1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 69 #ifdef CONFIG_PPC_OF 70 #include <linux/of_device.h> 71 #include <linux/of_platform.h> 72 #endif 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 enum ipmi_addr_src { 111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS, 112 SI_PCI, SI_DEVICETREE, SI_DEFAULT 113 }; 114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 115 "ACPI", "SMBIOS", "PCI", 116 "device-tree", "default" }; 117 118 #define DEVICE_NAME "ipmi_si" 119 120 static struct platform_driver ipmi_driver = { 121 .driver = { 122 .name = DEVICE_NAME, 123 .bus = &platform_bus_type 124 } 125 }; 126 127 128 /* 129 * Indexes into stats[] in smi_info below. 130 */ 131 enum si_stat_indexes { 132 /* 133 * Number of times the driver requested a timer while an operation 134 * was in progress. 135 */ 136 SI_STAT_short_timeouts = 0, 137 138 /* 139 * Number of times the driver requested a timer while nothing was in 140 * progress. 141 */ 142 SI_STAT_long_timeouts, 143 144 /* Number of times the interface was idle while being polled. */ 145 SI_STAT_idles, 146 147 /* Number of interrupts the driver handled. */ 148 SI_STAT_interrupts, 149 150 /* Number of time the driver got an ATTN from the hardware. */ 151 SI_STAT_attentions, 152 153 /* Number of times the driver requested flags from the hardware. */ 154 SI_STAT_flag_fetches, 155 156 /* Number of times the hardware didn't follow the state machine. */ 157 SI_STAT_hosed_count, 158 159 /* Number of completed messages. */ 160 SI_STAT_complete_transactions, 161 162 /* Number of IPMI events received from the hardware. */ 163 SI_STAT_events, 164 165 /* Number of watchdog pretimeouts. */ 166 SI_STAT_watchdog_pretimeouts, 167 168 /* Number of asyncronous messages received. */ 169 SI_STAT_incoming_messages, 170 171 172 /* This *must* remain last, add new values above this. */ 173 SI_NUM_STATS 174 }; 175 176 struct smi_info { 177 int intf_num; 178 ipmi_smi_t intf; 179 struct si_sm_data *si_sm; 180 struct si_sm_handlers *handlers; 181 enum si_type si_type; 182 spinlock_t si_lock; 183 spinlock_t msg_lock; 184 struct list_head xmit_msgs; 185 struct list_head hp_xmit_msgs; 186 struct ipmi_smi_msg *curr_msg; 187 enum si_intf_state si_state; 188 189 /* 190 * Used to handle the various types of I/O that can occur with 191 * IPMI 192 */ 193 struct si_sm_io io; 194 int (*io_setup)(struct smi_info *info); 195 void (*io_cleanup)(struct smi_info *info); 196 int (*irq_setup)(struct smi_info *info); 197 void (*irq_cleanup)(struct smi_info *info); 198 unsigned int io_size; 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 200 void (*addr_source_cleanup)(struct smi_info *info); 201 void *addr_source_data; 202 203 /* 204 * Per-OEM handler, called from handle_flags(). Returns 1 205 * when handle_flags() needs to be re-run or 0 indicating it 206 * set si_state itself. 207 */ 208 int (*oem_data_avail_handler)(struct smi_info *smi_info); 209 210 /* 211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 212 * is set to hold the flags until we are done handling everything 213 * from the flags. 214 */ 215 #define RECEIVE_MSG_AVAIL 0x01 216 #define EVENT_MSG_BUFFER_FULL 0x02 217 #define WDT_PRE_TIMEOUT_INT 0x08 218 #define OEM0_DATA_AVAIL 0x20 219 #define OEM1_DATA_AVAIL 0x40 220 #define OEM2_DATA_AVAIL 0x80 221 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 222 OEM1_DATA_AVAIL | \ 223 OEM2_DATA_AVAIL) 224 unsigned char msg_flags; 225 226 /* Does the BMC have an event buffer? */ 227 char has_event_buffer; 228 229 /* 230 * If set to true, this will request events the next time the 231 * state machine is idle. 232 */ 233 atomic_t req_events; 234 235 /* 236 * If true, run the state machine to completion on every send 237 * call. Generally used after a panic to make sure stuff goes 238 * out. 239 */ 240 int run_to_completion; 241 242 /* The I/O port of an SI interface. */ 243 int port; 244 245 /* 246 * The space between start addresses of the two ports. For 247 * instance, if the first port is 0xca2 and the spacing is 4, then 248 * the second port is 0xca6. 249 */ 250 unsigned int spacing; 251 252 /* zero if no irq; */ 253 int irq; 254 255 /* The timer for this si. */ 256 struct timer_list si_timer; 257 258 /* The time (in jiffies) the last timeout occurred at. */ 259 unsigned long last_timeout_jiffies; 260 261 /* Used to gracefully stop the timer without race conditions. */ 262 atomic_t stop_operation; 263 264 /* 265 * The driver will disable interrupts when it gets into a 266 * situation where it cannot handle messages due to lack of 267 * memory. Once that situation clears up, it will re-enable 268 * interrupts. 269 */ 270 int interrupt_disabled; 271 272 /* From the get device id response... */ 273 struct ipmi_device_id device_id; 274 275 /* Driver model stuff. */ 276 struct device *dev; 277 struct platform_device *pdev; 278 279 /* 280 * True if we allocated the device, false if it came from 281 * someplace else (like PCI). 282 */ 283 int dev_registered; 284 285 /* Slave address, could be reported from DMI. */ 286 unsigned char slave_addr; 287 288 /* Counters and things for the proc filesystem. */ 289 atomic_t stats[SI_NUM_STATS]; 290 291 struct task_struct *thread; 292 293 struct list_head link; 294 }; 295 296 #define smi_inc_stat(smi, stat) \ 297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 298 #define smi_get_stat(smi, stat) \ 299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 300 301 #define SI_MAX_PARMS 4 302 303 static int force_kipmid[SI_MAX_PARMS]; 304 static int num_force_kipmid; 305 #ifdef CONFIG_PCI 306 static int pci_registered; 307 #endif 308 #ifdef CONFIG_ACPI 309 static int pnp_registered; 310 #endif 311 #ifdef CONFIG_PPC_OF 312 static int of_registered; 313 #endif 314 315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 316 static int num_max_busy_us; 317 318 static int unload_when_empty = 1; 319 320 static int add_smi(struct smi_info *smi); 321 static int try_smi_init(struct smi_info *smi); 322 static void cleanup_one_si(struct smi_info *to_clean); 323 324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 325 static int register_xaction_notifier(struct notifier_block *nb) 326 { 327 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 328 } 329 330 static void deliver_recv_msg(struct smi_info *smi_info, 331 struct ipmi_smi_msg *msg) 332 { 333 /* Deliver the message to the upper layer with the lock 334 released. */ 335 336 if (smi_info->run_to_completion) { 337 ipmi_smi_msg_received(smi_info->intf, msg); 338 } else { 339 spin_unlock(&(smi_info->si_lock)); 340 ipmi_smi_msg_received(smi_info->intf, msg); 341 spin_lock(&(smi_info->si_lock)); 342 } 343 } 344 345 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 346 { 347 struct ipmi_smi_msg *msg = smi_info->curr_msg; 348 349 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 350 cCode = IPMI_ERR_UNSPECIFIED; 351 /* else use it as is */ 352 353 /* Make it a reponse */ 354 msg->rsp[0] = msg->data[0] | 4; 355 msg->rsp[1] = msg->data[1]; 356 msg->rsp[2] = cCode; 357 msg->rsp_size = 3; 358 359 smi_info->curr_msg = NULL; 360 deliver_recv_msg(smi_info, msg); 361 } 362 363 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 364 { 365 int rv; 366 struct list_head *entry = NULL; 367 #ifdef DEBUG_TIMING 368 struct timeval t; 369 #endif 370 371 /* 372 * No need to save flags, we aleady have interrupts off and we 373 * already hold the SMI lock. 374 */ 375 if (!smi_info->run_to_completion) 376 spin_lock(&(smi_info->msg_lock)); 377 378 /* Pick the high priority queue first. */ 379 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 380 entry = smi_info->hp_xmit_msgs.next; 381 } else if (!list_empty(&(smi_info->xmit_msgs))) { 382 entry = smi_info->xmit_msgs.next; 383 } 384 385 if (!entry) { 386 smi_info->curr_msg = NULL; 387 rv = SI_SM_IDLE; 388 } else { 389 int err; 390 391 list_del(entry); 392 smi_info->curr_msg = list_entry(entry, 393 struct ipmi_smi_msg, 394 link); 395 #ifdef DEBUG_TIMING 396 do_gettimeofday(&t); 397 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 398 #endif 399 err = atomic_notifier_call_chain(&xaction_notifier_list, 400 0, smi_info); 401 if (err & NOTIFY_STOP_MASK) { 402 rv = SI_SM_CALL_WITHOUT_DELAY; 403 goto out; 404 } 405 err = smi_info->handlers->start_transaction( 406 smi_info->si_sm, 407 smi_info->curr_msg->data, 408 smi_info->curr_msg->data_size); 409 if (err) 410 return_hosed_msg(smi_info, err); 411 412 rv = SI_SM_CALL_WITHOUT_DELAY; 413 } 414 out: 415 if (!smi_info->run_to_completion) 416 spin_unlock(&(smi_info->msg_lock)); 417 418 return rv; 419 } 420 421 static void start_enable_irq(struct smi_info *smi_info) 422 { 423 unsigned char msg[2]; 424 425 /* 426 * If we are enabling interrupts, we have to tell the 427 * BMC to use them. 428 */ 429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 431 432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 433 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 434 } 435 436 static void start_disable_irq(struct smi_info *smi_info) 437 { 438 unsigned char msg[2]; 439 440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 442 443 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 444 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 445 } 446 447 static void start_clear_flags(struct smi_info *smi_info) 448 { 449 unsigned char msg[3]; 450 451 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 452 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 453 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 454 msg[2] = WDT_PRE_TIMEOUT_INT; 455 456 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 457 smi_info->si_state = SI_CLEARING_FLAGS; 458 } 459 460 /* 461 * When we have a situtaion where we run out of memory and cannot 462 * allocate messages, we just leave them in the BMC and run the system 463 * polled until we can allocate some memory. Once we have some 464 * memory, we will re-enable the interrupt. 465 */ 466 static inline void disable_si_irq(struct smi_info *smi_info) 467 { 468 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 469 start_disable_irq(smi_info); 470 smi_info->interrupt_disabled = 1; 471 if (!atomic_read(&smi_info->stop_operation)) 472 mod_timer(&smi_info->si_timer, 473 jiffies + SI_TIMEOUT_JIFFIES); 474 } 475 } 476 477 static inline void enable_si_irq(struct smi_info *smi_info) 478 { 479 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 480 start_enable_irq(smi_info); 481 smi_info->interrupt_disabled = 0; 482 } 483 } 484 485 static void handle_flags(struct smi_info *smi_info) 486 { 487 retry: 488 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 489 /* Watchdog pre-timeout */ 490 smi_inc_stat(smi_info, watchdog_pretimeouts); 491 492 start_clear_flags(smi_info); 493 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 494 spin_unlock(&(smi_info->si_lock)); 495 ipmi_smi_watchdog_pretimeout(smi_info->intf); 496 spin_lock(&(smi_info->si_lock)); 497 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 498 /* Messages available. */ 499 smi_info->curr_msg = ipmi_alloc_smi_msg(); 500 if (!smi_info->curr_msg) { 501 disable_si_irq(smi_info); 502 smi_info->si_state = SI_NORMAL; 503 return; 504 } 505 enable_si_irq(smi_info); 506 507 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 508 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 509 smi_info->curr_msg->data_size = 2; 510 511 smi_info->handlers->start_transaction( 512 smi_info->si_sm, 513 smi_info->curr_msg->data, 514 smi_info->curr_msg->data_size); 515 smi_info->si_state = SI_GETTING_MESSAGES; 516 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 517 /* Events available. */ 518 smi_info->curr_msg = ipmi_alloc_smi_msg(); 519 if (!smi_info->curr_msg) { 520 disable_si_irq(smi_info); 521 smi_info->si_state = SI_NORMAL; 522 return; 523 } 524 enable_si_irq(smi_info); 525 526 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 527 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 528 smi_info->curr_msg->data_size = 2; 529 530 smi_info->handlers->start_transaction( 531 smi_info->si_sm, 532 smi_info->curr_msg->data, 533 smi_info->curr_msg->data_size); 534 smi_info->si_state = SI_GETTING_EVENTS; 535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 536 smi_info->oem_data_avail_handler) { 537 if (smi_info->oem_data_avail_handler(smi_info)) 538 goto retry; 539 } else 540 smi_info->si_state = SI_NORMAL; 541 } 542 543 static void handle_transaction_done(struct smi_info *smi_info) 544 { 545 struct ipmi_smi_msg *msg; 546 #ifdef DEBUG_TIMING 547 struct timeval t; 548 549 do_gettimeofday(&t); 550 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 551 #endif 552 switch (smi_info->si_state) { 553 case SI_NORMAL: 554 if (!smi_info->curr_msg) 555 break; 556 557 smi_info->curr_msg->rsp_size 558 = smi_info->handlers->get_result( 559 smi_info->si_sm, 560 smi_info->curr_msg->rsp, 561 IPMI_MAX_MSG_LENGTH); 562 563 /* 564 * Do this here becase deliver_recv_msg() releases the 565 * lock, and a new message can be put in during the 566 * time the lock is released. 567 */ 568 msg = smi_info->curr_msg; 569 smi_info->curr_msg = NULL; 570 deliver_recv_msg(smi_info, msg); 571 break; 572 573 case SI_GETTING_FLAGS: 574 { 575 unsigned char msg[4]; 576 unsigned int len; 577 578 /* We got the flags from the SMI, now handle them. */ 579 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 580 if (msg[2] != 0) { 581 /* Error fetching flags, just give up for now. */ 582 smi_info->si_state = SI_NORMAL; 583 } else if (len < 4) { 584 /* 585 * Hmm, no flags. That's technically illegal, but 586 * don't use uninitialized data. 587 */ 588 smi_info->si_state = SI_NORMAL; 589 } else { 590 smi_info->msg_flags = msg[3]; 591 handle_flags(smi_info); 592 } 593 break; 594 } 595 596 case SI_CLEARING_FLAGS: 597 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 598 { 599 unsigned char msg[3]; 600 601 /* We cleared the flags. */ 602 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 603 if (msg[2] != 0) { 604 /* Error clearing flags */ 605 dev_warn(smi_info->dev, 606 "Error clearing flags: %2.2x\n", msg[2]); 607 } 608 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 609 start_enable_irq(smi_info); 610 else 611 smi_info->si_state = SI_NORMAL; 612 break; 613 } 614 615 case SI_GETTING_EVENTS: 616 { 617 smi_info->curr_msg->rsp_size 618 = smi_info->handlers->get_result( 619 smi_info->si_sm, 620 smi_info->curr_msg->rsp, 621 IPMI_MAX_MSG_LENGTH); 622 623 /* 624 * Do this here becase deliver_recv_msg() releases the 625 * lock, and a new message can be put in during the 626 * time the lock is released. 627 */ 628 msg = smi_info->curr_msg; 629 smi_info->curr_msg = NULL; 630 if (msg->rsp[2] != 0) { 631 /* Error getting event, probably done. */ 632 msg->done(msg); 633 634 /* Take off the event flag. */ 635 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 636 handle_flags(smi_info); 637 } else { 638 smi_inc_stat(smi_info, events); 639 640 /* 641 * Do this before we deliver the message 642 * because delivering the message releases the 643 * lock and something else can mess with the 644 * state. 645 */ 646 handle_flags(smi_info); 647 648 deliver_recv_msg(smi_info, msg); 649 } 650 break; 651 } 652 653 case SI_GETTING_MESSAGES: 654 { 655 smi_info->curr_msg->rsp_size 656 = smi_info->handlers->get_result( 657 smi_info->si_sm, 658 smi_info->curr_msg->rsp, 659 IPMI_MAX_MSG_LENGTH); 660 661 /* 662 * Do this here becase deliver_recv_msg() releases the 663 * lock, and a new message can be put in during the 664 * time the lock is released. 665 */ 666 msg = smi_info->curr_msg; 667 smi_info->curr_msg = NULL; 668 if (msg->rsp[2] != 0) { 669 /* Error getting event, probably done. */ 670 msg->done(msg); 671 672 /* Take off the msg flag. */ 673 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 674 handle_flags(smi_info); 675 } else { 676 smi_inc_stat(smi_info, incoming_messages); 677 678 /* 679 * Do this before we deliver the message 680 * because delivering the message releases the 681 * lock and something else can mess with the 682 * state. 683 */ 684 handle_flags(smi_info); 685 686 deliver_recv_msg(smi_info, msg); 687 } 688 break; 689 } 690 691 case SI_ENABLE_INTERRUPTS1: 692 { 693 unsigned char msg[4]; 694 695 /* We got the flags from the SMI, now handle them. */ 696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 697 if (msg[2] != 0) { 698 dev_warn(smi_info->dev, "Could not enable interrupts" 699 ", failed get, using polled mode.\n"); 700 smi_info->si_state = SI_NORMAL; 701 } else { 702 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 704 msg[2] = (msg[3] | 705 IPMI_BMC_RCV_MSG_INTR | 706 IPMI_BMC_EVT_MSG_INTR); 707 smi_info->handlers->start_transaction( 708 smi_info->si_sm, msg, 3); 709 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 710 } 711 break; 712 } 713 714 case SI_ENABLE_INTERRUPTS2: 715 { 716 unsigned char msg[4]; 717 718 /* We got the flags from the SMI, now handle them. */ 719 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 720 if (msg[2] != 0) 721 dev_warn(smi_info->dev, "Could not enable interrupts" 722 ", failed set, using polled mode.\n"); 723 else 724 smi_info->interrupt_disabled = 0; 725 smi_info->si_state = SI_NORMAL; 726 break; 727 } 728 729 case SI_DISABLE_INTERRUPTS1: 730 { 731 unsigned char msg[4]; 732 733 /* We got the flags from the SMI, now handle them. */ 734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 735 if (msg[2] != 0) { 736 dev_warn(smi_info->dev, "Could not disable interrupts" 737 ", failed get.\n"); 738 smi_info->si_state = SI_NORMAL; 739 } else { 740 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 741 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 742 msg[2] = (msg[3] & 743 ~(IPMI_BMC_RCV_MSG_INTR | 744 IPMI_BMC_EVT_MSG_INTR)); 745 smi_info->handlers->start_transaction( 746 smi_info->si_sm, msg, 3); 747 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 748 } 749 break; 750 } 751 752 case SI_DISABLE_INTERRUPTS2: 753 { 754 unsigned char msg[4]; 755 756 /* We got the flags from the SMI, now handle them. */ 757 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 758 if (msg[2] != 0) { 759 dev_warn(smi_info->dev, "Could not disable interrupts" 760 ", failed set.\n"); 761 } 762 smi_info->si_state = SI_NORMAL; 763 break; 764 } 765 } 766 } 767 768 /* 769 * Called on timeouts and events. Timeouts should pass the elapsed 770 * time, interrupts should pass in zero. Must be called with 771 * si_lock held and interrupts disabled. 772 */ 773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 774 int time) 775 { 776 enum si_sm_result si_sm_result; 777 778 restart: 779 /* 780 * There used to be a loop here that waited a little while 781 * (around 25us) before giving up. That turned out to be 782 * pointless, the minimum delays I was seeing were in the 300us 783 * range, which is far too long to wait in an interrupt. So 784 * we just run until the state machine tells us something 785 * happened or it needs a delay. 786 */ 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 788 time = 0; 789 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 791 792 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 793 smi_inc_stat(smi_info, complete_transactions); 794 795 handle_transaction_done(smi_info); 796 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 797 } else if (si_sm_result == SI_SM_HOSED) { 798 smi_inc_stat(smi_info, hosed_count); 799 800 /* 801 * Do the before return_hosed_msg, because that 802 * releases the lock. 803 */ 804 smi_info->si_state = SI_NORMAL; 805 if (smi_info->curr_msg != NULL) { 806 /* 807 * If we were handling a user message, format 808 * a response to send to the upper layer to 809 * tell it about the error. 810 */ 811 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 812 } 813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 814 } 815 816 /* 817 * We prefer handling attn over new messages. But don't do 818 * this if there is not yet an upper layer to handle anything. 819 */ 820 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 821 unsigned char msg[2]; 822 823 smi_inc_stat(smi_info, attentions); 824 825 /* 826 * Got a attn, send down a get message flags to see 827 * what's causing it. It would be better to handle 828 * this in the upper layer, but due to the way 829 * interrupts work with the SMI, that's not really 830 * possible. 831 */ 832 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 833 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 834 835 smi_info->handlers->start_transaction( 836 smi_info->si_sm, msg, 2); 837 smi_info->si_state = SI_GETTING_FLAGS; 838 goto restart; 839 } 840 841 /* If we are currently idle, try to start the next message. */ 842 if (si_sm_result == SI_SM_IDLE) { 843 smi_inc_stat(smi_info, idles); 844 845 si_sm_result = start_next_msg(smi_info); 846 if (si_sm_result != SI_SM_IDLE) 847 goto restart; 848 } 849 850 if ((si_sm_result == SI_SM_IDLE) 851 && (atomic_read(&smi_info->req_events))) { 852 /* 853 * We are idle and the upper layer requested that I fetch 854 * events, so do so. 855 */ 856 atomic_set(&smi_info->req_events, 0); 857 858 smi_info->curr_msg = ipmi_alloc_smi_msg(); 859 if (!smi_info->curr_msg) 860 goto out; 861 862 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 863 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 864 smi_info->curr_msg->data_size = 2; 865 866 smi_info->handlers->start_transaction( 867 smi_info->si_sm, 868 smi_info->curr_msg->data, 869 smi_info->curr_msg->data_size); 870 smi_info->si_state = SI_GETTING_EVENTS; 871 goto restart; 872 } 873 out: 874 return si_sm_result; 875 } 876 877 static void sender(void *send_info, 878 struct ipmi_smi_msg *msg, 879 int priority) 880 { 881 struct smi_info *smi_info = send_info; 882 enum si_sm_result result; 883 unsigned long flags; 884 #ifdef DEBUG_TIMING 885 struct timeval t; 886 #endif 887 888 if (atomic_read(&smi_info->stop_operation)) { 889 msg->rsp[0] = msg->data[0] | 4; 890 msg->rsp[1] = msg->data[1]; 891 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 892 msg->rsp_size = 3; 893 deliver_recv_msg(smi_info, msg); 894 return; 895 } 896 897 #ifdef DEBUG_TIMING 898 do_gettimeofday(&t); 899 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 900 #endif 901 902 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 903 904 if (smi_info->thread) 905 wake_up_process(smi_info->thread); 906 907 if (smi_info->run_to_completion) { 908 /* 909 * If we are running to completion, then throw it in 910 * the list and run transactions until everything is 911 * clear. Priority doesn't matter here. 912 */ 913 914 /* 915 * Run to completion means we are single-threaded, no 916 * need for locks. 917 */ 918 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 919 920 result = smi_event_handler(smi_info, 0); 921 while (result != SI_SM_IDLE) { 922 udelay(SI_SHORT_TIMEOUT_USEC); 923 result = smi_event_handler(smi_info, 924 SI_SHORT_TIMEOUT_USEC); 925 } 926 return; 927 } 928 929 spin_lock_irqsave(&smi_info->msg_lock, flags); 930 if (priority > 0) 931 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 932 else 933 list_add_tail(&msg->link, &smi_info->xmit_msgs); 934 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 935 936 spin_lock_irqsave(&smi_info->si_lock, flags); 937 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 938 start_next_msg(smi_info); 939 spin_unlock_irqrestore(&smi_info->si_lock, flags); 940 } 941 942 static void set_run_to_completion(void *send_info, int i_run_to_completion) 943 { 944 struct smi_info *smi_info = send_info; 945 enum si_sm_result result; 946 947 smi_info->run_to_completion = i_run_to_completion; 948 if (i_run_to_completion) { 949 result = smi_event_handler(smi_info, 0); 950 while (result != SI_SM_IDLE) { 951 udelay(SI_SHORT_TIMEOUT_USEC); 952 result = smi_event_handler(smi_info, 953 SI_SHORT_TIMEOUT_USEC); 954 } 955 } 956 } 957 958 /* 959 * Use -1 in the nsec value of the busy waiting timespec to tell that 960 * we are spinning in kipmid looking for something and not delaying 961 * between checks 962 */ 963 static inline void ipmi_si_set_not_busy(struct timespec *ts) 964 { 965 ts->tv_nsec = -1; 966 } 967 static inline int ipmi_si_is_busy(struct timespec *ts) 968 { 969 return ts->tv_nsec != -1; 970 } 971 972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 973 const struct smi_info *smi_info, 974 struct timespec *busy_until) 975 { 976 unsigned int max_busy_us = 0; 977 978 if (smi_info->intf_num < num_max_busy_us) 979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 981 ipmi_si_set_not_busy(busy_until); 982 else if (!ipmi_si_is_busy(busy_until)) { 983 getnstimeofday(busy_until); 984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 985 } else { 986 struct timespec now; 987 getnstimeofday(&now); 988 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 989 ipmi_si_set_not_busy(busy_until); 990 return 0; 991 } 992 } 993 return 1; 994 } 995 996 997 /* 998 * A busy-waiting loop for speeding up IPMI operation. 999 * 1000 * Lousy hardware makes this hard. This is only enabled for systems 1001 * that are not BT and do not have interrupts. It starts spinning 1002 * when an operation is complete or until max_busy tells it to stop 1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1004 * Documentation/IPMI.txt for details. 1005 */ 1006 static int ipmi_thread(void *data) 1007 { 1008 struct smi_info *smi_info = data; 1009 unsigned long flags; 1010 enum si_sm_result smi_result; 1011 struct timespec busy_until; 1012 1013 ipmi_si_set_not_busy(&busy_until); 1014 set_user_nice(current, 19); 1015 while (!kthread_should_stop()) { 1016 int busy_wait; 1017 1018 spin_lock_irqsave(&(smi_info->si_lock), flags); 1019 smi_result = smi_event_handler(smi_info, 0); 1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1022 &busy_until); 1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1024 ; /* do nothing */ 1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1026 schedule(); 1027 else if (smi_result == SI_SM_IDLE) 1028 schedule_timeout_interruptible(100); 1029 else 1030 schedule_timeout_interruptible(1); 1031 } 1032 return 0; 1033 } 1034 1035 1036 static void poll(void *send_info) 1037 { 1038 struct smi_info *smi_info = send_info; 1039 unsigned long flags; 1040 1041 /* 1042 * Make sure there is some delay in the poll loop so we can 1043 * drive time forward and timeout things. 1044 */ 1045 udelay(10); 1046 spin_lock_irqsave(&smi_info->si_lock, flags); 1047 smi_event_handler(smi_info, 10); 1048 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1049 } 1050 1051 static void request_events(void *send_info) 1052 { 1053 struct smi_info *smi_info = send_info; 1054 1055 if (atomic_read(&smi_info->stop_operation) || 1056 !smi_info->has_event_buffer) 1057 return; 1058 1059 atomic_set(&smi_info->req_events, 1); 1060 } 1061 1062 static int initialized; 1063 1064 static void smi_timeout(unsigned long data) 1065 { 1066 struct smi_info *smi_info = (struct smi_info *) data; 1067 enum si_sm_result smi_result; 1068 unsigned long flags; 1069 unsigned long jiffies_now; 1070 long time_diff; 1071 long timeout; 1072 #ifdef DEBUG_TIMING 1073 struct timeval t; 1074 #endif 1075 1076 spin_lock_irqsave(&(smi_info->si_lock), flags); 1077 #ifdef DEBUG_TIMING 1078 do_gettimeofday(&t); 1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1080 #endif 1081 jiffies_now = jiffies; 1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1083 * SI_USEC_PER_JIFFY); 1084 smi_result = smi_event_handler(smi_info, time_diff); 1085 1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1087 1088 smi_info->last_timeout_jiffies = jiffies_now; 1089 1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1091 /* Running with interrupts, only do long timeouts. */ 1092 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1093 smi_inc_stat(smi_info, long_timeouts); 1094 goto do_mod_timer; 1095 } 1096 1097 /* 1098 * If the state machine asks for a short delay, then shorten 1099 * the timer timeout. 1100 */ 1101 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1102 smi_inc_stat(smi_info, short_timeouts); 1103 timeout = jiffies + 1; 1104 } else { 1105 smi_inc_stat(smi_info, long_timeouts); 1106 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1107 } 1108 1109 do_mod_timer: 1110 if (smi_result != SI_SM_IDLE) 1111 mod_timer(&(smi_info->si_timer), timeout); 1112 } 1113 1114 static irqreturn_t si_irq_handler(int irq, void *data) 1115 { 1116 struct smi_info *smi_info = data; 1117 unsigned long flags; 1118 #ifdef DEBUG_TIMING 1119 struct timeval t; 1120 #endif 1121 1122 spin_lock_irqsave(&(smi_info->si_lock), flags); 1123 1124 smi_inc_stat(smi_info, interrupts); 1125 1126 #ifdef DEBUG_TIMING 1127 do_gettimeofday(&t); 1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1129 #endif 1130 smi_event_handler(smi_info, 0); 1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1132 return IRQ_HANDLED; 1133 } 1134 1135 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1136 { 1137 struct smi_info *smi_info = data; 1138 /* We need to clear the IRQ flag for the BT interface. */ 1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1142 return si_irq_handler(irq, data); 1143 } 1144 1145 static int smi_start_processing(void *send_info, 1146 ipmi_smi_t intf) 1147 { 1148 struct smi_info *new_smi = send_info; 1149 int enable = 0; 1150 1151 new_smi->intf = intf; 1152 1153 /* Try to claim any interrupts. */ 1154 if (new_smi->irq_setup) 1155 new_smi->irq_setup(new_smi); 1156 1157 /* Set up the timer that drives the interface. */ 1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1159 new_smi->last_timeout_jiffies = jiffies; 1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1161 1162 /* 1163 * Check if the user forcefully enabled the daemon. 1164 */ 1165 if (new_smi->intf_num < num_force_kipmid) 1166 enable = force_kipmid[new_smi->intf_num]; 1167 /* 1168 * The BT interface is efficient enough to not need a thread, 1169 * and there is no need for a thread if we have interrupts. 1170 */ 1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1172 enable = 1; 1173 1174 if (enable) { 1175 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1176 "kipmi%d", new_smi->intf_num); 1177 if (IS_ERR(new_smi->thread)) { 1178 dev_notice(new_smi->dev, "Could not start" 1179 " kernel thread due to error %ld, only using" 1180 " timers to drive the interface\n", 1181 PTR_ERR(new_smi->thread)); 1182 new_smi->thread = NULL; 1183 } 1184 } 1185 1186 return 0; 1187 } 1188 1189 static void set_maintenance_mode(void *send_info, int enable) 1190 { 1191 struct smi_info *smi_info = send_info; 1192 1193 if (!enable) 1194 atomic_set(&smi_info->req_events, 0); 1195 } 1196 1197 static struct ipmi_smi_handlers handlers = { 1198 .owner = THIS_MODULE, 1199 .start_processing = smi_start_processing, 1200 .sender = sender, 1201 .request_events = request_events, 1202 .set_maintenance_mode = set_maintenance_mode, 1203 .set_run_to_completion = set_run_to_completion, 1204 .poll = poll, 1205 }; 1206 1207 /* 1208 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1209 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1210 */ 1211 1212 static LIST_HEAD(smi_infos); 1213 static DEFINE_MUTEX(smi_infos_lock); 1214 static int smi_num; /* Used to sequence the SMIs */ 1215 1216 #define DEFAULT_REGSPACING 1 1217 #define DEFAULT_REGSIZE 1 1218 1219 static int si_trydefaults = 1; 1220 static char *si_type[SI_MAX_PARMS]; 1221 #define MAX_SI_TYPE_STR 30 1222 static char si_type_str[MAX_SI_TYPE_STR]; 1223 static unsigned long addrs[SI_MAX_PARMS]; 1224 static unsigned int num_addrs; 1225 static unsigned int ports[SI_MAX_PARMS]; 1226 static unsigned int num_ports; 1227 static int irqs[SI_MAX_PARMS]; 1228 static unsigned int num_irqs; 1229 static int regspacings[SI_MAX_PARMS]; 1230 static unsigned int num_regspacings; 1231 static int regsizes[SI_MAX_PARMS]; 1232 static unsigned int num_regsizes; 1233 static int regshifts[SI_MAX_PARMS]; 1234 static unsigned int num_regshifts; 1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1236 static unsigned int num_slave_addrs; 1237 1238 #define IPMI_IO_ADDR_SPACE 0 1239 #define IPMI_MEM_ADDR_SPACE 1 1240 static char *addr_space_to_str[] = { "i/o", "mem" }; 1241 1242 static int hotmod_handler(const char *val, struct kernel_param *kp); 1243 1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1246 " Documentation/IPMI.txt in the kernel sources for the" 1247 " gory details."); 1248 1249 module_param_named(trydefaults, si_trydefaults, bool, 0); 1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1251 " default scan of the KCS and SMIC interface at the standard" 1252 " address"); 1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1255 " interface separated by commas. The types are 'kcs'," 1256 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1257 " the first interface to kcs and the second to bt"); 1258 module_param_array(addrs, ulong, &num_addrs, 0); 1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1260 " addresses separated by commas. Only use if an interface" 1261 " is in memory. Otherwise, set it to zero or leave" 1262 " it blank."); 1263 module_param_array(ports, uint, &num_ports, 0); 1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1265 " addresses separated by commas. Only use if an interface" 1266 " is a port. Otherwise, set it to zero or leave" 1267 " it blank."); 1268 module_param_array(irqs, int, &num_irqs, 0); 1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1270 " addresses separated by commas. Only use if an interface" 1271 " has an interrupt. Otherwise, set it to zero or leave" 1272 " it blank."); 1273 module_param_array(regspacings, int, &num_regspacings, 0); 1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1275 " and each successive register used by the interface. For" 1276 " instance, if the start address is 0xca2 and the spacing" 1277 " is 2, then the second address is at 0xca4. Defaults" 1278 " to 1."); 1279 module_param_array(regsizes, int, &num_regsizes, 0); 1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1281 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1282 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1283 " the 8-bit IPMI register has to be read from a larger" 1284 " register."); 1285 module_param_array(regshifts, int, &num_regshifts, 0); 1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1287 " IPMI register, in bits. For instance, if the data" 1288 " is read from a 32-bit word and the IPMI data is in" 1289 " bit 8-15, then the shift would be 8"); 1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1292 " the controller. Normally this is 0x20, but can be" 1293 " overridden by this parm. This is an array indexed" 1294 " by interface number."); 1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1297 " disabled(0). Normally the IPMI driver auto-detects" 1298 " this, but the value may be overridden by this parm."); 1299 module_param(unload_when_empty, int, 0); 1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1301 " specified or found, default is 1. Setting to 0" 1302 " is useful for hot add of devices using hotmod."); 1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1304 MODULE_PARM_DESC(kipmid_max_busy_us, 1305 "Max time (in microseconds) to busy-wait for IPMI data before" 1306 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1307 " if kipmid is using up a lot of CPU time."); 1308 1309 1310 static void std_irq_cleanup(struct smi_info *info) 1311 { 1312 if (info->si_type == SI_BT) 1313 /* Disable the interrupt in the BT interface. */ 1314 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1315 free_irq(info->irq, info); 1316 } 1317 1318 static int std_irq_setup(struct smi_info *info) 1319 { 1320 int rv; 1321 1322 if (!info->irq) 1323 return 0; 1324 1325 if (info->si_type == SI_BT) { 1326 rv = request_irq(info->irq, 1327 si_bt_irq_handler, 1328 IRQF_SHARED | IRQF_DISABLED, 1329 DEVICE_NAME, 1330 info); 1331 if (!rv) 1332 /* Enable the interrupt in the BT interface. */ 1333 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1334 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1335 } else 1336 rv = request_irq(info->irq, 1337 si_irq_handler, 1338 IRQF_SHARED | IRQF_DISABLED, 1339 DEVICE_NAME, 1340 info); 1341 if (rv) { 1342 dev_warn(info->dev, "%s unable to claim interrupt %d," 1343 " running polled\n", 1344 DEVICE_NAME, info->irq); 1345 info->irq = 0; 1346 } else { 1347 info->irq_cleanup = std_irq_cleanup; 1348 dev_info(info->dev, "Using irq %d\n", info->irq); 1349 } 1350 1351 return rv; 1352 } 1353 1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1355 { 1356 unsigned int addr = io->addr_data; 1357 1358 return inb(addr + (offset * io->regspacing)); 1359 } 1360 1361 static void port_outb(struct si_sm_io *io, unsigned int offset, 1362 unsigned char b) 1363 { 1364 unsigned int addr = io->addr_data; 1365 1366 outb(b, addr + (offset * io->regspacing)); 1367 } 1368 1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1370 { 1371 unsigned int addr = io->addr_data; 1372 1373 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1374 } 1375 1376 static void port_outw(struct si_sm_io *io, unsigned int offset, 1377 unsigned char b) 1378 { 1379 unsigned int addr = io->addr_data; 1380 1381 outw(b << io->regshift, addr + (offset * io->regspacing)); 1382 } 1383 1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1385 { 1386 unsigned int addr = io->addr_data; 1387 1388 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1389 } 1390 1391 static void port_outl(struct si_sm_io *io, unsigned int offset, 1392 unsigned char b) 1393 { 1394 unsigned int addr = io->addr_data; 1395 1396 outl(b << io->regshift, addr+(offset * io->regspacing)); 1397 } 1398 1399 static void port_cleanup(struct smi_info *info) 1400 { 1401 unsigned int addr = info->io.addr_data; 1402 int idx; 1403 1404 if (addr) { 1405 for (idx = 0; idx < info->io_size; idx++) 1406 release_region(addr + idx * info->io.regspacing, 1407 info->io.regsize); 1408 } 1409 } 1410 1411 static int port_setup(struct smi_info *info) 1412 { 1413 unsigned int addr = info->io.addr_data; 1414 int idx; 1415 1416 if (!addr) 1417 return -ENODEV; 1418 1419 info->io_cleanup = port_cleanup; 1420 1421 /* 1422 * Figure out the actual inb/inw/inl/etc routine to use based 1423 * upon the register size. 1424 */ 1425 switch (info->io.regsize) { 1426 case 1: 1427 info->io.inputb = port_inb; 1428 info->io.outputb = port_outb; 1429 break; 1430 case 2: 1431 info->io.inputb = port_inw; 1432 info->io.outputb = port_outw; 1433 break; 1434 case 4: 1435 info->io.inputb = port_inl; 1436 info->io.outputb = port_outl; 1437 break; 1438 default: 1439 dev_warn(info->dev, "Invalid register size: %d\n", 1440 info->io.regsize); 1441 return -EINVAL; 1442 } 1443 1444 /* 1445 * Some BIOSes reserve disjoint I/O regions in their ACPI 1446 * tables. This causes problems when trying to register the 1447 * entire I/O region. Therefore we must register each I/O 1448 * port separately. 1449 */ 1450 for (idx = 0; idx < info->io_size; idx++) { 1451 if (request_region(addr + idx * info->io.regspacing, 1452 info->io.regsize, DEVICE_NAME) == NULL) { 1453 /* Undo allocations */ 1454 while (idx--) { 1455 release_region(addr + idx * info->io.regspacing, 1456 info->io.regsize); 1457 } 1458 return -EIO; 1459 } 1460 } 1461 return 0; 1462 } 1463 1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1465 { 1466 return readb((io->addr)+(offset * io->regspacing)); 1467 } 1468 1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1470 unsigned char b) 1471 { 1472 writeb(b, (io->addr)+(offset * io->regspacing)); 1473 } 1474 1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1476 { 1477 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1478 & 0xff; 1479 } 1480 1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1482 unsigned char b) 1483 { 1484 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1485 } 1486 1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1488 { 1489 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1490 & 0xff; 1491 } 1492 1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1494 unsigned char b) 1495 { 1496 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1497 } 1498 1499 #ifdef readq 1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1501 { 1502 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1503 & 0xff; 1504 } 1505 1506 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1507 unsigned char b) 1508 { 1509 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1510 } 1511 #endif 1512 1513 static void mem_cleanup(struct smi_info *info) 1514 { 1515 unsigned long addr = info->io.addr_data; 1516 int mapsize; 1517 1518 if (info->io.addr) { 1519 iounmap(info->io.addr); 1520 1521 mapsize = ((info->io_size * info->io.regspacing) 1522 - (info->io.regspacing - info->io.regsize)); 1523 1524 release_mem_region(addr, mapsize); 1525 } 1526 } 1527 1528 static int mem_setup(struct smi_info *info) 1529 { 1530 unsigned long addr = info->io.addr_data; 1531 int mapsize; 1532 1533 if (!addr) 1534 return -ENODEV; 1535 1536 info->io_cleanup = mem_cleanup; 1537 1538 /* 1539 * Figure out the actual readb/readw/readl/etc routine to use based 1540 * upon the register size. 1541 */ 1542 switch (info->io.regsize) { 1543 case 1: 1544 info->io.inputb = intf_mem_inb; 1545 info->io.outputb = intf_mem_outb; 1546 break; 1547 case 2: 1548 info->io.inputb = intf_mem_inw; 1549 info->io.outputb = intf_mem_outw; 1550 break; 1551 case 4: 1552 info->io.inputb = intf_mem_inl; 1553 info->io.outputb = intf_mem_outl; 1554 break; 1555 #ifdef readq 1556 case 8: 1557 info->io.inputb = mem_inq; 1558 info->io.outputb = mem_outq; 1559 break; 1560 #endif 1561 default: 1562 dev_warn(info->dev, "Invalid register size: %d\n", 1563 info->io.regsize); 1564 return -EINVAL; 1565 } 1566 1567 /* 1568 * Calculate the total amount of memory to claim. This is an 1569 * unusual looking calculation, but it avoids claiming any 1570 * more memory than it has to. It will claim everything 1571 * between the first address to the end of the last full 1572 * register. 1573 */ 1574 mapsize = ((info->io_size * info->io.regspacing) 1575 - (info->io.regspacing - info->io.regsize)); 1576 1577 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1578 return -EIO; 1579 1580 info->io.addr = ioremap(addr, mapsize); 1581 if (info->io.addr == NULL) { 1582 release_mem_region(addr, mapsize); 1583 return -EIO; 1584 } 1585 return 0; 1586 } 1587 1588 /* 1589 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1590 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1591 * Options are: 1592 * rsp=<regspacing> 1593 * rsi=<regsize> 1594 * rsh=<regshift> 1595 * irq=<irq> 1596 * ipmb=<ipmb addr> 1597 */ 1598 enum hotmod_op { HM_ADD, HM_REMOVE }; 1599 struct hotmod_vals { 1600 char *name; 1601 int val; 1602 }; 1603 static struct hotmod_vals hotmod_ops[] = { 1604 { "add", HM_ADD }, 1605 { "remove", HM_REMOVE }, 1606 { NULL } 1607 }; 1608 static struct hotmod_vals hotmod_si[] = { 1609 { "kcs", SI_KCS }, 1610 { "smic", SI_SMIC }, 1611 { "bt", SI_BT }, 1612 { NULL } 1613 }; 1614 static struct hotmod_vals hotmod_as[] = { 1615 { "mem", IPMI_MEM_ADDR_SPACE }, 1616 { "i/o", IPMI_IO_ADDR_SPACE }, 1617 { NULL } 1618 }; 1619 1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1621 { 1622 char *s; 1623 int i; 1624 1625 s = strchr(*curr, ','); 1626 if (!s) { 1627 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1628 return -EINVAL; 1629 } 1630 *s = '\0'; 1631 s++; 1632 for (i = 0; hotmod_ops[i].name; i++) { 1633 if (strcmp(*curr, v[i].name) == 0) { 1634 *val = v[i].val; 1635 *curr = s; 1636 return 0; 1637 } 1638 } 1639 1640 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1641 return -EINVAL; 1642 } 1643 1644 static int check_hotmod_int_op(const char *curr, const char *option, 1645 const char *name, int *val) 1646 { 1647 char *n; 1648 1649 if (strcmp(curr, name) == 0) { 1650 if (!option) { 1651 printk(KERN_WARNING PFX 1652 "No option given for '%s'\n", 1653 curr); 1654 return -EINVAL; 1655 } 1656 *val = simple_strtoul(option, &n, 0); 1657 if ((*n != '\0') || (*option == '\0')) { 1658 printk(KERN_WARNING PFX 1659 "Bad option given for '%s'\n", 1660 curr); 1661 return -EINVAL; 1662 } 1663 return 1; 1664 } 1665 return 0; 1666 } 1667 1668 static int hotmod_handler(const char *val, struct kernel_param *kp) 1669 { 1670 char *str = kstrdup(val, GFP_KERNEL); 1671 int rv; 1672 char *next, *curr, *s, *n, *o; 1673 enum hotmod_op op; 1674 enum si_type si_type; 1675 int addr_space; 1676 unsigned long addr; 1677 int regspacing; 1678 int regsize; 1679 int regshift; 1680 int irq; 1681 int ipmb; 1682 int ival; 1683 int len; 1684 struct smi_info *info; 1685 1686 if (!str) 1687 return -ENOMEM; 1688 1689 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1690 len = strlen(str); 1691 ival = len - 1; 1692 while ((ival >= 0) && isspace(str[ival])) { 1693 str[ival] = '\0'; 1694 ival--; 1695 } 1696 1697 for (curr = str; curr; curr = next) { 1698 regspacing = 1; 1699 regsize = 1; 1700 regshift = 0; 1701 irq = 0; 1702 ipmb = 0; /* Choose the default if not specified */ 1703 1704 next = strchr(curr, ':'); 1705 if (next) { 1706 *next = '\0'; 1707 next++; 1708 } 1709 1710 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1711 if (rv) 1712 break; 1713 op = ival; 1714 1715 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1716 if (rv) 1717 break; 1718 si_type = ival; 1719 1720 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1721 if (rv) 1722 break; 1723 1724 s = strchr(curr, ','); 1725 if (s) { 1726 *s = '\0'; 1727 s++; 1728 } 1729 addr = simple_strtoul(curr, &n, 0); 1730 if ((*n != '\0') || (*curr == '\0')) { 1731 printk(KERN_WARNING PFX "Invalid hotmod address" 1732 " '%s'\n", curr); 1733 break; 1734 } 1735 1736 while (s) { 1737 curr = s; 1738 s = strchr(curr, ','); 1739 if (s) { 1740 *s = '\0'; 1741 s++; 1742 } 1743 o = strchr(curr, '='); 1744 if (o) { 1745 *o = '\0'; 1746 o++; 1747 } 1748 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1749 if (rv < 0) 1750 goto out; 1751 else if (rv) 1752 continue; 1753 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1754 if (rv < 0) 1755 goto out; 1756 else if (rv) 1757 continue; 1758 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1759 if (rv < 0) 1760 goto out; 1761 else if (rv) 1762 continue; 1763 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1764 if (rv < 0) 1765 goto out; 1766 else if (rv) 1767 continue; 1768 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1769 if (rv < 0) 1770 goto out; 1771 else if (rv) 1772 continue; 1773 1774 rv = -EINVAL; 1775 printk(KERN_WARNING PFX 1776 "Invalid hotmod option '%s'\n", 1777 curr); 1778 goto out; 1779 } 1780 1781 if (op == HM_ADD) { 1782 info = kzalloc(sizeof(*info), GFP_KERNEL); 1783 if (!info) { 1784 rv = -ENOMEM; 1785 goto out; 1786 } 1787 1788 info->addr_source = SI_HOTMOD; 1789 info->si_type = si_type; 1790 info->io.addr_data = addr; 1791 info->io.addr_type = addr_space; 1792 if (addr_space == IPMI_MEM_ADDR_SPACE) 1793 info->io_setup = mem_setup; 1794 else 1795 info->io_setup = port_setup; 1796 1797 info->io.addr = NULL; 1798 info->io.regspacing = regspacing; 1799 if (!info->io.regspacing) 1800 info->io.regspacing = DEFAULT_REGSPACING; 1801 info->io.regsize = regsize; 1802 if (!info->io.regsize) 1803 info->io.regsize = DEFAULT_REGSPACING; 1804 info->io.regshift = regshift; 1805 info->irq = irq; 1806 if (info->irq) 1807 info->irq_setup = std_irq_setup; 1808 info->slave_addr = ipmb; 1809 1810 if (!add_smi(info)) { 1811 if (try_smi_init(info)) 1812 cleanup_one_si(info); 1813 } else { 1814 kfree(info); 1815 } 1816 } else { 1817 /* remove */ 1818 struct smi_info *e, *tmp_e; 1819 1820 mutex_lock(&smi_infos_lock); 1821 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1822 if (e->io.addr_type != addr_space) 1823 continue; 1824 if (e->si_type != si_type) 1825 continue; 1826 if (e->io.addr_data == addr) 1827 cleanup_one_si(e); 1828 } 1829 mutex_unlock(&smi_infos_lock); 1830 } 1831 } 1832 rv = len; 1833 out: 1834 kfree(str); 1835 return rv; 1836 } 1837 1838 static __devinit void hardcode_find_bmc(void) 1839 { 1840 int i; 1841 struct smi_info *info; 1842 1843 for (i = 0; i < SI_MAX_PARMS; i++) { 1844 if (!ports[i] && !addrs[i]) 1845 continue; 1846 1847 info = kzalloc(sizeof(*info), GFP_KERNEL); 1848 if (!info) 1849 return; 1850 1851 info->addr_source = SI_HARDCODED; 1852 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1853 1854 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1855 info->si_type = SI_KCS; 1856 } else if (strcmp(si_type[i], "smic") == 0) { 1857 info->si_type = SI_SMIC; 1858 } else if (strcmp(si_type[i], "bt") == 0) { 1859 info->si_type = SI_BT; 1860 } else { 1861 printk(KERN_WARNING PFX "Interface type specified " 1862 "for interface %d, was invalid: %s\n", 1863 i, si_type[i]); 1864 kfree(info); 1865 continue; 1866 } 1867 1868 if (ports[i]) { 1869 /* An I/O port */ 1870 info->io_setup = port_setup; 1871 info->io.addr_data = ports[i]; 1872 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1873 } else if (addrs[i]) { 1874 /* A memory port */ 1875 info->io_setup = mem_setup; 1876 info->io.addr_data = addrs[i]; 1877 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1878 } else { 1879 printk(KERN_WARNING PFX "Interface type specified " 1880 "for interface %d, but port and address were " 1881 "not set or set to zero.\n", i); 1882 kfree(info); 1883 continue; 1884 } 1885 1886 info->io.addr = NULL; 1887 info->io.regspacing = regspacings[i]; 1888 if (!info->io.regspacing) 1889 info->io.regspacing = DEFAULT_REGSPACING; 1890 info->io.regsize = regsizes[i]; 1891 if (!info->io.regsize) 1892 info->io.regsize = DEFAULT_REGSPACING; 1893 info->io.regshift = regshifts[i]; 1894 info->irq = irqs[i]; 1895 if (info->irq) 1896 info->irq_setup = std_irq_setup; 1897 info->slave_addr = slave_addrs[i]; 1898 1899 if (!add_smi(info)) { 1900 if (try_smi_init(info)) 1901 cleanup_one_si(info); 1902 } else { 1903 kfree(info); 1904 } 1905 } 1906 } 1907 1908 #ifdef CONFIG_ACPI 1909 1910 #include <linux/acpi.h> 1911 1912 /* 1913 * Once we get an ACPI failure, we don't try any more, because we go 1914 * through the tables sequentially. Once we don't find a table, there 1915 * are no more. 1916 */ 1917 static int acpi_failure; 1918 1919 /* For GPE-type interrupts. */ 1920 static u32 ipmi_acpi_gpe(void *context) 1921 { 1922 struct smi_info *smi_info = context; 1923 unsigned long flags; 1924 #ifdef DEBUG_TIMING 1925 struct timeval t; 1926 #endif 1927 1928 spin_lock_irqsave(&(smi_info->si_lock), flags); 1929 1930 smi_inc_stat(smi_info, interrupts); 1931 1932 #ifdef DEBUG_TIMING 1933 do_gettimeofday(&t); 1934 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1935 #endif 1936 smi_event_handler(smi_info, 0); 1937 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1938 1939 return ACPI_INTERRUPT_HANDLED; 1940 } 1941 1942 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1943 { 1944 if (!info->irq) 1945 return; 1946 1947 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1948 } 1949 1950 static int acpi_gpe_irq_setup(struct smi_info *info) 1951 { 1952 acpi_status status; 1953 1954 if (!info->irq) 1955 return 0; 1956 1957 /* FIXME - is level triggered right? */ 1958 status = acpi_install_gpe_handler(NULL, 1959 info->irq, 1960 ACPI_GPE_LEVEL_TRIGGERED, 1961 &ipmi_acpi_gpe, 1962 info); 1963 if (status != AE_OK) { 1964 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1965 " running polled\n", DEVICE_NAME, info->irq); 1966 info->irq = 0; 1967 return -EINVAL; 1968 } else { 1969 info->irq_cleanup = acpi_gpe_irq_cleanup; 1970 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1971 return 0; 1972 } 1973 } 1974 1975 /* 1976 * Defined at 1977 * http://h21007.www2.hp.com/portal/download/files 1978 * /unprot/hpspmi.pdf 1979 */ 1980 struct SPMITable { 1981 s8 Signature[4]; 1982 u32 Length; 1983 u8 Revision; 1984 u8 Checksum; 1985 s8 OEMID[6]; 1986 s8 OEMTableID[8]; 1987 s8 OEMRevision[4]; 1988 s8 CreatorID[4]; 1989 s8 CreatorRevision[4]; 1990 u8 InterfaceType; 1991 u8 IPMIlegacy; 1992 s16 SpecificationRevision; 1993 1994 /* 1995 * Bit 0 - SCI interrupt supported 1996 * Bit 1 - I/O APIC/SAPIC 1997 */ 1998 u8 InterruptType; 1999 2000 /* 2001 * If bit 0 of InterruptType is set, then this is the SCI 2002 * interrupt in the GPEx_STS register. 2003 */ 2004 u8 GPE; 2005 2006 s16 Reserved; 2007 2008 /* 2009 * If bit 1 of InterruptType is set, then this is the I/O 2010 * APIC/SAPIC interrupt. 2011 */ 2012 u32 GlobalSystemInterrupt; 2013 2014 /* The actual register address. */ 2015 struct acpi_generic_address addr; 2016 2017 u8 UID[4]; 2018 2019 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2020 }; 2021 2022 static __devinit int try_init_spmi(struct SPMITable *spmi) 2023 { 2024 struct smi_info *info; 2025 2026 if (spmi->IPMIlegacy != 1) { 2027 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2028 return -ENODEV; 2029 } 2030 2031 info = kzalloc(sizeof(*info), GFP_KERNEL); 2032 if (!info) { 2033 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2034 return -ENOMEM; 2035 } 2036 2037 info->addr_source = SI_SPMI; 2038 printk(KERN_INFO PFX "probing via SPMI\n"); 2039 2040 /* Figure out the interface type. */ 2041 switch (spmi->InterfaceType) { 2042 case 1: /* KCS */ 2043 info->si_type = SI_KCS; 2044 break; 2045 case 2: /* SMIC */ 2046 info->si_type = SI_SMIC; 2047 break; 2048 case 3: /* BT */ 2049 info->si_type = SI_BT; 2050 break; 2051 default: 2052 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2053 spmi->InterfaceType); 2054 kfree(info); 2055 return -EIO; 2056 } 2057 2058 if (spmi->InterruptType & 1) { 2059 /* We've got a GPE interrupt. */ 2060 info->irq = spmi->GPE; 2061 info->irq_setup = acpi_gpe_irq_setup; 2062 } else if (spmi->InterruptType & 2) { 2063 /* We've got an APIC/SAPIC interrupt. */ 2064 info->irq = spmi->GlobalSystemInterrupt; 2065 info->irq_setup = std_irq_setup; 2066 } else { 2067 /* Use the default interrupt setting. */ 2068 info->irq = 0; 2069 info->irq_setup = NULL; 2070 } 2071 2072 if (spmi->addr.bit_width) { 2073 /* A (hopefully) properly formed register bit width. */ 2074 info->io.regspacing = spmi->addr.bit_width / 8; 2075 } else { 2076 info->io.regspacing = DEFAULT_REGSPACING; 2077 } 2078 info->io.regsize = info->io.regspacing; 2079 info->io.regshift = spmi->addr.bit_offset; 2080 2081 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2082 info->io_setup = mem_setup; 2083 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2084 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2085 info->io_setup = port_setup; 2086 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2087 } else { 2088 kfree(info); 2089 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2090 return -EIO; 2091 } 2092 info->io.addr_data = spmi->addr.address; 2093 2094 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2095 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2096 info->io.addr_data, info->io.regsize, info->io.regspacing, 2097 info->irq); 2098 2099 if (add_smi(info)) 2100 kfree(info); 2101 2102 return 0; 2103 } 2104 2105 static __devinit void spmi_find_bmc(void) 2106 { 2107 acpi_status status; 2108 struct SPMITable *spmi; 2109 int i; 2110 2111 if (acpi_disabled) 2112 return; 2113 2114 if (acpi_failure) 2115 return; 2116 2117 for (i = 0; ; i++) { 2118 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2119 (struct acpi_table_header **)&spmi); 2120 if (status != AE_OK) 2121 return; 2122 2123 try_init_spmi(spmi); 2124 } 2125 } 2126 2127 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2128 const struct pnp_device_id *dev_id) 2129 { 2130 struct acpi_device *acpi_dev; 2131 struct smi_info *info; 2132 struct resource *res, *res_second; 2133 acpi_handle handle; 2134 acpi_status status; 2135 unsigned long long tmp; 2136 2137 acpi_dev = pnp_acpi_device(dev); 2138 if (!acpi_dev) 2139 return -ENODEV; 2140 2141 info = kzalloc(sizeof(*info), GFP_KERNEL); 2142 if (!info) 2143 return -ENOMEM; 2144 2145 info->addr_source = SI_ACPI; 2146 printk(KERN_INFO PFX "probing via ACPI\n"); 2147 2148 handle = acpi_dev->handle; 2149 2150 /* _IFT tells us the interface type: KCS, BT, etc */ 2151 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2152 if (ACPI_FAILURE(status)) 2153 goto err_free; 2154 2155 switch (tmp) { 2156 case 1: 2157 info->si_type = SI_KCS; 2158 break; 2159 case 2: 2160 info->si_type = SI_SMIC; 2161 break; 2162 case 3: 2163 info->si_type = SI_BT; 2164 break; 2165 default: 2166 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2167 goto err_free; 2168 } 2169 2170 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2171 if (res) { 2172 info->io_setup = port_setup; 2173 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2174 } else { 2175 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2176 if (res) { 2177 info->io_setup = mem_setup; 2178 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2179 } 2180 } 2181 if (!res) { 2182 dev_err(&dev->dev, "no I/O or memory address\n"); 2183 goto err_free; 2184 } 2185 info->io.addr_data = res->start; 2186 2187 info->io.regspacing = DEFAULT_REGSPACING; 2188 res_second = pnp_get_resource(dev, 2189 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2190 IORESOURCE_IO : IORESOURCE_MEM, 2191 1); 2192 if (res_second) { 2193 if (res_second->start > info->io.addr_data) 2194 info->io.regspacing = res_second->start - info->io.addr_data; 2195 } 2196 info->io.regsize = DEFAULT_REGSPACING; 2197 info->io.regshift = 0; 2198 2199 /* If _GPE exists, use it; otherwise use standard interrupts */ 2200 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2201 if (ACPI_SUCCESS(status)) { 2202 info->irq = tmp; 2203 info->irq_setup = acpi_gpe_irq_setup; 2204 } else if (pnp_irq_valid(dev, 0)) { 2205 info->irq = pnp_irq(dev, 0); 2206 info->irq_setup = std_irq_setup; 2207 } 2208 2209 info->dev = &dev->dev; 2210 pnp_set_drvdata(dev, info); 2211 2212 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2213 res, info->io.regsize, info->io.regspacing, 2214 info->irq); 2215 2216 if (add_smi(info)) 2217 goto err_free; 2218 2219 return 0; 2220 2221 err_free: 2222 kfree(info); 2223 return -EINVAL; 2224 } 2225 2226 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2227 { 2228 struct smi_info *info = pnp_get_drvdata(dev); 2229 2230 cleanup_one_si(info); 2231 } 2232 2233 static const struct pnp_device_id pnp_dev_table[] = { 2234 {"IPI0001", 0}, 2235 {"", 0}, 2236 }; 2237 2238 static struct pnp_driver ipmi_pnp_driver = { 2239 .name = DEVICE_NAME, 2240 .probe = ipmi_pnp_probe, 2241 .remove = __devexit_p(ipmi_pnp_remove), 2242 .id_table = pnp_dev_table, 2243 }; 2244 #endif 2245 2246 #ifdef CONFIG_DMI 2247 struct dmi_ipmi_data { 2248 u8 type; 2249 u8 addr_space; 2250 unsigned long base_addr; 2251 u8 irq; 2252 u8 offset; 2253 u8 slave_addr; 2254 }; 2255 2256 static int __devinit decode_dmi(const struct dmi_header *dm, 2257 struct dmi_ipmi_data *dmi) 2258 { 2259 const u8 *data = (const u8 *)dm; 2260 unsigned long base_addr; 2261 u8 reg_spacing; 2262 u8 len = dm->length; 2263 2264 dmi->type = data[4]; 2265 2266 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2267 if (len >= 0x11) { 2268 if (base_addr & 1) { 2269 /* I/O */ 2270 base_addr &= 0xFFFE; 2271 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2272 } else 2273 /* Memory */ 2274 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2275 2276 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2277 is odd. */ 2278 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2279 2280 dmi->irq = data[0x11]; 2281 2282 /* The top two bits of byte 0x10 hold the register spacing. */ 2283 reg_spacing = (data[0x10] & 0xC0) >> 6; 2284 switch (reg_spacing) { 2285 case 0x00: /* Byte boundaries */ 2286 dmi->offset = 1; 2287 break; 2288 case 0x01: /* 32-bit boundaries */ 2289 dmi->offset = 4; 2290 break; 2291 case 0x02: /* 16-byte boundaries */ 2292 dmi->offset = 16; 2293 break; 2294 default: 2295 /* Some other interface, just ignore it. */ 2296 return -EIO; 2297 } 2298 } else { 2299 /* Old DMI spec. */ 2300 /* 2301 * Note that technically, the lower bit of the base 2302 * address should be 1 if the address is I/O and 0 if 2303 * the address is in memory. So many systems get that 2304 * wrong (and all that I have seen are I/O) so we just 2305 * ignore that bit and assume I/O. Systems that use 2306 * memory should use the newer spec, anyway. 2307 */ 2308 dmi->base_addr = base_addr & 0xfffe; 2309 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2310 dmi->offset = 1; 2311 } 2312 2313 dmi->slave_addr = data[6]; 2314 2315 return 0; 2316 } 2317 2318 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2319 { 2320 struct smi_info *info; 2321 2322 info = kzalloc(sizeof(*info), GFP_KERNEL); 2323 if (!info) { 2324 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2325 return; 2326 } 2327 2328 info->addr_source = SI_SMBIOS; 2329 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2330 2331 switch (ipmi_data->type) { 2332 case 0x01: /* KCS */ 2333 info->si_type = SI_KCS; 2334 break; 2335 case 0x02: /* SMIC */ 2336 info->si_type = SI_SMIC; 2337 break; 2338 case 0x03: /* BT */ 2339 info->si_type = SI_BT; 2340 break; 2341 default: 2342 kfree(info); 2343 return; 2344 } 2345 2346 switch (ipmi_data->addr_space) { 2347 case IPMI_MEM_ADDR_SPACE: 2348 info->io_setup = mem_setup; 2349 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2350 break; 2351 2352 case IPMI_IO_ADDR_SPACE: 2353 info->io_setup = port_setup; 2354 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2355 break; 2356 2357 default: 2358 kfree(info); 2359 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2360 ipmi_data->addr_space); 2361 return; 2362 } 2363 info->io.addr_data = ipmi_data->base_addr; 2364 2365 info->io.regspacing = ipmi_data->offset; 2366 if (!info->io.regspacing) 2367 info->io.regspacing = DEFAULT_REGSPACING; 2368 info->io.regsize = DEFAULT_REGSPACING; 2369 info->io.regshift = 0; 2370 2371 info->slave_addr = ipmi_data->slave_addr; 2372 2373 info->irq = ipmi_data->irq; 2374 if (info->irq) 2375 info->irq_setup = std_irq_setup; 2376 2377 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2378 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2379 info->io.addr_data, info->io.regsize, info->io.regspacing, 2380 info->irq); 2381 2382 if (add_smi(info)) 2383 kfree(info); 2384 } 2385 2386 static void __devinit dmi_find_bmc(void) 2387 { 2388 const struct dmi_device *dev = NULL; 2389 struct dmi_ipmi_data data; 2390 int rv; 2391 2392 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2393 memset(&data, 0, sizeof(data)); 2394 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2395 &data); 2396 if (!rv) 2397 try_init_dmi(&data); 2398 } 2399 } 2400 #endif /* CONFIG_DMI */ 2401 2402 #ifdef CONFIG_PCI 2403 2404 #define PCI_ERMC_CLASSCODE 0x0C0700 2405 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2406 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2407 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2408 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2409 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2410 2411 #define PCI_HP_VENDOR_ID 0x103C 2412 #define PCI_MMC_DEVICE_ID 0x121A 2413 #define PCI_MMC_ADDR_CW 0x10 2414 2415 static void ipmi_pci_cleanup(struct smi_info *info) 2416 { 2417 struct pci_dev *pdev = info->addr_source_data; 2418 2419 pci_disable_device(pdev); 2420 } 2421 2422 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2423 const struct pci_device_id *ent) 2424 { 2425 int rv; 2426 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2427 struct smi_info *info; 2428 2429 info = kzalloc(sizeof(*info), GFP_KERNEL); 2430 if (!info) 2431 return -ENOMEM; 2432 2433 info->addr_source = SI_PCI; 2434 dev_info(&pdev->dev, "probing via PCI"); 2435 2436 switch (class_type) { 2437 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2438 info->si_type = SI_SMIC; 2439 break; 2440 2441 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2442 info->si_type = SI_KCS; 2443 break; 2444 2445 case PCI_ERMC_CLASSCODE_TYPE_BT: 2446 info->si_type = SI_BT; 2447 break; 2448 2449 default: 2450 kfree(info); 2451 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2452 return -ENOMEM; 2453 } 2454 2455 rv = pci_enable_device(pdev); 2456 if (rv) { 2457 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2458 kfree(info); 2459 return rv; 2460 } 2461 2462 info->addr_source_cleanup = ipmi_pci_cleanup; 2463 info->addr_source_data = pdev; 2464 2465 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2466 info->io_setup = port_setup; 2467 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2468 } else { 2469 info->io_setup = mem_setup; 2470 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2471 } 2472 info->io.addr_data = pci_resource_start(pdev, 0); 2473 2474 info->io.regspacing = DEFAULT_REGSPACING; 2475 info->io.regsize = DEFAULT_REGSPACING; 2476 info->io.regshift = 0; 2477 2478 info->irq = pdev->irq; 2479 if (info->irq) 2480 info->irq_setup = std_irq_setup; 2481 2482 info->dev = &pdev->dev; 2483 pci_set_drvdata(pdev, info); 2484 2485 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2486 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2487 info->irq); 2488 2489 if (add_smi(info)) 2490 kfree(info); 2491 2492 return 0; 2493 } 2494 2495 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2496 { 2497 struct smi_info *info = pci_get_drvdata(pdev); 2498 cleanup_one_si(info); 2499 } 2500 2501 #ifdef CONFIG_PM 2502 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2503 { 2504 return 0; 2505 } 2506 2507 static int ipmi_pci_resume(struct pci_dev *pdev) 2508 { 2509 return 0; 2510 } 2511 #endif 2512 2513 static struct pci_device_id ipmi_pci_devices[] = { 2514 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2515 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2516 { 0, } 2517 }; 2518 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2519 2520 static struct pci_driver ipmi_pci_driver = { 2521 .name = DEVICE_NAME, 2522 .id_table = ipmi_pci_devices, 2523 .probe = ipmi_pci_probe, 2524 .remove = __devexit_p(ipmi_pci_remove), 2525 #ifdef CONFIG_PM 2526 .suspend = ipmi_pci_suspend, 2527 .resume = ipmi_pci_resume, 2528 #endif 2529 }; 2530 #endif /* CONFIG_PCI */ 2531 2532 2533 #ifdef CONFIG_PPC_OF 2534 static int __devinit ipmi_of_probe(struct platform_device *dev, 2535 const struct of_device_id *match) 2536 { 2537 struct smi_info *info; 2538 struct resource resource; 2539 const int *regsize, *regspacing, *regshift; 2540 struct device_node *np = dev->dev.of_node; 2541 int ret; 2542 int proplen; 2543 2544 dev_info(&dev->dev, "probing via device tree\n"); 2545 2546 ret = of_address_to_resource(np, 0, &resource); 2547 if (ret) { 2548 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2549 return ret; 2550 } 2551 2552 regsize = of_get_property(np, "reg-size", &proplen); 2553 if (regsize && proplen != 4) { 2554 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2555 return -EINVAL; 2556 } 2557 2558 regspacing = of_get_property(np, "reg-spacing", &proplen); 2559 if (regspacing && proplen != 4) { 2560 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2561 return -EINVAL; 2562 } 2563 2564 regshift = of_get_property(np, "reg-shift", &proplen); 2565 if (regshift && proplen != 4) { 2566 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2567 return -EINVAL; 2568 } 2569 2570 info = kzalloc(sizeof(*info), GFP_KERNEL); 2571 2572 if (!info) { 2573 dev_err(&dev->dev, 2574 "could not allocate memory for OF probe\n"); 2575 return -ENOMEM; 2576 } 2577 2578 info->si_type = (enum si_type) match->data; 2579 info->addr_source = SI_DEVICETREE; 2580 info->irq_setup = std_irq_setup; 2581 2582 if (resource.flags & IORESOURCE_IO) { 2583 info->io_setup = port_setup; 2584 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2585 } else { 2586 info->io_setup = mem_setup; 2587 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2588 } 2589 2590 info->io.addr_data = resource.start; 2591 2592 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2593 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2594 info->io.regshift = regshift ? *regshift : 0; 2595 2596 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2597 info->dev = &dev->dev; 2598 2599 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2600 info->io.addr_data, info->io.regsize, info->io.regspacing, 2601 info->irq); 2602 2603 dev_set_drvdata(&dev->dev, info); 2604 2605 if (add_smi(info)) { 2606 kfree(info); 2607 return -EBUSY; 2608 } 2609 2610 return 0; 2611 } 2612 2613 static int __devexit ipmi_of_remove(struct platform_device *dev) 2614 { 2615 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2616 return 0; 2617 } 2618 2619 static struct of_device_id ipmi_match[] = 2620 { 2621 { .type = "ipmi", .compatible = "ipmi-kcs", 2622 .data = (void *)(unsigned long) SI_KCS }, 2623 { .type = "ipmi", .compatible = "ipmi-smic", 2624 .data = (void *)(unsigned long) SI_SMIC }, 2625 { .type = "ipmi", .compatible = "ipmi-bt", 2626 .data = (void *)(unsigned long) SI_BT }, 2627 {}, 2628 }; 2629 2630 static struct of_platform_driver ipmi_of_platform_driver = { 2631 .driver = { 2632 .name = "ipmi", 2633 .owner = THIS_MODULE, 2634 .of_match_table = ipmi_match, 2635 }, 2636 .probe = ipmi_of_probe, 2637 .remove = __devexit_p(ipmi_of_remove), 2638 }; 2639 #endif /* CONFIG_PPC_OF */ 2640 2641 static int wait_for_msg_done(struct smi_info *smi_info) 2642 { 2643 enum si_sm_result smi_result; 2644 2645 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2646 for (;;) { 2647 if (smi_result == SI_SM_CALL_WITH_DELAY || 2648 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2649 schedule_timeout_uninterruptible(1); 2650 smi_result = smi_info->handlers->event( 2651 smi_info->si_sm, 100); 2652 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2653 smi_result = smi_info->handlers->event( 2654 smi_info->si_sm, 0); 2655 } else 2656 break; 2657 } 2658 if (smi_result == SI_SM_HOSED) 2659 /* 2660 * We couldn't get the state machine to run, so whatever's at 2661 * the port is probably not an IPMI SMI interface. 2662 */ 2663 return -ENODEV; 2664 2665 return 0; 2666 } 2667 2668 static int try_get_dev_id(struct smi_info *smi_info) 2669 { 2670 unsigned char msg[2]; 2671 unsigned char *resp; 2672 unsigned long resp_len; 2673 int rv = 0; 2674 2675 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2676 if (!resp) 2677 return -ENOMEM; 2678 2679 /* 2680 * Do a Get Device ID command, since it comes back with some 2681 * useful info. 2682 */ 2683 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2684 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2685 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2686 2687 rv = wait_for_msg_done(smi_info); 2688 if (rv) 2689 goto out; 2690 2691 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2692 resp, IPMI_MAX_MSG_LENGTH); 2693 2694 /* Check and record info from the get device id, in case we need it. */ 2695 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2696 2697 out: 2698 kfree(resp); 2699 return rv; 2700 } 2701 2702 static int try_enable_event_buffer(struct smi_info *smi_info) 2703 { 2704 unsigned char msg[3]; 2705 unsigned char *resp; 2706 unsigned long resp_len; 2707 int rv = 0; 2708 2709 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2710 if (!resp) 2711 return -ENOMEM; 2712 2713 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2714 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2715 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2716 2717 rv = wait_for_msg_done(smi_info); 2718 if (rv) { 2719 printk(KERN_WARNING PFX "Error getting response from get" 2720 " global enables command, the event buffer is not" 2721 " enabled.\n"); 2722 goto out; 2723 } 2724 2725 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2726 resp, IPMI_MAX_MSG_LENGTH); 2727 2728 if (resp_len < 4 || 2729 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2730 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2731 resp[2] != 0) { 2732 printk(KERN_WARNING PFX "Invalid return from get global" 2733 " enables command, cannot enable the event buffer.\n"); 2734 rv = -EINVAL; 2735 goto out; 2736 } 2737 2738 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2739 /* buffer is already enabled, nothing to do. */ 2740 goto out; 2741 2742 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2743 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2744 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2745 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2746 2747 rv = wait_for_msg_done(smi_info); 2748 if (rv) { 2749 printk(KERN_WARNING PFX "Error getting response from set" 2750 " global, enables command, the event buffer is not" 2751 " enabled.\n"); 2752 goto out; 2753 } 2754 2755 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2756 resp, IPMI_MAX_MSG_LENGTH); 2757 2758 if (resp_len < 3 || 2759 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2760 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2761 printk(KERN_WARNING PFX "Invalid return from get global," 2762 "enables command, not enable the event buffer.\n"); 2763 rv = -EINVAL; 2764 goto out; 2765 } 2766 2767 if (resp[2] != 0) 2768 /* 2769 * An error when setting the event buffer bit means 2770 * that the event buffer is not supported. 2771 */ 2772 rv = -ENOENT; 2773 out: 2774 kfree(resp); 2775 return rv; 2776 } 2777 2778 static int type_file_read_proc(char *page, char **start, off_t off, 2779 int count, int *eof, void *data) 2780 { 2781 struct smi_info *smi = data; 2782 2783 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2784 } 2785 2786 static int stat_file_read_proc(char *page, char **start, off_t off, 2787 int count, int *eof, void *data) 2788 { 2789 char *out = (char *) page; 2790 struct smi_info *smi = data; 2791 2792 out += sprintf(out, "interrupts_enabled: %d\n", 2793 smi->irq && !smi->interrupt_disabled); 2794 out += sprintf(out, "short_timeouts: %u\n", 2795 smi_get_stat(smi, short_timeouts)); 2796 out += sprintf(out, "long_timeouts: %u\n", 2797 smi_get_stat(smi, long_timeouts)); 2798 out += sprintf(out, "idles: %u\n", 2799 smi_get_stat(smi, idles)); 2800 out += sprintf(out, "interrupts: %u\n", 2801 smi_get_stat(smi, interrupts)); 2802 out += sprintf(out, "attentions: %u\n", 2803 smi_get_stat(smi, attentions)); 2804 out += sprintf(out, "flag_fetches: %u\n", 2805 smi_get_stat(smi, flag_fetches)); 2806 out += sprintf(out, "hosed_count: %u\n", 2807 smi_get_stat(smi, hosed_count)); 2808 out += sprintf(out, "complete_transactions: %u\n", 2809 smi_get_stat(smi, complete_transactions)); 2810 out += sprintf(out, "events: %u\n", 2811 smi_get_stat(smi, events)); 2812 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2813 smi_get_stat(smi, watchdog_pretimeouts)); 2814 out += sprintf(out, "incoming_messages: %u\n", 2815 smi_get_stat(smi, incoming_messages)); 2816 2817 return out - page; 2818 } 2819 2820 static int param_read_proc(char *page, char **start, off_t off, 2821 int count, int *eof, void *data) 2822 { 2823 struct smi_info *smi = data; 2824 2825 return sprintf(page, 2826 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2827 si_to_str[smi->si_type], 2828 addr_space_to_str[smi->io.addr_type], 2829 smi->io.addr_data, 2830 smi->io.regspacing, 2831 smi->io.regsize, 2832 smi->io.regshift, 2833 smi->irq, 2834 smi->slave_addr); 2835 } 2836 2837 /* 2838 * oem_data_avail_to_receive_msg_avail 2839 * @info - smi_info structure with msg_flags set 2840 * 2841 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2842 * Returns 1 indicating need to re-run handle_flags(). 2843 */ 2844 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2845 { 2846 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2847 RECEIVE_MSG_AVAIL); 2848 return 1; 2849 } 2850 2851 /* 2852 * setup_dell_poweredge_oem_data_handler 2853 * @info - smi_info.device_id must be populated 2854 * 2855 * Systems that match, but have firmware version < 1.40 may assert 2856 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2857 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2858 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2859 * as RECEIVE_MSG_AVAIL instead. 2860 * 2861 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2862 * assert the OEM[012] bits, and if it did, the driver would have to 2863 * change to handle that properly, we don't actually check for the 2864 * firmware version. 2865 * Device ID = 0x20 BMC on PowerEdge 8G servers 2866 * Device Revision = 0x80 2867 * Firmware Revision1 = 0x01 BMC version 1.40 2868 * Firmware Revision2 = 0x40 BCD encoded 2869 * IPMI Version = 0x51 IPMI 1.5 2870 * Manufacturer ID = A2 02 00 Dell IANA 2871 * 2872 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2873 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2874 * 2875 */ 2876 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2877 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2878 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2879 #define DELL_IANA_MFR_ID 0x0002a2 2880 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2881 { 2882 struct ipmi_device_id *id = &smi_info->device_id; 2883 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2884 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2885 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2886 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2887 smi_info->oem_data_avail_handler = 2888 oem_data_avail_to_receive_msg_avail; 2889 } else if (ipmi_version_major(id) < 1 || 2890 (ipmi_version_major(id) == 1 && 2891 ipmi_version_minor(id) < 5)) { 2892 smi_info->oem_data_avail_handler = 2893 oem_data_avail_to_receive_msg_avail; 2894 } 2895 } 2896 } 2897 2898 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2899 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2900 { 2901 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2902 2903 /* Make it a reponse */ 2904 msg->rsp[0] = msg->data[0] | 4; 2905 msg->rsp[1] = msg->data[1]; 2906 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2907 msg->rsp_size = 3; 2908 smi_info->curr_msg = NULL; 2909 deliver_recv_msg(smi_info, msg); 2910 } 2911 2912 /* 2913 * dell_poweredge_bt_xaction_handler 2914 * @info - smi_info.device_id must be populated 2915 * 2916 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2917 * not respond to a Get SDR command if the length of the data 2918 * requested is exactly 0x3A, which leads to command timeouts and no 2919 * data returned. This intercepts such commands, and causes userspace 2920 * callers to try again with a different-sized buffer, which succeeds. 2921 */ 2922 2923 #define STORAGE_NETFN 0x0A 2924 #define STORAGE_CMD_GET_SDR 0x23 2925 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2926 unsigned long unused, 2927 void *in) 2928 { 2929 struct smi_info *smi_info = in; 2930 unsigned char *data = smi_info->curr_msg->data; 2931 unsigned int size = smi_info->curr_msg->data_size; 2932 if (size >= 8 && 2933 (data[0]>>2) == STORAGE_NETFN && 2934 data[1] == STORAGE_CMD_GET_SDR && 2935 data[7] == 0x3A) { 2936 return_hosed_msg_badsize(smi_info); 2937 return NOTIFY_STOP; 2938 } 2939 return NOTIFY_DONE; 2940 } 2941 2942 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2943 .notifier_call = dell_poweredge_bt_xaction_handler, 2944 }; 2945 2946 /* 2947 * setup_dell_poweredge_bt_xaction_handler 2948 * @info - smi_info.device_id must be filled in already 2949 * 2950 * Fills in smi_info.device_id.start_transaction_pre_hook 2951 * when we know what function to use there. 2952 */ 2953 static void 2954 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2955 { 2956 struct ipmi_device_id *id = &smi_info->device_id; 2957 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2958 smi_info->si_type == SI_BT) 2959 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2960 } 2961 2962 /* 2963 * setup_oem_data_handler 2964 * @info - smi_info.device_id must be filled in already 2965 * 2966 * Fills in smi_info.device_id.oem_data_available_handler 2967 * when we know what function to use there. 2968 */ 2969 2970 static void setup_oem_data_handler(struct smi_info *smi_info) 2971 { 2972 setup_dell_poweredge_oem_data_handler(smi_info); 2973 } 2974 2975 static void setup_xaction_handlers(struct smi_info *smi_info) 2976 { 2977 setup_dell_poweredge_bt_xaction_handler(smi_info); 2978 } 2979 2980 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2981 { 2982 if (smi_info->intf) { 2983 /* 2984 * The timer and thread are only running if the 2985 * interface has been started up and registered. 2986 */ 2987 if (smi_info->thread != NULL) 2988 kthread_stop(smi_info->thread); 2989 del_timer_sync(&smi_info->si_timer); 2990 } 2991 } 2992 2993 static __devinitdata struct ipmi_default_vals 2994 { 2995 int type; 2996 int port; 2997 } ipmi_defaults[] = 2998 { 2999 { .type = SI_KCS, .port = 0xca2 }, 3000 { .type = SI_SMIC, .port = 0xca9 }, 3001 { .type = SI_BT, .port = 0xe4 }, 3002 { .port = 0 } 3003 }; 3004 3005 static __devinit void default_find_bmc(void) 3006 { 3007 struct smi_info *info; 3008 int i; 3009 3010 for (i = 0; ; i++) { 3011 if (!ipmi_defaults[i].port) 3012 break; 3013 #ifdef CONFIG_PPC 3014 if (check_legacy_ioport(ipmi_defaults[i].port)) 3015 continue; 3016 #endif 3017 info = kzalloc(sizeof(*info), GFP_KERNEL); 3018 if (!info) 3019 return; 3020 3021 info->addr_source = SI_DEFAULT; 3022 3023 info->si_type = ipmi_defaults[i].type; 3024 info->io_setup = port_setup; 3025 info->io.addr_data = ipmi_defaults[i].port; 3026 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3027 3028 info->io.addr = NULL; 3029 info->io.regspacing = DEFAULT_REGSPACING; 3030 info->io.regsize = DEFAULT_REGSPACING; 3031 info->io.regshift = 0; 3032 3033 if (add_smi(info) == 0) { 3034 if ((try_smi_init(info)) == 0) { 3035 /* Found one... */ 3036 printk(KERN_INFO PFX "Found default %s" 3037 " state machine at %s address 0x%lx\n", 3038 si_to_str[info->si_type], 3039 addr_space_to_str[info->io.addr_type], 3040 info->io.addr_data); 3041 } else 3042 cleanup_one_si(info); 3043 } else { 3044 kfree(info); 3045 } 3046 } 3047 } 3048 3049 static int is_new_interface(struct smi_info *info) 3050 { 3051 struct smi_info *e; 3052 3053 list_for_each_entry(e, &smi_infos, link) { 3054 if (e->io.addr_type != info->io.addr_type) 3055 continue; 3056 if (e->io.addr_data == info->io.addr_data) 3057 return 0; 3058 } 3059 3060 return 1; 3061 } 3062 3063 static int add_smi(struct smi_info *new_smi) 3064 { 3065 int rv = 0; 3066 3067 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3068 ipmi_addr_src_to_str[new_smi->addr_source], 3069 si_to_str[new_smi->si_type]); 3070 mutex_lock(&smi_infos_lock); 3071 if (!is_new_interface(new_smi)) { 3072 printk(KERN_CONT " duplicate interface\n"); 3073 rv = -EBUSY; 3074 goto out_err; 3075 } 3076 3077 printk(KERN_CONT "\n"); 3078 3079 /* So we know not to free it unless we have allocated one. */ 3080 new_smi->intf = NULL; 3081 new_smi->si_sm = NULL; 3082 new_smi->handlers = NULL; 3083 3084 list_add_tail(&new_smi->link, &smi_infos); 3085 3086 out_err: 3087 mutex_unlock(&smi_infos_lock); 3088 return rv; 3089 } 3090 3091 static int try_smi_init(struct smi_info *new_smi) 3092 { 3093 int rv = 0; 3094 int i; 3095 3096 printk(KERN_INFO PFX "Trying %s-specified %s state" 3097 " machine at %s address 0x%lx, slave address 0x%x," 3098 " irq %d\n", 3099 ipmi_addr_src_to_str[new_smi->addr_source], 3100 si_to_str[new_smi->si_type], 3101 addr_space_to_str[new_smi->io.addr_type], 3102 new_smi->io.addr_data, 3103 new_smi->slave_addr, new_smi->irq); 3104 3105 switch (new_smi->si_type) { 3106 case SI_KCS: 3107 new_smi->handlers = &kcs_smi_handlers; 3108 break; 3109 3110 case SI_SMIC: 3111 new_smi->handlers = &smic_smi_handlers; 3112 break; 3113 3114 case SI_BT: 3115 new_smi->handlers = &bt_smi_handlers; 3116 break; 3117 3118 default: 3119 /* No support for anything else yet. */ 3120 rv = -EIO; 3121 goto out_err; 3122 } 3123 3124 /* Allocate the state machine's data and initialize it. */ 3125 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3126 if (!new_smi->si_sm) { 3127 printk(KERN_ERR PFX 3128 "Could not allocate state machine memory\n"); 3129 rv = -ENOMEM; 3130 goto out_err; 3131 } 3132 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3133 &new_smi->io); 3134 3135 /* Now that we know the I/O size, we can set up the I/O. */ 3136 rv = new_smi->io_setup(new_smi); 3137 if (rv) { 3138 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3139 goto out_err; 3140 } 3141 3142 spin_lock_init(&(new_smi->si_lock)); 3143 spin_lock_init(&(new_smi->msg_lock)); 3144 3145 /* Do low-level detection first. */ 3146 if (new_smi->handlers->detect(new_smi->si_sm)) { 3147 if (new_smi->addr_source) 3148 printk(KERN_INFO PFX "Interface detection failed\n"); 3149 rv = -ENODEV; 3150 goto out_err; 3151 } 3152 3153 /* 3154 * Attempt a get device id command. If it fails, we probably 3155 * don't have a BMC here. 3156 */ 3157 rv = try_get_dev_id(new_smi); 3158 if (rv) { 3159 if (new_smi->addr_source) 3160 printk(KERN_INFO PFX "There appears to be no BMC" 3161 " at this location\n"); 3162 goto out_err; 3163 } 3164 3165 setup_oem_data_handler(new_smi); 3166 setup_xaction_handlers(new_smi); 3167 3168 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3169 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3170 new_smi->curr_msg = NULL; 3171 atomic_set(&new_smi->req_events, 0); 3172 new_smi->run_to_completion = 0; 3173 for (i = 0; i < SI_NUM_STATS; i++) 3174 atomic_set(&new_smi->stats[i], 0); 3175 3176 new_smi->interrupt_disabled = 1; 3177 atomic_set(&new_smi->stop_operation, 0); 3178 new_smi->intf_num = smi_num; 3179 smi_num++; 3180 3181 rv = try_enable_event_buffer(new_smi); 3182 if (rv == 0) 3183 new_smi->has_event_buffer = 1; 3184 3185 /* 3186 * Start clearing the flags before we enable interrupts or the 3187 * timer to avoid racing with the timer. 3188 */ 3189 start_clear_flags(new_smi); 3190 /* IRQ is defined to be set when non-zero. */ 3191 if (new_smi->irq) 3192 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3193 3194 if (!new_smi->dev) { 3195 /* 3196 * If we don't already have a device from something 3197 * else (like PCI), then register a new one. 3198 */ 3199 new_smi->pdev = platform_device_alloc("ipmi_si", 3200 new_smi->intf_num); 3201 if (!new_smi->pdev) { 3202 printk(KERN_ERR PFX 3203 "Unable to allocate platform device\n"); 3204 goto out_err; 3205 } 3206 new_smi->dev = &new_smi->pdev->dev; 3207 new_smi->dev->driver = &ipmi_driver.driver; 3208 3209 rv = platform_device_add(new_smi->pdev); 3210 if (rv) { 3211 printk(KERN_ERR PFX 3212 "Unable to register system interface device:" 3213 " %d\n", 3214 rv); 3215 goto out_err; 3216 } 3217 new_smi->dev_registered = 1; 3218 } 3219 3220 rv = ipmi_register_smi(&handlers, 3221 new_smi, 3222 &new_smi->device_id, 3223 new_smi->dev, 3224 "bmc", 3225 new_smi->slave_addr); 3226 if (rv) { 3227 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3228 rv); 3229 goto out_err_stop_timer; 3230 } 3231 3232 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3233 type_file_read_proc, 3234 new_smi); 3235 if (rv) { 3236 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3237 goto out_err_stop_timer; 3238 } 3239 3240 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3241 stat_file_read_proc, 3242 new_smi); 3243 if (rv) { 3244 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3245 goto out_err_stop_timer; 3246 } 3247 3248 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3249 param_read_proc, 3250 new_smi); 3251 if (rv) { 3252 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3253 goto out_err_stop_timer; 3254 } 3255 3256 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3257 si_to_str[new_smi->si_type]); 3258 3259 return 0; 3260 3261 out_err_stop_timer: 3262 atomic_inc(&new_smi->stop_operation); 3263 wait_for_timer_and_thread(new_smi); 3264 3265 out_err: 3266 new_smi->interrupt_disabled = 1; 3267 3268 if (new_smi->intf) { 3269 ipmi_unregister_smi(new_smi->intf); 3270 new_smi->intf = NULL; 3271 } 3272 3273 if (new_smi->irq_cleanup) { 3274 new_smi->irq_cleanup(new_smi); 3275 new_smi->irq_cleanup = NULL; 3276 } 3277 3278 /* 3279 * Wait until we know that we are out of any interrupt 3280 * handlers might have been running before we freed the 3281 * interrupt. 3282 */ 3283 synchronize_sched(); 3284 3285 if (new_smi->si_sm) { 3286 if (new_smi->handlers) 3287 new_smi->handlers->cleanup(new_smi->si_sm); 3288 kfree(new_smi->si_sm); 3289 new_smi->si_sm = NULL; 3290 } 3291 if (new_smi->addr_source_cleanup) { 3292 new_smi->addr_source_cleanup(new_smi); 3293 new_smi->addr_source_cleanup = NULL; 3294 } 3295 if (new_smi->io_cleanup) { 3296 new_smi->io_cleanup(new_smi); 3297 new_smi->io_cleanup = NULL; 3298 } 3299 3300 if (new_smi->dev_registered) { 3301 platform_device_unregister(new_smi->pdev); 3302 new_smi->dev_registered = 0; 3303 } 3304 3305 return rv; 3306 } 3307 3308 static __devinit int init_ipmi_si(void) 3309 { 3310 int i; 3311 char *str; 3312 int rv; 3313 struct smi_info *e; 3314 enum ipmi_addr_src type = SI_INVALID; 3315 3316 if (initialized) 3317 return 0; 3318 initialized = 1; 3319 3320 /* Register the device drivers. */ 3321 rv = driver_register(&ipmi_driver.driver); 3322 if (rv) { 3323 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3324 return rv; 3325 } 3326 3327 3328 /* Parse out the si_type string into its components. */ 3329 str = si_type_str; 3330 if (*str != '\0') { 3331 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3332 si_type[i] = str; 3333 str = strchr(str, ','); 3334 if (str) { 3335 *str = '\0'; 3336 str++; 3337 } else { 3338 break; 3339 } 3340 } 3341 } 3342 3343 printk(KERN_INFO "IPMI System Interface driver.\n"); 3344 3345 hardcode_find_bmc(); 3346 3347 /* If the user gave us a device, they presumably want us to use it */ 3348 mutex_lock(&smi_infos_lock); 3349 if (!list_empty(&smi_infos)) { 3350 mutex_unlock(&smi_infos_lock); 3351 return 0; 3352 } 3353 mutex_unlock(&smi_infos_lock); 3354 3355 #ifdef CONFIG_PCI 3356 rv = pci_register_driver(&ipmi_pci_driver); 3357 if (rv) 3358 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3359 else 3360 pci_registered = 1; 3361 #endif 3362 3363 #ifdef CONFIG_ACPI 3364 pnp_register_driver(&ipmi_pnp_driver); 3365 pnp_registered = 1; 3366 #endif 3367 3368 #ifdef CONFIG_DMI 3369 dmi_find_bmc(); 3370 #endif 3371 3372 #ifdef CONFIG_ACPI 3373 spmi_find_bmc(); 3374 #endif 3375 3376 #ifdef CONFIG_PPC_OF 3377 of_register_platform_driver(&ipmi_of_platform_driver); 3378 of_registered = 1; 3379 #endif 3380 3381 /* We prefer devices with interrupts, but in the case of a machine 3382 with multiple BMCs we assume that there will be several instances 3383 of a given type so if we succeed in registering a type then also 3384 try to register everything else of the same type */ 3385 3386 mutex_lock(&smi_infos_lock); 3387 list_for_each_entry(e, &smi_infos, link) { 3388 /* Try to register a device if it has an IRQ and we either 3389 haven't successfully registered a device yet or this 3390 device has the same type as one we successfully registered */ 3391 if (e->irq && (!type || e->addr_source == type)) { 3392 if (!try_smi_init(e)) { 3393 type = e->addr_source; 3394 } 3395 } 3396 } 3397 3398 /* type will only have been set if we successfully registered an si */ 3399 if (type) { 3400 mutex_unlock(&smi_infos_lock); 3401 return 0; 3402 } 3403 3404 /* Fall back to the preferred device */ 3405 3406 list_for_each_entry(e, &smi_infos, link) { 3407 if (!e->irq && (!type || e->addr_source == type)) { 3408 if (!try_smi_init(e)) { 3409 type = e->addr_source; 3410 } 3411 } 3412 } 3413 mutex_unlock(&smi_infos_lock); 3414 3415 if (type) 3416 return 0; 3417 3418 if (si_trydefaults) { 3419 mutex_lock(&smi_infos_lock); 3420 if (list_empty(&smi_infos)) { 3421 /* No BMC was found, try defaults. */ 3422 mutex_unlock(&smi_infos_lock); 3423 default_find_bmc(); 3424 } else 3425 mutex_unlock(&smi_infos_lock); 3426 } 3427 3428 mutex_lock(&smi_infos_lock); 3429 if (unload_when_empty && list_empty(&smi_infos)) { 3430 mutex_unlock(&smi_infos_lock); 3431 #ifdef CONFIG_PCI 3432 if (pci_registered) 3433 pci_unregister_driver(&ipmi_pci_driver); 3434 #endif 3435 3436 #ifdef CONFIG_PPC_OF 3437 if (of_registered) 3438 of_unregister_platform_driver(&ipmi_of_platform_driver); 3439 #endif 3440 driver_unregister(&ipmi_driver.driver); 3441 printk(KERN_WARNING PFX 3442 "Unable to find any System Interface(s)\n"); 3443 return -ENODEV; 3444 } else { 3445 mutex_unlock(&smi_infos_lock); 3446 return 0; 3447 } 3448 } 3449 module_init(init_ipmi_si); 3450 3451 static void cleanup_one_si(struct smi_info *to_clean) 3452 { 3453 int rv = 0; 3454 unsigned long flags; 3455 3456 if (!to_clean) 3457 return; 3458 3459 list_del(&to_clean->link); 3460 3461 /* Tell the driver that we are shutting down. */ 3462 atomic_inc(&to_clean->stop_operation); 3463 3464 /* 3465 * Make sure the timer and thread are stopped and will not run 3466 * again. 3467 */ 3468 wait_for_timer_and_thread(to_clean); 3469 3470 /* 3471 * Timeouts are stopped, now make sure the interrupts are off 3472 * for the device. A little tricky with locks to make sure 3473 * there are no races. 3474 */ 3475 spin_lock_irqsave(&to_clean->si_lock, flags); 3476 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3477 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3478 poll(to_clean); 3479 schedule_timeout_uninterruptible(1); 3480 spin_lock_irqsave(&to_clean->si_lock, flags); 3481 } 3482 disable_si_irq(to_clean); 3483 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3484 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3485 poll(to_clean); 3486 schedule_timeout_uninterruptible(1); 3487 } 3488 3489 /* Clean up interrupts and make sure that everything is done. */ 3490 if (to_clean->irq_cleanup) 3491 to_clean->irq_cleanup(to_clean); 3492 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3493 poll(to_clean); 3494 schedule_timeout_uninterruptible(1); 3495 } 3496 3497 if (to_clean->intf) 3498 rv = ipmi_unregister_smi(to_clean->intf); 3499 3500 if (rv) { 3501 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3502 rv); 3503 } 3504 3505 if (to_clean->handlers) 3506 to_clean->handlers->cleanup(to_clean->si_sm); 3507 3508 kfree(to_clean->si_sm); 3509 3510 if (to_clean->addr_source_cleanup) 3511 to_clean->addr_source_cleanup(to_clean); 3512 if (to_clean->io_cleanup) 3513 to_clean->io_cleanup(to_clean); 3514 3515 if (to_clean->dev_registered) 3516 platform_device_unregister(to_clean->pdev); 3517 3518 kfree(to_clean); 3519 } 3520 3521 static __exit void cleanup_ipmi_si(void) 3522 { 3523 struct smi_info *e, *tmp_e; 3524 3525 if (!initialized) 3526 return; 3527 3528 #ifdef CONFIG_PCI 3529 if (pci_registered) 3530 pci_unregister_driver(&ipmi_pci_driver); 3531 #endif 3532 #ifdef CONFIG_ACPI 3533 if (pnp_registered) 3534 pnp_unregister_driver(&ipmi_pnp_driver); 3535 #endif 3536 3537 #ifdef CONFIG_PPC_OF 3538 if (of_registered) 3539 of_unregister_platform_driver(&ipmi_of_platform_driver); 3540 #endif 3541 3542 mutex_lock(&smi_infos_lock); 3543 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3544 cleanup_one_si(e); 3545 mutex_unlock(&smi_infos_lock); 3546 3547 driver_unregister(&ipmi_driver.driver); 3548 } 3549 module_exit(cleanup_ipmi_si); 3550 3551 MODULE_LICENSE("GPL"); 3552 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3553 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3554 " system interfaces."); 3555