like PCI), then register a new one. 3252 */ 3253 new_smi->pdev = platform_device_alloc("ipmi_si", 3254 new_smi->intf_num); 3255 if (!new_smi->pdev) { 3256 printk(KERN_ERR PFX 3257 "Unable to allocate platform device\n"); 3258 goto out_err; 3259 } 3260 new_smi->dev = &new_smi->pdev->dev; 3261 new_smi->dev->driver = &ipmi_driver.driver; 3262 3263 rv = platform_device_add(new_smi->pdev); 3264 if (rv) { 3265 printk(KERN_ERR PFX 3266 "Unable to register system interface device:" 3267 " %d\n", 3268 rv); 3269 goto out_err; 3270 } 3271 new_smi->dev_registered = 1; 3272 } 3273 3274 rv = ipmi_register_smi(&handlers, 3275 new_smi, 3276 &new_smi->device_id, 3277 new_smi->dev, 3278 "bmc", 3279 new_smi->slave_addr); 3280 if (rv) { 3281 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3282 rv); 3283 goto out_err_stop_timer; 3284 } 3285 3286 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3287 &smi_type_proc_ops, 3288 new_smi); 3289 if (rv) { 3290 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3291 goto out_err_stop_timer; 3292 } 3293 3294 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3295 &smi_si_stats_proc_ops, 3296 new_smi); 3297 if (rv) { 3298 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3299 goto out_err_stop_timer; 3300 } 3301 3302 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3303 &smi_params_proc_ops, 3304 new_smi); 3305 if (rv) { 3306 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3307 goto out_err_stop_timer; 3308 } 3309 3310 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3311 si_to_str[new_smi->si_type]); 3312 3313 return 0; 3314 3315 out_err_stop_timer: 3316 atomic_inc(&new_smi->stop_operation); 3317 wait_for_timer_and_thread(new_smi); 3318 3319 out_err: 3320 new_smi->interrupt_disabled = 1; 3321 3322 if (new_smi->intf) { 3323 ipmi_unregister_smi(new_smi->intf); 3324 new_smi->intf = NULL; 3325 } 3326 3327 if (new_smi->irq_cleanup) { 3328 new_smi->irq_cleanup(new_smi); 3329 new_smi->irq_cleanup = NULL; 3330 } 3331 3332 /* 3333 * Wait until we know that we are out of any interrupt 3334 * handlers might have been running before we freed the 3335 * interrupt. 3336 */ 3337 synchronize_sched(); 3338 3339 if (new_smi->si_sm) { 3340 if (new_smi->handlers) 3341 new_smi->handlers->cleanup(new_smi->si_sm); 3342 kfree(new_smi->si_sm); 3343 new_smi->si_sm = NULL; 3344 } 3345 if (new_smi->addr_source_cleanup) { 3346 new_smi->addr_source_cleanup(new_smi); 3347 new_smi->addr_source_cleanup = NULL; 3348 } 3349 if (new_smi->io_cleanup) { 3350 new_smi->io_cleanup(new_smi); 3351 new_smi->io_cleanup = NULL; 3352 } 3353 3354 if (new_smi->dev_registered) { 3355 platform_device_unregister(new_smi->pdev); 3356 new_smi->dev_registered = 0; 3357 } 3358 3359 return rv; 3360 } 3361 3362 static int init_ipmi_si(void) 3363 { 3364 int i; 3365 char *str; 3366 int rv; 3367 struct smi_info *e; 3368 enum ipmi_addr_src type = SI_INVALID; 3369 3370 if (initialized) 3371 return 0; 3372 initialized = 1; 3373 3374 rv = platform_driver_register(&ipmi_driver); 3375 if (rv) { 3376 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3377 return rv; 3378 } 3379 3380 3381 /* Parse out the si_type string into its components. */ 3382 str = si_type_str; 3383 if (*str != '\0') { 3384 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3385 si_type[i] = str; 3386 str = strchr(str, ','); 3387 if (str) { 3388 *str = '\0'; 3389 str++; 3390 } else { 3391 break; 3392 } 3393 } 3394 } 3395 3396 printk(KERN_INFO "IPMI System Interface driver.\n"); 3397 3398 /* If the user gave us a device, they presumably want us to use it */ 3399 if (!hardcode_find_bmc()) 3400 return 0; 3401 3402 #ifdef CONFIG_PCI 3403 rv = pci_register_driver(&ipmi_pci_driver); 3404 if (rv) 3405 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3406 else 3407 pci_registered = 1; 3408 #endif 3409 3410 #ifdef CONFIG_ACPI 3411 pnp_register_driver(&ipmi_pnp_driver); 3412 pnp_registered = 1; 3413 #endif 3414 3415 #ifdef CONFIG_DMI 3416 dmi_find_bmc(); 3417 #endif 3418 3419 #ifdef CONFIG_ACPI 3420 spmi_find_bmc(); 3421 #endif 3422 3423 /* We prefer devices with interrupts, but in the case of a machine 3424 with multiple BMCs we assume that there will be several instances 3425 of a given type so if we succeed in registering a type then also 3426 try to register everything else of the same type */ 3427 3428 mutex_lock(&smi_infos_lock); 3429 list_for_each_entry(e, &smi_infos, link) { 3430 /* Try to register a device if it has an IRQ and we either 3431 haven't successfully registered a device yet or this 3432 device has the same type as one we successfully registered */ 3433 if (e->irq && (!type || e->addr_source == type)) { 3434 if (!try_smi_init(e)) { 3435 type = e->addr_source; 3436 } 3437 } 3438 } 3439 3440 /* type will only have been set if we successfully registered an si */ 3441 if (type) { 3442 mutex_unlock(&smi_infos_lock); 3443 return 0; 3444 } 3445 3446 /* Fall back to the preferred device */ 3447 3448 list_for_each_entry(e, &smi_infos, link) { 3449 if (!e->irq && (!type || e->addr_source == type)) { 3450 if (!try_smi_init(e)) { 3451 type = e->addr_source; 3452 } 3453 } 3454 } 3455 mutex_unlock(&smi_infos_lock); 3456 3457 if (type) 3458 return 0; 3459 3460 if (si_trydefaults) { 3461 mutex_lock(&smi_infos_lock); 3462 if (list_empty(&smi_infos)) { 3463 /* No BMC was found, try defaults. */ 3464 mutex_unlock(&smi_infos_lock); 3465 default_find_bmc(); 3466 } else 3467 mutex_unlock(&smi_infos_lock); 3468 } 3469 3470 mutex_lock(&smi_infos_lock); 3471 if (unload_when_empty && list_empty(&smi_infos)) { 3472 mutex_unlock(&smi_infos_lock); 3473 cleanup_ipmi_si(); 3474 printk(KERN_WARNING PFX 3475 "Unable to find any System Interface(s)\n"); 3476 return -ENODEV; 3477 } else { 3478 mutex_unlock(&smi_infos_lock); 3479 return 0; 3480 } 3481 } 3482 module_init(init_ipmi_si); 3483 3484 static void cleanup_one_si(struct smi_info *to_clean) 3485 { 3486 int rv = 0; 3487 unsigned long flags; 3488 3489 if (!to_clean) 3490 return; 3491 3492 list_del(&to_clean->link); 3493 3494 /* Tell the driver that we are shutting down. */ 3495 atomic_inc(&to_clean->stop_operation); 3496 3497 /* 3498 * Make sure the timer and thread are stopped and will not run 3499 * again. 3500 */ 3501 wait_for_timer_and_thread(to_clean); 3502 3503 /* 3504 * Timeouts are stopped, now make sure the interrupts are off 3505 * for the device. A little tricky with locks to make sure 3506 * there are no races. 3507 */ 3508 spin_lock_irqsave(&to_clean->si_lock, flags); 3509 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3510 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3511 poll(to_clean); 3512 schedule_timeout_uninterruptible(1); 3513 spin_lock_irqsave(&to_clean->si_lock, flags); 3514 } 3515 disable_si_irq(to_clean); 3516 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3517 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3518 poll(to_clean); 3519 schedule_timeout_uninterruptible(1); 3520 } 3521 3522 /* Clean up interrupts and make sure that everything is done. */ 3523 if (to_clean->irq_cleanup) 3524 to_clean->irq_cleanup(to_clean); 3525 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3526 poll(to_clean); 3527 schedule_timeout_uninterruptible(1); 3528 } 3529 3530 if (to_clean->intf) 3531 rv = ipmi_unregister_smi(to_clean->intf); 3532 3533 if (rv) { 3534 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3535 rv); 3536 } 3537 3538 if (to_clean->handlers) 3539 to_clean->handlers->cleanup(to_clean->si_sm); 3540 3541 kfree(to_clean->si_sm); 3542 3543 if (to_clean->addr_source_cleanup) 3544 to_clean->addr_source_cleanup(to_clean); 3545 if (to_clean->io_cleanup) 3546 to_clean->io_cleanup(to_clean); 3547 3548 if (to_clean->dev_registered) 3549 platform_device_unregister(to_clean->pdev); 3550 3551 kfree(to_clean); 3552 } 3553 3554 static void cleanup_ipmi_si(void) 3555 { 3556 struct smi_info *e, *tmp_e; 3557 3558 if (!initialized) 3559 return; 3560 3561 #ifdef CONFIG_PCI 3562 if (pci_registered) 3563 pci_unregister_driver(&ipmi_pci_driver); 3564 #endif 3565 #ifdef CONFIG_ACPI 3566 if (pnp_registered) 3567 pnp_unregister_driver(&ipmi_pnp_driver); 3568 #endif 3569 3570 platform_driver_unregister(&ipmi_driver); 3571 3572 mutex_lock(&smi_infos_lock); 3573 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3574 cleanup_one_si(e); 3575 mutex_unlock(&smi_infos_lock); 3576 } 3577 module_exit(cleanup_ipmi_si); 3578 3579 MODULE_LICENSE("GPL"); 3580 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3581 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3582 " system interfaces."); 3583