xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 
59 static int initialized;
60 
61 #ifdef CONFIG_PROC_FS
62 static struct proc_dir_entry *proc_ipmi_root;
63 #endif /* CONFIG_PROC_FS */
64 
65 /* Remain in auto-maintenance mode for this amount of time (in ms). */
66 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
67 
68 #define MAX_EVENTS_IN_QUEUE	25
69 
70 /*
71  * Don't let a message sit in a queue forever, always time it with at lest
72  * the max message timer.  This is in milliseconds.
73  */
74 #define MAX_MSG_TIMEOUT		60000
75 
76 /*
77  * The main "user" data structure.
78  */
79 struct ipmi_user {
80 	struct list_head link;
81 
82 	/* Set to "0" when the user is destroyed. */
83 	int valid;
84 
85 	struct kref refcount;
86 
87 	/* The upper layer that handles receive messages. */
88 	struct ipmi_user_hndl *handler;
89 	void             *handler_data;
90 
91 	/* The interface this user is bound to. */
92 	ipmi_smi_t intf;
93 
94 	/* Does this interface receive IPMI events? */
95 	int gets_events;
96 };
97 
98 struct cmd_rcvr {
99 	struct list_head link;
100 
101 	ipmi_user_t   user;
102 	unsigned char netfn;
103 	unsigned char cmd;
104 	unsigned int  chans;
105 
106 	/*
107 	 * This is used to form a linked lised during mass deletion.
108 	 * Since this is in an RCU list, we cannot use the link above
109 	 * or change any data until the RCU period completes.  So we
110 	 * use this next variable during mass deletion so we can have
111 	 * a list and don't have to wait and restart the search on
112 	 * every individual deletion of a command.
113 	 */
114 	struct cmd_rcvr *next;
115 };
116 
117 struct seq_table {
118 	unsigned int         inuse : 1;
119 	unsigned int         broadcast : 1;
120 
121 	unsigned long        timeout;
122 	unsigned long        orig_timeout;
123 	unsigned int         retries_left;
124 
125 	/*
126 	 * To verify on an incoming send message response that this is
127 	 * the message that the response is for, we keep a sequence id
128 	 * and increment it every time we send a message.
129 	 */
130 	long                 seqid;
131 
132 	/*
133 	 * This is held so we can properly respond to the message on a
134 	 * timeout, and it is used to hold the temporary data for
135 	 * retransmission, too.
136 	 */
137 	struct ipmi_recv_msg *recv_msg;
138 };
139 
140 /*
141  * Store the information in a msgid (long) to allow us to find a
142  * sequence table entry from the msgid.
143  */
144 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
145 
146 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
147 	do {								\
148 		seq = ((msgid >> 26) & 0x3f);				\
149 		seqid = (msgid & 0x3fffff);				\
150 	} while (0)
151 
152 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
153 
154 struct ipmi_channel {
155 	unsigned char medium;
156 	unsigned char protocol;
157 
158 	/*
159 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
160 	 * but may be changed by the user.
161 	 */
162 	unsigned char address;
163 
164 	/*
165 	 * My LUN.  This should generally stay the SMS LUN, but just in
166 	 * case...
167 	 */
168 	unsigned char lun;
169 };
170 
171 #ifdef CONFIG_PROC_FS
172 struct ipmi_proc_entry {
173 	char                   *name;
174 	struct ipmi_proc_entry *next;
175 };
176 #endif
177 
178 struct bmc_device {
179 	struct platform_device *dev;
180 	struct ipmi_device_id  id;
181 	unsigned char          guid[16];
182 	int                    guid_set;
183 
184 	struct kref	       refcount;
185 
186 	/* bmc device attributes */
187 	struct device_attribute device_id_attr;
188 	struct device_attribute provides_dev_sdrs_attr;
189 	struct device_attribute revision_attr;
190 	struct device_attribute firmware_rev_attr;
191 	struct device_attribute version_attr;
192 	struct device_attribute add_dev_support_attr;
193 	struct device_attribute manufacturer_id_attr;
194 	struct device_attribute product_id_attr;
195 	struct device_attribute guid_attr;
196 	struct device_attribute aux_firmware_rev_attr;
197 };
198 
199 /*
200  * Various statistics for IPMI, these index stats[] in the ipmi_smi
201  * structure.
202  */
203 enum ipmi_stat_indexes {
204 	/* Commands we got from the user that were invalid. */
205 	IPMI_STAT_sent_invalid_commands = 0,
206 
207 	/* Commands we sent to the MC. */
208 	IPMI_STAT_sent_local_commands,
209 
210 	/* Responses from the MC that were delivered to a user. */
211 	IPMI_STAT_handled_local_responses,
212 
213 	/* Responses from the MC that were not delivered to a user. */
214 	IPMI_STAT_unhandled_local_responses,
215 
216 	/* Commands we sent out to the IPMB bus. */
217 	IPMI_STAT_sent_ipmb_commands,
218 
219 	/* Commands sent on the IPMB that had errors on the SEND CMD */
220 	IPMI_STAT_sent_ipmb_command_errs,
221 
222 	/* Each retransmit increments this count. */
223 	IPMI_STAT_retransmitted_ipmb_commands,
224 
225 	/*
226 	 * When a message times out (runs out of retransmits) this is
227 	 * incremented.
228 	 */
229 	IPMI_STAT_timed_out_ipmb_commands,
230 
231 	/*
232 	 * This is like above, but for broadcasts.  Broadcasts are
233 	 * *not* included in the above count (they are expected to
234 	 * time out).
235 	 */
236 	IPMI_STAT_timed_out_ipmb_broadcasts,
237 
238 	/* Responses I have sent to the IPMB bus. */
239 	IPMI_STAT_sent_ipmb_responses,
240 
241 	/* The response was delivered to the user. */
242 	IPMI_STAT_handled_ipmb_responses,
243 
244 	/* The response had invalid data in it. */
245 	IPMI_STAT_invalid_ipmb_responses,
246 
247 	/* The response didn't have anyone waiting for it. */
248 	IPMI_STAT_unhandled_ipmb_responses,
249 
250 	/* Commands we sent out to the IPMB bus. */
251 	IPMI_STAT_sent_lan_commands,
252 
253 	/* Commands sent on the IPMB that had errors on the SEND CMD */
254 	IPMI_STAT_sent_lan_command_errs,
255 
256 	/* Each retransmit increments this count. */
257 	IPMI_STAT_retransmitted_lan_commands,
258 
259 	/*
260 	 * When a message times out (runs out of retransmits) this is
261 	 * incremented.
262 	 */
263 	IPMI_STAT_timed_out_lan_commands,
264 
265 	/* Responses I have sent to the IPMB bus. */
266 	IPMI_STAT_sent_lan_responses,
267 
268 	/* The response was delivered to the user. */
269 	IPMI_STAT_handled_lan_responses,
270 
271 	/* The response had invalid data in it. */
272 	IPMI_STAT_invalid_lan_responses,
273 
274 	/* The response didn't have anyone waiting for it. */
275 	IPMI_STAT_unhandled_lan_responses,
276 
277 	/* The command was delivered to the user. */
278 	IPMI_STAT_handled_commands,
279 
280 	/* The command had invalid data in it. */
281 	IPMI_STAT_invalid_commands,
282 
283 	/* The command didn't have anyone waiting for it. */
284 	IPMI_STAT_unhandled_commands,
285 
286 	/* Invalid data in an event. */
287 	IPMI_STAT_invalid_events,
288 
289 	/* Events that were received with the proper format. */
290 	IPMI_STAT_events,
291 
292 	/* Retransmissions on IPMB that failed. */
293 	IPMI_STAT_dropped_rexmit_ipmb_commands,
294 
295 	/* Retransmissions on LAN that failed. */
296 	IPMI_STAT_dropped_rexmit_lan_commands,
297 
298 	/* This *must* remain last, add new values above this. */
299 	IPMI_NUM_STATS
300 };
301 
302 
303 #define IPMI_IPMB_NUM_SEQ	64
304 #define IPMI_MAX_CHANNELS       16
305 struct ipmi_smi {
306 	/* What interface number are we? */
307 	int intf_num;
308 
309 	struct kref refcount;
310 
311 	/* Used for a list of interfaces. */
312 	struct list_head link;
313 
314 	/*
315 	 * The list of upper layers that are using me.  seq_lock
316 	 * protects this.
317 	 */
318 	struct list_head users;
319 
320 	/* Information to supply to users. */
321 	unsigned char ipmi_version_major;
322 	unsigned char ipmi_version_minor;
323 
324 	/* Used for wake ups at startup. */
325 	wait_queue_head_t waitq;
326 
327 	struct bmc_device *bmc;
328 	char *my_dev_name;
329 	char *sysfs_name;
330 
331 	/*
332 	 * This is the lower-layer's sender routine.  Note that you
333 	 * must either be holding the ipmi_interfaces_mutex or be in
334 	 * an umpreemptible region to use this.  You must fetch the
335 	 * value into a local variable and make sure it is not NULL.
336 	 */
337 	struct ipmi_smi_handlers *handlers;
338 	void                     *send_info;
339 
340 #ifdef CONFIG_PROC_FS
341 	/* A list of proc entries for this interface. */
342 	struct mutex           proc_entry_lock;
343 	struct ipmi_proc_entry *proc_entries;
344 #endif
345 
346 	/* Driver-model device for the system interface. */
347 	struct device          *si_dev;
348 
349 	/*
350 	 * A table of sequence numbers for this interface.  We use the
351 	 * sequence numbers for IPMB messages that go out of the
352 	 * interface to match them up with their responses.  A routine
353 	 * is called periodically to time the items in this list.
354 	 */
355 	spinlock_t       seq_lock;
356 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
357 	int curr_seq;
358 
359 	/*
360 	 * Messages queued for delivery.  If delivery fails (out of memory
361 	 * for instance), They will stay in here to be processed later in a
362 	 * periodic timer interrupt.  The tasklet is for handling received
363 	 * messages directly from the handler.
364 	 */
365 	spinlock_t       waiting_msgs_lock;
366 	struct list_head waiting_msgs;
367 	atomic_t	 watchdog_pretimeouts_to_deliver;
368 	struct tasklet_struct recv_tasklet;
369 
370 	/*
371 	 * The list of command receivers that are registered for commands
372 	 * on this interface.
373 	 */
374 	struct mutex     cmd_rcvrs_mutex;
375 	struct list_head cmd_rcvrs;
376 
377 	/*
378 	 * Events that were queues because no one was there to receive
379 	 * them.
380 	 */
381 	spinlock_t       events_lock; /* For dealing with event stuff. */
382 	struct list_head waiting_events;
383 	unsigned int     waiting_events_count; /* How many events in queue? */
384 	char             delivering_events;
385 	char             event_msg_printed;
386 
387 	/*
388 	 * The event receiver for my BMC, only really used at panic
389 	 * shutdown as a place to store this.
390 	 */
391 	unsigned char event_receiver;
392 	unsigned char event_receiver_lun;
393 	unsigned char local_sel_device;
394 	unsigned char local_event_generator;
395 
396 	/* For handling of maintenance mode. */
397 	int maintenance_mode;
398 	int maintenance_mode_enable;
399 	int auto_maintenance_timeout;
400 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
401 
402 	/*
403 	 * A cheap hack, if this is non-null and a message to an
404 	 * interface comes in with a NULL user, call this routine with
405 	 * it.  Note that the message will still be freed by the
406 	 * caller.  This only works on the system interface.
407 	 */
408 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
409 
410 	/*
411 	 * When we are scanning the channels for an SMI, this will
412 	 * tell which channel we are scanning.
413 	 */
414 	int curr_channel;
415 
416 	/* Channel information */
417 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
418 
419 	/* Proc FS stuff. */
420 	struct proc_dir_entry *proc_dir;
421 	char                  proc_dir_name[10];
422 
423 	atomic_t stats[IPMI_NUM_STATS];
424 
425 	/*
426 	 * run_to_completion duplicate of smb_info, smi_info
427 	 * and ipmi_serial_info structures. Used to decrease numbers of
428 	 * parameters passed by "low" level IPMI code.
429 	 */
430 	int run_to_completion;
431 };
432 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
433 
434 /**
435  * The driver model view of the IPMI messaging driver.
436  */
437 static struct platform_driver ipmidriver = {
438 	.driver = {
439 		.name = "ipmi",
440 		.bus = &platform_bus_type
441 	}
442 };
443 static DEFINE_MUTEX(ipmidriver_mutex);
444 
445 static LIST_HEAD(ipmi_interfaces);
446 static DEFINE_MUTEX(ipmi_interfaces_mutex);
447 
448 /*
449  * List of watchers that want to know when smi's are added and deleted.
450  */
451 static LIST_HEAD(smi_watchers);
452 static DEFINE_MUTEX(smi_watchers_mutex);
453 
454 
455 #define ipmi_inc_stat(intf, stat) \
456 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
457 #define ipmi_get_stat(intf, stat) \
458 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
459 
460 static int is_lan_addr(struct ipmi_addr *addr)
461 {
462 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
463 }
464 
465 static int is_ipmb_addr(struct ipmi_addr *addr)
466 {
467 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
468 }
469 
470 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
471 {
472 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
473 }
474 
475 static void free_recv_msg_list(struct list_head *q)
476 {
477 	struct ipmi_recv_msg *msg, *msg2;
478 
479 	list_for_each_entry_safe(msg, msg2, q, link) {
480 		list_del(&msg->link);
481 		ipmi_free_recv_msg(msg);
482 	}
483 }
484 
485 static void free_smi_msg_list(struct list_head *q)
486 {
487 	struct ipmi_smi_msg *msg, *msg2;
488 
489 	list_for_each_entry_safe(msg, msg2, q, link) {
490 		list_del(&msg->link);
491 		ipmi_free_smi_msg(msg);
492 	}
493 }
494 
495 static void clean_up_interface_data(ipmi_smi_t intf)
496 {
497 	int              i;
498 	struct cmd_rcvr  *rcvr, *rcvr2;
499 	struct list_head list;
500 
501 	tasklet_kill(&intf->recv_tasklet);
502 
503 	free_smi_msg_list(&intf->waiting_msgs);
504 	free_recv_msg_list(&intf->waiting_events);
505 
506 	/*
507 	 * Wholesale remove all the entries from the list in the
508 	 * interface and wait for RCU to know that none are in use.
509 	 */
510 	mutex_lock(&intf->cmd_rcvrs_mutex);
511 	INIT_LIST_HEAD(&list);
512 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
513 	mutex_unlock(&intf->cmd_rcvrs_mutex);
514 
515 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
516 		kfree(rcvr);
517 
518 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
519 		if ((intf->seq_table[i].inuse)
520 					&& (intf->seq_table[i].recv_msg))
521 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
522 	}
523 }
524 
525 static void intf_free(struct kref *ref)
526 {
527 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
528 
529 	clean_up_interface_data(intf);
530 	kfree(intf);
531 }
532 
533 struct watcher_entry {
534 	int              intf_num;
535 	ipmi_smi_t       intf;
536 	struct list_head link;
537 };
538 
539 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
540 {
541 	ipmi_smi_t intf;
542 	LIST_HEAD(to_deliver);
543 	struct watcher_entry *e, *e2;
544 
545 	mutex_lock(&smi_watchers_mutex);
546 
547 	mutex_lock(&ipmi_interfaces_mutex);
548 
549 	/* Build a list of things to deliver. */
550 	list_for_each_entry(intf, &ipmi_interfaces, link) {
551 		if (intf->intf_num == -1)
552 			continue;
553 		e = kmalloc(sizeof(*e), GFP_KERNEL);
554 		if (!e)
555 			goto out_err;
556 		kref_get(&intf->refcount);
557 		e->intf = intf;
558 		e->intf_num = intf->intf_num;
559 		list_add_tail(&e->link, &to_deliver);
560 	}
561 
562 	/* We will succeed, so add it to the list. */
563 	list_add(&watcher->link, &smi_watchers);
564 
565 	mutex_unlock(&ipmi_interfaces_mutex);
566 
567 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
568 		list_del(&e->link);
569 		watcher->new_smi(e->intf_num, e->intf->si_dev);
570 		kref_put(&e->intf->refcount, intf_free);
571 		kfree(e);
572 	}
573 
574 	mutex_unlock(&smi_watchers_mutex);
575 
576 	return 0;
577 
578  out_err:
579 	mutex_unlock(&ipmi_interfaces_mutex);
580 	mutex_unlock(&smi_watchers_mutex);
581 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
582 		list_del(&e->link);
583 		kref_put(&e->intf->refcount, intf_free);
584 		kfree(e);
585 	}
586 	return -ENOMEM;
587 }
588 EXPORT_SYMBOL(ipmi_smi_watcher_register);
589 
590 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
591 {
592 	mutex_lock(&smi_watchers_mutex);
593 	list_del(&(watcher->link));
594 	mutex_unlock(&smi_watchers_mutex);
595 	return 0;
596 }
597 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
598 
599 /*
600  * Must be called with smi_watchers_mutex held.
601  */
602 static void
603 call_smi_watchers(int i, struct device *dev)
604 {
605 	struct ipmi_smi_watcher *w;
606 
607 	list_for_each_entry(w, &smi_watchers, link) {
608 		if (try_module_get(w->owner)) {
609 			w->new_smi(i, dev);
610 			module_put(w->owner);
611 		}
612 	}
613 }
614 
615 static int
616 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
617 {
618 	if (addr1->addr_type != addr2->addr_type)
619 		return 0;
620 
621 	if (addr1->channel != addr2->channel)
622 		return 0;
623 
624 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
625 		struct ipmi_system_interface_addr *smi_addr1
626 		    = (struct ipmi_system_interface_addr *) addr1;
627 		struct ipmi_system_interface_addr *smi_addr2
628 		    = (struct ipmi_system_interface_addr *) addr2;
629 		return (smi_addr1->lun == smi_addr2->lun);
630 	}
631 
632 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
633 		struct ipmi_ipmb_addr *ipmb_addr1
634 		    = (struct ipmi_ipmb_addr *) addr1;
635 		struct ipmi_ipmb_addr *ipmb_addr2
636 		    = (struct ipmi_ipmb_addr *) addr2;
637 
638 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
639 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
640 	}
641 
642 	if (is_lan_addr(addr1)) {
643 		struct ipmi_lan_addr *lan_addr1
644 			= (struct ipmi_lan_addr *) addr1;
645 		struct ipmi_lan_addr *lan_addr2
646 		    = (struct ipmi_lan_addr *) addr2;
647 
648 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
649 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
650 			&& (lan_addr1->session_handle
651 			    == lan_addr2->session_handle)
652 			&& (lan_addr1->lun == lan_addr2->lun));
653 	}
654 
655 	return 1;
656 }
657 
658 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
659 {
660 	if (len < sizeof(struct ipmi_system_interface_addr))
661 		return -EINVAL;
662 
663 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
664 		if (addr->channel != IPMI_BMC_CHANNEL)
665 			return -EINVAL;
666 		return 0;
667 	}
668 
669 	if ((addr->channel == IPMI_BMC_CHANNEL)
670 	    || (addr->channel >= IPMI_MAX_CHANNELS)
671 	    || (addr->channel < 0))
672 		return -EINVAL;
673 
674 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
675 		if (len < sizeof(struct ipmi_ipmb_addr))
676 			return -EINVAL;
677 		return 0;
678 	}
679 
680 	if (is_lan_addr(addr)) {
681 		if (len < sizeof(struct ipmi_lan_addr))
682 			return -EINVAL;
683 		return 0;
684 	}
685 
686 	return -EINVAL;
687 }
688 EXPORT_SYMBOL(ipmi_validate_addr);
689 
690 unsigned int ipmi_addr_length(int addr_type)
691 {
692 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
693 		return sizeof(struct ipmi_system_interface_addr);
694 
695 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
696 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
697 		return sizeof(struct ipmi_ipmb_addr);
698 
699 	if (addr_type == IPMI_LAN_ADDR_TYPE)
700 		return sizeof(struct ipmi_lan_addr);
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL(ipmi_addr_length);
705 
706 static void deliver_response(struct ipmi_recv_msg *msg)
707 {
708 	if (!msg->user) {
709 		ipmi_smi_t    intf = msg->user_msg_data;
710 
711 		/* Special handling for NULL users. */
712 		if (intf->null_user_handler) {
713 			intf->null_user_handler(intf, msg);
714 			ipmi_inc_stat(intf, handled_local_responses);
715 		} else {
716 			/* No handler, so give up. */
717 			ipmi_inc_stat(intf, unhandled_local_responses);
718 		}
719 		ipmi_free_recv_msg(msg);
720 	} else {
721 		ipmi_user_t user = msg->user;
722 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
723 	}
724 }
725 
726 static void
727 deliver_err_response(struct ipmi_recv_msg *msg, int err)
728 {
729 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
730 	msg->msg_data[0] = err;
731 	msg->msg.netfn |= 1; /* Convert to a response. */
732 	msg->msg.data_len = 1;
733 	msg->msg.data = msg->msg_data;
734 	deliver_response(msg);
735 }
736 
737 /*
738  * Find the next sequence number not being used and add the given
739  * message with the given timeout to the sequence table.  This must be
740  * called with the interface's seq_lock held.
741  */
742 static int intf_next_seq(ipmi_smi_t           intf,
743 			 struct ipmi_recv_msg *recv_msg,
744 			 unsigned long        timeout,
745 			 int                  retries,
746 			 int                  broadcast,
747 			 unsigned char        *seq,
748 			 long                 *seqid)
749 {
750 	int          rv = 0;
751 	unsigned int i;
752 
753 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
754 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
755 		if (!intf->seq_table[i].inuse)
756 			break;
757 	}
758 
759 	if (!intf->seq_table[i].inuse) {
760 		intf->seq_table[i].recv_msg = recv_msg;
761 
762 		/*
763 		 * Start with the maximum timeout, when the send response
764 		 * comes in we will start the real timer.
765 		 */
766 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
767 		intf->seq_table[i].orig_timeout = timeout;
768 		intf->seq_table[i].retries_left = retries;
769 		intf->seq_table[i].broadcast = broadcast;
770 		intf->seq_table[i].inuse = 1;
771 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
772 		*seq = i;
773 		*seqid = intf->seq_table[i].seqid;
774 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
775 	} else {
776 		rv = -EAGAIN;
777 	}
778 
779 	return rv;
780 }
781 
782 /*
783  * Return the receive message for the given sequence number and
784  * release the sequence number so it can be reused.  Some other data
785  * is passed in to be sure the message matches up correctly (to help
786  * guard against message coming in after their timeout and the
787  * sequence number being reused).
788  */
789 static int intf_find_seq(ipmi_smi_t           intf,
790 			 unsigned char        seq,
791 			 short                channel,
792 			 unsigned char        cmd,
793 			 unsigned char        netfn,
794 			 struct ipmi_addr     *addr,
795 			 struct ipmi_recv_msg **recv_msg)
796 {
797 	int           rv = -ENODEV;
798 	unsigned long flags;
799 
800 	if (seq >= IPMI_IPMB_NUM_SEQ)
801 		return -EINVAL;
802 
803 	spin_lock_irqsave(&(intf->seq_lock), flags);
804 	if (intf->seq_table[seq].inuse) {
805 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
806 
807 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
808 				&& (msg->msg.netfn == netfn)
809 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
810 			*recv_msg = msg;
811 			intf->seq_table[seq].inuse = 0;
812 			rv = 0;
813 		}
814 	}
815 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
816 
817 	return rv;
818 }
819 
820 
821 /* Start the timer for a specific sequence table entry. */
822 static int intf_start_seq_timer(ipmi_smi_t intf,
823 				long       msgid)
824 {
825 	int           rv = -ENODEV;
826 	unsigned long flags;
827 	unsigned char seq;
828 	unsigned long seqid;
829 
830 
831 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
832 
833 	spin_lock_irqsave(&(intf->seq_lock), flags);
834 	/*
835 	 * We do this verification because the user can be deleted
836 	 * while a message is outstanding.
837 	 */
838 	if ((intf->seq_table[seq].inuse)
839 				&& (intf->seq_table[seq].seqid == seqid)) {
840 		struct seq_table *ent = &(intf->seq_table[seq]);
841 		ent->timeout = ent->orig_timeout;
842 		rv = 0;
843 	}
844 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
845 
846 	return rv;
847 }
848 
849 /* Got an error for the send message for a specific sequence number. */
850 static int intf_err_seq(ipmi_smi_t   intf,
851 			long         msgid,
852 			unsigned int err)
853 {
854 	int                  rv = -ENODEV;
855 	unsigned long        flags;
856 	unsigned char        seq;
857 	unsigned long        seqid;
858 	struct ipmi_recv_msg *msg = NULL;
859 
860 
861 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
862 
863 	spin_lock_irqsave(&(intf->seq_lock), flags);
864 	/*
865 	 * We do this verification because the user can be deleted
866 	 * while a message is outstanding.
867 	 */
868 	if ((intf->seq_table[seq].inuse)
869 				&& (intf->seq_table[seq].seqid == seqid)) {
870 		struct seq_table *ent = &(intf->seq_table[seq]);
871 
872 		ent->inuse = 0;
873 		msg = ent->recv_msg;
874 		rv = 0;
875 	}
876 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
877 
878 	if (msg)
879 		deliver_err_response(msg, err);
880 
881 	return rv;
882 }
883 
884 
885 int ipmi_create_user(unsigned int          if_num,
886 		     struct ipmi_user_hndl *handler,
887 		     void                  *handler_data,
888 		     ipmi_user_t           *user)
889 {
890 	unsigned long flags;
891 	ipmi_user_t   new_user;
892 	int           rv = 0;
893 	ipmi_smi_t    intf;
894 
895 	/*
896 	 * There is no module usecount here, because it's not
897 	 * required.  Since this can only be used by and called from
898 	 * other modules, they will implicitly use this module, and
899 	 * thus this can't be removed unless the other modules are
900 	 * removed.
901 	 */
902 
903 	if (handler == NULL)
904 		return -EINVAL;
905 
906 	/*
907 	 * Make sure the driver is actually initialized, this handles
908 	 * problems with initialization order.
909 	 */
910 	if (!initialized) {
911 		rv = ipmi_init_msghandler();
912 		if (rv)
913 			return rv;
914 
915 		/*
916 		 * The init code doesn't return an error if it was turned
917 		 * off, but it won't initialize.  Check that.
918 		 */
919 		if (!initialized)
920 			return -ENODEV;
921 	}
922 
923 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
924 	if (!new_user)
925 		return -ENOMEM;
926 
927 	mutex_lock(&ipmi_interfaces_mutex);
928 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
929 		if (intf->intf_num == if_num)
930 			goto found;
931 	}
932 	/* Not found, return an error */
933 	rv = -EINVAL;
934 	goto out_kfree;
935 
936  found:
937 	/* Note that each existing user holds a refcount to the interface. */
938 	kref_get(&intf->refcount);
939 
940 	kref_init(&new_user->refcount);
941 	new_user->handler = handler;
942 	new_user->handler_data = handler_data;
943 	new_user->intf = intf;
944 	new_user->gets_events = 0;
945 
946 	if (!try_module_get(intf->handlers->owner)) {
947 		rv = -ENODEV;
948 		goto out_kref;
949 	}
950 
951 	if (intf->handlers->inc_usecount) {
952 		rv = intf->handlers->inc_usecount(intf->send_info);
953 		if (rv) {
954 			module_put(intf->handlers->owner);
955 			goto out_kref;
956 		}
957 	}
958 
959 	/*
960 	 * Hold the lock so intf->handlers is guaranteed to be good
961 	 * until now
962 	 */
963 	mutex_unlock(&ipmi_interfaces_mutex);
964 
965 	new_user->valid = 1;
966 	spin_lock_irqsave(&intf->seq_lock, flags);
967 	list_add_rcu(&new_user->link, &intf->users);
968 	spin_unlock_irqrestore(&intf->seq_lock, flags);
969 	*user = new_user;
970 	return 0;
971 
972 out_kref:
973 	kref_put(&intf->refcount, intf_free);
974 out_kfree:
975 	mutex_unlock(&ipmi_interfaces_mutex);
976 	kfree(new_user);
977 	return rv;
978 }
979 EXPORT_SYMBOL(ipmi_create_user);
980 
981 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
982 {
983 	int           rv = 0;
984 	ipmi_smi_t    intf;
985 	struct ipmi_smi_handlers *handlers;
986 
987 	mutex_lock(&ipmi_interfaces_mutex);
988 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
989 		if (intf->intf_num == if_num)
990 			goto found;
991 	}
992 	/* Not found, return an error */
993 	rv = -EINVAL;
994 	mutex_unlock(&ipmi_interfaces_mutex);
995 	return rv;
996 
997 found:
998 	handlers = intf->handlers;
999 	rv = -ENOSYS;
1000 	if (handlers->get_smi_info)
1001 		rv = handlers->get_smi_info(intf->send_info, data);
1002 	mutex_unlock(&ipmi_interfaces_mutex);
1003 
1004 	return rv;
1005 }
1006 EXPORT_SYMBOL(ipmi_get_smi_info);
1007 
1008 static void free_user(struct kref *ref)
1009 {
1010 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1011 	kfree(user);
1012 }
1013 
1014 int ipmi_destroy_user(ipmi_user_t user)
1015 {
1016 	ipmi_smi_t       intf = user->intf;
1017 	int              i;
1018 	unsigned long    flags;
1019 	struct cmd_rcvr  *rcvr;
1020 	struct cmd_rcvr  *rcvrs = NULL;
1021 
1022 	user->valid = 0;
1023 
1024 	/* Remove the user from the interface's sequence table. */
1025 	spin_lock_irqsave(&intf->seq_lock, flags);
1026 	list_del_rcu(&user->link);
1027 
1028 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1029 		if (intf->seq_table[i].inuse
1030 		    && (intf->seq_table[i].recv_msg->user == user)) {
1031 			intf->seq_table[i].inuse = 0;
1032 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1033 		}
1034 	}
1035 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1036 
1037 	/*
1038 	 * Remove the user from the command receiver's table.  First
1039 	 * we build a list of everything (not using the standard link,
1040 	 * since other things may be using it till we do
1041 	 * synchronize_rcu()) then free everything in that list.
1042 	 */
1043 	mutex_lock(&intf->cmd_rcvrs_mutex);
1044 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1045 		if (rcvr->user == user) {
1046 			list_del_rcu(&rcvr->link);
1047 			rcvr->next = rcvrs;
1048 			rcvrs = rcvr;
1049 		}
1050 	}
1051 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1052 	synchronize_rcu();
1053 	while (rcvrs) {
1054 		rcvr = rcvrs;
1055 		rcvrs = rcvr->next;
1056 		kfree(rcvr);
1057 	}
1058 
1059 	mutex_lock(&ipmi_interfaces_mutex);
1060 	if (intf->handlers) {
1061 		module_put(intf->handlers->owner);
1062 		if (intf->handlers->dec_usecount)
1063 			intf->handlers->dec_usecount(intf->send_info);
1064 	}
1065 	mutex_unlock(&ipmi_interfaces_mutex);
1066 
1067 	kref_put(&intf->refcount, intf_free);
1068 
1069 	kref_put(&user->refcount, free_user);
1070 
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL(ipmi_destroy_user);
1074 
1075 void ipmi_get_version(ipmi_user_t   user,
1076 		      unsigned char *major,
1077 		      unsigned char *minor)
1078 {
1079 	*major = user->intf->ipmi_version_major;
1080 	*minor = user->intf->ipmi_version_minor;
1081 }
1082 EXPORT_SYMBOL(ipmi_get_version);
1083 
1084 int ipmi_set_my_address(ipmi_user_t   user,
1085 			unsigned int  channel,
1086 			unsigned char address)
1087 {
1088 	if (channel >= IPMI_MAX_CHANNELS)
1089 		return -EINVAL;
1090 	user->intf->channels[channel].address = address;
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL(ipmi_set_my_address);
1094 
1095 int ipmi_get_my_address(ipmi_user_t   user,
1096 			unsigned int  channel,
1097 			unsigned char *address)
1098 {
1099 	if (channel >= IPMI_MAX_CHANNELS)
1100 		return -EINVAL;
1101 	*address = user->intf->channels[channel].address;
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_my_address);
1105 
1106 int ipmi_set_my_LUN(ipmi_user_t   user,
1107 		    unsigned int  channel,
1108 		    unsigned char LUN)
1109 {
1110 	if (channel >= IPMI_MAX_CHANNELS)
1111 		return -EINVAL;
1112 	user->intf->channels[channel].lun = LUN & 0x3;
1113 	return 0;
1114 }
1115 EXPORT_SYMBOL(ipmi_set_my_LUN);
1116 
1117 int ipmi_get_my_LUN(ipmi_user_t   user,
1118 		    unsigned int  channel,
1119 		    unsigned char *address)
1120 {
1121 	if (channel >= IPMI_MAX_CHANNELS)
1122 		return -EINVAL;
1123 	*address = user->intf->channels[channel].lun;
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL(ipmi_get_my_LUN);
1127 
1128 int ipmi_get_maintenance_mode(ipmi_user_t user)
1129 {
1130 	int           mode;
1131 	unsigned long flags;
1132 
1133 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1134 	mode = user->intf->maintenance_mode;
1135 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1136 
1137 	return mode;
1138 }
1139 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1140 
1141 static void maintenance_mode_update(ipmi_smi_t intf)
1142 {
1143 	if (intf->handlers->set_maintenance_mode)
1144 		intf->handlers->set_maintenance_mode(
1145 			intf->send_info, intf->maintenance_mode_enable);
1146 }
1147 
1148 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1149 {
1150 	int           rv = 0;
1151 	unsigned long flags;
1152 	ipmi_smi_t    intf = user->intf;
1153 
1154 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1155 	if (intf->maintenance_mode != mode) {
1156 		switch (mode) {
1157 		case IPMI_MAINTENANCE_MODE_AUTO:
1158 			intf->maintenance_mode = mode;
1159 			intf->maintenance_mode_enable
1160 				= (intf->auto_maintenance_timeout > 0);
1161 			break;
1162 
1163 		case IPMI_MAINTENANCE_MODE_OFF:
1164 			intf->maintenance_mode = mode;
1165 			intf->maintenance_mode_enable = 0;
1166 			break;
1167 
1168 		case IPMI_MAINTENANCE_MODE_ON:
1169 			intf->maintenance_mode = mode;
1170 			intf->maintenance_mode_enable = 1;
1171 			break;
1172 
1173 		default:
1174 			rv = -EINVAL;
1175 			goto out_unlock;
1176 		}
1177 
1178 		maintenance_mode_update(intf);
1179 	}
1180  out_unlock:
1181 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1182 
1183 	return rv;
1184 }
1185 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1186 
1187 int ipmi_set_gets_events(ipmi_user_t user, int val)
1188 {
1189 	unsigned long        flags;
1190 	ipmi_smi_t           intf = user->intf;
1191 	struct ipmi_recv_msg *msg, *msg2;
1192 	struct list_head     msgs;
1193 
1194 	INIT_LIST_HEAD(&msgs);
1195 
1196 	spin_lock_irqsave(&intf->events_lock, flags);
1197 	user->gets_events = val;
1198 
1199 	if (intf->delivering_events)
1200 		/*
1201 		 * Another thread is delivering events for this, so
1202 		 * let it handle any new events.
1203 		 */
1204 		goto out;
1205 
1206 	/* Deliver any queued events. */
1207 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1208 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1209 			list_move_tail(&msg->link, &msgs);
1210 		intf->waiting_events_count = 0;
1211 		if (intf->event_msg_printed) {
1212 			printk(KERN_WARNING PFX "Event queue no longer"
1213 			       " full\n");
1214 			intf->event_msg_printed = 0;
1215 		}
1216 
1217 		intf->delivering_events = 1;
1218 		spin_unlock_irqrestore(&intf->events_lock, flags);
1219 
1220 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1221 			msg->user = user;
1222 			kref_get(&user->refcount);
1223 			deliver_response(msg);
1224 		}
1225 
1226 		spin_lock_irqsave(&intf->events_lock, flags);
1227 		intf->delivering_events = 0;
1228 	}
1229 
1230  out:
1231 	spin_unlock_irqrestore(&intf->events_lock, flags);
1232 
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL(ipmi_set_gets_events);
1236 
1237 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1238 				      unsigned char netfn,
1239 				      unsigned char cmd,
1240 				      unsigned char chan)
1241 {
1242 	struct cmd_rcvr *rcvr;
1243 
1244 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1245 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1246 					&& (rcvr->chans & (1 << chan)))
1247 			return rcvr;
1248 	}
1249 	return NULL;
1250 }
1251 
1252 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1253 				 unsigned char netfn,
1254 				 unsigned char cmd,
1255 				 unsigned int  chans)
1256 {
1257 	struct cmd_rcvr *rcvr;
1258 
1259 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1260 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1261 					&& (rcvr->chans & chans))
1262 			return 0;
1263 	}
1264 	return 1;
1265 }
1266 
1267 int ipmi_register_for_cmd(ipmi_user_t   user,
1268 			  unsigned char netfn,
1269 			  unsigned char cmd,
1270 			  unsigned int  chans)
1271 {
1272 	ipmi_smi_t      intf = user->intf;
1273 	struct cmd_rcvr *rcvr;
1274 	int             rv = 0;
1275 
1276 
1277 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1278 	if (!rcvr)
1279 		return -ENOMEM;
1280 	rcvr->cmd = cmd;
1281 	rcvr->netfn = netfn;
1282 	rcvr->chans = chans;
1283 	rcvr->user = user;
1284 
1285 	mutex_lock(&intf->cmd_rcvrs_mutex);
1286 	/* Make sure the command/netfn is not already registered. */
1287 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1288 		rv = -EBUSY;
1289 		goto out_unlock;
1290 	}
1291 
1292 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1293 
1294  out_unlock:
1295 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1296 	if (rv)
1297 		kfree(rcvr);
1298 
1299 	return rv;
1300 }
1301 EXPORT_SYMBOL(ipmi_register_for_cmd);
1302 
1303 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1304 			    unsigned char netfn,
1305 			    unsigned char cmd,
1306 			    unsigned int  chans)
1307 {
1308 	ipmi_smi_t      intf = user->intf;
1309 	struct cmd_rcvr *rcvr;
1310 	struct cmd_rcvr *rcvrs = NULL;
1311 	int i, rv = -ENOENT;
1312 
1313 	mutex_lock(&intf->cmd_rcvrs_mutex);
1314 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1315 		if (((1 << i) & chans) == 0)
1316 			continue;
1317 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1318 		if (rcvr == NULL)
1319 			continue;
1320 		if (rcvr->user == user) {
1321 			rv = 0;
1322 			rcvr->chans &= ~chans;
1323 			if (rcvr->chans == 0) {
1324 				list_del_rcu(&rcvr->link);
1325 				rcvr->next = rcvrs;
1326 				rcvrs = rcvr;
1327 			}
1328 		}
1329 	}
1330 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1331 	synchronize_rcu();
1332 	while (rcvrs) {
1333 		rcvr = rcvrs;
1334 		rcvrs = rcvr->next;
1335 		kfree(rcvr);
1336 	}
1337 	return rv;
1338 }
1339 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1340 
1341 static unsigned char
1342 ipmb_checksum(unsigned char *data, int size)
1343 {
1344 	unsigned char csum = 0;
1345 
1346 	for (; size > 0; size--, data++)
1347 		csum += *data;
1348 
1349 	return -csum;
1350 }
1351 
1352 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1353 				   struct kernel_ipmi_msg *msg,
1354 				   struct ipmi_ipmb_addr *ipmb_addr,
1355 				   long                  msgid,
1356 				   unsigned char         ipmb_seq,
1357 				   int                   broadcast,
1358 				   unsigned char         source_address,
1359 				   unsigned char         source_lun)
1360 {
1361 	int i = broadcast;
1362 
1363 	/* Format the IPMB header data. */
1364 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1365 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1366 	smi_msg->data[2] = ipmb_addr->channel;
1367 	if (broadcast)
1368 		smi_msg->data[3] = 0;
1369 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1370 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1371 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1372 	smi_msg->data[i+6] = source_address;
1373 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1374 	smi_msg->data[i+8] = msg->cmd;
1375 
1376 	/* Now tack on the data to the message. */
1377 	if (msg->data_len > 0)
1378 		memcpy(&(smi_msg->data[i+9]), msg->data,
1379 		       msg->data_len);
1380 	smi_msg->data_size = msg->data_len + 9;
1381 
1382 	/* Now calculate the checksum and tack it on. */
1383 	smi_msg->data[i+smi_msg->data_size]
1384 		= ipmb_checksum(&(smi_msg->data[i+6]),
1385 				smi_msg->data_size-6);
1386 
1387 	/*
1388 	 * Add on the checksum size and the offset from the
1389 	 * broadcast.
1390 	 */
1391 	smi_msg->data_size += 1 + i;
1392 
1393 	smi_msg->msgid = msgid;
1394 }
1395 
1396 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1397 				  struct kernel_ipmi_msg *msg,
1398 				  struct ipmi_lan_addr  *lan_addr,
1399 				  long                  msgid,
1400 				  unsigned char         ipmb_seq,
1401 				  unsigned char         source_lun)
1402 {
1403 	/* Format the IPMB header data. */
1404 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1405 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1406 	smi_msg->data[2] = lan_addr->channel;
1407 	smi_msg->data[3] = lan_addr->session_handle;
1408 	smi_msg->data[4] = lan_addr->remote_SWID;
1409 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1410 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1411 	smi_msg->data[7] = lan_addr->local_SWID;
1412 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1413 	smi_msg->data[9] = msg->cmd;
1414 
1415 	/* Now tack on the data to the message. */
1416 	if (msg->data_len > 0)
1417 		memcpy(&(smi_msg->data[10]), msg->data,
1418 		       msg->data_len);
1419 	smi_msg->data_size = msg->data_len + 10;
1420 
1421 	/* Now calculate the checksum and tack it on. */
1422 	smi_msg->data[smi_msg->data_size]
1423 		= ipmb_checksum(&(smi_msg->data[7]),
1424 				smi_msg->data_size-7);
1425 
1426 	/*
1427 	 * Add on the checksum size and the offset from the
1428 	 * broadcast.
1429 	 */
1430 	smi_msg->data_size += 1;
1431 
1432 	smi_msg->msgid = msgid;
1433 }
1434 
1435 /*
1436  * Separate from ipmi_request so that the user does not have to be
1437  * supplied in certain circumstances (mainly at panic time).  If
1438  * messages are supplied, they will be freed, even if an error
1439  * occurs.
1440  */
1441 static int i_ipmi_request(ipmi_user_t          user,
1442 			  ipmi_smi_t           intf,
1443 			  struct ipmi_addr     *addr,
1444 			  long                 msgid,
1445 			  struct kernel_ipmi_msg *msg,
1446 			  void                 *user_msg_data,
1447 			  void                 *supplied_smi,
1448 			  struct ipmi_recv_msg *supplied_recv,
1449 			  int                  priority,
1450 			  unsigned char        source_address,
1451 			  unsigned char        source_lun,
1452 			  int                  retries,
1453 			  unsigned int         retry_time_ms)
1454 {
1455 	int                      rv = 0;
1456 	struct ipmi_smi_msg      *smi_msg;
1457 	struct ipmi_recv_msg     *recv_msg;
1458 	unsigned long            flags;
1459 	struct ipmi_smi_handlers *handlers;
1460 
1461 
1462 	if (supplied_recv)
1463 		recv_msg = supplied_recv;
1464 	else {
1465 		recv_msg = ipmi_alloc_recv_msg();
1466 		if (recv_msg == NULL)
1467 			return -ENOMEM;
1468 	}
1469 	recv_msg->user_msg_data = user_msg_data;
1470 
1471 	if (supplied_smi)
1472 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1473 	else {
1474 		smi_msg = ipmi_alloc_smi_msg();
1475 		if (smi_msg == NULL) {
1476 			ipmi_free_recv_msg(recv_msg);
1477 			return -ENOMEM;
1478 		}
1479 	}
1480 
1481 	rcu_read_lock();
1482 	handlers = intf->handlers;
1483 	if (!handlers) {
1484 		rv = -ENODEV;
1485 		goto out_err;
1486 	}
1487 
1488 	recv_msg->user = user;
1489 	if (user)
1490 		kref_get(&user->refcount);
1491 	recv_msg->msgid = msgid;
1492 	/*
1493 	 * Store the message to send in the receive message so timeout
1494 	 * responses can get the proper response data.
1495 	 */
1496 	recv_msg->msg = *msg;
1497 
1498 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1499 		struct ipmi_system_interface_addr *smi_addr;
1500 
1501 		if (msg->netfn & 1) {
1502 			/* Responses are not allowed to the SMI. */
1503 			rv = -EINVAL;
1504 			goto out_err;
1505 		}
1506 
1507 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1508 		if (smi_addr->lun > 3) {
1509 			ipmi_inc_stat(intf, sent_invalid_commands);
1510 			rv = -EINVAL;
1511 			goto out_err;
1512 		}
1513 
1514 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1515 
1516 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1517 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1518 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1519 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1520 			/*
1521 			 * We don't let the user do these, since we manage
1522 			 * the sequence numbers.
1523 			 */
1524 			ipmi_inc_stat(intf, sent_invalid_commands);
1525 			rv = -EINVAL;
1526 			goto out_err;
1527 		}
1528 
1529 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1530 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1531 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1532 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1533 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1534 			intf->auto_maintenance_timeout
1535 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1536 			if (!intf->maintenance_mode
1537 			    && !intf->maintenance_mode_enable) {
1538 				intf->maintenance_mode_enable = 1;
1539 				maintenance_mode_update(intf);
1540 			}
1541 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1542 					       flags);
1543 		}
1544 
1545 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1546 			ipmi_inc_stat(intf, sent_invalid_commands);
1547 			rv = -EMSGSIZE;
1548 			goto out_err;
1549 		}
1550 
1551 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1552 		smi_msg->data[1] = msg->cmd;
1553 		smi_msg->msgid = msgid;
1554 		smi_msg->user_data = recv_msg;
1555 		if (msg->data_len > 0)
1556 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1557 		smi_msg->data_size = msg->data_len + 2;
1558 		ipmi_inc_stat(intf, sent_local_commands);
1559 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1560 		struct ipmi_ipmb_addr *ipmb_addr;
1561 		unsigned char         ipmb_seq;
1562 		long                  seqid;
1563 		int                   broadcast = 0;
1564 
1565 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1566 			ipmi_inc_stat(intf, sent_invalid_commands);
1567 			rv = -EINVAL;
1568 			goto out_err;
1569 		}
1570 
1571 		if (intf->channels[addr->channel].medium
1572 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1573 			ipmi_inc_stat(intf, sent_invalid_commands);
1574 			rv = -EINVAL;
1575 			goto out_err;
1576 		}
1577 
1578 		if (retries < 0) {
1579 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1580 			retries = 0; /* Don't retry broadcasts. */
1581 		    else
1582 			retries = 4;
1583 		}
1584 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1585 		    /*
1586 		     * Broadcasts add a zero at the beginning of the
1587 		     * message, but otherwise is the same as an IPMB
1588 		     * address.
1589 		     */
1590 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1591 		    broadcast = 1;
1592 		}
1593 
1594 
1595 		/* Default to 1 second retries. */
1596 		if (retry_time_ms == 0)
1597 		    retry_time_ms = 1000;
1598 
1599 		/*
1600 		 * 9 for the header and 1 for the checksum, plus
1601 		 * possibly one for the broadcast.
1602 		 */
1603 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1604 			ipmi_inc_stat(intf, sent_invalid_commands);
1605 			rv = -EMSGSIZE;
1606 			goto out_err;
1607 		}
1608 
1609 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1610 		if (ipmb_addr->lun > 3) {
1611 			ipmi_inc_stat(intf, sent_invalid_commands);
1612 			rv = -EINVAL;
1613 			goto out_err;
1614 		}
1615 
1616 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1617 
1618 		if (recv_msg->msg.netfn & 0x1) {
1619 			/*
1620 			 * It's a response, so use the user's sequence
1621 			 * from msgid.
1622 			 */
1623 			ipmi_inc_stat(intf, sent_ipmb_responses);
1624 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1625 					msgid, broadcast,
1626 					source_address, source_lun);
1627 
1628 			/*
1629 			 * Save the receive message so we can use it
1630 			 * to deliver the response.
1631 			 */
1632 			smi_msg->user_data = recv_msg;
1633 		} else {
1634 			/* It's a command, so get a sequence for it. */
1635 
1636 			spin_lock_irqsave(&(intf->seq_lock), flags);
1637 
1638 			/*
1639 			 * Create a sequence number with a 1 second
1640 			 * timeout and 4 retries.
1641 			 */
1642 			rv = intf_next_seq(intf,
1643 					   recv_msg,
1644 					   retry_time_ms,
1645 					   retries,
1646 					   broadcast,
1647 					   &ipmb_seq,
1648 					   &seqid);
1649 			if (rv) {
1650 				/*
1651 				 * We have used up all the sequence numbers,
1652 				 * probably, so abort.
1653 				 */
1654 				spin_unlock_irqrestore(&(intf->seq_lock),
1655 						       flags);
1656 				goto out_err;
1657 			}
1658 
1659 			ipmi_inc_stat(intf, sent_ipmb_commands);
1660 
1661 			/*
1662 			 * Store the sequence number in the message,
1663 			 * so that when the send message response
1664 			 * comes back we can start the timer.
1665 			 */
1666 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1667 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1668 					ipmb_seq, broadcast,
1669 					source_address, source_lun);
1670 
1671 			/*
1672 			 * Copy the message into the recv message data, so we
1673 			 * can retransmit it later if necessary.
1674 			 */
1675 			memcpy(recv_msg->msg_data, smi_msg->data,
1676 			       smi_msg->data_size);
1677 			recv_msg->msg.data = recv_msg->msg_data;
1678 			recv_msg->msg.data_len = smi_msg->data_size;
1679 
1680 			/*
1681 			 * We don't unlock until here, because we need
1682 			 * to copy the completed message into the
1683 			 * recv_msg before we release the lock.
1684 			 * Otherwise, race conditions may bite us.  I
1685 			 * know that's pretty paranoid, but I prefer
1686 			 * to be correct.
1687 			 */
1688 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1689 		}
1690 	} else if (is_lan_addr(addr)) {
1691 		struct ipmi_lan_addr  *lan_addr;
1692 		unsigned char         ipmb_seq;
1693 		long                  seqid;
1694 
1695 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1696 			ipmi_inc_stat(intf, sent_invalid_commands);
1697 			rv = -EINVAL;
1698 			goto out_err;
1699 		}
1700 
1701 		if ((intf->channels[addr->channel].medium
1702 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1703 		    && (intf->channels[addr->channel].medium
1704 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1705 			ipmi_inc_stat(intf, sent_invalid_commands);
1706 			rv = -EINVAL;
1707 			goto out_err;
1708 		}
1709 
1710 		retries = 4;
1711 
1712 		/* Default to 1 second retries. */
1713 		if (retry_time_ms == 0)
1714 		    retry_time_ms = 1000;
1715 
1716 		/* 11 for the header and 1 for the checksum. */
1717 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1718 			ipmi_inc_stat(intf, sent_invalid_commands);
1719 			rv = -EMSGSIZE;
1720 			goto out_err;
1721 		}
1722 
1723 		lan_addr = (struct ipmi_lan_addr *) addr;
1724 		if (lan_addr->lun > 3) {
1725 			ipmi_inc_stat(intf, sent_invalid_commands);
1726 			rv = -EINVAL;
1727 			goto out_err;
1728 		}
1729 
1730 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1731 
1732 		if (recv_msg->msg.netfn & 0x1) {
1733 			/*
1734 			 * It's a response, so use the user's sequence
1735 			 * from msgid.
1736 			 */
1737 			ipmi_inc_stat(intf, sent_lan_responses);
1738 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1739 				       msgid, source_lun);
1740 
1741 			/*
1742 			 * Save the receive message so we can use it
1743 			 * to deliver the response.
1744 			 */
1745 			smi_msg->user_data = recv_msg;
1746 		} else {
1747 			/* It's a command, so get a sequence for it. */
1748 
1749 			spin_lock_irqsave(&(intf->seq_lock), flags);
1750 
1751 			/*
1752 			 * Create a sequence number with a 1 second
1753 			 * timeout and 4 retries.
1754 			 */
1755 			rv = intf_next_seq(intf,
1756 					   recv_msg,
1757 					   retry_time_ms,
1758 					   retries,
1759 					   0,
1760 					   &ipmb_seq,
1761 					   &seqid);
1762 			if (rv) {
1763 				/*
1764 				 * We have used up all the sequence numbers,
1765 				 * probably, so abort.
1766 				 */
1767 				spin_unlock_irqrestore(&(intf->seq_lock),
1768 						       flags);
1769 				goto out_err;
1770 			}
1771 
1772 			ipmi_inc_stat(intf, sent_lan_commands);
1773 
1774 			/*
1775 			 * Store the sequence number in the message,
1776 			 * so that when the send message response
1777 			 * comes back we can start the timer.
1778 			 */
1779 			format_lan_msg(smi_msg, msg, lan_addr,
1780 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1781 				       ipmb_seq, source_lun);
1782 
1783 			/*
1784 			 * Copy the message into the recv message data, so we
1785 			 * can retransmit it later if necessary.
1786 			 */
1787 			memcpy(recv_msg->msg_data, smi_msg->data,
1788 			       smi_msg->data_size);
1789 			recv_msg->msg.data = recv_msg->msg_data;
1790 			recv_msg->msg.data_len = smi_msg->data_size;
1791 
1792 			/*
1793 			 * We don't unlock until here, because we need
1794 			 * to copy the completed message into the
1795 			 * recv_msg before we release the lock.
1796 			 * Otherwise, race conditions may bite us.  I
1797 			 * know that's pretty paranoid, but I prefer
1798 			 * to be correct.
1799 			 */
1800 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1801 		}
1802 	} else {
1803 	    /* Unknown address type. */
1804 		ipmi_inc_stat(intf, sent_invalid_commands);
1805 		rv = -EINVAL;
1806 		goto out_err;
1807 	}
1808 
1809 #ifdef DEBUG_MSGING
1810 	{
1811 		int m;
1812 		for (m = 0; m < smi_msg->data_size; m++)
1813 			printk(" %2.2x", smi_msg->data[m]);
1814 		printk("\n");
1815 	}
1816 #endif
1817 
1818 	handlers->sender(intf->send_info, smi_msg, priority);
1819 	rcu_read_unlock();
1820 
1821 	return 0;
1822 
1823  out_err:
1824 	rcu_read_unlock();
1825 	ipmi_free_smi_msg(smi_msg);
1826 	ipmi_free_recv_msg(recv_msg);
1827 	return rv;
1828 }
1829 
1830 static int check_addr(ipmi_smi_t       intf,
1831 		      struct ipmi_addr *addr,
1832 		      unsigned char    *saddr,
1833 		      unsigned char    *lun)
1834 {
1835 	if (addr->channel >= IPMI_MAX_CHANNELS)
1836 		return -EINVAL;
1837 	*lun = intf->channels[addr->channel].lun;
1838 	*saddr = intf->channels[addr->channel].address;
1839 	return 0;
1840 }
1841 
1842 int ipmi_request_settime(ipmi_user_t      user,
1843 			 struct ipmi_addr *addr,
1844 			 long             msgid,
1845 			 struct kernel_ipmi_msg  *msg,
1846 			 void             *user_msg_data,
1847 			 int              priority,
1848 			 int              retries,
1849 			 unsigned int     retry_time_ms)
1850 {
1851 	unsigned char saddr = 0, lun = 0;
1852 	int           rv;
1853 
1854 	if (!user)
1855 		return -EINVAL;
1856 	rv = check_addr(user->intf, addr, &saddr, &lun);
1857 	if (rv)
1858 		return rv;
1859 	return i_ipmi_request(user,
1860 			      user->intf,
1861 			      addr,
1862 			      msgid,
1863 			      msg,
1864 			      user_msg_data,
1865 			      NULL, NULL,
1866 			      priority,
1867 			      saddr,
1868 			      lun,
1869 			      retries,
1870 			      retry_time_ms);
1871 }
1872 EXPORT_SYMBOL(ipmi_request_settime);
1873 
1874 int ipmi_request_supply_msgs(ipmi_user_t          user,
1875 			     struct ipmi_addr     *addr,
1876 			     long                 msgid,
1877 			     struct kernel_ipmi_msg *msg,
1878 			     void                 *user_msg_data,
1879 			     void                 *supplied_smi,
1880 			     struct ipmi_recv_msg *supplied_recv,
1881 			     int                  priority)
1882 {
1883 	unsigned char saddr = 0, lun = 0;
1884 	int           rv;
1885 
1886 	if (!user)
1887 		return -EINVAL;
1888 	rv = check_addr(user->intf, addr, &saddr, &lun);
1889 	if (rv)
1890 		return rv;
1891 	return i_ipmi_request(user,
1892 			      user->intf,
1893 			      addr,
1894 			      msgid,
1895 			      msg,
1896 			      user_msg_data,
1897 			      supplied_smi,
1898 			      supplied_recv,
1899 			      priority,
1900 			      saddr,
1901 			      lun,
1902 			      -1, 0);
1903 }
1904 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1905 
1906 #ifdef CONFIG_PROC_FS
1907 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1908 {
1909 	ipmi_smi_t intf = m->private;
1910 	int        i;
1911 
1912 	seq_printf(m, "%x", intf->channels[0].address);
1913 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1914 		seq_printf(m, " %x", intf->channels[i].address);
1915 	return seq_putc(m, '\n');
1916 }
1917 
1918 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1919 {
1920 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1921 }
1922 
1923 static const struct file_operations smi_ipmb_proc_ops = {
1924 	.open		= smi_ipmb_proc_open,
1925 	.read		= seq_read,
1926 	.llseek		= seq_lseek,
1927 	.release	= single_release,
1928 };
1929 
1930 static int smi_version_proc_show(struct seq_file *m, void *v)
1931 {
1932 	ipmi_smi_t intf = m->private;
1933 
1934 	return seq_printf(m, "%u.%u\n",
1935 		       ipmi_version_major(&intf->bmc->id),
1936 		       ipmi_version_minor(&intf->bmc->id));
1937 }
1938 
1939 static int smi_version_proc_open(struct inode *inode, struct file *file)
1940 {
1941 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
1942 }
1943 
1944 static const struct file_operations smi_version_proc_ops = {
1945 	.open		= smi_version_proc_open,
1946 	.read		= seq_read,
1947 	.llseek		= seq_lseek,
1948 	.release	= single_release,
1949 };
1950 
1951 static int smi_stats_proc_show(struct seq_file *m, void *v)
1952 {
1953 	ipmi_smi_t intf = m->private;
1954 
1955 	seq_printf(m, "sent_invalid_commands:       %u\n",
1956 		       ipmi_get_stat(intf, sent_invalid_commands));
1957 	seq_printf(m, "sent_local_commands:         %u\n",
1958 		       ipmi_get_stat(intf, sent_local_commands));
1959 	seq_printf(m, "handled_local_responses:     %u\n",
1960 		       ipmi_get_stat(intf, handled_local_responses));
1961 	seq_printf(m, "unhandled_local_responses:   %u\n",
1962 		       ipmi_get_stat(intf, unhandled_local_responses));
1963 	seq_printf(m, "sent_ipmb_commands:          %u\n",
1964 		       ipmi_get_stat(intf, sent_ipmb_commands));
1965 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
1966 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1967 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
1968 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1969 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
1970 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1971 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
1972 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1973 	seq_printf(m, "sent_ipmb_responses:         %u\n",
1974 		       ipmi_get_stat(intf, sent_ipmb_responses));
1975 	seq_printf(m, "handled_ipmb_responses:      %u\n",
1976 		       ipmi_get_stat(intf, handled_ipmb_responses));
1977 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
1978 		       ipmi_get_stat(intf, invalid_ipmb_responses));
1979 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
1980 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1981 	seq_printf(m, "sent_lan_commands:           %u\n",
1982 		       ipmi_get_stat(intf, sent_lan_commands));
1983 	seq_printf(m, "sent_lan_command_errs:       %u\n",
1984 		       ipmi_get_stat(intf, sent_lan_command_errs));
1985 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
1986 		       ipmi_get_stat(intf, retransmitted_lan_commands));
1987 	seq_printf(m, "timed_out_lan_commands:      %u\n",
1988 		       ipmi_get_stat(intf, timed_out_lan_commands));
1989 	seq_printf(m, "sent_lan_responses:          %u\n",
1990 		       ipmi_get_stat(intf, sent_lan_responses));
1991 	seq_printf(m, "handled_lan_responses:       %u\n",
1992 		       ipmi_get_stat(intf, handled_lan_responses));
1993 	seq_printf(m, "invalid_lan_responses:       %u\n",
1994 		       ipmi_get_stat(intf, invalid_lan_responses));
1995 	seq_printf(m, "unhandled_lan_responses:     %u\n",
1996 		       ipmi_get_stat(intf, unhandled_lan_responses));
1997 	seq_printf(m, "handled_commands:            %u\n",
1998 		       ipmi_get_stat(intf, handled_commands));
1999 	seq_printf(m, "invalid_commands:            %u\n",
2000 		       ipmi_get_stat(intf, invalid_commands));
2001 	seq_printf(m, "unhandled_commands:          %u\n",
2002 		       ipmi_get_stat(intf, unhandled_commands));
2003 	seq_printf(m, "invalid_events:              %u\n",
2004 		       ipmi_get_stat(intf, invalid_events));
2005 	seq_printf(m, "events:                      %u\n",
2006 		       ipmi_get_stat(intf, events));
2007 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2008 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2009 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2010 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2011 	return 0;
2012 }
2013 
2014 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2015 {
2016 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2017 }
2018 
2019 static const struct file_operations smi_stats_proc_ops = {
2020 	.open		= smi_stats_proc_open,
2021 	.read		= seq_read,
2022 	.llseek		= seq_lseek,
2023 	.release	= single_release,
2024 };
2025 #endif /* CONFIG_PROC_FS */
2026 
2027 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2028 			    const struct file_operations *proc_ops,
2029 			    void *data)
2030 {
2031 	int                    rv = 0;
2032 #ifdef CONFIG_PROC_FS
2033 	struct proc_dir_entry  *file;
2034 	struct ipmi_proc_entry *entry;
2035 
2036 	/* Create a list element. */
2037 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2038 	if (!entry)
2039 		return -ENOMEM;
2040 	entry->name = kstrdup(name, GFP_KERNEL);
2041 	if (!entry->name) {
2042 		kfree(entry);
2043 		return -ENOMEM;
2044 	}
2045 
2046 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2047 	if (!file) {
2048 		kfree(entry->name);
2049 		kfree(entry);
2050 		rv = -ENOMEM;
2051 	} else {
2052 		mutex_lock(&smi->proc_entry_lock);
2053 		/* Stick it on the list. */
2054 		entry->next = smi->proc_entries;
2055 		smi->proc_entries = entry;
2056 		mutex_unlock(&smi->proc_entry_lock);
2057 	}
2058 #endif /* CONFIG_PROC_FS */
2059 
2060 	return rv;
2061 }
2062 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2063 
2064 static int add_proc_entries(ipmi_smi_t smi, int num)
2065 {
2066 	int rv = 0;
2067 
2068 #ifdef CONFIG_PROC_FS
2069 	sprintf(smi->proc_dir_name, "%d", num);
2070 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2071 	if (!smi->proc_dir)
2072 		rv = -ENOMEM;
2073 
2074 	if (rv == 0)
2075 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2076 					     &smi_stats_proc_ops,
2077 					     smi);
2078 
2079 	if (rv == 0)
2080 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2081 					     &smi_ipmb_proc_ops,
2082 					     smi);
2083 
2084 	if (rv == 0)
2085 		rv = ipmi_smi_add_proc_entry(smi, "version",
2086 					     &smi_version_proc_ops,
2087 					     smi);
2088 #endif /* CONFIG_PROC_FS */
2089 
2090 	return rv;
2091 }
2092 
2093 static void remove_proc_entries(ipmi_smi_t smi)
2094 {
2095 #ifdef CONFIG_PROC_FS
2096 	struct ipmi_proc_entry *entry;
2097 
2098 	mutex_lock(&smi->proc_entry_lock);
2099 	while (smi->proc_entries) {
2100 		entry = smi->proc_entries;
2101 		smi->proc_entries = entry->next;
2102 
2103 		remove_proc_entry(entry->name, smi->proc_dir);
2104 		kfree(entry->name);
2105 		kfree(entry);
2106 	}
2107 	mutex_unlock(&smi->proc_entry_lock);
2108 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2109 #endif /* CONFIG_PROC_FS */
2110 }
2111 
2112 static int __find_bmc_guid(struct device *dev, void *data)
2113 {
2114 	unsigned char *id = data;
2115 	struct bmc_device *bmc = dev_get_drvdata(dev);
2116 	return memcmp(bmc->guid, id, 16) == 0;
2117 }
2118 
2119 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2120 					     unsigned char *guid)
2121 {
2122 	struct device *dev;
2123 
2124 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2125 	if (dev)
2126 		return dev_get_drvdata(dev);
2127 	else
2128 		return NULL;
2129 }
2130 
2131 struct prod_dev_id {
2132 	unsigned int  product_id;
2133 	unsigned char device_id;
2134 };
2135 
2136 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2137 {
2138 	struct prod_dev_id *id = data;
2139 	struct bmc_device *bmc = dev_get_drvdata(dev);
2140 
2141 	return (bmc->id.product_id == id->product_id
2142 		&& bmc->id.device_id == id->device_id);
2143 }
2144 
2145 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2146 	struct device_driver *drv,
2147 	unsigned int product_id, unsigned char device_id)
2148 {
2149 	struct prod_dev_id id = {
2150 		.product_id = product_id,
2151 		.device_id = device_id,
2152 	};
2153 	struct device *dev;
2154 
2155 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2156 	if (dev)
2157 		return dev_get_drvdata(dev);
2158 	else
2159 		return NULL;
2160 }
2161 
2162 static ssize_t device_id_show(struct device *dev,
2163 			      struct device_attribute *attr,
2164 			      char *buf)
2165 {
2166 	struct bmc_device *bmc = dev_get_drvdata(dev);
2167 
2168 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2169 }
2170 
2171 static ssize_t provides_dev_sdrs_show(struct device *dev,
2172 				      struct device_attribute *attr,
2173 				      char *buf)
2174 {
2175 	struct bmc_device *bmc = dev_get_drvdata(dev);
2176 
2177 	return snprintf(buf, 10, "%u\n",
2178 			(bmc->id.device_revision & 0x80) >> 7);
2179 }
2180 
2181 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2182 			     char *buf)
2183 {
2184 	struct bmc_device *bmc = dev_get_drvdata(dev);
2185 
2186 	return snprintf(buf, 20, "%u\n",
2187 			bmc->id.device_revision & 0x0F);
2188 }
2189 
2190 static ssize_t firmware_rev_show(struct device *dev,
2191 				 struct device_attribute *attr,
2192 				 char *buf)
2193 {
2194 	struct bmc_device *bmc = dev_get_drvdata(dev);
2195 
2196 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2197 			bmc->id.firmware_revision_2);
2198 }
2199 
2200 static ssize_t ipmi_version_show(struct device *dev,
2201 				 struct device_attribute *attr,
2202 				 char *buf)
2203 {
2204 	struct bmc_device *bmc = dev_get_drvdata(dev);
2205 
2206 	return snprintf(buf, 20, "%u.%u\n",
2207 			ipmi_version_major(&bmc->id),
2208 			ipmi_version_minor(&bmc->id));
2209 }
2210 
2211 static ssize_t add_dev_support_show(struct device *dev,
2212 				    struct device_attribute *attr,
2213 				    char *buf)
2214 {
2215 	struct bmc_device *bmc = dev_get_drvdata(dev);
2216 
2217 	return snprintf(buf, 10, "0x%02x\n",
2218 			bmc->id.additional_device_support);
2219 }
2220 
2221 static ssize_t manufacturer_id_show(struct device *dev,
2222 				    struct device_attribute *attr,
2223 				    char *buf)
2224 {
2225 	struct bmc_device *bmc = dev_get_drvdata(dev);
2226 
2227 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2228 }
2229 
2230 static ssize_t product_id_show(struct device *dev,
2231 			       struct device_attribute *attr,
2232 			       char *buf)
2233 {
2234 	struct bmc_device *bmc = dev_get_drvdata(dev);
2235 
2236 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2237 }
2238 
2239 static ssize_t aux_firmware_rev_show(struct device *dev,
2240 				     struct device_attribute *attr,
2241 				     char *buf)
2242 {
2243 	struct bmc_device *bmc = dev_get_drvdata(dev);
2244 
2245 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2246 			bmc->id.aux_firmware_revision[3],
2247 			bmc->id.aux_firmware_revision[2],
2248 			bmc->id.aux_firmware_revision[1],
2249 			bmc->id.aux_firmware_revision[0]);
2250 }
2251 
2252 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2253 			 char *buf)
2254 {
2255 	struct bmc_device *bmc = dev_get_drvdata(dev);
2256 
2257 	return snprintf(buf, 100, "%Lx%Lx\n",
2258 			(long long) bmc->guid[0],
2259 			(long long) bmc->guid[8]);
2260 }
2261 
2262 static void remove_files(struct bmc_device *bmc)
2263 {
2264 	if (!bmc->dev)
2265 		return;
2266 
2267 	device_remove_file(&bmc->dev->dev,
2268 			   &bmc->device_id_attr);
2269 	device_remove_file(&bmc->dev->dev,
2270 			   &bmc->provides_dev_sdrs_attr);
2271 	device_remove_file(&bmc->dev->dev,
2272 			   &bmc->revision_attr);
2273 	device_remove_file(&bmc->dev->dev,
2274 			   &bmc->firmware_rev_attr);
2275 	device_remove_file(&bmc->dev->dev,
2276 			   &bmc->version_attr);
2277 	device_remove_file(&bmc->dev->dev,
2278 			   &bmc->add_dev_support_attr);
2279 	device_remove_file(&bmc->dev->dev,
2280 			   &bmc->manufacturer_id_attr);
2281 	device_remove_file(&bmc->dev->dev,
2282 			   &bmc->product_id_attr);
2283 
2284 	if (bmc->id.aux_firmware_revision_set)
2285 		device_remove_file(&bmc->dev->dev,
2286 				   &bmc->aux_firmware_rev_attr);
2287 	if (bmc->guid_set)
2288 		device_remove_file(&bmc->dev->dev,
2289 				   &bmc->guid_attr);
2290 }
2291 
2292 static void
2293 cleanup_bmc_device(struct kref *ref)
2294 {
2295 	struct bmc_device *bmc;
2296 
2297 	bmc = container_of(ref, struct bmc_device, refcount);
2298 
2299 	remove_files(bmc);
2300 	platform_device_unregister(bmc->dev);
2301 	kfree(bmc);
2302 }
2303 
2304 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2305 {
2306 	struct bmc_device *bmc = intf->bmc;
2307 
2308 	if (intf->sysfs_name) {
2309 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2310 		kfree(intf->sysfs_name);
2311 		intf->sysfs_name = NULL;
2312 	}
2313 	if (intf->my_dev_name) {
2314 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2315 		kfree(intf->my_dev_name);
2316 		intf->my_dev_name = NULL;
2317 	}
2318 
2319 	mutex_lock(&ipmidriver_mutex);
2320 	kref_put(&bmc->refcount, cleanup_bmc_device);
2321 	intf->bmc = NULL;
2322 	mutex_unlock(&ipmidriver_mutex);
2323 }
2324 
2325 static int create_files(struct bmc_device *bmc)
2326 {
2327 	int err;
2328 
2329 	bmc->device_id_attr.attr.name = "device_id";
2330 	bmc->device_id_attr.attr.mode = S_IRUGO;
2331 	bmc->device_id_attr.show = device_id_show;
2332 	sysfs_attr_init(&bmc->device_id_attr.attr);
2333 
2334 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2335 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2336 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2337 	sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2338 
2339 	bmc->revision_attr.attr.name = "revision";
2340 	bmc->revision_attr.attr.mode = S_IRUGO;
2341 	bmc->revision_attr.show = revision_show;
2342 	sysfs_attr_init(&bmc->revision_attr.attr);
2343 
2344 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2345 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2346 	bmc->firmware_rev_attr.show = firmware_rev_show;
2347 	sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2348 
2349 	bmc->version_attr.attr.name = "ipmi_version";
2350 	bmc->version_attr.attr.mode = S_IRUGO;
2351 	bmc->version_attr.show = ipmi_version_show;
2352 	sysfs_attr_init(&bmc->version_attr.attr);
2353 
2354 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2355 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2356 	bmc->add_dev_support_attr.show = add_dev_support_show;
2357 	sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2358 
2359 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2360 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2361 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2362 	sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2363 
2364 	bmc->product_id_attr.attr.name = "product_id";
2365 	bmc->product_id_attr.attr.mode = S_IRUGO;
2366 	bmc->product_id_attr.show = product_id_show;
2367 	sysfs_attr_init(&bmc->product_id_attr.attr);
2368 
2369 	bmc->guid_attr.attr.name = "guid";
2370 	bmc->guid_attr.attr.mode = S_IRUGO;
2371 	bmc->guid_attr.show = guid_show;
2372 	sysfs_attr_init(&bmc->guid_attr.attr);
2373 
2374 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2375 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2376 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2377 	sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2378 
2379 	err = device_create_file(&bmc->dev->dev,
2380 			   &bmc->device_id_attr);
2381 	if (err)
2382 		goto out;
2383 	err = device_create_file(&bmc->dev->dev,
2384 			   &bmc->provides_dev_sdrs_attr);
2385 	if (err)
2386 		goto out_devid;
2387 	err = device_create_file(&bmc->dev->dev,
2388 			   &bmc->revision_attr);
2389 	if (err)
2390 		goto out_sdrs;
2391 	err = device_create_file(&bmc->dev->dev,
2392 			   &bmc->firmware_rev_attr);
2393 	if (err)
2394 		goto out_rev;
2395 	err = device_create_file(&bmc->dev->dev,
2396 			   &bmc->version_attr);
2397 	if (err)
2398 		goto out_firm;
2399 	err = device_create_file(&bmc->dev->dev,
2400 			   &bmc->add_dev_support_attr);
2401 	if (err)
2402 		goto out_version;
2403 	err = device_create_file(&bmc->dev->dev,
2404 			   &bmc->manufacturer_id_attr);
2405 	if (err)
2406 		goto out_add_dev;
2407 	err = device_create_file(&bmc->dev->dev,
2408 			   &bmc->product_id_attr);
2409 	if (err)
2410 		goto out_manu;
2411 	if (bmc->id.aux_firmware_revision_set) {
2412 		err = device_create_file(&bmc->dev->dev,
2413 				   &bmc->aux_firmware_rev_attr);
2414 		if (err)
2415 			goto out_prod_id;
2416 	}
2417 	if (bmc->guid_set) {
2418 		err = device_create_file(&bmc->dev->dev,
2419 				   &bmc->guid_attr);
2420 		if (err)
2421 			goto out_aux_firm;
2422 	}
2423 
2424 	return 0;
2425 
2426 out_aux_firm:
2427 	if (bmc->id.aux_firmware_revision_set)
2428 		device_remove_file(&bmc->dev->dev,
2429 				   &bmc->aux_firmware_rev_attr);
2430 out_prod_id:
2431 	device_remove_file(&bmc->dev->dev,
2432 			   &bmc->product_id_attr);
2433 out_manu:
2434 	device_remove_file(&bmc->dev->dev,
2435 			   &bmc->manufacturer_id_attr);
2436 out_add_dev:
2437 	device_remove_file(&bmc->dev->dev,
2438 			   &bmc->add_dev_support_attr);
2439 out_version:
2440 	device_remove_file(&bmc->dev->dev,
2441 			   &bmc->version_attr);
2442 out_firm:
2443 	device_remove_file(&bmc->dev->dev,
2444 			   &bmc->firmware_rev_attr);
2445 out_rev:
2446 	device_remove_file(&bmc->dev->dev,
2447 			   &bmc->revision_attr);
2448 out_sdrs:
2449 	device_remove_file(&bmc->dev->dev,
2450 			   &bmc->provides_dev_sdrs_attr);
2451 out_devid:
2452 	device_remove_file(&bmc->dev->dev,
2453 			   &bmc->device_id_attr);
2454 out:
2455 	return err;
2456 }
2457 
2458 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2459 			     const char *sysfs_name)
2460 {
2461 	int               rv;
2462 	struct bmc_device *bmc = intf->bmc;
2463 	struct bmc_device *old_bmc;
2464 	int               size;
2465 	char              dummy[1];
2466 
2467 	mutex_lock(&ipmidriver_mutex);
2468 
2469 	/*
2470 	 * Try to find if there is an bmc_device struct
2471 	 * representing the interfaced BMC already
2472 	 */
2473 	if (bmc->guid_set)
2474 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2475 	else
2476 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2477 						    bmc->id.product_id,
2478 						    bmc->id.device_id);
2479 
2480 	/*
2481 	 * If there is already an bmc_device, free the new one,
2482 	 * otherwise register the new BMC device
2483 	 */
2484 	if (old_bmc) {
2485 		kfree(bmc);
2486 		intf->bmc = old_bmc;
2487 		bmc = old_bmc;
2488 
2489 		kref_get(&bmc->refcount);
2490 		mutex_unlock(&ipmidriver_mutex);
2491 
2492 		printk(KERN_INFO
2493 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2494 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2495 		       bmc->id.manufacturer_id,
2496 		       bmc->id.product_id,
2497 		       bmc->id.device_id);
2498 	} else {
2499 		char name[14];
2500 		unsigned char orig_dev_id = bmc->id.device_id;
2501 		int warn_printed = 0;
2502 
2503 		snprintf(name, sizeof(name),
2504 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2505 
2506 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2507 						 bmc->id.product_id,
2508 						 bmc->id.device_id)) {
2509 			if (!warn_printed) {
2510 				printk(KERN_WARNING PFX
2511 				       "This machine has two different BMCs"
2512 				       " with the same product id and device"
2513 				       " id.  This is an error in the"
2514 				       " firmware, but incrementing the"
2515 				       " device id to work around the problem."
2516 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2517 				       bmc->id.product_id, bmc->id.device_id);
2518 				warn_printed = 1;
2519 			}
2520 			bmc->id.device_id++; /* Wraps at 255 */
2521 			if (bmc->id.device_id == orig_dev_id) {
2522 				printk(KERN_ERR PFX
2523 				       "Out of device ids!\n");
2524 				break;
2525 			}
2526 		}
2527 
2528 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2529 		if (!bmc->dev) {
2530 			mutex_unlock(&ipmidriver_mutex);
2531 			printk(KERN_ERR
2532 			       "ipmi_msghandler:"
2533 			       " Unable to allocate platform device\n");
2534 			return -ENOMEM;
2535 		}
2536 		bmc->dev->dev.driver = &ipmidriver.driver;
2537 		dev_set_drvdata(&bmc->dev->dev, bmc);
2538 		kref_init(&bmc->refcount);
2539 
2540 		rv = platform_device_add(bmc->dev);
2541 		mutex_unlock(&ipmidriver_mutex);
2542 		if (rv) {
2543 			platform_device_put(bmc->dev);
2544 			bmc->dev = NULL;
2545 			printk(KERN_ERR
2546 			       "ipmi_msghandler:"
2547 			       " Unable to register bmc device: %d\n",
2548 			       rv);
2549 			/*
2550 			 * Don't go to out_err, you can only do that if
2551 			 * the device is registered already.
2552 			 */
2553 			return rv;
2554 		}
2555 
2556 		rv = create_files(bmc);
2557 		if (rv) {
2558 			mutex_lock(&ipmidriver_mutex);
2559 			platform_device_unregister(bmc->dev);
2560 			mutex_unlock(&ipmidriver_mutex);
2561 
2562 			return rv;
2563 		}
2564 
2565 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2566 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2567 			 bmc->id.manufacturer_id,
2568 			 bmc->id.product_id,
2569 			 bmc->id.device_id);
2570 	}
2571 
2572 	/*
2573 	 * create symlink from system interface device to bmc device
2574 	 * and back.
2575 	 */
2576 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2577 	if (!intf->sysfs_name) {
2578 		rv = -ENOMEM;
2579 		printk(KERN_ERR
2580 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2581 		       rv);
2582 		goto out_err;
2583 	}
2584 
2585 	rv = sysfs_create_link(&intf->si_dev->kobj,
2586 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2587 	if (rv) {
2588 		kfree(intf->sysfs_name);
2589 		intf->sysfs_name = NULL;
2590 		printk(KERN_ERR
2591 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2592 		       rv);
2593 		goto out_err;
2594 	}
2595 
2596 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2597 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2598 	if (!intf->my_dev_name) {
2599 		kfree(intf->sysfs_name);
2600 		intf->sysfs_name = NULL;
2601 		rv = -ENOMEM;
2602 		printk(KERN_ERR
2603 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2604 		       rv);
2605 		goto out_err;
2606 	}
2607 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2608 
2609 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2610 			       intf->my_dev_name);
2611 	if (rv) {
2612 		kfree(intf->sysfs_name);
2613 		intf->sysfs_name = NULL;
2614 		kfree(intf->my_dev_name);
2615 		intf->my_dev_name = NULL;
2616 		printk(KERN_ERR
2617 		       "ipmi_msghandler:"
2618 		       " Unable to create symlink to bmc: %d\n",
2619 		       rv);
2620 		goto out_err;
2621 	}
2622 
2623 	return 0;
2624 
2625 out_err:
2626 	ipmi_bmc_unregister(intf);
2627 	return rv;
2628 }
2629 
2630 static int
2631 send_guid_cmd(ipmi_smi_t intf, int chan)
2632 {
2633 	struct kernel_ipmi_msg            msg;
2634 	struct ipmi_system_interface_addr si;
2635 
2636 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2637 	si.channel = IPMI_BMC_CHANNEL;
2638 	si.lun = 0;
2639 
2640 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2641 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2642 	msg.data = NULL;
2643 	msg.data_len = 0;
2644 	return i_ipmi_request(NULL,
2645 			      intf,
2646 			      (struct ipmi_addr *) &si,
2647 			      0,
2648 			      &msg,
2649 			      intf,
2650 			      NULL,
2651 			      NULL,
2652 			      0,
2653 			      intf->channels[0].address,
2654 			      intf->channels[0].lun,
2655 			      -1, 0);
2656 }
2657 
2658 static void
2659 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2660 {
2661 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2662 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2663 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2664 		/* Not for me */
2665 		return;
2666 
2667 	if (msg->msg.data[0] != 0) {
2668 		/* Error from getting the GUID, the BMC doesn't have one. */
2669 		intf->bmc->guid_set = 0;
2670 		goto out;
2671 	}
2672 
2673 	if (msg->msg.data_len < 17) {
2674 		intf->bmc->guid_set = 0;
2675 		printk(KERN_WARNING PFX
2676 		       "guid_handler: The GUID response from the BMC was too"
2677 		       " short, it was %d but should have been 17.  Assuming"
2678 		       " GUID is not available.\n",
2679 		       msg->msg.data_len);
2680 		goto out;
2681 	}
2682 
2683 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2684 	intf->bmc->guid_set = 1;
2685  out:
2686 	wake_up(&intf->waitq);
2687 }
2688 
2689 static void
2690 get_guid(ipmi_smi_t intf)
2691 {
2692 	int rv;
2693 
2694 	intf->bmc->guid_set = 0x2;
2695 	intf->null_user_handler = guid_handler;
2696 	rv = send_guid_cmd(intf, 0);
2697 	if (rv)
2698 		/* Send failed, no GUID available. */
2699 		intf->bmc->guid_set = 0;
2700 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2701 	intf->null_user_handler = NULL;
2702 }
2703 
2704 static int
2705 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2706 {
2707 	struct kernel_ipmi_msg            msg;
2708 	unsigned char                     data[1];
2709 	struct ipmi_system_interface_addr si;
2710 
2711 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2712 	si.channel = IPMI_BMC_CHANNEL;
2713 	si.lun = 0;
2714 
2715 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2716 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2717 	msg.data = data;
2718 	msg.data_len = 1;
2719 	data[0] = chan;
2720 	return i_ipmi_request(NULL,
2721 			      intf,
2722 			      (struct ipmi_addr *) &si,
2723 			      0,
2724 			      &msg,
2725 			      intf,
2726 			      NULL,
2727 			      NULL,
2728 			      0,
2729 			      intf->channels[0].address,
2730 			      intf->channels[0].lun,
2731 			      -1, 0);
2732 }
2733 
2734 static void
2735 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2736 {
2737 	int rv = 0;
2738 	int chan;
2739 
2740 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2741 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2742 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2743 		/* It's the one we want */
2744 		if (msg->msg.data[0] != 0) {
2745 			/* Got an error from the channel, just go on. */
2746 
2747 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2748 				/*
2749 				 * If the MC does not support this
2750 				 * command, that is legal.  We just
2751 				 * assume it has one IPMB at channel
2752 				 * zero.
2753 				 */
2754 				intf->channels[0].medium
2755 					= IPMI_CHANNEL_MEDIUM_IPMB;
2756 				intf->channels[0].protocol
2757 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2758 				rv = -ENOSYS;
2759 
2760 				intf->curr_channel = IPMI_MAX_CHANNELS;
2761 				wake_up(&intf->waitq);
2762 				goto out;
2763 			}
2764 			goto next_channel;
2765 		}
2766 		if (msg->msg.data_len < 4) {
2767 			/* Message not big enough, just go on. */
2768 			goto next_channel;
2769 		}
2770 		chan = intf->curr_channel;
2771 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2772 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2773 
2774  next_channel:
2775 		intf->curr_channel++;
2776 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2777 			wake_up(&intf->waitq);
2778 		else
2779 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2780 
2781 		if (rv) {
2782 			/* Got an error somehow, just give up. */
2783 			intf->curr_channel = IPMI_MAX_CHANNELS;
2784 			wake_up(&intf->waitq);
2785 
2786 			printk(KERN_WARNING PFX
2787 			       "Error sending channel information: %d\n",
2788 			       rv);
2789 		}
2790 	}
2791  out:
2792 	return;
2793 }
2794 
2795 static void ipmi_poll(ipmi_smi_t intf)
2796 {
2797 	if (intf->handlers->poll)
2798 		intf->handlers->poll(intf->send_info);
2799 	/* In case something came in */
2800 	handle_new_recv_msgs(intf);
2801 }
2802 
2803 void ipmi_poll_interface(ipmi_user_t user)
2804 {
2805 	ipmi_poll(user->intf);
2806 }
2807 EXPORT_SYMBOL(ipmi_poll_interface);
2808 
2809 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2810 		      void		       *send_info,
2811 		      struct ipmi_device_id    *device_id,
2812 		      struct device            *si_dev,
2813 		      const char               *sysfs_name,
2814 		      unsigned char            slave_addr)
2815 {
2816 	int              i, j;
2817 	int              rv;
2818 	ipmi_smi_t       intf;
2819 	ipmi_smi_t       tintf;
2820 	struct list_head *link;
2821 
2822 	/*
2823 	 * Make sure the driver is actually initialized, this handles
2824 	 * problems with initialization order.
2825 	 */
2826 	if (!initialized) {
2827 		rv = ipmi_init_msghandler();
2828 		if (rv)
2829 			return rv;
2830 		/*
2831 		 * The init code doesn't return an error if it was turned
2832 		 * off, but it won't initialize.  Check that.
2833 		 */
2834 		if (!initialized)
2835 			return -ENODEV;
2836 	}
2837 
2838 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2839 	if (!intf)
2840 		return -ENOMEM;
2841 
2842 	intf->ipmi_version_major = ipmi_version_major(device_id);
2843 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2844 
2845 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2846 	if (!intf->bmc) {
2847 		kfree(intf);
2848 		return -ENOMEM;
2849 	}
2850 	intf->intf_num = -1; /* Mark it invalid for now. */
2851 	kref_init(&intf->refcount);
2852 	intf->bmc->id = *device_id;
2853 	intf->si_dev = si_dev;
2854 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2855 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2856 		intf->channels[j].lun = 2;
2857 	}
2858 	if (slave_addr != 0)
2859 		intf->channels[0].address = slave_addr;
2860 	INIT_LIST_HEAD(&intf->users);
2861 	intf->handlers = handlers;
2862 	intf->send_info = send_info;
2863 	spin_lock_init(&intf->seq_lock);
2864 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2865 		intf->seq_table[j].inuse = 0;
2866 		intf->seq_table[j].seqid = 0;
2867 	}
2868 	intf->curr_seq = 0;
2869 #ifdef CONFIG_PROC_FS
2870 	mutex_init(&intf->proc_entry_lock);
2871 #endif
2872 	spin_lock_init(&intf->waiting_msgs_lock);
2873 	INIT_LIST_HEAD(&intf->waiting_msgs);
2874 	tasklet_init(&intf->recv_tasklet,
2875 		     smi_recv_tasklet,
2876 		     (unsigned long) intf);
2877 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2878 	spin_lock_init(&intf->events_lock);
2879 	INIT_LIST_HEAD(&intf->waiting_events);
2880 	intf->waiting_events_count = 0;
2881 	mutex_init(&intf->cmd_rcvrs_mutex);
2882 	spin_lock_init(&intf->maintenance_mode_lock);
2883 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2884 	init_waitqueue_head(&intf->waitq);
2885 	for (i = 0; i < IPMI_NUM_STATS; i++)
2886 		atomic_set(&intf->stats[i], 0);
2887 
2888 	intf->proc_dir = NULL;
2889 
2890 	mutex_lock(&smi_watchers_mutex);
2891 	mutex_lock(&ipmi_interfaces_mutex);
2892 	/* Look for a hole in the numbers. */
2893 	i = 0;
2894 	link = &ipmi_interfaces;
2895 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2896 		if (tintf->intf_num != i) {
2897 			link = &tintf->link;
2898 			break;
2899 		}
2900 		i++;
2901 	}
2902 	/* Add the new interface in numeric order. */
2903 	if (i == 0)
2904 		list_add_rcu(&intf->link, &ipmi_interfaces);
2905 	else
2906 		list_add_tail_rcu(&intf->link, link);
2907 
2908 	rv = handlers->start_processing(send_info, intf);
2909 	if (rv)
2910 		goto out;
2911 
2912 	get_guid(intf);
2913 
2914 	if ((intf->ipmi_version_major > 1)
2915 			|| ((intf->ipmi_version_major == 1)
2916 			    && (intf->ipmi_version_minor >= 5))) {
2917 		/*
2918 		 * Start scanning the channels to see what is
2919 		 * available.
2920 		 */
2921 		intf->null_user_handler = channel_handler;
2922 		intf->curr_channel = 0;
2923 		rv = send_channel_info_cmd(intf, 0);
2924 		if (rv)
2925 			goto out;
2926 
2927 		/* Wait for the channel info to be read. */
2928 		wait_event(intf->waitq,
2929 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2930 		intf->null_user_handler = NULL;
2931 	} else {
2932 		/* Assume a single IPMB channel at zero. */
2933 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2934 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2935 		intf->curr_channel = IPMI_MAX_CHANNELS;
2936 	}
2937 
2938 	if (rv == 0)
2939 		rv = add_proc_entries(intf, i);
2940 
2941 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2942 
2943  out:
2944 	if (rv) {
2945 		if (intf->proc_dir)
2946 			remove_proc_entries(intf);
2947 		intf->handlers = NULL;
2948 		list_del_rcu(&intf->link);
2949 		mutex_unlock(&ipmi_interfaces_mutex);
2950 		mutex_unlock(&smi_watchers_mutex);
2951 		synchronize_rcu();
2952 		kref_put(&intf->refcount, intf_free);
2953 	} else {
2954 		/*
2955 		 * Keep memory order straight for RCU readers.  Make
2956 		 * sure everything else is committed to memory before
2957 		 * setting intf_num to mark the interface valid.
2958 		 */
2959 		smp_wmb();
2960 		intf->intf_num = i;
2961 		mutex_unlock(&ipmi_interfaces_mutex);
2962 		/* After this point the interface is legal to use. */
2963 		call_smi_watchers(i, intf->si_dev);
2964 		mutex_unlock(&smi_watchers_mutex);
2965 	}
2966 
2967 	return rv;
2968 }
2969 EXPORT_SYMBOL(ipmi_register_smi);
2970 
2971 static void cleanup_smi_msgs(ipmi_smi_t intf)
2972 {
2973 	int              i;
2974 	struct seq_table *ent;
2975 
2976 	/* No need for locks, the interface is down. */
2977 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2978 		ent = &(intf->seq_table[i]);
2979 		if (!ent->inuse)
2980 			continue;
2981 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2982 	}
2983 }
2984 
2985 int ipmi_unregister_smi(ipmi_smi_t intf)
2986 {
2987 	struct ipmi_smi_watcher *w;
2988 	int    intf_num = intf->intf_num;
2989 
2990 	ipmi_bmc_unregister(intf);
2991 
2992 	mutex_lock(&smi_watchers_mutex);
2993 	mutex_lock(&ipmi_interfaces_mutex);
2994 	intf->intf_num = -1;
2995 	intf->handlers = NULL;
2996 	list_del_rcu(&intf->link);
2997 	mutex_unlock(&ipmi_interfaces_mutex);
2998 	synchronize_rcu();
2999 
3000 	cleanup_smi_msgs(intf);
3001 
3002 	remove_proc_entries(intf);
3003 
3004 	/*
3005 	 * Call all the watcher interfaces to tell them that
3006 	 * an interface is gone.
3007 	 */
3008 	list_for_each_entry(w, &smi_watchers, link)
3009 		w->smi_gone(intf_num);
3010 	mutex_unlock(&smi_watchers_mutex);
3011 
3012 	kref_put(&intf->refcount, intf_free);
3013 	return 0;
3014 }
3015 EXPORT_SYMBOL(ipmi_unregister_smi);
3016 
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018 				   struct ipmi_smi_msg *msg)
3019 {
3020 	struct ipmi_ipmb_addr ipmb_addr;
3021 	struct ipmi_recv_msg  *recv_msg;
3022 
3023 	/*
3024 	 * This is 11, not 10, because the response must contain a
3025 	 * completion code.
3026 	 */
3027 	if (msg->rsp_size < 11) {
3028 		/* Message not big enough, just ignore it. */
3029 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3030 		return 0;
3031 	}
3032 
3033 	if (msg->rsp[2] != 0) {
3034 		/* An error getting the response, just ignore it. */
3035 		return 0;
3036 	}
3037 
3038 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039 	ipmb_addr.slave_addr = msg->rsp[6];
3040 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041 	ipmb_addr.lun = msg->rsp[7] & 3;
3042 
3043 	/*
3044 	 * It's a response from a remote entity.  Look up the sequence
3045 	 * number and handle the response.
3046 	 */
3047 	if (intf_find_seq(intf,
3048 			  msg->rsp[7] >> 2,
3049 			  msg->rsp[3] & 0x0f,
3050 			  msg->rsp[8],
3051 			  (msg->rsp[4] >> 2) & (~1),
3052 			  (struct ipmi_addr *) &(ipmb_addr),
3053 			  &recv_msg)) {
3054 		/*
3055 		 * We were unable to find the sequence number,
3056 		 * so just nuke the message.
3057 		 */
3058 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059 		return 0;
3060 	}
3061 
3062 	memcpy(recv_msg->msg_data,
3063 	       &(msg->rsp[9]),
3064 	       msg->rsp_size - 9);
3065 	/*
3066 	 * The other fields matched, so no need to set them, except
3067 	 * for netfn, which needs to be the response that was
3068 	 * returned, not the request value.
3069 	 */
3070 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071 	recv_msg->msg.data = recv_msg->msg_data;
3072 	recv_msg->msg.data_len = msg->rsp_size - 10;
3073 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074 	ipmi_inc_stat(intf, handled_ipmb_responses);
3075 	deliver_response(recv_msg);
3076 
3077 	return 0;
3078 }
3079 
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081 				   struct ipmi_smi_msg *msg)
3082 {
3083 	struct cmd_rcvr          *rcvr;
3084 	int                      rv = 0;
3085 	unsigned char            netfn;
3086 	unsigned char            cmd;
3087 	unsigned char            chan;
3088 	ipmi_user_t              user = NULL;
3089 	struct ipmi_ipmb_addr    *ipmb_addr;
3090 	struct ipmi_recv_msg     *recv_msg;
3091 	struct ipmi_smi_handlers *handlers;
3092 
3093 	if (msg->rsp_size < 10) {
3094 		/* Message not big enough, just ignore it. */
3095 		ipmi_inc_stat(intf, invalid_commands);
3096 		return 0;
3097 	}
3098 
3099 	if (msg->rsp[2] != 0) {
3100 		/* An error getting the response, just ignore it. */
3101 		return 0;
3102 	}
3103 
3104 	netfn = msg->rsp[4] >> 2;
3105 	cmd = msg->rsp[8];
3106 	chan = msg->rsp[3] & 0xf;
3107 
3108 	rcu_read_lock();
3109 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3110 	if (rcvr) {
3111 		user = rcvr->user;
3112 		kref_get(&user->refcount);
3113 	} else
3114 		user = NULL;
3115 	rcu_read_unlock();
3116 
3117 	if (user == NULL) {
3118 		/* We didn't find a user, deliver an error response. */
3119 		ipmi_inc_stat(intf, unhandled_commands);
3120 
3121 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3122 		msg->data[1] = IPMI_SEND_MSG_CMD;
3123 		msg->data[2] = msg->rsp[3];
3124 		msg->data[3] = msg->rsp[6];
3125 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3126 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3127 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3128 		/* rqseq/lun */
3129 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3130 		msg->data[8] = msg->rsp[8]; /* cmd */
3131 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3132 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3133 		msg->data_size = 11;
3134 
3135 #ifdef DEBUG_MSGING
3136 	{
3137 		int m;
3138 		printk("Invalid command:");
3139 		for (m = 0; m < msg->data_size; m++)
3140 			printk(" %2.2x", msg->data[m]);
3141 		printk("\n");
3142 	}
3143 #endif
3144 		rcu_read_lock();
3145 		handlers = intf->handlers;
3146 		if (handlers) {
3147 			handlers->sender(intf->send_info, msg, 0);
3148 			/*
3149 			 * We used the message, so return the value
3150 			 * that causes it to not be freed or
3151 			 * queued.
3152 			 */
3153 			rv = -1;
3154 		}
3155 		rcu_read_unlock();
3156 	} else {
3157 		/* Deliver the message to the user. */
3158 		ipmi_inc_stat(intf, handled_commands);
3159 
3160 		recv_msg = ipmi_alloc_recv_msg();
3161 		if (!recv_msg) {
3162 			/*
3163 			 * We couldn't allocate memory for the
3164 			 * message, so requeue it for handling
3165 			 * later.
3166 			 */
3167 			rv = 1;
3168 			kref_put(&user->refcount, free_user);
3169 		} else {
3170 			/* Extract the source address from the data. */
3171 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3172 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3173 			ipmb_addr->slave_addr = msg->rsp[6];
3174 			ipmb_addr->lun = msg->rsp[7] & 3;
3175 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3176 
3177 			/*
3178 			 * Extract the rest of the message information
3179 			 * from the IPMB header.
3180 			 */
3181 			recv_msg->user = user;
3182 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3183 			recv_msg->msgid = msg->rsp[7] >> 2;
3184 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3185 			recv_msg->msg.cmd = msg->rsp[8];
3186 			recv_msg->msg.data = recv_msg->msg_data;
3187 
3188 			/*
3189 			 * We chop off 10, not 9 bytes because the checksum
3190 			 * at the end also needs to be removed.
3191 			 */
3192 			recv_msg->msg.data_len = msg->rsp_size - 10;
3193 			memcpy(recv_msg->msg_data,
3194 			       &(msg->rsp[9]),
3195 			       msg->rsp_size - 10);
3196 			deliver_response(recv_msg);
3197 		}
3198 	}
3199 
3200 	return rv;
3201 }
3202 
3203 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3204 				  struct ipmi_smi_msg *msg)
3205 {
3206 	struct ipmi_lan_addr  lan_addr;
3207 	struct ipmi_recv_msg  *recv_msg;
3208 
3209 
3210 	/*
3211 	 * This is 13, not 12, because the response must contain a
3212 	 * completion code.
3213 	 */
3214 	if (msg->rsp_size < 13) {
3215 		/* Message not big enough, just ignore it. */
3216 		ipmi_inc_stat(intf, invalid_lan_responses);
3217 		return 0;
3218 	}
3219 
3220 	if (msg->rsp[2] != 0) {
3221 		/* An error getting the response, just ignore it. */
3222 		return 0;
3223 	}
3224 
3225 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3226 	lan_addr.session_handle = msg->rsp[4];
3227 	lan_addr.remote_SWID = msg->rsp[8];
3228 	lan_addr.local_SWID = msg->rsp[5];
3229 	lan_addr.channel = msg->rsp[3] & 0x0f;
3230 	lan_addr.privilege = msg->rsp[3] >> 4;
3231 	lan_addr.lun = msg->rsp[9] & 3;
3232 
3233 	/*
3234 	 * It's a response from a remote entity.  Look up the sequence
3235 	 * number and handle the response.
3236 	 */
3237 	if (intf_find_seq(intf,
3238 			  msg->rsp[9] >> 2,
3239 			  msg->rsp[3] & 0x0f,
3240 			  msg->rsp[10],
3241 			  (msg->rsp[6] >> 2) & (~1),
3242 			  (struct ipmi_addr *) &(lan_addr),
3243 			  &recv_msg)) {
3244 		/*
3245 		 * We were unable to find the sequence number,
3246 		 * so just nuke the message.
3247 		 */
3248 		ipmi_inc_stat(intf, unhandled_lan_responses);
3249 		return 0;
3250 	}
3251 
3252 	memcpy(recv_msg->msg_data,
3253 	       &(msg->rsp[11]),
3254 	       msg->rsp_size - 11);
3255 	/*
3256 	 * The other fields matched, so no need to set them, except
3257 	 * for netfn, which needs to be the response that was
3258 	 * returned, not the request value.
3259 	 */
3260 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3261 	recv_msg->msg.data = recv_msg->msg_data;
3262 	recv_msg->msg.data_len = msg->rsp_size - 12;
3263 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3264 	ipmi_inc_stat(intf, handled_lan_responses);
3265 	deliver_response(recv_msg);
3266 
3267 	return 0;
3268 }
3269 
3270 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3271 				  struct ipmi_smi_msg *msg)
3272 {
3273 	struct cmd_rcvr          *rcvr;
3274 	int                      rv = 0;
3275 	unsigned char            netfn;
3276 	unsigned char            cmd;
3277 	unsigned char            chan;
3278 	ipmi_user_t              user = NULL;
3279 	struct ipmi_lan_addr     *lan_addr;
3280 	struct ipmi_recv_msg     *recv_msg;
3281 
3282 	if (msg->rsp_size < 12) {
3283 		/* Message not big enough, just ignore it. */
3284 		ipmi_inc_stat(intf, invalid_commands);
3285 		return 0;
3286 	}
3287 
3288 	if (msg->rsp[2] != 0) {
3289 		/* An error getting the response, just ignore it. */
3290 		return 0;
3291 	}
3292 
3293 	netfn = msg->rsp[6] >> 2;
3294 	cmd = msg->rsp[10];
3295 	chan = msg->rsp[3] & 0xf;
3296 
3297 	rcu_read_lock();
3298 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3299 	if (rcvr) {
3300 		user = rcvr->user;
3301 		kref_get(&user->refcount);
3302 	} else
3303 		user = NULL;
3304 	rcu_read_unlock();
3305 
3306 	if (user == NULL) {
3307 		/* We didn't find a user, just give up. */
3308 		ipmi_inc_stat(intf, unhandled_commands);
3309 
3310 		/*
3311 		 * Don't do anything with these messages, just allow
3312 		 * them to be freed.
3313 		 */
3314 		rv = 0;
3315 	} else {
3316 		/* Deliver the message to the user. */
3317 		ipmi_inc_stat(intf, handled_commands);
3318 
3319 		recv_msg = ipmi_alloc_recv_msg();
3320 		if (!recv_msg) {
3321 			/*
3322 			 * We couldn't allocate memory for the
3323 			 * message, so requeue it for handling later.
3324 			 */
3325 			rv = 1;
3326 			kref_put(&user->refcount, free_user);
3327 		} else {
3328 			/* Extract the source address from the data. */
3329 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3330 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3331 			lan_addr->session_handle = msg->rsp[4];
3332 			lan_addr->remote_SWID = msg->rsp[8];
3333 			lan_addr->local_SWID = msg->rsp[5];
3334 			lan_addr->lun = msg->rsp[9] & 3;
3335 			lan_addr->channel = msg->rsp[3] & 0xf;
3336 			lan_addr->privilege = msg->rsp[3] >> 4;
3337 
3338 			/*
3339 			 * Extract the rest of the message information
3340 			 * from the IPMB header.
3341 			 */
3342 			recv_msg->user = user;
3343 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3344 			recv_msg->msgid = msg->rsp[9] >> 2;
3345 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3346 			recv_msg->msg.cmd = msg->rsp[10];
3347 			recv_msg->msg.data = recv_msg->msg_data;
3348 
3349 			/*
3350 			 * We chop off 12, not 11 bytes because the checksum
3351 			 * at the end also needs to be removed.
3352 			 */
3353 			recv_msg->msg.data_len = msg->rsp_size - 12;
3354 			memcpy(recv_msg->msg_data,
3355 			       &(msg->rsp[11]),
3356 			       msg->rsp_size - 12);
3357 			deliver_response(recv_msg);
3358 		}
3359 	}
3360 
3361 	return rv;
3362 }
3363 
3364 /*
3365  * This routine will handle "Get Message" command responses with
3366  * channels that use an OEM Medium. The message format belongs to
3367  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3368  * Chapter 22, sections 22.6 and 22.24 for more details.
3369  */
3370 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3371 				  struct ipmi_smi_msg *msg)
3372 {
3373 	struct cmd_rcvr       *rcvr;
3374 	int                   rv = 0;
3375 	unsigned char         netfn;
3376 	unsigned char         cmd;
3377 	unsigned char         chan;
3378 	ipmi_user_t           user = NULL;
3379 	struct ipmi_system_interface_addr *smi_addr;
3380 	struct ipmi_recv_msg  *recv_msg;
3381 
3382 	/*
3383 	 * We expect the OEM SW to perform error checking
3384 	 * so we just do some basic sanity checks
3385 	 */
3386 	if (msg->rsp_size < 4) {
3387 		/* Message not big enough, just ignore it. */
3388 		ipmi_inc_stat(intf, invalid_commands);
3389 		return 0;
3390 	}
3391 
3392 	if (msg->rsp[2] != 0) {
3393 		/* An error getting the response, just ignore it. */
3394 		return 0;
3395 	}
3396 
3397 	/*
3398 	 * This is an OEM Message so the OEM needs to know how
3399 	 * handle the message. We do no interpretation.
3400 	 */
3401 	netfn = msg->rsp[0] >> 2;
3402 	cmd = msg->rsp[1];
3403 	chan = msg->rsp[3] & 0xf;
3404 
3405 	rcu_read_lock();
3406 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3407 	if (rcvr) {
3408 		user = rcvr->user;
3409 		kref_get(&user->refcount);
3410 	} else
3411 		user = NULL;
3412 	rcu_read_unlock();
3413 
3414 	if (user == NULL) {
3415 		/* We didn't find a user, just give up. */
3416 		ipmi_inc_stat(intf, unhandled_commands);
3417 
3418 		/*
3419 		 * Don't do anything with these messages, just allow
3420 		 * them to be freed.
3421 		 */
3422 
3423 		rv = 0;
3424 	} else {
3425 		/* Deliver the message to the user. */
3426 		ipmi_inc_stat(intf, handled_commands);
3427 
3428 		recv_msg = ipmi_alloc_recv_msg();
3429 		if (!recv_msg) {
3430 			/*
3431 			 * We couldn't allocate memory for the
3432 			 * message, so requeue it for handling
3433 			 * later.
3434 			 */
3435 			rv = 1;
3436 			kref_put(&user->refcount, free_user);
3437 		} else {
3438 			/*
3439 			 * OEM Messages are expected to be delivered via
3440 			 * the system interface to SMS software.  We might
3441 			 * need to visit this again depending on OEM
3442 			 * requirements
3443 			 */
3444 			smi_addr = ((struct ipmi_system_interface_addr *)
3445 				    &(recv_msg->addr));
3446 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3447 			smi_addr->channel = IPMI_BMC_CHANNEL;
3448 			smi_addr->lun = msg->rsp[0] & 3;
3449 
3450 			recv_msg->user = user;
3451 			recv_msg->user_msg_data = NULL;
3452 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3453 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3454 			recv_msg->msg.cmd = msg->rsp[1];
3455 			recv_msg->msg.data = recv_msg->msg_data;
3456 
3457 			/*
3458 			 * The message starts at byte 4 which follows the
3459 			 * the Channel Byte in the "GET MESSAGE" command
3460 			 */
3461 			recv_msg->msg.data_len = msg->rsp_size - 4;
3462 			memcpy(recv_msg->msg_data,
3463 			       &(msg->rsp[4]),
3464 			       msg->rsp_size - 4);
3465 			deliver_response(recv_msg);
3466 		}
3467 	}
3468 
3469 	return rv;
3470 }
3471 
3472 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3473 				     struct ipmi_smi_msg  *msg)
3474 {
3475 	struct ipmi_system_interface_addr *smi_addr;
3476 
3477 	recv_msg->msgid = 0;
3478 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3479 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3480 	smi_addr->channel = IPMI_BMC_CHANNEL;
3481 	smi_addr->lun = msg->rsp[0] & 3;
3482 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3483 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3484 	recv_msg->msg.cmd = msg->rsp[1];
3485 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3486 	recv_msg->msg.data = recv_msg->msg_data;
3487 	recv_msg->msg.data_len = msg->rsp_size - 3;
3488 }
3489 
3490 static int handle_read_event_rsp(ipmi_smi_t          intf,
3491 				 struct ipmi_smi_msg *msg)
3492 {
3493 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3494 	struct list_head     msgs;
3495 	ipmi_user_t          user;
3496 	int                  rv = 0;
3497 	int                  deliver_count = 0;
3498 	unsigned long        flags;
3499 
3500 	if (msg->rsp_size < 19) {
3501 		/* Message is too small to be an IPMB event. */
3502 		ipmi_inc_stat(intf, invalid_events);
3503 		return 0;
3504 	}
3505 
3506 	if (msg->rsp[2] != 0) {
3507 		/* An error getting the event, just ignore it. */
3508 		return 0;
3509 	}
3510 
3511 	INIT_LIST_HEAD(&msgs);
3512 
3513 	spin_lock_irqsave(&intf->events_lock, flags);
3514 
3515 	ipmi_inc_stat(intf, events);
3516 
3517 	/*
3518 	 * Allocate and fill in one message for every user that is
3519 	 * getting events.
3520 	 */
3521 	rcu_read_lock();
3522 	list_for_each_entry_rcu(user, &intf->users, link) {
3523 		if (!user->gets_events)
3524 			continue;
3525 
3526 		recv_msg = ipmi_alloc_recv_msg();
3527 		if (!recv_msg) {
3528 			rcu_read_unlock();
3529 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3530 						 link) {
3531 				list_del(&recv_msg->link);
3532 				ipmi_free_recv_msg(recv_msg);
3533 			}
3534 			/*
3535 			 * We couldn't allocate memory for the
3536 			 * message, so requeue it for handling
3537 			 * later.
3538 			 */
3539 			rv = 1;
3540 			goto out;
3541 		}
3542 
3543 		deliver_count++;
3544 
3545 		copy_event_into_recv_msg(recv_msg, msg);
3546 		recv_msg->user = user;
3547 		kref_get(&user->refcount);
3548 		list_add_tail(&(recv_msg->link), &msgs);
3549 	}
3550 	rcu_read_unlock();
3551 
3552 	if (deliver_count) {
3553 		/* Now deliver all the messages. */
3554 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3555 			list_del(&recv_msg->link);
3556 			deliver_response(recv_msg);
3557 		}
3558 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3559 		/*
3560 		 * No one to receive the message, put it in queue if there's
3561 		 * not already too many things in the queue.
3562 		 */
3563 		recv_msg = ipmi_alloc_recv_msg();
3564 		if (!recv_msg) {
3565 			/*
3566 			 * We couldn't allocate memory for the
3567 			 * message, so requeue it for handling
3568 			 * later.
3569 			 */
3570 			rv = 1;
3571 			goto out;
3572 		}
3573 
3574 		copy_event_into_recv_msg(recv_msg, msg);
3575 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3576 		intf->waiting_events_count++;
3577 	} else if (!intf->event_msg_printed) {
3578 		/*
3579 		 * There's too many things in the queue, discard this
3580 		 * message.
3581 		 */
3582 		printk(KERN_WARNING PFX "Event queue full, discarding"
3583 		       " incoming events\n");
3584 		intf->event_msg_printed = 1;
3585 	}
3586 
3587  out:
3588 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3589 
3590 	return rv;
3591 }
3592 
3593 static int handle_bmc_rsp(ipmi_smi_t          intf,
3594 			  struct ipmi_smi_msg *msg)
3595 {
3596 	struct ipmi_recv_msg *recv_msg;
3597 	struct ipmi_user     *user;
3598 
3599 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3600 	if (recv_msg == NULL) {
3601 		printk(KERN_WARNING
3602 		       "IPMI message received with no owner. This\n"
3603 		       "could be because of a malformed message, or\n"
3604 		       "because of a hardware error.  Contact your\n"
3605 		       "hardware vender for assistance\n");
3606 		return 0;
3607 	}
3608 
3609 	user = recv_msg->user;
3610 	/* Make sure the user still exists. */
3611 	if (user && !user->valid) {
3612 		/* The user for the message went away, so give up. */
3613 		ipmi_inc_stat(intf, unhandled_local_responses);
3614 		ipmi_free_recv_msg(recv_msg);
3615 	} else {
3616 		struct ipmi_system_interface_addr *smi_addr;
3617 
3618 		ipmi_inc_stat(intf, handled_local_responses);
3619 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3620 		recv_msg->msgid = msg->msgid;
3621 		smi_addr = ((struct ipmi_system_interface_addr *)
3622 			    &(recv_msg->addr));
3623 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3624 		smi_addr->channel = IPMI_BMC_CHANNEL;
3625 		smi_addr->lun = msg->rsp[0] & 3;
3626 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3627 		recv_msg->msg.cmd = msg->rsp[1];
3628 		memcpy(recv_msg->msg_data,
3629 		       &(msg->rsp[2]),
3630 		       msg->rsp_size - 2);
3631 		recv_msg->msg.data = recv_msg->msg_data;
3632 		recv_msg->msg.data_len = msg->rsp_size - 2;
3633 		deliver_response(recv_msg);
3634 	}
3635 
3636 	return 0;
3637 }
3638 
3639 /*
3640  * Handle a received message.  Return 1 if the message should be requeued,
3641  * 0 if the message should be freed, or -1 if the message should not
3642  * be freed or requeued.
3643  */
3644 static int handle_one_recv_msg(ipmi_smi_t          intf,
3645 			       struct ipmi_smi_msg *msg)
3646 {
3647 	int requeue;
3648 	int chan;
3649 
3650 #ifdef DEBUG_MSGING
3651 	int m;
3652 	printk("Recv:");
3653 	for (m = 0; m < msg->rsp_size; m++)
3654 		printk(" %2.2x", msg->rsp[m]);
3655 	printk("\n");
3656 #endif
3657 	if (msg->rsp_size < 2) {
3658 		/* Message is too small to be correct. */
3659 		printk(KERN_WARNING PFX "BMC returned to small a message"
3660 		       " for netfn %x cmd %x, got %d bytes\n",
3661 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3662 
3663 		/* Generate an error response for the message. */
3664 		msg->rsp[0] = msg->data[0] | (1 << 2);
3665 		msg->rsp[1] = msg->data[1];
3666 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3667 		msg->rsp_size = 3;
3668 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3669 		   || (msg->rsp[1] != msg->data[1])) {
3670 		/*
3671 		 * The NetFN and Command in the response is not even
3672 		 * marginally correct.
3673 		 */
3674 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3675 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3676 		       (msg->data[0] >> 2) | 1, msg->data[1],
3677 		       msg->rsp[0] >> 2, msg->rsp[1]);
3678 
3679 		/* Generate an error response for the message. */
3680 		msg->rsp[0] = msg->data[0] | (1 << 2);
3681 		msg->rsp[1] = msg->data[1];
3682 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3683 		msg->rsp_size = 3;
3684 	}
3685 
3686 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3687 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3688 	    && (msg->user_data != NULL)) {
3689 		/*
3690 		 * It's a response to a response we sent.  For this we
3691 		 * deliver a send message response to the user.
3692 		 */
3693 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3694 
3695 		requeue = 0;
3696 		if (msg->rsp_size < 2)
3697 			/* Message is too small to be correct. */
3698 			goto out;
3699 
3700 		chan = msg->data[2] & 0x0f;
3701 		if (chan >= IPMI_MAX_CHANNELS)
3702 			/* Invalid channel number */
3703 			goto out;
3704 
3705 		if (!recv_msg)
3706 			goto out;
3707 
3708 		/* Make sure the user still exists. */
3709 		if (!recv_msg->user || !recv_msg->user->valid)
3710 			goto out;
3711 
3712 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3713 		recv_msg->msg.data = recv_msg->msg_data;
3714 		recv_msg->msg.data_len = 1;
3715 		recv_msg->msg_data[0] = msg->rsp[2];
3716 		deliver_response(recv_msg);
3717 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3718 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3719 		/* It's from the receive queue. */
3720 		chan = msg->rsp[3] & 0xf;
3721 		if (chan >= IPMI_MAX_CHANNELS) {
3722 			/* Invalid channel number */
3723 			requeue = 0;
3724 			goto out;
3725 		}
3726 
3727 		/*
3728 		 * We need to make sure the channels have been initialized.
3729 		 * The channel_handler routine will set the "curr_channel"
3730 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3731 		 * channels for this interface have been initialized.
3732 		 */
3733 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3734 			requeue = 0; /* Throw the message away */
3735 			goto out;
3736 		}
3737 
3738 		switch (intf->channels[chan].medium) {
3739 		case IPMI_CHANNEL_MEDIUM_IPMB:
3740 			if (msg->rsp[4] & 0x04) {
3741 				/*
3742 				 * It's a response, so find the
3743 				 * requesting message and send it up.
3744 				 */
3745 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3746 			} else {
3747 				/*
3748 				 * It's a command to the SMS from some other
3749 				 * entity.  Handle that.
3750 				 */
3751 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3752 			}
3753 			break;
3754 
3755 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3756 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3757 			if (msg->rsp[6] & 0x04) {
3758 				/*
3759 				 * It's a response, so find the
3760 				 * requesting message and send it up.
3761 				 */
3762 				requeue = handle_lan_get_msg_rsp(intf, msg);
3763 			} else {
3764 				/*
3765 				 * It's a command to the SMS from some other
3766 				 * entity.  Handle that.
3767 				 */
3768 				requeue = handle_lan_get_msg_cmd(intf, msg);
3769 			}
3770 			break;
3771 
3772 		default:
3773 			/* Check for OEM Channels.  Clients had better
3774 			   register for these commands. */
3775 			if ((intf->channels[chan].medium
3776 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3777 			    && (intf->channels[chan].medium
3778 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3779 				requeue = handle_oem_get_msg_cmd(intf, msg);
3780 			} else {
3781 				/*
3782 				 * We don't handle the channel type, so just
3783 				 * free the message.
3784 				 */
3785 				requeue = 0;
3786 			}
3787 		}
3788 
3789 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3790 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3791 		/* It's an asynchronous event. */
3792 		requeue = handle_read_event_rsp(intf, msg);
3793 	} else {
3794 		/* It's a response from the local BMC. */
3795 		requeue = handle_bmc_rsp(intf, msg);
3796 	}
3797 
3798  out:
3799 	return requeue;
3800 }
3801 
3802 /*
3803  * If there are messages in the queue or pretimeouts, handle them.
3804  */
3805 static void handle_new_recv_msgs(ipmi_smi_t intf)
3806 {
3807 	struct ipmi_smi_msg  *smi_msg;
3808 	unsigned long        flags = 0;
3809 	int                  rv;
3810 	int                  run_to_completion = intf->run_to_completion;
3811 
3812 	/* See if any waiting messages need to be processed. */
3813 	if (!run_to_completion)
3814 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3815 	while (!list_empty(&intf->waiting_msgs)) {
3816 		smi_msg = list_entry(intf->waiting_msgs.next,
3817 				     struct ipmi_smi_msg, link);
3818 		list_del(&smi_msg->link);
3819 		if (!run_to_completion)
3820 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3821 		rv = handle_one_recv_msg(intf, smi_msg);
3822 		if (!run_to_completion)
3823 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3824 		if (rv == 0) {
3825 			/* Message handled */
3826 			ipmi_free_smi_msg(smi_msg);
3827 		} else if (rv < 0) {
3828 			/* Fatal error on the message, del but don't free. */
3829 		} else {
3830 			/*
3831 			 * To preserve message order, quit if we
3832 			 * can't handle a message.
3833 			 */
3834 			list_add(&smi_msg->link, &intf->waiting_msgs);
3835 			break;
3836 		}
3837 	}
3838 	if (!run_to_completion)
3839 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3840 
3841 	/*
3842 	 * If the pretimout count is non-zero, decrement one from it and
3843 	 * deliver pretimeouts to all the users.
3844 	 */
3845 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3846 		ipmi_user_t user;
3847 
3848 		rcu_read_lock();
3849 		list_for_each_entry_rcu(user, &intf->users, link) {
3850 			if (user->handler->ipmi_watchdog_pretimeout)
3851 				user->handler->ipmi_watchdog_pretimeout(
3852 					user->handler_data);
3853 		}
3854 		rcu_read_unlock();
3855 	}
3856 }
3857 
3858 static void smi_recv_tasklet(unsigned long val)
3859 {
3860 	handle_new_recv_msgs((ipmi_smi_t) val);
3861 }
3862 
3863 /* Handle a new message from the lower layer. */
3864 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3865 			   struct ipmi_smi_msg *msg)
3866 {
3867 	unsigned long flags = 0; /* keep us warning-free. */
3868 	int           run_to_completion;
3869 
3870 
3871 	if ((msg->data_size >= 2)
3872 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3873 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3874 	    && (msg->user_data == NULL)) {
3875 		/*
3876 		 * This is the local response to a command send, start
3877 		 * the timer for these.  The user_data will not be
3878 		 * NULL if this is a response send, and we will let
3879 		 * response sends just go through.
3880 		 */
3881 
3882 		/*
3883 		 * Check for errors, if we get certain errors (ones
3884 		 * that mean basically we can try again later), we
3885 		 * ignore them and start the timer.  Otherwise we
3886 		 * report the error immediately.
3887 		 */
3888 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3889 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3890 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3891 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3892 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3893 			int chan = msg->rsp[3] & 0xf;
3894 
3895 			/* Got an error sending the message, handle it. */
3896 			if (chan >= IPMI_MAX_CHANNELS)
3897 				; /* This shouldn't happen */
3898 			else if ((intf->channels[chan].medium
3899 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3900 				 || (intf->channels[chan].medium
3901 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3902 				ipmi_inc_stat(intf, sent_lan_command_errs);
3903 			else
3904 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3905 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3906 		} else
3907 			/* The message was sent, start the timer. */
3908 			intf_start_seq_timer(intf, msg->msgid);
3909 
3910 		ipmi_free_smi_msg(msg);
3911 		goto out;
3912 	}
3913 
3914 	/*
3915 	 * To preserve message order, if the list is not empty, we
3916 	 * tack this message onto the end of the list.
3917 	 */
3918 	run_to_completion = intf->run_to_completion;
3919 	if (!run_to_completion)
3920 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3921 	list_add_tail(&msg->link, &intf->waiting_msgs);
3922 	if (!run_to_completion)
3923 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3924 
3925 	tasklet_schedule(&intf->recv_tasklet);
3926  out:
3927 	return;
3928 }
3929 EXPORT_SYMBOL(ipmi_smi_msg_received);
3930 
3931 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3932 {
3933 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3934 	tasklet_schedule(&intf->recv_tasklet);
3935 }
3936 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3937 
3938 static struct ipmi_smi_msg *
3939 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3940 		  unsigned char seq, long seqid)
3941 {
3942 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3943 	if (!smi_msg)
3944 		/*
3945 		 * If we can't allocate the message, then just return, we
3946 		 * get 4 retries, so this should be ok.
3947 		 */
3948 		return NULL;
3949 
3950 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3951 	smi_msg->data_size = recv_msg->msg.data_len;
3952 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3953 
3954 #ifdef DEBUG_MSGING
3955 	{
3956 		int m;
3957 		printk("Resend: ");
3958 		for (m = 0; m < smi_msg->data_size; m++)
3959 			printk(" %2.2x", smi_msg->data[m]);
3960 		printk("\n");
3961 	}
3962 #endif
3963 	return smi_msg;
3964 }
3965 
3966 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3967 			      struct list_head *timeouts, long timeout_period,
3968 			      int slot, unsigned long *flags)
3969 {
3970 	struct ipmi_recv_msg     *msg;
3971 	struct ipmi_smi_handlers *handlers;
3972 
3973 	if (intf->intf_num == -1)
3974 		return;
3975 
3976 	if (!ent->inuse)
3977 		return;
3978 
3979 	ent->timeout -= timeout_period;
3980 	if (ent->timeout > 0)
3981 		return;
3982 
3983 	if (ent->retries_left == 0) {
3984 		/* The message has used all its retries. */
3985 		ent->inuse = 0;
3986 		msg = ent->recv_msg;
3987 		list_add_tail(&msg->link, timeouts);
3988 		if (ent->broadcast)
3989 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3990 		else if (is_lan_addr(&ent->recv_msg->addr))
3991 			ipmi_inc_stat(intf, timed_out_lan_commands);
3992 		else
3993 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3994 	} else {
3995 		struct ipmi_smi_msg *smi_msg;
3996 		/* More retries, send again. */
3997 
3998 		/*
3999 		 * Start with the max timer, set to normal timer after
4000 		 * the message is sent.
4001 		 */
4002 		ent->timeout = MAX_MSG_TIMEOUT;
4003 		ent->retries_left--;
4004 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4005 					    ent->seqid);
4006 		if (!smi_msg) {
4007 			if (is_lan_addr(&ent->recv_msg->addr))
4008 				ipmi_inc_stat(intf,
4009 					      dropped_rexmit_lan_commands);
4010 			else
4011 				ipmi_inc_stat(intf,
4012 					      dropped_rexmit_ipmb_commands);
4013 			return;
4014 		}
4015 
4016 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4017 
4018 		/*
4019 		 * Send the new message.  We send with a zero
4020 		 * priority.  It timed out, I doubt time is that
4021 		 * critical now, and high priority messages are really
4022 		 * only for messages to the local MC, which don't get
4023 		 * resent.
4024 		 */
4025 		handlers = intf->handlers;
4026 		if (handlers) {
4027 			if (is_lan_addr(&ent->recv_msg->addr))
4028 				ipmi_inc_stat(intf,
4029 					      retransmitted_lan_commands);
4030 			else
4031 				ipmi_inc_stat(intf,
4032 					      retransmitted_ipmb_commands);
4033 
4034 			intf->handlers->sender(intf->send_info,
4035 					       smi_msg, 0);
4036 		} else
4037 			ipmi_free_smi_msg(smi_msg);
4038 
4039 		spin_lock_irqsave(&intf->seq_lock, *flags);
4040 	}
4041 }
4042 
4043 static void ipmi_timeout_handler(long timeout_period)
4044 {
4045 	ipmi_smi_t           intf;
4046 	struct list_head     timeouts;
4047 	struct ipmi_recv_msg *msg, *msg2;
4048 	unsigned long        flags;
4049 	int                  i;
4050 
4051 	rcu_read_lock();
4052 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4053 		tasklet_schedule(&intf->recv_tasklet);
4054 
4055 		/*
4056 		 * Go through the seq table and find any messages that
4057 		 * have timed out, putting them in the timeouts
4058 		 * list.
4059 		 */
4060 		INIT_LIST_HEAD(&timeouts);
4061 		spin_lock_irqsave(&intf->seq_lock, flags);
4062 		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4063 			check_msg_timeout(intf, &(intf->seq_table[i]),
4064 					  &timeouts, timeout_period, i,
4065 					  &flags);
4066 		spin_unlock_irqrestore(&intf->seq_lock, flags);
4067 
4068 		list_for_each_entry_safe(msg, msg2, &timeouts, link)
4069 			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4070 
4071 		/*
4072 		 * Maintenance mode handling.  Check the timeout
4073 		 * optimistically before we claim the lock.  It may
4074 		 * mean a timeout gets missed occasionally, but that
4075 		 * only means the timeout gets extended by one period
4076 		 * in that case.  No big deal, and it avoids the lock
4077 		 * most of the time.
4078 		 */
4079 		if (intf->auto_maintenance_timeout > 0) {
4080 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4081 			if (intf->auto_maintenance_timeout > 0) {
4082 				intf->auto_maintenance_timeout
4083 					-= timeout_period;
4084 				if (!intf->maintenance_mode
4085 				    && (intf->auto_maintenance_timeout <= 0)) {
4086 					intf->maintenance_mode_enable = 0;
4087 					maintenance_mode_update(intf);
4088 				}
4089 			}
4090 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4091 					       flags);
4092 		}
4093 	}
4094 	rcu_read_unlock();
4095 }
4096 
4097 static void ipmi_request_event(void)
4098 {
4099 	ipmi_smi_t               intf;
4100 	struct ipmi_smi_handlers *handlers;
4101 
4102 	rcu_read_lock();
4103 	/*
4104 	 * Called from the timer, no need to check if handlers is
4105 	 * valid.
4106 	 */
4107 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4108 		/* No event requests when in maintenance mode. */
4109 		if (intf->maintenance_mode_enable)
4110 			continue;
4111 
4112 		handlers = intf->handlers;
4113 		if (handlers)
4114 			handlers->request_events(intf->send_info);
4115 	}
4116 	rcu_read_unlock();
4117 }
4118 
4119 static struct timer_list ipmi_timer;
4120 
4121 /* Call every ~1000 ms. */
4122 #define IPMI_TIMEOUT_TIME	1000
4123 
4124 /* How many jiffies does it take to get to the timeout time. */
4125 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
4126 
4127 /*
4128  * Request events from the queue every second (this is the number of
4129  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4130  * future, IPMI will add a way to know immediately if an event is in
4131  * the queue and this silliness can go away.
4132  */
4133 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
4134 
4135 static atomic_t stop_operation;
4136 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4137 
4138 static void ipmi_timeout(unsigned long data)
4139 {
4140 	if (atomic_read(&stop_operation))
4141 		return;
4142 
4143 	ticks_to_req_ev--;
4144 	if (ticks_to_req_ev == 0) {
4145 		ipmi_request_event();
4146 		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4147 	}
4148 
4149 	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4150 
4151 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4152 }
4153 
4154 
4155 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4156 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4157 
4158 /* FIXME - convert these to slabs. */
4159 static void free_smi_msg(struct ipmi_smi_msg *msg)
4160 {
4161 	atomic_dec(&smi_msg_inuse_count);
4162 	kfree(msg);
4163 }
4164 
4165 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4166 {
4167 	struct ipmi_smi_msg *rv;
4168 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4169 	if (rv) {
4170 		rv->done = free_smi_msg;
4171 		rv->user_data = NULL;
4172 		atomic_inc(&smi_msg_inuse_count);
4173 	}
4174 	return rv;
4175 }
4176 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4177 
4178 static void free_recv_msg(struct ipmi_recv_msg *msg)
4179 {
4180 	atomic_dec(&recv_msg_inuse_count);
4181 	kfree(msg);
4182 }
4183 
4184 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4185 {
4186 	struct ipmi_recv_msg *rv;
4187 
4188 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4189 	if (rv) {
4190 		rv->user = NULL;
4191 		rv->done = free_recv_msg;
4192 		atomic_inc(&recv_msg_inuse_count);
4193 	}
4194 	return rv;
4195 }
4196 
4197 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4198 {
4199 	if (msg->user)
4200 		kref_put(&msg->user->refcount, free_user);
4201 	msg->done(msg);
4202 }
4203 EXPORT_SYMBOL(ipmi_free_recv_msg);
4204 
4205 #ifdef CONFIG_IPMI_PANIC_EVENT
4206 
4207 static atomic_t panic_done_count = ATOMIC_INIT(0);
4208 
4209 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4210 {
4211 	atomic_dec(&panic_done_count);
4212 }
4213 
4214 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4215 {
4216 	atomic_dec(&panic_done_count);
4217 }
4218 
4219 /*
4220  * Inside a panic, send a message and wait for a response.
4221  */
4222 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4223 					struct ipmi_addr     *addr,
4224 					struct kernel_ipmi_msg *msg)
4225 {
4226 	struct ipmi_smi_msg  smi_msg;
4227 	struct ipmi_recv_msg recv_msg;
4228 	int rv;
4229 
4230 	smi_msg.done = dummy_smi_done_handler;
4231 	recv_msg.done = dummy_recv_done_handler;
4232 	atomic_add(2, &panic_done_count);
4233 	rv = i_ipmi_request(NULL,
4234 			    intf,
4235 			    addr,
4236 			    0,
4237 			    msg,
4238 			    intf,
4239 			    &smi_msg,
4240 			    &recv_msg,
4241 			    0,
4242 			    intf->channels[0].address,
4243 			    intf->channels[0].lun,
4244 			    0, 1); /* Don't retry, and don't wait. */
4245 	if (rv)
4246 		atomic_sub(2, &panic_done_count);
4247 	while (atomic_read(&panic_done_count) != 0)
4248 		ipmi_poll(intf);
4249 }
4250 
4251 #ifdef CONFIG_IPMI_PANIC_STRING
4252 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4253 {
4254 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4255 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4256 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4257 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4258 		/* A get event receiver command, save it. */
4259 		intf->event_receiver = msg->msg.data[1];
4260 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4261 	}
4262 }
4263 
4264 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4265 {
4266 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4267 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4268 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4269 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4270 		/*
4271 		 * A get device id command, save if we are an event
4272 		 * receiver or generator.
4273 		 */
4274 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4275 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4276 	}
4277 }
4278 #endif
4279 
4280 static void send_panic_events(char *str)
4281 {
4282 	struct kernel_ipmi_msg            msg;
4283 	ipmi_smi_t                        intf;
4284 	unsigned char                     data[16];
4285 	struct ipmi_system_interface_addr *si;
4286 	struct ipmi_addr                  addr;
4287 
4288 	si = (struct ipmi_system_interface_addr *) &addr;
4289 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4290 	si->channel = IPMI_BMC_CHANNEL;
4291 	si->lun = 0;
4292 
4293 	/* Fill in an event telling that we have failed. */
4294 	msg.netfn = 0x04; /* Sensor or Event. */
4295 	msg.cmd = 2; /* Platform event command. */
4296 	msg.data = data;
4297 	msg.data_len = 8;
4298 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4299 	data[1] = 0x03; /* This is for IPMI 1.0. */
4300 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4301 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4302 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4303 
4304 	/*
4305 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4306 	 * to make the panic events more useful.
4307 	 */
4308 	if (str) {
4309 		data[3] = str[0];
4310 		data[6] = str[1];
4311 		data[7] = str[2];
4312 	}
4313 
4314 	/* For every registered interface, send the event. */
4315 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4316 		if (!intf->handlers)
4317 			/* Interface is not ready. */
4318 			continue;
4319 
4320 		intf->run_to_completion = 1;
4321 		/* Send the event announcing the panic. */
4322 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4323 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4324 	}
4325 
4326 #ifdef CONFIG_IPMI_PANIC_STRING
4327 	/*
4328 	 * On every interface, dump a bunch of OEM event holding the
4329 	 * string.
4330 	 */
4331 	if (!str)
4332 		return;
4333 
4334 	/* For every registered interface, send the event. */
4335 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4336 		char                  *p = str;
4337 		struct ipmi_ipmb_addr *ipmb;
4338 		int                   j;
4339 
4340 		if (intf->intf_num == -1)
4341 			/* Interface was not ready yet. */
4342 			continue;
4343 
4344 		/*
4345 		 * intf_num is used as an marker to tell if the
4346 		 * interface is valid.  Thus we need a read barrier to
4347 		 * make sure data fetched before checking intf_num
4348 		 * won't be used.
4349 		 */
4350 		smp_rmb();
4351 
4352 		/*
4353 		 * First job here is to figure out where to send the
4354 		 * OEM events.  There's no way in IPMI to send OEM
4355 		 * events using an event send command, so we have to
4356 		 * find the SEL to put them in and stick them in
4357 		 * there.
4358 		 */
4359 
4360 		/* Get capabilities from the get device id. */
4361 		intf->local_sel_device = 0;
4362 		intf->local_event_generator = 0;
4363 		intf->event_receiver = 0;
4364 
4365 		/* Request the device info from the local MC. */
4366 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4367 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4368 		msg.data = NULL;
4369 		msg.data_len = 0;
4370 		intf->null_user_handler = device_id_fetcher;
4371 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4372 
4373 		if (intf->local_event_generator) {
4374 			/* Request the event receiver from the local MC. */
4375 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4376 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4377 			msg.data = NULL;
4378 			msg.data_len = 0;
4379 			intf->null_user_handler = event_receiver_fetcher;
4380 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4381 		}
4382 		intf->null_user_handler = NULL;
4383 
4384 		/*
4385 		 * Validate the event receiver.  The low bit must not
4386 		 * be 1 (it must be a valid IPMB address), it cannot
4387 		 * be zero, and it must not be my address.
4388 		 */
4389 		if (((intf->event_receiver & 1) == 0)
4390 		    && (intf->event_receiver != 0)
4391 		    && (intf->event_receiver != intf->channels[0].address)) {
4392 			/*
4393 			 * The event receiver is valid, send an IPMB
4394 			 * message.
4395 			 */
4396 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4397 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4398 			ipmb->channel = 0; /* FIXME - is this right? */
4399 			ipmb->lun = intf->event_receiver_lun;
4400 			ipmb->slave_addr = intf->event_receiver;
4401 		} else if (intf->local_sel_device) {
4402 			/*
4403 			 * The event receiver was not valid (or was
4404 			 * me), but I am an SEL device, just dump it
4405 			 * in my SEL.
4406 			 */
4407 			si = (struct ipmi_system_interface_addr *) &addr;
4408 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4409 			si->channel = IPMI_BMC_CHANNEL;
4410 			si->lun = 0;
4411 		} else
4412 			continue; /* No where to send the event. */
4413 
4414 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4415 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4416 		msg.data = data;
4417 		msg.data_len = 16;
4418 
4419 		j = 0;
4420 		while (*p) {
4421 			int size = strlen(p);
4422 
4423 			if (size > 11)
4424 				size = 11;
4425 			data[0] = 0;
4426 			data[1] = 0;
4427 			data[2] = 0xf0; /* OEM event without timestamp. */
4428 			data[3] = intf->channels[0].address;
4429 			data[4] = j++; /* sequence # */
4430 			/*
4431 			 * Always give 11 bytes, so strncpy will fill
4432 			 * it with zeroes for me.
4433 			 */
4434 			strncpy(data+5, p, 11);
4435 			p += size;
4436 
4437 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4438 		}
4439 	}
4440 #endif /* CONFIG_IPMI_PANIC_STRING */
4441 }
4442 #endif /* CONFIG_IPMI_PANIC_EVENT */
4443 
4444 static int has_panicked;
4445 
4446 static int panic_event(struct notifier_block *this,
4447 		       unsigned long         event,
4448 		       void                  *ptr)
4449 {
4450 	ipmi_smi_t intf;
4451 
4452 	if (has_panicked)
4453 		return NOTIFY_DONE;
4454 	has_panicked = 1;
4455 
4456 	/* For every registered interface, set it to run to completion. */
4457 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4458 		if (!intf->handlers)
4459 			/* Interface is not ready. */
4460 			continue;
4461 
4462 		intf->run_to_completion = 1;
4463 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4464 	}
4465 
4466 #ifdef CONFIG_IPMI_PANIC_EVENT
4467 	send_panic_events(ptr);
4468 #endif
4469 
4470 	return NOTIFY_DONE;
4471 }
4472 
4473 static struct notifier_block panic_block = {
4474 	.notifier_call	= panic_event,
4475 	.next		= NULL,
4476 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4477 };
4478 
4479 static int ipmi_init_msghandler(void)
4480 {
4481 	int rv;
4482 
4483 	if (initialized)
4484 		return 0;
4485 
4486 	rv = driver_register(&ipmidriver.driver);
4487 	if (rv) {
4488 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4489 		return rv;
4490 	}
4491 
4492 	printk(KERN_INFO "ipmi message handler version "
4493 	       IPMI_DRIVER_VERSION "\n");
4494 
4495 #ifdef CONFIG_PROC_FS
4496 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4497 	if (!proc_ipmi_root) {
4498 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4499 	    return -ENOMEM;
4500 	}
4501 
4502 #endif /* CONFIG_PROC_FS */
4503 
4504 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4505 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4506 
4507 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4508 
4509 	initialized = 1;
4510 
4511 	return 0;
4512 }
4513 
4514 static int __init ipmi_init_msghandler_mod(void)
4515 {
4516 	ipmi_init_msghandler();
4517 	return 0;
4518 }
4519 
4520 static void __exit cleanup_ipmi(void)
4521 {
4522 	int count;
4523 
4524 	if (!initialized)
4525 		return;
4526 
4527 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4528 
4529 	/*
4530 	 * This can't be called if any interfaces exist, so no worry
4531 	 * about shutting down the interfaces.
4532 	 */
4533 
4534 	/*
4535 	 * Tell the timer to stop, then wait for it to stop.  This
4536 	 * avoids problems with race conditions removing the timer
4537 	 * here.
4538 	 */
4539 	atomic_inc(&stop_operation);
4540 	del_timer_sync(&ipmi_timer);
4541 
4542 #ifdef CONFIG_PROC_FS
4543 	proc_remove(proc_ipmi_root);
4544 #endif /* CONFIG_PROC_FS */
4545 
4546 	driver_unregister(&ipmidriver.driver);
4547 
4548 	initialized = 0;
4549 
4550 	/* Check for buffer leaks. */
4551 	count = atomic_read(&smi_msg_inuse_count);
4552 	if (count != 0)
4553 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4554 		       count);
4555 	count = atomic_read(&recv_msg_inuse_count);
4556 	if (count != 0)
4557 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4558 		       count);
4559 }
4560 module_exit(cleanup_ipmi);
4561 
4562 module_init(ipmi_init_msghandler_mod);
4563 MODULE_LICENSE("GPL");
4564 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4565 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4566 		   " interface.");
4567 MODULE_VERSION(IPMI_DRIVER_VERSION);
4568