xref: /linux/drivers/char/ipmi/ipmi_si_intf.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 					"ACPI", "SMBIOS", "PCI",
112 					"device-tree", "default" };
113 
114 #define DEVICE_NAME "ipmi_si"
115 
116 static struct platform_driver ipmi_driver;
117 
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122 	/*
123 	 * Number of times the driver requested a timer while an operation
124 	 * was in progress.
125 	 */
126 	SI_STAT_short_timeouts = 0,
127 
128 	/*
129 	 * Number of times the driver requested a timer while nothing was in
130 	 * progress.
131 	 */
132 	SI_STAT_long_timeouts,
133 
134 	/* Number of times the interface was idle while being polled. */
135 	SI_STAT_idles,
136 
137 	/* Number of interrupts the driver handled. */
138 	SI_STAT_interrupts,
139 
140 	/* Number of time the driver got an ATTN from the hardware. */
141 	SI_STAT_attentions,
142 
143 	/* Number of times the driver requested flags from the hardware. */
144 	SI_STAT_flag_fetches,
145 
146 	/* Number of times the hardware didn't follow the state machine. */
147 	SI_STAT_hosed_count,
148 
149 	/* Number of completed messages. */
150 	SI_STAT_complete_transactions,
151 
152 	/* Number of IPMI events received from the hardware. */
153 	SI_STAT_events,
154 
155 	/* Number of watchdog pretimeouts. */
156 	SI_STAT_watchdog_pretimeouts,
157 
158 	/* Number of asynchronous messages received. */
159 	SI_STAT_incoming_messages,
160 
161 
162 	/* This *must* remain last, add new values above this. */
163 	SI_NUM_STATS
164 };
165 
166 struct smi_info {
167 	int                    intf_num;
168 	ipmi_smi_t             intf;
169 	struct si_sm_data      *si_sm;
170 	struct si_sm_handlers  *handlers;
171 	enum si_type           si_type;
172 	spinlock_t             si_lock;
173 	struct list_head       xmit_msgs;
174 	struct list_head       hp_xmit_msgs;
175 	struct ipmi_smi_msg    *curr_msg;
176 	enum si_intf_state     si_state;
177 
178 	/*
179 	 * Used to handle the various types of I/O that can occur with
180 	 * IPMI
181 	 */
182 	struct si_sm_io io;
183 	int (*io_setup)(struct smi_info *info);
184 	void (*io_cleanup)(struct smi_info *info);
185 	int (*irq_setup)(struct smi_info *info);
186 	void (*irq_cleanup)(struct smi_info *info);
187 	unsigned int io_size;
188 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 	void (*addr_source_cleanup)(struct smi_info *info);
190 	void *addr_source_data;
191 
192 	/*
193 	 * Per-OEM handler, called from handle_flags().  Returns 1
194 	 * when handle_flags() needs to be re-run or 0 indicating it
195 	 * set si_state itself.
196 	 */
197 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
198 
199 	/*
200 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 	 * is set to hold the flags until we are done handling everything
202 	 * from the flags.
203 	 */
204 #define RECEIVE_MSG_AVAIL	0x01
205 #define EVENT_MSG_BUFFER_FULL	0x02
206 #define WDT_PRE_TIMEOUT_INT	0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211 			     OEM1_DATA_AVAIL | \
212 			     OEM2_DATA_AVAIL)
213 	unsigned char       msg_flags;
214 
215 	/* Does the BMC have an event buffer? */
216 	char		    has_event_buffer;
217 
218 	/*
219 	 * If set to true, this will request events the next time the
220 	 * state machine is idle.
221 	 */
222 	atomic_t            req_events;
223 
224 	/*
225 	 * If true, run the state machine to completion on every send
226 	 * call.  Generally used after a panic to make sure stuff goes
227 	 * out.
228 	 */
229 	int                 run_to_completion;
230 
231 	/* The I/O port of an SI interface. */
232 	int                 port;
233 
234 	/*
235 	 * The space between start addresses of the two ports.  For
236 	 * instance, if the first port is 0xca2 and the spacing is 4, then
237 	 * the second port is 0xca6.
238 	 */
239 	unsigned int        spacing;
240 
241 	/* zero if no irq; */
242 	int                 irq;
243 
244 	/* The timer for this si. */
245 	struct timer_list   si_timer;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Used to gracefully stop the timer without race conditions. */
251 	atomic_t            stop_operation;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	int interrupt_disabled;
260 
261 	/* From the get device id response... */
262 	struct ipmi_device_id device_id;
263 
264 	/* Driver model stuff. */
265 	struct device *dev;
266 	struct platform_device *pdev;
267 
268 	/*
269 	 * True if we allocated the device, false if it came from
270 	 * someplace else (like PCI).
271 	 */
272 	int dev_registered;
273 
274 	/* Slave address, could be reported from DMI. */
275 	unsigned char slave_addr;
276 
277 	/* Counters and things for the proc filesystem. */
278 	atomic_t stats[SI_NUM_STATS];
279 
280 	struct task_struct *thread;
281 
282 	struct list_head link;
283 	union ipmi_smi_info_union addr_info;
284 };
285 
286 #define smi_inc_stat(smi, stat) \
287 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290 
291 #define SI_MAX_PARMS 4
292 
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301 
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304 
305 static int unload_when_empty = 1;
306 
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311 
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317 
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 			     struct ipmi_smi_msg *msg)
320 {
321 	/* Deliver the message to the upper layer. */
322 	ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324 
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
328 
329 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 		cCode = IPMI_ERR_UNSPECIFIED;
331 	/* else use it as is */
332 
333 	/* Make it a response */
334 	msg->rsp[0] = msg->data[0] | 4;
335 	msg->rsp[1] = msg->data[1];
336 	msg->rsp[2] = cCode;
337 	msg->rsp_size = 3;
338 
339 	smi_info->curr_msg = NULL;
340 	deliver_recv_msg(smi_info, msg);
341 }
342 
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 	int              rv;
346 	struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 	struct timeval t;
349 #endif
350 
351 	/* Pick the high priority queue first. */
352 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 		entry = smi_info->hp_xmit_msgs.next;
354 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
355 		entry = smi_info->xmit_msgs.next;
356 	}
357 
358 	if (!entry) {
359 		smi_info->curr_msg = NULL;
360 		rv = SI_SM_IDLE;
361 	} else {
362 		int err;
363 
364 		list_del(entry);
365 		smi_info->curr_msg = list_entry(entry,
366 						struct ipmi_smi_msg,
367 						link);
368 #ifdef DEBUG_TIMING
369 		do_gettimeofday(&t);
370 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 		err = atomic_notifier_call_chain(&xaction_notifier_list,
373 				0, smi_info);
374 		if (err & NOTIFY_STOP_MASK) {
375 			rv = SI_SM_CALL_WITHOUT_DELAY;
376 			goto out;
377 		}
378 		err = smi_info->handlers->start_transaction(
379 			smi_info->si_sm,
380 			smi_info->curr_msg->data,
381 			smi_info->curr_msg->data_size);
382 		if (err)
383 			return_hosed_msg(smi_info, err);
384 
385 		rv = SI_SM_CALL_WITHOUT_DELAY;
386 	}
387  out:
388 	return rv;
389 }
390 
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 	unsigned char msg[2];
394 
395 	/*
396 	 * If we are enabling interrupts, we have to tell the
397 	 * BMC to use them.
398 	 */
399 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401 
402 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405 
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 	unsigned char msg[2];
409 
410 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412 
413 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416 
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 	unsigned char msg[3];
420 
421 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
422 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 	msg[2] = WDT_PRE_TIMEOUT_INT;
425 
426 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 	smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429 
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 		start_disable_irq(smi_info);
440 		smi_info->interrupt_disabled = 1;
441 		if (!atomic_read(&smi_info->stop_operation))
442 			mod_timer(&smi_info->si_timer,
443 				  jiffies + SI_TIMEOUT_JIFFIES);
444 	}
445 }
446 
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 		start_enable_irq(smi_info);
451 		smi_info->interrupt_disabled = 0;
452 	}
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 		/* Watchdog pre-timeout */
460 		smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462 		start_clear_flags(smi_info);
463 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 		/* Messages available. */
467 		smi_info->curr_msg = ipmi_alloc_smi_msg();
468 		if (!smi_info->curr_msg) {
469 			disable_si_irq(smi_info);
470 			smi_info->si_state = SI_NORMAL;
471 			return;
472 		}
473 		enable_si_irq(smi_info);
474 
475 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 		smi_info->curr_msg->data_size = 2;
478 
479 		smi_info->handlers->start_transaction(
480 			smi_info->si_sm,
481 			smi_info->curr_msg->data,
482 			smi_info->curr_msg->data_size);
483 		smi_info->si_state = SI_GETTING_MESSAGES;
484 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 		/* Events available. */
486 		smi_info->curr_msg = ipmi_alloc_smi_msg();
487 		if (!smi_info->curr_msg) {
488 			disable_si_irq(smi_info);
489 			smi_info->si_state = SI_NORMAL;
490 			return;
491 		}
492 		enable_si_irq(smi_info);
493 
494 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 		smi_info->curr_msg->data_size = 2;
497 
498 		smi_info->handlers->start_transaction(
499 			smi_info->si_sm,
500 			smi_info->curr_msg->data,
501 			smi_info->curr_msg->data_size);
502 		smi_info->si_state = SI_GETTING_EVENTS;
503 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 		   smi_info->oem_data_avail_handler) {
505 		if (smi_info->oem_data_avail_handler(smi_info))
506 			goto retry;
507 	} else
508 		smi_info->si_state = SI_NORMAL;
509 }
510 
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 	struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 	struct timeval t;
516 
517 	do_gettimeofday(&t);
518 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 	switch (smi_info->si_state) {
521 	case SI_NORMAL:
522 		if (!smi_info->curr_msg)
523 			break;
524 
525 		smi_info->curr_msg->rsp_size
526 			= smi_info->handlers->get_result(
527 				smi_info->si_sm,
528 				smi_info->curr_msg->rsp,
529 				IPMI_MAX_MSG_LENGTH);
530 
531 		/*
532 		 * Do this here becase deliver_recv_msg() releases the
533 		 * lock, and a new message can be put in during the
534 		 * time the lock is released.
535 		 */
536 		msg = smi_info->curr_msg;
537 		smi_info->curr_msg = NULL;
538 		deliver_recv_msg(smi_info, msg);
539 		break;
540 
541 	case SI_GETTING_FLAGS:
542 	{
543 		unsigned char msg[4];
544 		unsigned int  len;
545 
546 		/* We got the flags from the SMI, now handle them. */
547 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 		if (msg[2] != 0) {
549 			/* Error fetching flags, just give up for now. */
550 			smi_info->si_state = SI_NORMAL;
551 		} else if (len < 4) {
552 			/*
553 			 * Hmm, no flags.  That's technically illegal, but
554 			 * don't use uninitialized data.
555 			 */
556 			smi_info->si_state = SI_NORMAL;
557 		} else {
558 			smi_info->msg_flags = msg[3];
559 			handle_flags(smi_info);
560 		}
561 		break;
562 	}
563 
564 	case SI_CLEARING_FLAGS:
565 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 	{
567 		unsigned char msg[3];
568 
569 		/* We cleared the flags. */
570 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 		if (msg[2] != 0) {
572 			/* Error clearing flags */
573 			dev_warn(smi_info->dev,
574 				 "Error clearing flags: %2.2x\n", msg[2]);
575 		}
576 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 			start_enable_irq(smi_info);
578 		else
579 			smi_info->si_state = SI_NORMAL;
580 		break;
581 	}
582 
583 	case SI_GETTING_EVENTS:
584 	{
585 		smi_info->curr_msg->rsp_size
586 			= smi_info->handlers->get_result(
587 				smi_info->si_sm,
588 				smi_info->curr_msg->rsp,
589 				IPMI_MAX_MSG_LENGTH);
590 
591 		/*
592 		 * Do this here becase deliver_recv_msg() releases the
593 		 * lock, and a new message can be put in during the
594 		 * time the lock is released.
595 		 */
596 		msg = smi_info->curr_msg;
597 		smi_info->curr_msg = NULL;
598 		if (msg->rsp[2] != 0) {
599 			/* Error getting event, probably done. */
600 			msg->done(msg);
601 
602 			/* Take off the event flag. */
603 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 			handle_flags(smi_info);
605 		} else {
606 			smi_inc_stat(smi_info, events);
607 
608 			/*
609 			 * Do this before we deliver the message
610 			 * because delivering the message releases the
611 			 * lock and something else can mess with the
612 			 * state.
613 			 */
614 			handle_flags(smi_info);
615 
616 			deliver_recv_msg(smi_info, msg);
617 		}
618 		break;
619 	}
620 
621 	case SI_GETTING_MESSAGES:
622 	{
623 		smi_info->curr_msg->rsp_size
624 			= smi_info->handlers->get_result(
625 				smi_info->si_sm,
626 				smi_info->curr_msg->rsp,
627 				IPMI_MAX_MSG_LENGTH);
628 
629 		/*
630 		 * Do this here becase deliver_recv_msg() releases the
631 		 * lock, and a new message can be put in during the
632 		 * time the lock is released.
633 		 */
634 		msg = smi_info->curr_msg;
635 		smi_info->curr_msg = NULL;
636 		if (msg->rsp[2] != 0) {
637 			/* Error getting event, probably done. */
638 			msg->done(msg);
639 
640 			/* Take off the msg flag. */
641 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 			handle_flags(smi_info);
643 		} else {
644 			smi_inc_stat(smi_info, incoming_messages);
645 
646 			/*
647 			 * Do this before we deliver the message
648 			 * because delivering the message releases the
649 			 * lock and something else can mess with the
650 			 * state.
651 			 */
652 			handle_flags(smi_info);
653 
654 			deliver_recv_msg(smi_info, msg);
655 		}
656 		break;
657 	}
658 
659 	case SI_ENABLE_INTERRUPTS1:
660 	{
661 		unsigned char msg[4];
662 
663 		/* We got the flags from the SMI, now handle them. */
664 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 		if (msg[2] != 0) {
666 			dev_warn(smi_info->dev, "Could not enable interrupts"
667 				 ", failed get, using polled mode.\n");
668 			smi_info->si_state = SI_NORMAL;
669 		} else {
670 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672 			msg[2] = (msg[3] |
673 				  IPMI_BMC_RCV_MSG_INTR |
674 				  IPMI_BMC_EVT_MSG_INTR);
675 			smi_info->handlers->start_transaction(
676 				smi_info->si_sm, msg, 3);
677 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 		}
679 		break;
680 	}
681 
682 	case SI_ENABLE_INTERRUPTS2:
683 	{
684 		unsigned char msg[4];
685 
686 		/* We got the flags from the SMI, now handle them. */
687 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 		if (msg[2] != 0)
689 			dev_warn(smi_info->dev, "Could not enable interrupts"
690 				 ", failed set, using polled mode.\n");
691 		else
692 			smi_info->interrupt_disabled = 0;
693 		smi_info->si_state = SI_NORMAL;
694 		break;
695 	}
696 
697 	case SI_DISABLE_INTERRUPTS1:
698 	{
699 		unsigned char msg[4];
700 
701 		/* We got the flags from the SMI, now handle them. */
702 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 		if (msg[2] != 0) {
704 			dev_warn(smi_info->dev, "Could not disable interrupts"
705 				 ", failed get.\n");
706 			smi_info->si_state = SI_NORMAL;
707 		} else {
708 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 			msg[2] = (msg[3] &
711 				  ~(IPMI_BMC_RCV_MSG_INTR |
712 				    IPMI_BMC_EVT_MSG_INTR));
713 			smi_info->handlers->start_transaction(
714 				smi_info->si_sm, msg, 3);
715 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 		}
717 		break;
718 	}
719 
720 	case SI_DISABLE_INTERRUPTS2:
721 	{
722 		unsigned char msg[4];
723 
724 		/* We got the flags from the SMI, now handle them. */
725 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 		if (msg[2] != 0) {
727 			dev_warn(smi_info->dev, "Could not disable interrupts"
728 				 ", failed set.\n");
729 		}
730 		smi_info->si_state = SI_NORMAL;
731 		break;
732 	}
733 	}
734 }
735 
736 /*
737  * Called on timeouts and events.  Timeouts should pass the elapsed
738  * time, interrupts should pass in zero.  Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 					   int time)
743 {
744 	enum si_sm_result si_sm_result;
745 
746  restart:
747 	/*
748 	 * There used to be a loop here that waited a little while
749 	 * (around 25us) before giving up.  That turned out to be
750 	 * pointless, the minimum delays I was seeing were in the 300us
751 	 * range, which is far too long to wait in an interrupt.  So
752 	 * we just run until the state machine tells us something
753 	 * happened or it needs a delay.
754 	 */
755 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 	time = 0;
757 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759 
760 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761 		smi_inc_stat(smi_info, complete_transactions);
762 
763 		handle_transaction_done(smi_info);
764 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765 	} else if (si_sm_result == SI_SM_HOSED) {
766 		smi_inc_stat(smi_info, hosed_count);
767 
768 		/*
769 		 * Do the before return_hosed_msg, because that
770 		 * releases the lock.
771 		 */
772 		smi_info->si_state = SI_NORMAL;
773 		if (smi_info->curr_msg != NULL) {
774 			/*
775 			 * If we were handling a user message, format
776 			 * a response to send to the upper layer to
777 			 * tell it about the error.
778 			 */
779 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780 		}
781 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 	}
783 
784 	/*
785 	 * We prefer handling attn over new messages.  But don't do
786 	 * this if there is not yet an upper layer to handle anything.
787 	 */
788 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789 		unsigned char msg[2];
790 
791 		smi_inc_stat(smi_info, attentions);
792 
793 		/*
794 		 * Got a attn, send down a get message flags to see
795 		 * what's causing it.  It would be better to handle
796 		 * this in the upper layer, but due to the way
797 		 * interrupts work with the SMI, that's not really
798 		 * possible.
799 		 */
800 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802 
803 		smi_info->handlers->start_transaction(
804 			smi_info->si_sm, msg, 2);
805 		smi_info->si_state = SI_GETTING_FLAGS;
806 		goto restart;
807 	}
808 
809 	/* If we are currently idle, try to start the next message. */
810 	if (si_sm_result == SI_SM_IDLE) {
811 		smi_inc_stat(smi_info, idles);
812 
813 		si_sm_result = start_next_msg(smi_info);
814 		if (si_sm_result != SI_SM_IDLE)
815 			goto restart;
816 	}
817 
818 	if ((si_sm_result == SI_SM_IDLE)
819 	    && (atomic_read(&smi_info->req_events))) {
820 		/*
821 		 * We are idle and the upper layer requested that I fetch
822 		 * events, so do so.
823 		 */
824 		atomic_set(&smi_info->req_events, 0);
825 
826 		smi_info->curr_msg = ipmi_alloc_smi_msg();
827 		if (!smi_info->curr_msg)
828 			goto out;
829 
830 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 		smi_info->curr_msg->data_size = 2;
833 
834 		smi_info->handlers->start_transaction(
835 			smi_info->si_sm,
836 			smi_info->curr_msg->data,
837 			smi_info->curr_msg->data_size);
838 		smi_info->si_state = SI_GETTING_EVENTS;
839 		goto restart;
840 	}
841  out:
842 	return si_sm_result;
843 }
844 
845 static void sender(void                *send_info,
846 		   struct ipmi_smi_msg *msg,
847 		   int                 priority)
848 {
849 	struct smi_info   *smi_info = send_info;
850 	enum si_sm_result result;
851 	unsigned long     flags;
852 #ifdef DEBUG_TIMING
853 	struct timeval    t;
854 #endif
855 
856 	if (atomic_read(&smi_info->stop_operation)) {
857 		msg->rsp[0] = msg->data[0] | 4;
858 		msg->rsp[1] = msg->data[1];
859 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 		msg->rsp_size = 3;
861 		deliver_recv_msg(smi_info, msg);
862 		return;
863 	}
864 
865 #ifdef DEBUG_TIMING
866 	do_gettimeofday(&t);
867 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869 
870 	if (smi_info->run_to_completion) {
871 		/*
872 		 * If we are running to completion, then throw it in
873 		 * the list and run transactions until everything is
874 		 * clear.  Priority doesn't matter here.
875 		 */
876 
877 		/*
878 		 * Run to completion means we are single-threaded, no
879 		 * need for locks.
880 		 */
881 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882 
883 		result = smi_event_handler(smi_info, 0);
884 		while (result != SI_SM_IDLE) {
885 			udelay(SI_SHORT_TIMEOUT_USEC);
886 			result = smi_event_handler(smi_info,
887 						   SI_SHORT_TIMEOUT_USEC);
888 		}
889 		return;
890 	}
891 
892 	spin_lock_irqsave(&smi_info->si_lock, flags);
893 	if (priority > 0)
894 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 	else
896 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
897 
898 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899 		/*
900 		 * last_timeout_jiffies is updated here to avoid
901 		 * smi_timeout() handler passing very large time_diff
902 		 * value to smi_event_handler() that causes
903 		 * the send command to abort.
904 		 */
905 		smi_info->last_timeout_jiffies = jiffies;
906 
907 		mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908 
909 		if (smi_info->thread)
910 			wake_up_process(smi_info->thread);
911 
912 		start_next_msg(smi_info);
913 		smi_event_handler(smi_info, 0);
914 	}
915 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917 
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920 	struct smi_info   *smi_info = send_info;
921 	enum si_sm_result result;
922 
923 	smi_info->run_to_completion = i_run_to_completion;
924 	if (i_run_to_completion) {
925 		result = smi_event_handler(smi_info, 0);
926 		while (result != SI_SM_IDLE) {
927 			udelay(SI_SHORT_TIMEOUT_USEC);
928 			result = smi_event_handler(smi_info,
929 						   SI_SHORT_TIMEOUT_USEC);
930 		}
931 	}
932 }
933 
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941 	ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945 	return ts->tv_nsec != -1;
946 }
947 
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 				 const struct smi_info *smi_info,
950 				 struct timespec *busy_until)
951 {
952 	unsigned int max_busy_us = 0;
953 
954 	if (smi_info->intf_num < num_max_busy_us)
955 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 		ipmi_si_set_not_busy(busy_until);
958 	else if (!ipmi_si_is_busy(busy_until)) {
959 		getnstimeofday(busy_until);
960 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 	} else {
962 		struct timespec now;
963 		getnstimeofday(&now);
964 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 			ipmi_si_set_not_busy(busy_until);
966 			return 0;
967 		}
968 	}
969 	return 1;
970 }
971 
972 
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984 	struct smi_info *smi_info = data;
985 	unsigned long flags;
986 	enum si_sm_result smi_result;
987 	struct timespec busy_until;
988 
989 	ipmi_si_set_not_busy(&busy_until);
990 	set_user_nice(current, 19);
991 	while (!kthread_should_stop()) {
992 		int busy_wait;
993 
994 		spin_lock_irqsave(&(smi_info->si_lock), flags);
995 		smi_result = smi_event_handler(smi_info, 0);
996 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 						  &busy_until);
999 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 			; /* do nothing */
1001 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002 			schedule();
1003 		else if (smi_result == SI_SM_IDLE)
1004 			schedule_timeout_interruptible(100);
1005 		else
1006 			schedule_timeout_interruptible(1);
1007 	}
1008 	return 0;
1009 }
1010 
1011 
1012 static void poll(void *send_info)
1013 {
1014 	struct smi_info *smi_info = send_info;
1015 	unsigned long flags = 0;
1016 	int run_to_completion = smi_info->run_to_completion;
1017 
1018 	/*
1019 	 * Make sure there is some delay in the poll loop so we can
1020 	 * drive time forward and timeout things.
1021 	 */
1022 	udelay(10);
1023 	if (!run_to_completion)
1024 		spin_lock_irqsave(&smi_info->si_lock, flags);
1025 	smi_event_handler(smi_info, 10);
1026 	if (!run_to_completion)
1027 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029 
1030 static void request_events(void *send_info)
1031 {
1032 	struct smi_info *smi_info = send_info;
1033 
1034 	if (atomic_read(&smi_info->stop_operation) ||
1035 				!smi_info->has_event_buffer)
1036 		return;
1037 
1038 	atomic_set(&smi_info->req_events, 1);
1039 }
1040 
1041 static int initialized;
1042 
1043 static void smi_timeout(unsigned long data)
1044 {
1045 	struct smi_info   *smi_info = (struct smi_info *) data;
1046 	enum si_sm_result smi_result;
1047 	unsigned long     flags;
1048 	unsigned long     jiffies_now;
1049 	long              time_diff;
1050 	long		  timeout;
1051 #ifdef DEBUG_TIMING
1052 	struct timeval    t;
1053 #endif
1054 
1055 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057 	do_gettimeofday(&t);
1058 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060 	jiffies_now = jiffies;
1061 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062 		     * SI_USEC_PER_JIFFY);
1063 	smi_result = smi_event_handler(smi_info, time_diff);
1064 
1065 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066 
1067 	smi_info->last_timeout_jiffies = jiffies_now;
1068 
1069 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070 		/* Running with interrupts, only do long timeouts. */
1071 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072 		smi_inc_stat(smi_info, long_timeouts);
1073 		goto do_mod_timer;
1074 	}
1075 
1076 	/*
1077 	 * If the state machine asks for a short delay, then shorten
1078 	 * the timer timeout.
1079 	 */
1080 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081 		smi_inc_stat(smi_info, short_timeouts);
1082 		timeout = jiffies + 1;
1083 	} else {
1084 		smi_inc_stat(smi_info, long_timeouts);
1085 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086 	}
1087 
1088  do_mod_timer:
1089 	if (smi_result != SI_SM_IDLE)
1090 		mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092 
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095 	struct smi_info *smi_info = data;
1096 	unsigned long   flags;
1097 #ifdef DEBUG_TIMING
1098 	struct timeval  t;
1099 #endif
1100 
1101 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1102 
1103 	smi_inc_stat(smi_info, interrupts);
1104 
1105 #ifdef DEBUG_TIMING
1106 	do_gettimeofday(&t);
1107 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109 	smi_event_handler(smi_info, 0);
1110 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116 	struct smi_info *smi_info = data;
1117 	/* We need to clear the IRQ flag for the BT interface. */
1118 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121 	return si_irq_handler(irq, data);
1122 }
1123 
1124 static int smi_start_processing(void       *send_info,
1125 				ipmi_smi_t intf)
1126 {
1127 	struct smi_info *new_smi = send_info;
1128 	int             enable = 0;
1129 
1130 	new_smi->intf = intf;
1131 
1132 	/* Try to claim any interrupts. */
1133 	if (new_smi->irq_setup)
1134 		new_smi->irq_setup(new_smi);
1135 
1136 	/* Set up the timer that drives the interface. */
1137 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 	new_smi->last_timeout_jiffies = jiffies;
1139 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140 
1141 	/*
1142 	 * Check if the user forcefully enabled the daemon.
1143 	 */
1144 	if (new_smi->intf_num < num_force_kipmid)
1145 		enable = force_kipmid[new_smi->intf_num];
1146 	/*
1147 	 * The BT interface is efficient enough to not need a thread,
1148 	 * and there is no need for a thread if we have interrupts.
1149 	 */
1150 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151 		enable = 1;
1152 
1153 	if (enable) {
1154 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 					      "kipmi%d", new_smi->intf_num);
1156 		if (IS_ERR(new_smi->thread)) {
1157 			dev_notice(new_smi->dev, "Could not start"
1158 				   " kernel thread due to error %ld, only using"
1159 				   " timers to drive the interface\n",
1160 				   PTR_ERR(new_smi->thread));
1161 			new_smi->thread = NULL;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170 	struct smi_info *smi = send_info;
1171 
1172 	data->addr_src = smi->addr_source;
1173 	data->dev = smi->dev;
1174 	data->addr_info = smi->addr_info;
1175 	get_device(smi->dev);
1176 
1177 	return 0;
1178 }
1179 
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182 	struct smi_info   *smi_info = send_info;
1183 
1184 	if (!enable)
1185 		atomic_set(&smi_info->req_events, 0);
1186 }
1187 
1188 static struct ipmi_smi_handlers handlers = {
1189 	.owner                  = THIS_MODULE,
1190 	.start_processing       = smi_start_processing,
1191 	.get_smi_info		= get_smi_info,
1192 	.sender			= sender,
1193 	.request_events		= request_events,
1194 	.set_maintenance_mode   = set_maintenance_mode,
1195 	.set_run_to_completion  = set_run_to_completion,
1196 	.poll			= poll,
1197 };
1198 
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203 
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207 
1208 #define DEFAULT_REGSPACING	1
1209 #define DEFAULT_REGSIZE		1
1210 
1211 static bool          si_trydefaults = 1;
1212 static char          *si_type[SI_MAX_PARMS];
1213 #define MAX_SI_TYPE_STR 30
1214 static char          si_type_str[MAX_SI_TYPE_STR];
1215 static unsigned long addrs[SI_MAX_PARMS];
1216 static unsigned int num_addrs;
1217 static unsigned int  ports[SI_MAX_PARMS];
1218 static unsigned int num_ports;
1219 static int           irqs[SI_MAX_PARMS];
1220 static unsigned int num_irqs;
1221 static int           regspacings[SI_MAX_PARMS];
1222 static unsigned int num_regspacings;
1223 static int           regsizes[SI_MAX_PARMS];
1224 static unsigned int num_regsizes;
1225 static int           regshifts[SI_MAX_PARMS];
1226 static unsigned int num_regshifts;
1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs;
1229 
1230 #define IPMI_IO_ADDR_SPACE  0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str[] = { "i/o", "mem" };
1233 
1234 static int hotmod_handler(const char *val, struct kernel_param *kp);
1235 
1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1238 		 " Documentation/IPMI.txt in the kernel sources for the"
1239 		 " gory details.");
1240 
1241 module_param_named(trydefaults, si_trydefaults, bool, 0);
1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243 		 " default scan of the KCS and SMIC interface at the standard"
1244 		 " address");
1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247 		 " interface separated by commas.  The types are 'kcs',"
1248 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1249 		 " the first interface to kcs and the second to bt");
1250 module_param_array(addrs, ulong, &num_addrs, 0);
1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252 		 " addresses separated by commas.  Only use if an interface"
1253 		 " is in memory.  Otherwise, set it to zero or leave"
1254 		 " it blank.");
1255 module_param_array(ports, uint, &num_ports, 0);
1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257 		 " addresses separated by commas.  Only use if an interface"
1258 		 " is a port.  Otherwise, set it to zero or leave"
1259 		 " it blank.");
1260 module_param_array(irqs, int, &num_irqs, 0);
1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262 		 " addresses separated by commas.  Only use if an interface"
1263 		 " has an interrupt.  Otherwise, set it to zero or leave"
1264 		 " it blank.");
1265 module_param_array(regspacings, int, &num_regspacings, 0);
1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267 		 " and each successive register used by the interface.  For"
1268 		 " instance, if the start address is 0xca2 and the spacing"
1269 		 " is 2, then the second address is at 0xca4.  Defaults"
1270 		 " to 1.");
1271 module_param_array(regsizes, int, &num_regsizes, 0);
1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1275 		 " the 8-bit IPMI register has to be read from a larger"
1276 		 " register.");
1277 module_param_array(regshifts, int, &num_regshifts, 0);
1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279 		 " IPMI register, in bits.  For instance, if the data"
1280 		 " is read from a 32-bit word and the IPMI data is in"
1281 		 " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284 		 " the controller.  Normally this is 0x20, but can be"
1285 		 " overridden by this parm.  This is an array indexed"
1286 		 " by interface number.");
1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289 		 " disabled(0).  Normally the IPMI driver auto-detects"
1290 		 " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293 		 " specified or found, default is 1.  Setting to 0"
1294 		 " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us,
1297 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1298 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299 		 " if kipmid is using up a lot of CPU time.");
1300 
1301 
1302 static void std_irq_cleanup(struct smi_info *info)
1303 {
1304 	if (info->si_type == SI_BT)
1305 		/* Disable the interrupt in the BT interface. */
1306 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307 	free_irq(info->irq, info);
1308 }
1309 
1310 static int std_irq_setup(struct smi_info *info)
1311 {
1312 	int rv;
1313 
1314 	if (!info->irq)
1315 		return 0;
1316 
1317 	if (info->si_type == SI_BT) {
1318 		rv = request_irq(info->irq,
1319 				 si_bt_irq_handler,
1320 				 IRQF_SHARED | IRQF_DISABLED,
1321 				 DEVICE_NAME,
1322 				 info);
1323 		if (!rv)
1324 			/* Enable the interrupt in the BT interface. */
1325 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327 	} else
1328 		rv = request_irq(info->irq,
1329 				 si_irq_handler,
1330 				 IRQF_SHARED | IRQF_DISABLED,
1331 				 DEVICE_NAME,
1332 				 info);
1333 	if (rv) {
1334 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1335 			 " running polled\n",
1336 			 DEVICE_NAME, info->irq);
1337 		info->irq = 0;
1338 	} else {
1339 		info->irq_cleanup = std_irq_cleanup;
1340 		dev_info(info->dev, "Using irq %d\n", info->irq);
1341 	}
1342 
1343 	return rv;
1344 }
1345 
1346 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1347 {
1348 	unsigned int addr = io->addr_data;
1349 
1350 	return inb(addr + (offset * io->regspacing));
1351 }
1352 
1353 static void port_outb(struct si_sm_io *io, unsigned int offset,
1354 		      unsigned char b)
1355 {
1356 	unsigned int addr = io->addr_data;
1357 
1358 	outb(b, addr + (offset * io->regspacing));
1359 }
1360 
1361 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1362 {
1363 	unsigned int addr = io->addr_data;
1364 
1365 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1366 }
1367 
1368 static void port_outw(struct si_sm_io *io, unsigned int offset,
1369 		      unsigned char b)
1370 {
1371 	unsigned int addr = io->addr_data;
1372 
1373 	outw(b << io->regshift, addr + (offset * io->regspacing));
1374 }
1375 
1376 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1377 {
1378 	unsigned int addr = io->addr_data;
1379 
1380 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1381 }
1382 
1383 static void port_outl(struct si_sm_io *io, unsigned int offset,
1384 		      unsigned char b)
1385 {
1386 	unsigned int addr = io->addr_data;
1387 
1388 	outl(b << io->regshift, addr+(offset * io->regspacing));
1389 }
1390 
1391 static void port_cleanup(struct smi_info *info)
1392 {
1393 	unsigned int addr = info->io.addr_data;
1394 	int          idx;
1395 
1396 	if (addr) {
1397 		for (idx = 0; idx < info->io_size; idx++)
1398 			release_region(addr + idx * info->io.regspacing,
1399 				       info->io.regsize);
1400 	}
1401 }
1402 
1403 static int port_setup(struct smi_info *info)
1404 {
1405 	unsigned int addr = info->io.addr_data;
1406 	int          idx;
1407 
1408 	if (!addr)
1409 		return -ENODEV;
1410 
1411 	info->io_cleanup = port_cleanup;
1412 
1413 	/*
1414 	 * Figure out the actual inb/inw/inl/etc routine to use based
1415 	 * upon the register size.
1416 	 */
1417 	switch (info->io.regsize) {
1418 	case 1:
1419 		info->io.inputb = port_inb;
1420 		info->io.outputb = port_outb;
1421 		break;
1422 	case 2:
1423 		info->io.inputb = port_inw;
1424 		info->io.outputb = port_outw;
1425 		break;
1426 	case 4:
1427 		info->io.inputb = port_inl;
1428 		info->io.outputb = port_outl;
1429 		break;
1430 	default:
1431 		dev_warn(info->dev, "Invalid register size: %d\n",
1432 			 info->io.regsize);
1433 		return -EINVAL;
1434 	}
1435 
1436 	/*
1437 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1438 	 * tables.  This causes problems when trying to register the
1439 	 * entire I/O region.  Therefore we must register each I/O
1440 	 * port separately.
1441 	 */
1442 	for (idx = 0; idx < info->io_size; idx++) {
1443 		if (request_region(addr + idx * info->io.regspacing,
1444 				   info->io.regsize, DEVICE_NAME) == NULL) {
1445 			/* Undo allocations */
1446 			while (idx--) {
1447 				release_region(addr + idx * info->io.regspacing,
1448 					       info->io.regsize);
1449 			}
1450 			return -EIO;
1451 		}
1452 	}
1453 	return 0;
1454 }
1455 
1456 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1457 {
1458 	return readb((io->addr)+(offset * io->regspacing));
1459 }
1460 
1461 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1462 		     unsigned char b)
1463 {
1464 	writeb(b, (io->addr)+(offset * io->regspacing));
1465 }
1466 
1467 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1468 {
1469 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1470 		& 0xff;
1471 }
1472 
1473 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1474 		     unsigned char b)
1475 {
1476 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1477 }
1478 
1479 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1482 		& 0xff;
1483 }
1484 
1485 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1486 		     unsigned char b)
1487 {
1488 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489 }
1490 
1491 #ifdef readq
1492 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1493 {
1494 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1495 		& 0xff;
1496 }
1497 
1498 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1499 		     unsigned char b)
1500 {
1501 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1502 }
1503 #endif
1504 
1505 static void mem_cleanup(struct smi_info *info)
1506 {
1507 	unsigned long addr = info->io.addr_data;
1508 	int           mapsize;
1509 
1510 	if (info->io.addr) {
1511 		iounmap(info->io.addr);
1512 
1513 		mapsize = ((info->io_size * info->io.regspacing)
1514 			   - (info->io.regspacing - info->io.regsize));
1515 
1516 		release_mem_region(addr, mapsize);
1517 	}
1518 }
1519 
1520 static int mem_setup(struct smi_info *info)
1521 {
1522 	unsigned long addr = info->io.addr_data;
1523 	int           mapsize;
1524 
1525 	if (!addr)
1526 		return -ENODEV;
1527 
1528 	info->io_cleanup = mem_cleanup;
1529 
1530 	/*
1531 	 * Figure out the actual readb/readw/readl/etc routine to use based
1532 	 * upon the register size.
1533 	 */
1534 	switch (info->io.regsize) {
1535 	case 1:
1536 		info->io.inputb = intf_mem_inb;
1537 		info->io.outputb = intf_mem_outb;
1538 		break;
1539 	case 2:
1540 		info->io.inputb = intf_mem_inw;
1541 		info->io.outputb = intf_mem_outw;
1542 		break;
1543 	case 4:
1544 		info->io.inputb = intf_mem_inl;
1545 		info->io.outputb = intf_mem_outl;
1546 		break;
1547 #ifdef readq
1548 	case 8:
1549 		info->io.inputb = mem_inq;
1550 		info->io.outputb = mem_outq;
1551 		break;
1552 #endif
1553 	default:
1554 		dev_warn(info->dev, "Invalid register size: %d\n",
1555 			 info->io.regsize);
1556 		return -EINVAL;
1557 	}
1558 
1559 	/*
1560 	 * Calculate the total amount of memory to claim.  This is an
1561 	 * unusual looking calculation, but it avoids claiming any
1562 	 * more memory than it has to.  It will claim everything
1563 	 * between the first address to the end of the last full
1564 	 * register.
1565 	 */
1566 	mapsize = ((info->io_size * info->io.regspacing)
1567 		   - (info->io.regspacing - info->io.regsize));
1568 
1569 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1570 		return -EIO;
1571 
1572 	info->io.addr = ioremap(addr, mapsize);
1573 	if (info->io.addr == NULL) {
1574 		release_mem_region(addr, mapsize);
1575 		return -EIO;
1576 	}
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1582  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1583  * Options are:
1584  *   rsp=<regspacing>
1585  *   rsi=<regsize>
1586  *   rsh=<regshift>
1587  *   irq=<irq>
1588  *   ipmb=<ipmb addr>
1589  */
1590 enum hotmod_op { HM_ADD, HM_REMOVE };
1591 struct hotmod_vals {
1592 	char *name;
1593 	int  val;
1594 };
1595 static struct hotmod_vals hotmod_ops[] = {
1596 	{ "add",	HM_ADD },
1597 	{ "remove",	HM_REMOVE },
1598 	{ NULL }
1599 };
1600 static struct hotmod_vals hotmod_si[] = {
1601 	{ "kcs",	SI_KCS },
1602 	{ "smic",	SI_SMIC },
1603 	{ "bt",		SI_BT },
1604 	{ NULL }
1605 };
1606 static struct hotmod_vals hotmod_as[] = {
1607 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1608 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1609 	{ NULL }
1610 };
1611 
1612 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1613 {
1614 	char *s;
1615 	int  i;
1616 
1617 	s = strchr(*curr, ',');
1618 	if (!s) {
1619 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1620 		return -EINVAL;
1621 	}
1622 	*s = '\0';
1623 	s++;
1624 	for (i = 0; hotmod_ops[i].name; i++) {
1625 		if (strcmp(*curr, v[i].name) == 0) {
1626 			*val = v[i].val;
1627 			*curr = s;
1628 			return 0;
1629 		}
1630 	}
1631 
1632 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1633 	return -EINVAL;
1634 }
1635 
1636 static int check_hotmod_int_op(const char *curr, const char *option,
1637 			       const char *name, int *val)
1638 {
1639 	char *n;
1640 
1641 	if (strcmp(curr, name) == 0) {
1642 		if (!option) {
1643 			printk(KERN_WARNING PFX
1644 			       "No option given for '%s'\n",
1645 			       curr);
1646 			return -EINVAL;
1647 		}
1648 		*val = simple_strtoul(option, &n, 0);
1649 		if ((*n != '\0') || (*option == '\0')) {
1650 			printk(KERN_WARNING PFX
1651 			       "Bad option given for '%s'\n",
1652 			       curr);
1653 			return -EINVAL;
1654 		}
1655 		return 1;
1656 	}
1657 	return 0;
1658 }
1659 
1660 static struct smi_info *smi_info_alloc(void)
1661 {
1662 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1663 
1664 	if (info)
1665 		spin_lock_init(&info->si_lock);
1666 	return info;
1667 }
1668 
1669 static int hotmod_handler(const char *val, struct kernel_param *kp)
1670 {
1671 	char *str = kstrdup(val, GFP_KERNEL);
1672 	int  rv;
1673 	char *next, *curr, *s, *n, *o;
1674 	enum hotmod_op op;
1675 	enum si_type si_type;
1676 	int  addr_space;
1677 	unsigned long addr;
1678 	int regspacing;
1679 	int regsize;
1680 	int regshift;
1681 	int irq;
1682 	int ipmb;
1683 	int ival;
1684 	int len;
1685 	struct smi_info *info;
1686 
1687 	if (!str)
1688 		return -ENOMEM;
1689 
1690 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1691 	len = strlen(str);
1692 	ival = len - 1;
1693 	while ((ival >= 0) && isspace(str[ival])) {
1694 		str[ival] = '\0';
1695 		ival--;
1696 	}
1697 
1698 	for (curr = str; curr; curr = next) {
1699 		regspacing = 1;
1700 		regsize = 1;
1701 		regshift = 0;
1702 		irq = 0;
1703 		ipmb = 0; /* Choose the default if not specified */
1704 
1705 		next = strchr(curr, ':');
1706 		if (next) {
1707 			*next = '\0';
1708 			next++;
1709 		}
1710 
1711 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1712 		if (rv)
1713 			break;
1714 		op = ival;
1715 
1716 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1717 		if (rv)
1718 			break;
1719 		si_type = ival;
1720 
1721 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1722 		if (rv)
1723 			break;
1724 
1725 		s = strchr(curr, ',');
1726 		if (s) {
1727 			*s = '\0';
1728 			s++;
1729 		}
1730 		addr = simple_strtoul(curr, &n, 0);
1731 		if ((*n != '\0') || (*curr == '\0')) {
1732 			printk(KERN_WARNING PFX "Invalid hotmod address"
1733 			       " '%s'\n", curr);
1734 			break;
1735 		}
1736 
1737 		while (s) {
1738 			curr = s;
1739 			s = strchr(curr, ',');
1740 			if (s) {
1741 				*s = '\0';
1742 				s++;
1743 			}
1744 			o = strchr(curr, '=');
1745 			if (o) {
1746 				*o = '\0';
1747 				o++;
1748 			}
1749 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1750 			if (rv < 0)
1751 				goto out;
1752 			else if (rv)
1753 				continue;
1754 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1755 			if (rv < 0)
1756 				goto out;
1757 			else if (rv)
1758 				continue;
1759 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1760 			if (rv < 0)
1761 				goto out;
1762 			else if (rv)
1763 				continue;
1764 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1765 			if (rv < 0)
1766 				goto out;
1767 			else if (rv)
1768 				continue;
1769 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1770 			if (rv < 0)
1771 				goto out;
1772 			else if (rv)
1773 				continue;
1774 
1775 			rv = -EINVAL;
1776 			printk(KERN_WARNING PFX
1777 			       "Invalid hotmod option '%s'\n",
1778 			       curr);
1779 			goto out;
1780 		}
1781 
1782 		if (op == HM_ADD) {
1783 			info = smi_info_alloc();
1784 			if (!info) {
1785 				rv = -ENOMEM;
1786 				goto out;
1787 			}
1788 
1789 			info->addr_source = SI_HOTMOD;
1790 			info->si_type = si_type;
1791 			info->io.addr_data = addr;
1792 			info->io.addr_type = addr_space;
1793 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1794 				info->io_setup = mem_setup;
1795 			else
1796 				info->io_setup = port_setup;
1797 
1798 			info->io.addr = NULL;
1799 			info->io.regspacing = regspacing;
1800 			if (!info->io.regspacing)
1801 				info->io.regspacing = DEFAULT_REGSPACING;
1802 			info->io.regsize = regsize;
1803 			if (!info->io.regsize)
1804 				info->io.regsize = DEFAULT_REGSPACING;
1805 			info->io.regshift = regshift;
1806 			info->irq = irq;
1807 			if (info->irq)
1808 				info->irq_setup = std_irq_setup;
1809 			info->slave_addr = ipmb;
1810 
1811 			if (!add_smi(info)) {
1812 				if (try_smi_init(info))
1813 					cleanup_one_si(info);
1814 			} else {
1815 				kfree(info);
1816 			}
1817 		} else {
1818 			/* remove */
1819 			struct smi_info *e, *tmp_e;
1820 
1821 			mutex_lock(&smi_infos_lock);
1822 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1823 				if (e->io.addr_type != addr_space)
1824 					continue;
1825 				if (e->si_type != si_type)
1826 					continue;
1827 				if (e->io.addr_data == addr)
1828 					cleanup_one_si(e);
1829 			}
1830 			mutex_unlock(&smi_infos_lock);
1831 		}
1832 	}
1833 	rv = len;
1834  out:
1835 	kfree(str);
1836 	return rv;
1837 }
1838 
1839 static int hardcode_find_bmc(void)
1840 {
1841 	int ret = -ENODEV;
1842 	int             i;
1843 	struct smi_info *info;
1844 
1845 	for (i = 0; i < SI_MAX_PARMS; i++) {
1846 		if (!ports[i] && !addrs[i])
1847 			continue;
1848 
1849 		info = smi_info_alloc();
1850 		if (!info)
1851 			return -ENOMEM;
1852 
1853 		info->addr_source = SI_HARDCODED;
1854 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1855 
1856 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1857 			info->si_type = SI_KCS;
1858 		} else if (strcmp(si_type[i], "smic") == 0) {
1859 			info->si_type = SI_SMIC;
1860 		} else if (strcmp(si_type[i], "bt") == 0) {
1861 			info->si_type = SI_BT;
1862 		} else {
1863 			printk(KERN_WARNING PFX "Interface type specified "
1864 			       "for interface %d, was invalid: %s\n",
1865 			       i, si_type[i]);
1866 			kfree(info);
1867 			continue;
1868 		}
1869 
1870 		if (ports[i]) {
1871 			/* An I/O port */
1872 			info->io_setup = port_setup;
1873 			info->io.addr_data = ports[i];
1874 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1875 		} else if (addrs[i]) {
1876 			/* A memory port */
1877 			info->io_setup = mem_setup;
1878 			info->io.addr_data = addrs[i];
1879 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1880 		} else {
1881 			printk(KERN_WARNING PFX "Interface type specified "
1882 			       "for interface %d, but port and address were "
1883 			       "not set or set to zero.\n", i);
1884 			kfree(info);
1885 			continue;
1886 		}
1887 
1888 		info->io.addr = NULL;
1889 		info->io.regspacing = regspacings[i];
1890 		if (!info->io.regspacing)
1891 			info->io.regspacing = DEFAULT_REGSPACING;
1892 		info->io.regsize = regsizes[i];
1893 		if (!info->io.regsize)
1894 			info->io.regsize = DEFAULT_REGSPACING;
1895 		info->io.regshift = regshifts[i];
1896 		info->irq = irqs[i];
1897 		if (info->irq)
1898 			info->irq_setup = std_irq_setup;
1899 		info->slave_addr = slave_addrs[i];
1900 
1901 		if (!add_smi(info)) {
1902 			if (try_smi_init(info))
1903 				cleanup_one_si(info);
1904 			ret = 0;
1905 		} else {
1906 			kfree(info);
1907 		}
1908 	}
1909 	return ret;
1910 }
1911 
1912 #ifdef CONFIG_ACPI
1913 
1914 #include <linux/acpi.h>
1915 
1916 /*
1917  * Once we get an ACPI failure, we don't try any more, because we go
1918  * through the tables sequentially.  Once we don't find a table, there
1919  * are no more.
1920  */
1921 static int acpi_failure;
1922 
1923 /* For GPE-type interrupts. */
1924 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1925 	u32 gpe_number, void *context)
1926 {
1927 	struct smi_info *smi_info = context;
1928 	unsigned long   flags;
1929 #ifdef DEBUG_TIMING
1930 	struct timeval t;
1931 #endif
1932 
1933 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1934 
1935 	smi_inc_stat(smi_info, interrupts);
1936 
1937 #ifdef DEBUG_TIMING
1938 	do_gettimeofday(&t);
1939 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1940 #endif
1941 	smi_event_handler(smi_info, 0);
1942 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1943 
1944 	return ACPI_INTERRUPT_HANDLED;
1945 }
1946 
1947 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1948 {
1949 	if (!info->irq)
1950 		return;
1951 
1952 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1953 }
1954 
1955 static int acpi_gpe_irq_setup(struct smi_info *info)
1956 {
1957 	acpi_status status;
1958 
1959 	if (!info->irq)
1960 		return 0;
1961 
1962 	/* FIXME - is level triggered right? */
1963 	status = acpi_install_gpe_handler(NULL,
1964 					  info->irq,
1965 					  ACPI_GPE_LEVEL_TRIGGERED,
1966 					  &ipmi_acpi_gpe,
1967 					  info);
1968 	if (status != AE_OK) {
1969 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1970 			 " running polled\n", DEVICE_NAME, info->irq);
1971 		info->irq = 0;
1972 		return -EINVAL;
1973 	} else {
1974 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1975 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1976 		return 0;
1977 	}
1978 }
1979 
1980 /*
1981  * Defined at
1982  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1983  */
1984 struct SPMITable {
1985 	s8	Signature[4];
1986 	u32	Length;
1987 	u8	Revision;
1988 	u8	Checksum;
1989 	s8	OEMID[6];
1990 	s8	OEMTableID[8];
1991 	s8	OEMRevision[4];
1992 	s8	CreatorID[4];
1993 	s8	CreatorRevision[4];
1994 	u8	InterfaceType;
1995 	u8	IPMIlegacy;
1996 	s16	SpecificationRevision;
1997 
1998 	/*
1999 	 * Bit 0 - SCI interrupt supported
2000 	 * Bit 1 - I/O APIC/SAPIC
2001 	 */
2002 	u8	InterruptType;
2003 
2004 	/*
2005 	 * If bit 0 of InterruptType is set, then this is the SCI
2006 	 * interrupt in the GPEx_STS register.
2007 	 */
2008 	u8	GPE;
2009 
2010 	s16	Reserved;
2011 
2012 	/*
2013 	 * If bit 1 of InterruptType is set, then this is the I/O
2014 	 * APIC/SAPIC interrupt.
2015 	 */
2016 	u32	GlobalSystemInterrupt;
2017 
2018 	/* The actual register address. */
2019 	struct acpi_generic_address addr;
2020 
2021 	u8	UID[4];
2022 
2023 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2024 };
2025 
2026 static int try_init_spmi(struct SPMITable *spmi)
2027 {
2028 	struct smi_info  *info;
2029 
2030 	if (spmi->IPMIlegacy != 1) {
2031 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2032 		return -ENODEV;
2033 	}
2034 
2035 	info = smi_info_alloc();
2036 	if (!info) {
2037 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2038 		return -ENOMEM;
2039 	}
2040 
2041 	info->addr_source = SI_SPMI;
2042 	printk(KERN_INFO PFX "probing via SPMI\n");
2043 
2044 	/* Figure out the interface type. */
2045 	switch (spmi->InterfaceType) {
2046 	case 1:	/* KCS */
2047 		info->si_type = SI_KCS;
2048 		break;
2049 	case 2:	/* SMIC */
2050 		info->si_type = SI_SMIC;
2051 		break;
2052 	case 3:	/* BT */
2053 		info->si_type = SI_BT;
2054 		break;
2055 	default:
2056 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2057 		       spmi->InterfaceType);
2058 		kfree(info);
2059 		return -EIO;
2060 	}
2061 
2062 	if (spmi->InterruptType & 1) {
2063 		/* We've got a GPE interrupt. */
2064 		info->irq = spmi->GPE;
2065 		info->irq_setup = acpi_gpe_irq_setup;
2066 	} else if (spmi->InterruptType & 2) {
2067 		/* We've got an APIC/SAPIC interrupt. */
2068 		info->irq = spmi->GlobalSystemInterrupt;
2069 		info->irq_setup = std_irq_setup;
2070 	} else {
2071 		/* Use the default interrupt setting. */
2072 		info->irq = 0;
2073 		info->irq_setup = NULL;
2074 	}
2075 
2076 	if (spmi->addr.bit_width) {
2077 		/* A (hopefully) properly formed register bit width. */
2078 		info->io.regspacing = spmi->addr.bit_width / 8;
2079 	} else {
2080 		info->io.regspacing = DEFAULT_REGSPACING;
2081 	}
2082 	info->io.regsize = info->io.regspacing;
2083 	info->io.regshift = spmi->addr.bit_offset;
2084 
2085 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2086 		info->io_setup = mem_setup;
2087 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2088 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2089 		info->io_setup = port_setup;
2090 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2091 	} else {
2092 		kfree(info);
2093 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2094 		return -EIO;
2095 	}
2096 	info->io.addr_data = spmi->addr.address;
2097 
2098 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2100 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2101 		 info->irq);
2102 
2103 	if (add_smi(info))
2104 		kfree(info);
2105 
2106 	return 0;
2107 }
2108 
2109 static void spmi_find_bmc(void)
2110 {
2111 	acpi_status      status;
2112 	struct SPMITable *spmi;
2113 	int              i;
2114 
2115 	if (acpi_disabled)
2116 		return;
2117 
2118 	if (acpi_failure)
2119 		return;
2120 
2121 	for (i = 0; ; i++) {
2122 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2123 					(struct acpi_table_header **)&spmi);
2124 		if (status != AE_OK)
2125 			return;
2126 
2127 		try_init_spmi(spmi);
2128 	}
2129 }
2130 
2131 static int ipmi_pnp_probe(struct pnp_dev *dev,
2132 				    const struct pnp_device_id *dev_id)
2133 {
2134 	struct acpi_device *acpi_dev;
2135 	struct smi_info *info;
2136 	struct resource *res, *res_second;
2137 	acpi_handle handle;
2138 	acpi_status status;
2139 	unsigned long long tmp;
2140 
2141 	acpi_dev = pnp_acpi_device(dev);
2142 	if (!acpi_dev)
2143 		return -ENODEV;
2144 
2145 	info = smi_info_alloc();
2146 	if (!info)
2147 		return -ENOMEM;
2148 
2149 	info->addr_source = SI_ACPI;
2150 	printk(KERN_INFO PFX "probing via ACPI\n");
2151 
2152 	handle = acpi_dev->handle;
2153 	info->addr_info.acpi_info.acpi_handle = handle;
2154 
2155 	/* _IFT tells us the interface type: KCS, BT, etc */
2156 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2157 	if (ACPI_FAILURE(status))
2158 		goto err_free;
2159 
2160 	switch (tmp) {
2161 	case 1:
2162 		info->si_type = SI_KCS;
2163 		break;
2164 	case 2:
2165 		info->si_type = SI_SMIC;
2166 		break;
2167 	case 3:
2168 		info->si_type = SI_BT;
2169 		break;
2170 	default:
2171 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2172 		goto err_free;
2173 	}
2174 
2175 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2176 	if (res) {
2177 		info->io_setup = port_setup;
2178 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2179 	} else {
2180 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2181 		if (res) {
2182 			info->io_setup = mem_setup;
2183 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184 		}
2185 	}
2186 	if (!res) {
2187 		dev_err(&dev->dev, "no I/O or memory address\n");
2188 		goto err_free;
2189 	}
2190 	info->io.addr_data = res->start;
2191 
2192 	info->io.regspacing = DEFAULT_REGSPACING;
2193 	res_second = pnp_get_resource(dev,
2194 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2195 					IORESOURCE_IO : IORESOURCE_MEM,
2196 			       1);
2197 	if (res_second) {
2198 		if (res_second->start > info->io.addr_data)
2199 			info->io.regspacing = res_second->start - info->io.addr_data;
2200 	}
2201 	info->io.regsize = DEFAULT_REGSPACING;
2202 	info->io.regshift = 0;
2203 
2204 	/* If _GPE exists, use it; otherwise use standard interrupts */
2205 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2206 	if (ACPI_SUCCESS(status)) {
2207 		info->irq = tmp;
2208 		info->irq_setup = acpi_gpe_irq_setup;
2209 	} else if (pnp_irq_valid(dev, 0)) {
2210 		info->irq = pnp_irq(dev, 0);
2211 		info->irq_setup = std_irq_setup;
2212 	}
2213 
2214 	info->dev = &dev->dev;
2215 	pnp_set_drvdata(dev, info);
2216 
2217 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2218 		 res, info->io.regsize, info->io.regspacing,
2219 		 info->irq);
2220 
2221 	if (add_smi(info))
2222 		goto err_free;
2223 
2224 	return 0;
2225 
2226 err_free:
2227 	kfree(info);
2228 	return -EINVAL;
2229 }
2230 
2231 static void ipmi_pnp_remove(struct pnp_dev *dev)
2232 {
2233 	struct smi_info *info = pnp_get_drvdata(dev);
2234 
2235 	cleanup_one_si(info);
2236 }
2237 
2238 static const struct pnp_device_id pnp_dev_table[] = {
2239 	{"IPI0001", 0},
2240 	{"", 0},
2241 };
2242 
2243 static struct pnp_driver ipmi_pnp_driver = {
2244 	.name		= DEVICE_NAME,
2245 	.probe		= ipmi_pnp_probe,
2246 	.remove		= __devexit_p(ipmi_pnp_remove),
2247 	.id_table	= pnp_dev_table,
2248 };
2249 #endif
2250 
2251 #ifdef CONFIG_DMI
2252 struct dmi_ipmi_data {
2253 	u8   		type;
2254 	u8   		addr_space;
2255 	unsigned long	base_addr;
2256 	u8   		irq;
2257 	u8              offset;
2258 	u8              slave_addr;
2259 };
2260 
2261 static int decode_dmi(const struct dmi_header *dm,
2262 				struct dmi_ipmi_data *dmi)
2263 {
2264 	const u8	*data = (const u8 *)dm;
2265 	unsigned long  	base_addr;
2266 	u8		reg_spacing;
2267 	u8              len = dm->length;
2268 
2269 	dmi->type = data[4];
2270 
2271 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2272 	if (len >= 0x11) {
2273 		if (base_addr & 1) {
2274 			/* I/O */
2275 			base_addr &= 0xFFFE;
2276 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2277 		} else
2278 			/* Memory */
2279 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2280 
2281 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2282 		   is odd. */
2283 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2284 
2285 		dmi->irq = data[0x11];
2286 
2287 		/* The top two bits of byte 0x10 hold the register spacing. */
2288 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2289 		switch (reg_spacing) {
2290 		case 0x00: /* Byte boundaries */
2291 		    dmi->offset = 1;
2292 		    break;
2293 		case 0x01: /* 32-bit boundaries */
2294 		    dmi->offset = 4;
2295 		    break;
2296 		case 0x02: /* 16-byte boundaries */
2297 		    dmi->offset = 16;
2298 		    break;
2299 		default:
2300 		    /* Some other interface, just ignore it. */
2301 		    return -EIO;
2302 		}
2303 	} else {
2304 		/* Old DMI spec. */
2305 		/*
2306 		 * Note that technically, the lower bit of the base
2307 		 * address should be 1 if the address is I/O and 0 if
2308 		 * the address is in memory.  So many systems get that
2309 		 * wrong (and all that I have seen are I/O) so we just
2310 		 * ignore that bit and assume I/O.  Systems that use
2311 		 * memory should use the newer spec, anyway.
2312 		 */
2313 		dmi->base_addr = base_addr & 0xfffe;
2314 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2315 		dmi->offset = 1;
2316 	}
2317 
2318 	dmi->slave_addr = data[6];
2319 
2320 	return 0;
2321 }
2322 
2323 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2324 {
2325 	struct smi_info *info;
2326 
2327 	info = smi_info_alloc();
2328 	if (!info) {
2329 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2330 		return;
2331 	}
2332 
2333 	info->addr_source = SI_SMBIOS;
2334 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2335 
2336 	switch (ipmi_data->type) {
2337 	case 0x01: /* KCS */
2338 		info->si_type = SI_KCS;
2339 		break;
2340 	case 0x02: /* SMIC */
2341 		info->si_type = SI_SMIC;
2342 		break;
2343 	case 0x03: /* BT */
2344 		info->si_type = SI_BT;
2345 		break;
2346 	default:
2347 		kfree(info);
2348 		return;
2349 	}
2350 
2351 	switch (ipmi_data->addr_space) {
2352 	case IPMI_MEM_ADDR_SPACE:
2353 		info->io_setup = mem_setup;
2354 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2355 		break;
2356 
2357 	case IPMI_IO_ADDR_SPACE:
2358 		info->io_setup = port_setup;
2359 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 		break;
2361 
2362 	default:
2363 		kfree(info);
2364 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2365 		       ipmi_data->addr_space);
2366 		return;
2367 	}
2368 	info->io.addr_data = ipmi_data->base_addr;
2369 
2370 	info->io.regspacing = ipmi_data->offset;
2371 	if (!info->io.regspacing)
2372 		info->io.regspacing = DEFAULT_REGSPACING;
2373 	info->io.regsize = DEFAULT_REGSPACING;
2374 	info->io.regshift = 0;
2375 
2376 	info->slave_addr = ipmi_data->slave_addr;
2377 
2378 	info->irq = ipmi_data->irq;
2379 	if (info->irq)
2380 		info->irq_setup = std_irq_setup;
2381 
2382 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2384 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2385 		 info->irq);
2386 
2387 	if (add_smi(info))
2388 		kfree(info);
2389 }
2390 
2391 static void dmi_find_bmc(void)
2392 {
2393 	const struct dmi_device *dev = NULL;
2394 	struct dmi_ipmi_data data;
2395 	int                  rv;
2396 
2397 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2398 		memset(&data, 0, sizeof(data));
2399 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2400 				&data);
2401 		if (!rv)
2402 			try_init_dmi(&data);
2403 	}
2404 }
2405 #endif /* CONFIG_DMI */
2406 
2407 #ifdef CONFIG_PCI
2408 
2409 #define PCI_ERMC_CLASSCODE		0x0C0700
2410 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2414 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2415 
2416 #define PCI_HP_VENDOR_ID    0x103C
2417 #define PCI_MMC_DEVICE_ID   0x121A
2418 #define PCI_MMC_ADDR_CW     0x10
2419 
2420 static void ipmi_pci_cleanup(struct smi_info *info)
2421 {
2422 	struct pci_dev *pdev = info->addr_source_data;
2423 
2424 	pci_disable_device(pdev);
2425 }
2426 
2427 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2428 {
2429 	if (info->si_type == SI_KCS) {
2430 		unsigned char	status;
2431 		int		regspacing;
2432 
2433 		info->io.regsize = DEFAULT_REGSIZE;
2434 		info->io.regshift = 0;
2435 		info->io_size = 2;
2436 		info->handlers = &kcs_smi_handlers;
2437 
2438 		/* detect 1, 4, 16byte spacing */
2439 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2440 			info->io.regspacing = regspacing;
2441 			if (info->io_setup(info)) {
2442 				dev_err(info->dev,
2443 					"Could not setup I/O space\n");
2444 				return DEFAULT_REGSPACING;
2445 			}
2446 			/* write invalid cmd */
2447 			info->io.outputb(&info->io, 1, 0x10);
2448 			/* read status back */
2449 			status = info->io.inputb(&info->io, 1);
2450 			info->io_cleanup(info);
2451 			if (status)
2452 				return regspacing;
2453 			regspacing *= 4;
2454 		}
2455 	}
2456 	return DEFAULT_REGSPACING;
2457 }
2458 
2459 static int ipmi_pci_probe(struct pci_dev *pdev,
2460 				    const struct pci_device_id *ent)
2461 {
2462 	int rv;
2463 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2464 	struct smi_info *info;
2465 
2466 	info = smi_info_alloc();
2467 	if (!info)
2468 		return -ENOMEM;
2469 
2470 	info->addr_source = SI_PCI;
2471 	dev_info(&pdev->dev, "probing via PCI");
2472 
2473 	switch (class_type) {
2474 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2475 		info->si_type = SI_SMIC;
2476 		break;
2477 
2478 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2479 		info->si_type = SI_KCS;
2480 		break;
2481 
2482 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2483 		info->si_type = SI_BT;
2484 		break;
2485 
2486 	default:
2487 		kfree(info);
2488 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2489 		return -ENOMEM;
2490 	}
2491 
2492 	rv = pci_enable_device(pdev);
2493 	if (rv) {
2494 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2495 		kfree(info);
2496 		return rv;
2497 	}
2498 
2499 	info->addr_source_cleanup = ipmi_pci_cleanup;
2500 	info->addr_source_data = pdev;
2501 
2502 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2503 		info->io_setup = port_setup;
2504 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2505 	} else {
2506 		info->io_setup = mem_setup;
2507 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2508 	}
2509 	info->io.addr_data = pci_resource_start(pdev, 0);
2510 
2511 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2512 	info->io.regsize = DEFAULT_REGSIZE;
2513 	info->io.regshift = 0;
2514 
2515 	info->irq = pdev->irq;
2516 	if (info->irq)
2517 		info->irq_setup = std_irq_setup;
2518 
2519 	info->dev = &pdev->dev;
2520 	pci_set_drvdata(pdev, info);
2521 
2522 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2523 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2524 		info->irq);
2525 
2526 	if (add_smi(info))
2527 		kfree(info);
2528 
2529 	return 0;
2530 }
2531 
2532 static void ipmi_pci_remove(struct pci_dev *pdev)
2533 {
2534 	struct smi_info *info = pci_get_drvdata(pdev);
2535 	cleanup_one_si(info);
2536 }
2537 
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 	{ 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544 
2545 static struct pci_driver ipmi_pci_driver = {
2546 	.name =         DEVICE_NAME,
2547 	.id_table =     ipmi_pci_devices,
2548 	.probe =        ipmi_pci_probe,
2549 	.remove =       __devexit_p(ipmi_pci_remove),
2550 };
2551 #endif /* CONFIG_PCI */
2552 
2553 static struct of_device_id ipmi_match[];
2554 static int ipmi_probe(struct platform_device *dev)
2555 {
2556 #ifdef CONFIG_OF
2557 	const struct of_device_id *match;
2558 	struct smi_info *info;
2559 	struct resource resource;
2560 	const __be32 *regsize, *regspacing, *regshift;
2561 	struct device_node *np = dev->dev.of_node;
2562 	int ret;
2563 	int proplen;
2564 
2565 	dev_info(&dev->dev, "probing via device tree\n");
2566 
2567 	match = of_match_device(ipmi_match, &dev->dev);
2568 	if (!match)
2569 		return -EINVAL;
2570 
2571 	ret = of_address_to_resource(np, 0, &resource);
2572 	if (ret) {
2573 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574 		return ret;
2575 	}
2576 
2577 	regsize = of_get_property(np, "reg-size", &proplen);
2578 	if (regsize && proplen != 4) {
2579 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580 		return -EINVAL;
2581 	}
2582 
2583 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2584 	if (regspacing && proplen != 4) {
2585 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586 		return -EINVAL;
2587 	}
2588 
2589 	regshift = of_get_property(np, "reg-shift", &proplen);
2590 	if (regshift && proplen != 4) {
2591 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592 		return -EINVAL;
2593 	}
2594 
2595 	info = smi_info_alloc();
2596 
2597 	if (!info) {
2598 		dev_err(&dev->dev,
2599 			"could not allocate memory for OF probe\n");
2600 		return -ENOMEM;
2601 	}
2602 
2603 	info->si_type		= (enum si_type) match->data;
2604 	info->addr_source	= SI_DEVICETREE;
2605 	info->irq_setup		= std_irq_setup;
2606 
2607 	if (resource.flags & IORESOURCE_IO) {
2608 		info->io_setup		= port_setup;
2609 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2610 	} else {
2611 		info->io_setup		= mem_setup;
2612 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2613 	}
2614 
2615 	info->io.addr_data	= resource.start;
2616 
2617 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2620 
2621 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2622 	info->dev		= &dev->dev;
2623 
2624 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2625 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2626 		info->irq);
2627 
2628 	dev_set_drvdata(&dev->dev, info);
2629 
2630 	if (add_smi(info)) {
2631 		kfree(info);
2632 		return -EBUSY;
2633 	}
2634 #endif
2635 	return 0;
2636 }
2637 
2638 static int ipmi_remove(struct platform_device *dev)
2639 {
2640 #ifdef CONFIG_OF
2641 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2642 #endif
2643 	return 0;
2644 }
2645 
2646 static struct of_device_id ipmi_match[] =
2647 {
2648 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2649 	  .data = (void *)(unsigned long) SI_KCS },
2650 	{ .type = "ipmi", .compatible = "ipmi-smic",
2651 	  .data = (void *)(unsigned long) SI_SMIC },
2652 	{ .type = "ipmi", .compatible = "ipmi-bt",
2653 	  .data = (void *)(unsigned long) SI_BT },
2654 	{},
2655 };
2656 
2657 static struct platform_driver ipmi_driver = {
2658 	.driver = {
2659 		.name = DEVICE_NAME,
2660 		.owner = THIS_MODULE,
2661 		.of_match_table = ipmi_match,
2662 	},
2663 	.probe		= ipmi_probe,
2664 	.remove		= __devexit_p(ipmi_remove),
2665 };
2666 
2667 static int wait_for_msg_done(struct smi_info *smi_info)
2668 {
2669 	enum si_sm_result     smi_result;
2670 
2671 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2672 	for (;;) {
2673 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2675 			schedule_timeout_uninterruptible(1);
2676 			smi_result = smi_info->handlers->event(
2677 				smi_info->si_sm, 100);
2678 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2679 			smi_result = smi_info->handlers->event(
2680 				smi_info->si_sm, 0);
2681 		} else
2682 			break;
2683 	}
2684 	if (smi_result == SI_SM_HOSED)
2685 		/*
2686 		 * We couldn't get the state machine to run, so whatever's at
2687 		 * the port is probably not an IPMI SMI interface.
2688 		 */
2689 		return -ENODEV;
2690 
2691 	return 0;
2692 }
2693 
2694 static int try_get_dev_id(struct smi_info *smi_info)
2695 {
2696 	unsigned char         msg[2];
2697 	unsigned char         *resp;
2698 	unsigned long         resp_len;
2699 	int                   rv = 0;
2700 
2701 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702 	if (!resp)
2703 		return -ENOMEM;
2704 
2705 	/*
2706 	 * Do a Get Device ID command, since it comes back with some
2707 	 * useful info.
2708 	 */
2709 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712 
2713 	rv = wait_for_msg_done(smi_info);
2714 	if (rv)
2715 		goto out;
2716 
2717 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718 						  resp, IPMI_MAX_MSG_LENGTH);
2719 
2720 	/* Check and record info from the get device id, in case we need it. */
2721 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2722 
2723  out:
2724 	kfree(resp);
2725 	return rv;
2726 }
2727 
2728 static int try_enable_event_buffer(struct smi_info *smi_info)
2729 {
2730 	unsigned char         msg[3];
2731 	unsigned char         *resp;
2732 	unsigned long         resp_len;
2733 	int                   rv = 0;
2734 
2735 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736 	if (!resp)
2737 		return -ENOMEM;
2738 
2739 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742 
2743 	rv = wait_for_msg_done(smi_info);
2744 	if (rv) {
2745 		printk(KERN_WARNING PFX "Error getting response from get"
2746 		       " global enables command, the event buffer is not"
2747 		       " enabled.\n");
2748 		goto out;
2749 	}
2750 
2751 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752 						  resp, IPMI_MAX_MSG_LENGTH);
2753 
2754 	if (resp_len < 4 ||
2755 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2757 			resp[2] != 0) {
2758 		printk(KERN_WARNING PFX "Invalid return from get global"
2759 		       " enables command, cannot enable the event buffer.\n");
2760 		rv = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765 		/* buffer is already enabled, nothing to do. */
2766 		goto out;
2767 
2768 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772 
2773 	rv = wait_for_msg_done(smi_info);
2774 	if (rv) {
2775 		printk(KERN_WARNING PFX "Error getting response from set"
2776 		       " global, enables command, the event buffer is not"
2777 		       " enabled.\n");
2778 		goto out;
2779 	}
2780 
2781 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782 						  resp, IPMI_MAX_MSG_LENGTH);
2783 
2784 	if (resp_len < 3 ||
2785 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2787 		printk(KERN_WARNING PFX "Invalid return from get global,"
2788 		       "enables command, not enable the event buffer.\n");
2789 		rv = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 	if (resp[2] != 0)
2794 		/*
2795 		 * An error when setting the event buffer bit means
2796 		 * that the event buffer is not supported.
2797 		 */
2798 		rv = -ENOENT;
2799  out:
2800 	kfree(resp);
2801 	return rv;
2802 }
2803 
2804 static int smi_type_proc_show(struct seq_file *m, void *v)
2805 {
2806 	struct smi_info *smi = m->private;
2807 
2808 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2809 }
2810 
2811 static int smi_type_proc_open(struct inode *inode, struct file *file)
2812 {
2813 	return single_open(file, smi_type_proc_show, PDE(inode)->data);
2814 }
2815 
2816 static const struct file_operations smi_type_proc_ops = {
2817 	.open		= smi_type_proc_open,
2818 	.read		= seq_read,
2819 	.llseek		= seq_lseek,
2820 	.release	= single_release,
2821 };
2822 
2823 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2824 {
2825 	struct smi_info *smi = m->private;
2826 
2827 	seq_printf(m, "interrupts_enabled:    %d\n",
2828 		       smi->irq && !smi->interrupt_disabled);
2829 	seq_printf(m, "short_timeouts:        %u\n",
2830 		       smi_get_stat(smi, short_timeouts));
2831 	seq_printf(m, "long_timeouts:         %u\n",
2832 		       smi_get_stat(smi, long_timeouts));
2833 	seq_printf(m, "idles:                 %u\n",
2834 		       smi_get_stat(smi, idles));
2835 	seq_printf(m, "interrupts:            %u\n",
2836 		       smi_get_stat(smi, interrupts));
2837 	seq_printf(m, "attentions:            %u\n",
2838 		       smi_get_stat(smi, attentions));
2839 	seq_printf(m, "flag_fetches:          %u\n",
2840 		       smi_get_stat(smi, flag_fetches));
2841 	seq_printf(m, "hosed_count:           %u\n",
2842 		       smi_get_stat(smi, hosed_count));
2843 	seq_printf(m, "complete_transactions: %u\n",
2844 		       smi_get_stat(smi, complete_transactions));
2845 	seq_printf(m, "events:                %u\n",
2846 		       smi_get_stat(smi, events));
2847 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2848 		       smi_get_stat(smi, watchdog_pretimeouts));
2849 	seq_printf(m, "incoming_messages:     %u\n",
2850 		       smi_get_stat(smi, incoming_messages));
2851 	return 0;
2852 }
2853 
2854 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2855 {
2856 	return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2857 }
2858 
2859 static const struct file_operations smi_si_stats_proc_ops = {
2860 	.open		= smi_si_stats_proc_open,
2861 	.read		= seq_read,
2862 	.llseek		= seq_lseek,
2863 	.release	= single_release,
2864 };
2865 
2866 static int smi_params_proc_show(struct seq_file *m, void *v)
2867 {
2868 	struct smi_info *smi = m->private;
2869 
2870 	return seq_printf(m,
2871 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2872 		       si_to_str[smi->si_type],
2873 		       addr_space_to_str[smi->io.addr_type],
2874 		       smi->io.addr_data,
2875 		       smi->io.regspacing,
2876 		       smi->io.regsize,
2877 		       smi->io.regshift,
2878 		       smi->irq,
2879 		       smi->slave_addr);
2880 }
2881 
2882 static int smi_params_proc_open(struct inode *inode, struct file *file)
2883 {
2884 	return single_open(file, smi_params_proc_show, PDE(inode)->data);
2885 }
2886 
2887 static const struct file_operations smi_params_proc_ops = {
2888 	.open		= smi_params_proc_open,
2889 	.read		= seq_read,
2890 	.llseek		= seq_lseek,
2891 	.release	= single_release,
2892 };
2893 
2894 /*
2895  * oem_data_avail_to_receive_msg_avail
2896  * @info - smi_info structure with msg_flags set
2897  *
2898  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2899  * Returns 1 indicating need to re-run handle_flags().
2900  */
2901 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2902 {
2903 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2904 			       RECEIVE_MSG_AVAIL);
2905 	return 1;
2906 }
2907 
2908 /*
2909  * setup_dell_poweredge_oem_data_handler
2910  * @info - smi_info.device_id must be populated
2911  *
2912  * Systems that match, but have firmware version < 1.40 may assert
2913  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2914  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2915  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2916  * as RECEIVE_MSG_AVAIL instead.
2917  *
2918  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2919  * assert the OEM[012] bits, and if it did, the driver would have to
2920  * change to handle that properly, we don't actually check for the
2921  * firmware version.
2922  * Device ID = 0x20                BMC on PowerEdge 8G servers
2923  * Device Revision = 0x80
2924  * Firmware Revision1 = 0x01       BMC version 1.40
2925  * Firmware Revision2 = 0x40       BCD encoded
2926  * IPMI Version = 0x51             IPMI 1.5
2927  * Manufacturer ID = A2 02 00      Dell IANA
2928  *
2929  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2930  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2931  *
2932  */
2933 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2934 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2935 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2936 #define DELL_IANA_MFR_ID 0x0002a2
2937 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2938 {
2939 	struct ipmi_device_id *id = &smi_info->device_id;
2940 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2941 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2942 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2943 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2944 			smi_info->oem_data_avail_handler =
2945 				oem_data_avail_to_receive_msg_avail;
2946 		} else if (ipmi_version_major(id) < 1 ||
2947 			   (ipmi_version_major(id) == 1 &&
2948 			    ipmi_version_minor(id) < 5)) {
2949 			smi_info->oem_data_avail_handler =
2950 				oem_data_avail_to_receive_msg_avail;
2951 		}
2952 	}
2953 }
2954 
2955 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2956 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2957 {
2958 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2959 
2960 	/* Make it a response */
2961 	msg->rsp[0] = msg->data[0] | 4;
2962 	msg->rsp[1] = msg->data[1];
2963 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2964 	msg->rsp_size = 3;
2965 	smi_info->curr_msg = NULL;
2966 	deliver_recv_msg(smi_info, msg);
2967 }
2968 
2969 /*
2970  * dell_poweredge_bt_xaction_handler
2971  * @info - smi_info.device_id must be populated
2972  *
2973  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2974  * not respond to a Get SDR command if the length of the data
2975  * requested is exactly 0x3A, which leads to command timeouts and no
2976  * data returned.  This intercepts such commands, and causes userspace
2977  * callers to try again with a different-sized buffer, which succeeds.
2978  */
2979 
2980 #define STORAGE_NETFN 0x0A
2981 #define STORAGE_CMD_GET_SDR 0x23
2982 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2983 					     unsigned long unused,
2984 					     void *in)
2985 {
2986 	struct smi_info *smi_info = in;
2987 	unsigned char *data = smi_info->curr_msg->data;
2988 	unsigned int size   = smi_info->curr_msg->data_size;
2989 	if (size >= 8 &&
2990 	    (data[0]>>2) == STORAGE_NETFN &&
2991 	    data[1] == STORAGE_CMD_GET_SDR &&
2992 	    data[7] == 0x3A) {
2993 		return_hosed_msg_badsize(smi_info);
2994 		return NOTIFY_STOP;
2995 	}
2996 	return NOTIFY_DONE;
2997 }
2998 
2999 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3000 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3001 };
3002 
3003 /*
3004  * setup_dell_poweredge_bt_xaction_handler
3005  * @info - smi_info.device_id must be filled in already
3006  *
3007  * Fills in smi_info.device_id.start_transaction_pre_hook
3008  * when we know what function to use there.
3009  */
3010 static void
3011 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3012 {
3013 	struct ipmi_device_id *id = &smi_info->device_id;
3014 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3015 	    smi_info->si_type == SI_BT)
3016 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3017 }
3018 
3019 /*
3020  * setup_oem_data_handler
3021  * @info - smi_info.device_id must be filled in already
3022  *
3023  * Fills in smi_info.device_id.oem_data_available_handler
3024  * when we know what function to use there.
3025  */
3026 
3027 static void setup_oem_data_handler(struct smi_info *smi_info)
3028 {
3029 	setup_dell_poweredge_oem_data_handler(smi_info);
3030 }
3031 
3032 static void setup_xaction_handlers(struct smi_info *smi_info)
3033 {
3034 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3035 }
3036 
3037 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3038 {
3039 	if (smi_info->intf) {
3040 		/*
3041 		 * The timer and thread are only running if the
3042 		 * interface has been started up and registered.
3043 		 */
3044 		if (smi_info->thread != NULL)
3045 			kthread_stop(smi_info->thread);
3046 		del_timer_sync(&smi_info->si_timer);
3047 	}
3048 }
3049 
3050 static struct ipmi_default_vals
3051 {
3052 	int type;
3053 	int port;
3054 } ipmi_defaults[] =
3055 {
3056 	{ .type = SI_KCS, .port = 0xca2 },
3057 	{ .type = SI_SMIC, .port = 0xca9 },
3058 	{ .type = SI_BT, .port = 0xe4 },
3059 	{ .port = 0 }
3060 };
3061 
3062 static void default_find_bmc(void)
3063 {
3064 	struct smi_info *info;
3065 	int             i;
3066 
3067 	for (i = 0; ; i++) {
3068 		if (!ipmi_defaults[i].port)
3069 			break;
3070 #ifdef CONFIG_PPC
3071 		if (check_legacy_ioport(ipmi_defaults[i].port))
3072 			continue;
3073 #endif
3074 		info = smi_info_alloc();
3075 		if (!info)
3076 			return;
3077 
3078 		info->addr_source = SI_DEFAULT;
3079 
3080 		info->si_type = ipmi_defaults[i].type;
3081 		info->io_setup = port_setup;
3082 		info->io.addr_data = ipmi_defaults[i].port;
3083 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3084 
3085 		info->io.addr = NULL;
3086 		info->io.regspacing = DEFAULT_REGSPACING;
3087 		info->io.regsize = DEFAULT_REGSPACING;
3088 		info->io.regshift = 0;
3089 
3090 		if (add_smi(info) == 0) {
3091 			if ((try_smi_init(info)) == 0) {
3092 				/* Found one... */
3093 				printk(KERN_INFO PFX "Found default %s"
3094 				" state machine at %s address 0x%lx\n",
3095 				si_to_str[info->si_type],
3096 				addr_space_to_str[info->io.addr_type],
3097 				info->io.addr_data);
3098 			} else
3099 				cleanup_one_si(info);
3100 		} else {
3101 			kfree(info);
3102 		}
3103 	}
3104 }
3105 
3106 static int is_new_interface(struct smi_info *info)
3107 {
3108 	struct smi_info *e;
3109 
3110 	list_for_each_entry(e, &smi_infos, link) {
3111 		if (e->io.addr_type != info->io.addr_type)
3112 			continue;
3113 		if (e->io.addr_data == info->io.addr_data)
3114 			return 0;
3115 	}
3116 
3117 	return 1;
3118 }
3119 
3120 static int add_smi(struct smi_info *new_smi)
3121 {
3122 	int rv = 0;
3123 
3124 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3125 			ipmi_addr_src_to_str[new_smi->addr_source],
3126 			si_to_str[new_smi->si_type]);
3127 	mutex_lock(&smi_infos_lock);
3128 	if (!is_new_interface(new_smi)) {
3129 		printk(KERN_CONT " duplicate interface\n");
3130 		rv = -EBUSY;
3131 		goto out_err;
3132 	}
3133 
3134 	printk(KERN_CONT "\n");
3135 
3136 	/* So we know not to free it unless we have allocated one. */
3137 	new_smi->intf = NULL;
3138 	new_smi->si_sm = NULL;
3139 	new_smi->handlers = NULL;
3140 
3141 	list_add_tail(&new_smi->link, &smi_infos);
3142 
3143 out_err:
3144 	mutex_unlock(&smi_infos_lock);
3145 	return rv;
3146 }
3147 
3148 static int try_smi_init(struct smi_info *new_smi)
3149 {
3150 	int rv = 0;
3151 	int i;
3152 
3153 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3154 	       " machine at %s address 0x%lx, slave address 0x%x,"
3155 	       " irq %d\n",
3156 	       ipmi_addr_src_to_str[new_smi->addr_source],
3157 	       si_to_str[new_smi->si_type],
3158 	       addr_space_to_str[new_smi->io.addr_type],
3159 	       new_smi->io.addr_data,
3160 	       new_smi->slave_addr, new_smi->irq);
3161 
3162 	switch (new_smi->si_type) {
3163 	case SI_KCS:
3164 		new_smi->handlers = &kcs_smi_handlers;
3165 		break;
3166 
3167 	case SI_SMIC:
3168 		new_smi->handlers = &smic_smi_handlers;
3169 		break;
3170 
3171 	case SI_BT:
3172 		new_smi->handlers = &bt_smi_handlers;
3173 		break;
3174 
3175 	default:
3176 		/* No support for anything else yet. */
3177 		rv = -EIO;
3178 		goto out_err;
3179 	}
3180 
3181 	/* Allocate the state machine's data and initialize it. */
3182 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3183 	if (!new_smi->si_sm) {
3184 		printk(KERN_ERR PFX
3185 		       "Could not allocate state machine memory\n");
3186 		rv = -ENOMEM;
3187 		goto out_err;
3188 	}
3189 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3190 							&new_smi->io);
3191 
3192 	/* Now that we know the I/O size, we can set up the I/O. */
3193 	rv = new_smi->io_setup(new_smi);
3194 	if (rv) {
3195 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3196 		goto out_err;
3197 	}
3198 
3199 	/* Do low-level detection first. */
3200 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3201 		if (new_smi->addr_source)
3202 			printk(KERN_INFO PFX "Interface detection failed\n");
3203 		rv = -ENODEV;
3204 		goto out_err;
3205 	}
3206 
3207 	/*
3208 	 * Attempt a get device id command.  If it fails, we probably
3209 	 * don't have a BMC here.
3210 	 */
3211 	rv = try_get_dev_id(new_smi);
3212 	if (rv) {
3213 		if (new_smi->addr_source)
3214 			printk(KERN_INFO PFX "There appears to be no BMC"
3215 			       " at this location\n");
3216 		goto out_err;
3217 	}
3218 
3219 	setup_oem_data_handler(new_smi);
3220 	setup_xaction_handlers(new_smi);
3221 
3222 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3223 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3224 	new_smi->curr_msg = NULL;
3225 	atomic_set(&new_smi->req_events, 0);
3226 	new_smi->run_to_completion = 0;
3227 	for (i = 0; i < SI_NUM_STATS; i++)
3228 		atomic_set(&new_smi->stats[i], 0);
3229 
3230 	new_smi->interrupt_disabled = 1;
3231 	atomic_set(&new_smi->stop_operation, 0);
3232 	new_smi->intf_num = smi_num;
3233 	smi_num++;
3234 
3235 	rv = try_enable_event_buffer(new_smi);
3236 	if (rv == 0)
3237 		new_smi->has_event_buffer = 1;
3238 
3239 	/*
3240 	 * Start clearing the flags before we enable interrupts or the
3241 	 * timer to avoid racing with the timer.
3242 	 */
3243 	start_clear_flags(new_smi);
3244 	/* IRQ is defined to be set when non-zero. */
3245 	if (new_smi->irq)
3246 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3247 
3248 	if (!new_smi->dev) {
3249 		/*
3250 		 * If we don't already have a device from something
3251 		 * else (like PCI), then register a new one.
3252 		 */
3253 		new_smi->pdev = platform_device_alloc("ipmi_si",
3254 						      new_smi->intf_num);
3255 		if (!new_smi->pdev) {
3256 			printk(KERN_ERR PFX
3257 			       "Unable to allocate platform device\n");
3258 			goto out_err;
3259 		}
3260 		new_smi->dev = &new_smi->pdev->dev;
3261 		new_smi->dev->driver = &ipmi_driver.driver;
3262 
3263 		rv = platform_device_add(new_smi->pdev);
3264 		if (rv) {
3265 			printk(KERN_ERR PFX
3266 			       "Unable to register system interface device:"
3267 			       " %d\n",
3268 			       rv);
3269 			goto out_err;
3270 		}
3271 		new_smi->dev_registered = 1;
3272 	}
3273 
3274 	rv = ipmi_register_smi(&handlers,
3275 			       new_smi,
3276 			       &new_smi->device_id,
3277 			       new_smi->dev,
3278 			       "bmc",
3279 			       new_smi->slave_addr);
3280 	if (rv) {
3281 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3282 			rv);
3283 		goto out_err_stop_timer;
3284 	}
3285 
3286 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3287 				     &smi_type_proc_ops,
3288 				     new_smi);
3289 	if (rv) {
3290 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3291 		goto out_err_stop_timer;
3292 	}
3293 
3294 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3295 				     &smi_si_stats_proc_ops,
3296 				     new_smi);
3297 	if (rv) {
3298 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3299 		goto out_err_stop_timer;
3300 	}
3301 
3302 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3303 				     &smi_params_proc_ops,
3304 				     new_smi);
3305 	if (rv) {
3306 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3307 		goto out_err_stop_timer;
3308 	}
3309 
3310 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3311 		 si_to_str[new_smi->si_type]);
3312 
3313 	return 0;
3314 
3315  out_err_stop_timer:
3316 	atomic_inc(&new_smi->stop_operation);
3317 	wait_for_timer_and_thread(new_smi);
3318 
3319  out_err:
3320 	new_smi->interrupt_disabled = 1;
3321 
3322 	if (new_smi->intf) {
3323 		ipmi_unregister_smi(new_smi->intf);
3324 		new_smi->intf = NULL;
3325 	}
3326 
3327 	if (new_smi->irq_cleanup) {
3328 		new_smi->irq_cleanup(new_smi);
3329 		new_smi->irq_cleanup = NULL;
3330 	}
3331 
3332 	/*
3333 	 * Wait until we know that we are out of any interrupt
3334 	 * handlers might have been running before we freed the
3335 	 * interrupt.
3336 	 */
3337 	synchronize_sched();
3338 
3339 	if (new_smi->si_sm) {
3340 		if (new_smi->handlers)
3341 			new_smi->handlers->cleanup(new_smi->si_sm);
3342 		kfree(new_smi->si_sm);
3343 		new_smi->si_sm = NULL;
3344 	}
3345 	if (new_smi->addr_source_cleanup) {
3346 		new_smi->addr_source_cleanup(new_smi);
3347 		new_smi->addr_source_cleanup = NULL;
3348 	}
3349 	if (new_smi->io_cleanup) {
3350 		new_smi->io_cleanup(new_smi);
3351 		new_smi->io_cleanup = NULL;
3352 	}
3353 
3354 	if (new_smi->dev_registered) {
3355 		platform_device_unregister(new_smi->pdev);
3356 		new_smi->dev_registered = 0;
3357 	}
3358 
3359 	return rv;
3360 }
3361 
3362 static int init_ipmi_si(void)
3363 {
3364 	int  i;
3365 	char *str;
3366 	int  rv;
3367 	struct smi_info *e;
3368 	enum ipmi_addr_src type = SI_INVALID;
3369 
3370 	if (initialized)
3371 		return 0;
3372 	initialized = 1;
3373 
3374 	rv = platform_driver_register(&ipmi_driver);
3375 	if (rv) {
3376 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3377 		return rv;
3378 	}
3379 
3380 
3381 	/* Parse out the si_type string into its components. */
3382 	str = si_type_str;
3383 	if (*str != '\0') {
3384 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3385 			si_type[i] = str;
3386 			str = strchr(str, ',');
3387 			if (str) {
3388 				*str = '\0';
3389 				str++;
3390 			} else {
3391 				break;
3392 			}
3393 		}
3394 	}
3395 
3396 	printk(KERN_INFO "IPMI System Interface driver.\n");
3397 
3398 	/* If the user gave us a device, they presumably want us to use it */
3399 	if (!hardcode_find_bmc())
3400 		return 0;
3401 
3402 #ifdef CONFIG_PCI
3403 	rv = pci_register_driver(&ipmi_pci_driver);
3404 	if (rv)
3405 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3406 	else
3407 		pci_registered = 1;
3408 #endif
3409 
3410 #ifdef CONFIG_ACPI
3411 	pnp_register_driver(&ipmi_pnp_driver);
3412 	pnp_registered = 1;
3413 #endif
3414 
3415 #ifdef CONFIG_DMI
3416 	dmi_find_bmc();
3417 #endif
3418 
3419 #ifdef CONFIG_ACPI
3420 	spmi_find_bmc();
3421 #endif
3422 
3423 	/* We prefer devices with interrupts, but in the case of a machine
3424 	   with multiple BMCs we assume that there will be several instances
3425 	   of a given type so if we succeed in registering a type then also
3426 	   try to register everything else of the same type */
3427 
3428 	mutex_lock(&smi_infos_lock);
3429 	list_for_each_entry(e, &smi_infos, link) {
3430 		/* Try to register a device if it has an IRQ and we either
3431 		   haven't successfully registered a device yet or this
3432 		   device has the same type as one we successfully registered */
3433 		if (e->irq && (!type || e->addr_source == type)) {
3434 			if (!try_smi_init(e)) {
3435 				type = e->addr_source;
3436 			}
3437 		}
3438 	}
3439 
3440 	/* type will only have been set if we successfully registered an si */
3441 	if (type) {
3442 		mutex_unlock(&smi_infos_lock);
3443 		return 0;
3444 	}
3445 
3446 	/* Fall back to the preferred device */
3447 
3448 	list_for_each_entry(e, &smi_infos, link) {
3449 		if (!e->irq && (!type || e->addr_source == type)) {
3450 			if (!try_smi_init(e)) {
3451 				type = e->addr_source;
3452 			}
3453 		}
3454 	}
3455 	mutex_unlock(&smi_infos_lock);
3456 
3457 	if (type)
3458 		return 0;
3459 
3460 	if (si_trydefaults) {
3461 		mutex_lock(&smi_infos_lock);
3462 		if (list_empty(&smi_infos)) {
3463 			/* No BMC was found, try defaults. */
3464 			mutex_unlock(&smi_infos_lock);
3465 			default_find_bmc();
3466 		} else
3467 			mutex_unlock(&smi_infos_lock);
3468 	}
3469 
3470 	mutex_lock(&smi_infos_lock);
3471 	if (unload_when_empty && list_empty(&smi_infos)) {
3472 		mutex_unlock(&smi_infos_lock);
3473 		cleanup_ipmi_si();
3474 		printk(KERN_WARNING PFX
3475 		       "Unable to find any System Interface(s)\n");
3476 		return -ENODEV;
3477 	} else {
3478 		mutex_unlock(&smi_infos_lock);
3479 		return 0;
3480 	}
3481 }
3482 module_init(init_ipmi_si);
3483 
3484 static void cleanup_one_si(struct smi_info *to_clean)
3485 {
3486 	int           rv = 0;
3487 	unsigned long flags;
3488 
3489 	if (!to_clean)
3490 		return;
3491 
3492 	list_del(&to_clean->link);
3493 
3494 	/* Tell the driver that we are shutting down. */
3495 	atomic_inc(&to_clean->stop_operation);
3496 
3497 	/*
3498 	 * Make sure the timer and thread are stopped and will not run
3499 	 * again.
3500 	 */
3501 	wait_for_timer_and_thread(to_clean);
3502 
3503 	/*
3504 	 * Timeouts are stopped, now make sure the interrupts are off
3505 	 * for the device.  A little tricky with locks to make sure
3506 	 * there are no races.
3507 	 */
3508 	spin_lock_irqsave(&to_clean->si_lock, flags);
3509 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3510 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3511 		poll(to_clean);
3512 		schedule_timeout_uninterruptible(1);
3513 		spin_lock_irqsave(&to_clean->si_lock, flags);
3514 	}
3515 	disable_si_irq(to_clean);
3516 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3517 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3518 		poll(to_clean);
3519 		schedule_timeout_uninterruptible(1);
3520 	}
3521 
3522 	/* Clean up interrupts and make sure that everything is done. */
3523 	if (to_clean->irq_cleanup)
3524 		to_clean->irq_cleanup(to_clean);
3525 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3526 		poll(to_clean);
3527 		schedule_timeout_uninterruptible(1);
3528 	}
3529 
3530 	if (to_clean->intf)
3531 		rv = ipmi_unregister_smi(to_clean->intf);
3532 
3533 	if (rv) {
3534 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3535 		       rv);
3536 	}
3537 
3538 	if (to_clean->handlers)
3539 		to_clean->handlers->cleanup(to_clean->si_sm);
3540 
3541 	kfree(to_clean->si_sm);
3542 
3543 	if (to_clean->addr_source_cleanup)
3544 		to_clean->addr_source_cleanup(to_clean);
3545 	if (to_clean->io_cleanup)
3546 		to_clean->io_cleanup(to_clean);
3547 
3548 	if (to_clean->dev_registered)
3549 		platform_device_unregister(to_clean->pdev);
3550 
3551 	kfree(to_clean);
3552 }
3553 
3554 static void cleanup_ipmi_si(void)
3555 {
3556 	struct smi_info *e, *tmp_e;
3557 
3558 	if (!initialized)
3559 		return;
3560 
3561 #ifdef CONFIG_PCI
3562 	if (pci_registered)
3563 		pci_unregister_driver(&ipmi_pci_driver);
3564 #endif
3565 #ifdef CONFIG_ACPI
3566 	if (pnp_registered)
3567 		pnp_unregister_driver(&ipmi_pnp_driver);
3568 #endif
3569 
3570 	platform_driver_unregister(&ipmi_driver);
3571 
3572 	mutex_lock(&smi_infos_lock);
3573 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3574 		cleanup_one_si(e);
3575 	mutex_unlock(&smi_infos_lock);
3576 }
3577 module_exit(cleanup_ipmi_si);
3578 
3579 MODULE_LICENSE("GPL");
3580 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3581 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3582 		   " system interfaces.");
3583