xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39 
40 #define IPMI_DRIVER_VERSION "39.2"
41 
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 			       struct ipmi_smi_msg *msg);
49 
50 static bool initialized;
51 static bool drvregistered;
52 
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 	IPMI_SEND_PANIC_EVENT_NONE,
56 	IPMI_SEND_PANIC_EVENT,
57 	IPMI_SEND_PANIC_EVENT_STRING,
58 	IPMI_SEND_PANIC_EVENT_MAX
59 };
60 
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63 
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71 
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73 
74 static int panic_op_write_handler(const char *val,
75 				  const struct kernel_param *kp)
76 {
77 	char valcp[16];
78 	int e;
79 
80 	strscpy(valcp, val, sizeof(valcp));
81 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 	if (e < 0)
83 		return e;
84 
85 	ipmi_send_panic_event = e;
86 	return 0;
87 }
88 
89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 	const char *event_str;
92 
93 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 		event_str = "???";
95 	else
96 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97 
98 	return sprintf(buffer, "%s\n", event_str);
99 }
100 
101 static const struct kernel_param_ops panic_op_ops = {
102 	.set = panic_op_write_handler,
103 	.get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107 
108 
109 #define MAX_EVENTS_IN_QUEUE	25
110 
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116 
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT		60000
122 
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129 
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 		 "The time (milliseconds) between retry sends");
135 
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 		 "The time (milliseconds) between retry sends in maintenance mode");
141 
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 		 "The time (milliseconds) between retry sends in maintenance mode");
147 
148 /* Call every ~1000 ms. */
149 #define IPMI_TIMEOUT_TIME	1000
150 
151 /* How many jiffies does it take to get to the timeout time. */
152 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
153 
154 /*
155  * Request events from the queue every second (this is the number of
156  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
157  * future, IPMI will add a way to know immediately if an event is in
158  * the queue and this silliness can go away.
159  */
160 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
161 
162 /* How long should we cache dynamic device IDs? */
163 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
164 
165 /*
166  * The main "user" data structure.
167  */
168 struct ipmi_user {
169 	struct list_head link;
170 
171 	/*
172 	 * Set to NULL when the user is destroyed, a pointer to myself
173 	 * so srcu_dereference can be used on it.
174 	 */
175 	struct ipmi_user *self;
176 	struct srcu_struct release_barrier;
177 
178 	struct kref refcount;
179 
180 	/* The upper layer that handles receive messages. */
181 	const struct ipmi_user_hndl *handler;
182 	void             *handler_data;
183 
184 	/* The interface this user is bound to. */
185 	struct ipmi_smi *intf;
186 
187 	/* Does this interface receive IPMI events? */
188 	bool gets_events;
189 
190 	/* Free must run in process context for RCU cleanup. */
191 	struct work_struct remove_work;
192 };
193 
194 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
195 	__acquires(user->release_barrier)
196 {
197 	struct ipmi_user *ruser;
198 
199 	*index = srcu_read_lock(&user->release_barrier);
200 	ruser = srcu_dereference(user->self, &user->release_barrier);
201 	if (!ruser)
202 		srcu_read_unlock(&user->release_barrier, *index);
203 	return ruser;
204 }
205 
206 static void release_ipmi_user(struct ipmi_user *user, int index)
207 {
208 	srcu_read_unlock(&user->release_barrier, index);
209 }
210 
211 struct cmd_rcvr {
212 	struct list_head link;
213 
214 	struct ipmi_user *user;
215 	unsigned char netfn;
216 	unsigned char cmd;
217 	unsigned int  chans;
218 
219 	/*
220 	 * This is used to form a linked lised during mass deletion.
221 	 * Since this is in an RCU list, we cannot use the link above
222 	 * or change any data until the RCU period completes.  So we
223 	 * use this next variable during mass deletion so we can have
224 	 * a list and don't have to wait and restart the search on
225 	 * every individual deletion of a command.
226 	 */
227 	struct cmd_rcvr *next;
228 };
229 
230 struct seq_table {
231 	unsigned int         inuse : 1;
232 	unsigned int         broadcast : 1;
233 
234 	unsigned long        timeout;
235 	unsigned long        orig_timeout;
236 	unsigned int         retries_left;
237 
238 	/*
239 	 * To verify on an incoming send message response that this is
240 	 * the message that the response is for, we keep a sequence id
241 	 * and increment it every time we send a message.
242 	 */
243 	long                 seqid;
244 
245 	/*
246 	 * This is held so we can properly respond to the message on a
247 	 * timeout, and it is used to hold the temporary data for
248 	 * retransmission, too.
249 	 */
250 	struct ipmi_recv_msg *recv_msg;
251 };
252 
253 /*
254  * Store the information in a msgid (long) to allow us to find a
255  * sequence table entry from the msgid.
256  */
257 #define STORE_SEQ_IN_MSGID(seq, seqid) \
258 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
259 
260 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
261 	do {								\
262 		seq = (((msgid) >> 26) & 0x3f);				\
263 		seqid = ((msgid) & 0x3ffffff);				\
264 	} while (0)
265 
266 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
267 
268 #define IPMI_MAX_CHANNELS       16
269 struct ipmi_channel {
270 	unsigned char medium;
271 	unsigned char protocol;
272 };
273 
274 struct ipmi_channel_set {
275 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
276 };
277 
278 struct ipmi_my_addrinfo {
279 	/*
280 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
281 	 * but may be changed by the user.
282 	 */
283 	unsigned char address;
284 
285 	/*
286 	 * My LUN.  This should generally stay the SMS LUN, but just in
287 	 * case...
288 	 */
289 	unsigned char lun;
290 };
291 
292 /*
293  * Note that the product id, manufacturer id, guid, and device id are
294  * immutable in this structure, so dyn_mutex is not required for
295  * accessing those.  If those change on a BMC, a new BMC is allocated.
296  */
297 struct bmc_device {
298 	struct platform_device pdev;
299 	struct list_head       intfs; /* Interfaces on this BMC. */
300 	struct ipmi_device_id  id;
301 	struct ipmi_device_id  fetch_id;
302 	int                    dyn_id_set;
303 	unsigned long          dyn_id_expiry;
304 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
305 	guid_t                 guid;
306 	guid_t                 fetch_guid;
307 	int                    dyn_guid_set;
308 	struct kref	       usecount;
309 	struct work_struct     remove_work;
310 	unsigned char	       cc; /* completion code */
311 };
312 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
313 
314 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
315 			     struct ipmi_device_id *id,
316 			     bool *guid_set, guid_t *guid);
317 
318 /*
319  * Various statistics for IPMI, these index stats[] in the ipmi_smi
320  * structure.
321  */
322 enum ipmi_stat_indexes {
323 	/* Commands we got from the user that were invalid. */
324 	IPMI_STAT_sent_invalid_commands = 0,
325 
326 	/* Commands we sent to the MC. */
327 	IPMI_STAT_sent_local_commands,
328 
329 	/* Responses from the MC that were delivered to a user. */
330 	IPMI_STAT_handled_local_responses,
331 
332 	/* Responses from the MC that were not delivered to a user. */
333 	IPMI_STAT_unhandled_local_responses,
334 
335 	/* Commands we sent out to the IPMB bus. */
336 	IPMI_STAT_sent_ipmb_commands,
337 
338 	/* Commands sent on the IPMB that had errors on the SEND CMD */
339 	IPMI_STAT_sent_ipmb_command_errs,
340 
341 	/* Each retransmit increments this count. */
342 	IPMI_STAT_retransmitted_ipmb_commands,
343 
344 	/*
345 	 * When a message times out (runs out of retransmits) this is
346 	 * incremented.
347 	 */
348 	IPMI_STAT_timed_out_ipmb_commands,
349 
350 	/*
351 	 * This is like above, but for broadcasts.  Broadcasts are
352 	 * *not* included in the above count (they are expected to
353 	 * time out).
354 	 */
355 	IPMI_STAT_timed_out_ipmb_broadcasts,
356 
357 	/* Responses I have sent to the IPMB bus. */
358 	IPMI_STAT_sent_ipmb_responses,
359 
360 	/* The response was delivered to the user. */
361 	IPMI_STAT_handled_ipmb_responses,
362 
363 	/* The response had invalid data in it. */
364 	IPMI_STAT_invalid_ipmb_responses,
365 
366 	/* The response didn't have anyone waiting for it. */
367 	IPMI_STAT_unhandled_ipmb_responses,
368 
369 	/* Commands we sent out to the IPMB bus. */
370 	IPMI_STAT_sent_lan_commands,
371 
372 	/* Commands sent on the IPMB that had errors on the SEND CMD */
373 	IPMI_STAT_sent_lan_command_errs,
374 
375 	/* Each retransmit increments this count. */
376 	IPMI_STAT_retransmitted_lan_commands,
377 
378 	/*
379 	 * When a message times out (runs out of retransmits) this is
380 	 * incremented.
381 	 */
382 	IPMI_STAT_timed_out_lan_commands,
383 
384 	/* Responses I have sent to the IPMB bus. */
385 	IPMI_STAT_sent_lan_responses,
386 
387 	/* The response was delivered to the user. */
388 	IPMI_STAT_handled_lan_responses,
389 
390 	/* The response had invalid data in it. */
391 	IPMI_STAT_invalid_lan_responses,
392 
393 	/* The response didn't have anyone waiting for it. */
394 	IPMI_STAT_unhandled_lan_responses,
395 
396 	/* The command was delivered to the user. */
397 	IPMI_STAT_handled_commands,
398 
399 	/* The command had invalid data in it. */
400 	IPMI_STAT_invalid_commands,
401 
402 	/* The command didn't have anyone waiting for it. */
403 	IPMI_STAT_unhandled_commands,
404 
405 	/* Invalid data in an event. */
406 	IPMI_STAT_invalid_events,
407 
408 	/* Events that were received with the proper format. */
409 	IPMI_STAT_events,
410 
411 	/* Retransmissions on IPMB that failed. */
412 	IPMI_STAT_dropped_rexmit_ipmb_commands,
413 
414 	/* Retransmissions on LAN that failed. */
415 	IPMI_STAT_dropped_rexmit_lan_commands,
416 
417 	/* This *must* remain last, add new values above this. */
418 	IPMI_NUM_STATS
419 };
420 
421 
422 #define IPMI_IPMB_NUM_SEQ	64
423 struct ipmi_smi {
424 	struct module *owner;
425 
426 	/* What interface number are we? */
427 	int intf_num;
428 
429 	struct kref refcount;
430 
431 	/* Set when the interface is being unregistered. */
432 	bool in_shutdown;
433 
434 	/* Used for a list of interfaces. */
435 	struct list_head link;
436 
437 	/*
438 	 * The list of upper layers that are using me.  seq_lock write
439 	 * protects this.  Read protection is with srcu.
440 	 */
441 	struct list_head users;
442 	struct srcu_struct users_srcu;
443 
444 	/* Used for wake ups at startup. */
445 	wait_queue_head_t waitq;
446 
447 	/*
448 	 * Prevents the interface from being unregistered when the
449 	 * interface is used by being looked up through the BMC
450 	 * structure.
451 	 */
452 	struct mutex bmc_reg_mutex;
453 
454 	struct bmc_device tmp_bmc;
455 	struct bmc_device *bmc;
456 	bool bmc_registered;
457 	struct list_head bmc_link;
458 	char *my_dev_name;
459 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
460 	struct work_struct bmc_reg_work;
461 
462 	const struct ipmi_smi_handlers *handlers;
463 	void                     *send_info;
464 
465 	/* Driver-model device for the system interface. */
466 	struct device          *si_dev;
467 
468 	/*
469 	 * A table of sequence numbers for this interface.  We use the
470 	 * sequence numbers for IPMB messages that go out of the
471 	 * interface to match them up with their responses.  A routine
472 	 * is called periodically to time the items in this list.
473 	 */
474 	spinlock_t       seq_lock;
475 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
476 	int curr_seq;
477 
478 	/*
479 	 * Messages queued for delivery.  If delivery fails (out of memory
480 	 * for instance), They will stay in here to be processed later in a
481 	 * periodic timer interrupt.  The tasklet is for handling received
482 	 * messages directly from the handler.
483 	 */
484 	spinlock_t       waiting_rcv_msgs_lock;
485 	struct list_head waiting_rcv_msgs;
486 	atomic_t	 watchdog_pretimeouts_to_deliver;
487 	struct tasklet_struct recv_tasklet;
488 
489 	spinlock_t             xmit_msgs_lock;
490 	struct list_head       xmit_msgs;
491 	struct ipmi_smi_msg    *curr_msg;
492 	struct list_head       hp_xmit_msgs;
493 
494 	/*
495 	 * The list of command receivers that are registered for commands
496 	 * on this interface.
497 	 */
498 	struct mutex     cmd_rcvrs_mutex;
499 	struct list_head cmd_rcvrs;
500 
501 	/*
502 	 * Events that were queues because no one was there to receive
503 	 * them.
504 	 */
505 	spinlock_t       events_lock; /* For dealing with event stuff. */
506 	struct list_head waiting_events;
507 	unsigned int     waiting_events_count; /* How many events in queue? */
508 	char             delivering_events;
509 	char             event_msg_printed;
510 
511 	/* How many users are waiting for events? */
512 	atomic_t         event_waiters;
513 	unsigned int     ticks_to_req_ev;
514 
515 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
516 
517 	/* How many users are waiting for commands? */
518 	unsigned int     command_waiters;
519 
520 	/* How many users are waiting for watchdogs? */
521 	unsigned int     watchdog_waiters;
522 
523 	/* How many users are waiting for message responses? */
524 	unsigned int     response_waiters;
525 
526 	/*
527 	 * Tells what the lower layer has last been asked to watch for,
528 	 * messages and/or watchdogs.  Protected by watch_lock.
529 	 */
530 	unsigned int     last_watch_mask;
531 
532 	/*
533 	 * The event receiver for my BMC, only really used at panic
534 	 * shutdown as a place to store this.
535 	 */
536 	unsigned char event_receiver;
537 	unsigned char event_receiver_lun;
538 	unsigned char local_sel_device;
539 	unsigned char local_event_generator;
540 
541 	/* For handling of maintenance mode. */
542 	int maintenance_mode;
543 	bool maintenance_mode_enable;
544 	int auto_maintenance_timeout;
545 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
546 
547 	/*
548 	 * If we are doing maintenance on something on IPMB, extend
549 	 * the timeout time to avoid timeouts writing firmware and
550 	 * such.
551 	 */
552 	int ipmb_maintenance_mode_timeout;
553 
554 	/*
555 	 * A cheap hack, if this is non-null and a message to an
556 	 * interface comes in with a NULL user, call this routine with
557 	 * it.  Note that the message will still be freed by the
558 	 * caller.  This only works on the system interface.
559 	 *
560 	 * Protected by bmc_reg_mutex.
561 	 */
562 	void (*null_user_handler)(struct ipmi_smi *intf,
563 				  struct ipmi_recv_msg *msg);
564 
565 	/*
566 	 * When we are scanning the channels for an SMI, this will
567 	 * tell which channel we are scanning.
568 	 */
569 	int curr_channel;
570 
571 	/* Channel information */
572 	struct ipmi_channel_set *channel_list;
573 	unsigned int curr_working_cset; /* First index into the following. */
574 	struct ipmi_channel_set wchannels[2];
575 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
576 	bool channels_ready;
577 
578 	atomic_t stats[IPMI_NUM_STATS];
579 
580 	/*
581 	 * run_to_completion duplicate of smb_info, smi_info
582 	 * and ipmi_serial_info structures. Used to decrease numbers of
583 	 * parameters passed by "low" level IPMI code.
584 	 */
585 	int run_to_completion;
586 };
587 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
588 
589 static void __get_guid(struct ipmi_smi *intf);
590 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
591 static int __ipmi_bmc_register(struct ipmi_smi *intf,
592 			       struct ipmi_device_id *id,
593 			       bool guid_set, guid_t *guid, int intf_num);
594 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
595 
596 
597 /**
598  * The driver model view of the IPMI messaging driver.
599  */
600 static struct platform_driver ipmidriver = {
601 	.driver = {
602 		.name = "ipmi",
603 		.bus = &platform_bus_type
604 	}
605 };
606 /*
607  * This mutex keeps us from adding the same BMC twice.
608  */
609 static DEFINE_MUTEX(ipmidriver_mutex);
610 
611 static LIST_HEAD(ipmi_interfaces);
612 static DEFINE_MUTEX(ipmi_interfaces_mutex);
613 #define ipmi_interfaces_mutex_held() \
614 	lockdep_is_held(&ipmi_interfaces_mutex)
615 static struct srcu_struct ipmi_interfaces_srcu;
616 
617 /*
618  * List of watchers that want to know when smi's are added and deleted.
619  */
620 static LIST_HEAD(smi_watchers);
621 static DEFINE_MUTEX(smi_watchers_mutex);
622 
623 #define ipmi_inc_stat(intf, stat) \
624 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
625 #define ipmi_get_stat(intf, stat) \
626 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
627 
628 static const char * const addr_src_to_str[] = {
629 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
630 	"device-tree", "platform"
631 };
632 
633 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
634 {
635 	if (src >= SI_LAST)
636 		src = 0; /* Invalid */
637 	return addr_src_to_str[src];
638 }
639 EXPORT_SYMBOL(ipmi_addr_src_to_str);
640 
641 static int is_lan_addr(struct ipmi_addr *addr)
642 {
643 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
644 }
645 
646 static int is_ipmb_addr(struct ipmi_addr *addr)
647 {
648 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
649 }
650 
651 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
652 {
653 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
654 }
655 
656 static void free_recv_msg_list(struct list_head *q)
657 {
658 	struct ipmi_recv_msg *msg, *msg2;
659 
660 	list_for_each_entry_safe(msg, msg2, q, link) {
661 		list_del(&msg->link);
662 		ipmi_free_recv_msg(msg);
663 	}
664 }
665 
666 static void free_smi_msg_list(struct list_head *q)
667 {
668 	struct ipmi_smi_msg *msg, *msg2;
669 
670 	list_for_each_entry_safe(msg, msg2, q, link) {
671 		list_del(&msg->link);
672 		ipmi_free_smi_msg(msg);
673 	}
674 }
675 
676 static void clean_up_interface_data(struct ipmi_smi *intf)
677 {
678 	int              i;
679 	struct cmd_rcvr  *rcvr, *rcvr2;
680 	struct list_head list;
681 
682 	tasklet_kill(&intf->recv_tasklet);
683 
684 	free_smi_msg_list(&intf->waiting_rcv_msgs);
685 	free_recv_msg_list(&intf->waiting_events);
686 
687 	/*
688 	 * Wholesale remove all the entries from the list in the
689 	 * interface and wait for RCU to know that none are in use.
690 	 */
691 	mutex_lock(&intf->cmd_rcvrs_mutex);
692 	INIT_LIST_HEAD(&list);
693 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
694 	mutex_unlock(&intf->cmd_rcvrs_mutex);
695 
696 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
697 		kfree(rcvr);
698 
699 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
700 		if ((intf->seq_table[i].inuse)
701 					&& (intf->seq_table[i].recv_msg))
702 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
703 	}
704 }
705 
706 static void intf_free(struct kref *ref)
707 {
708 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
709 
710 	clean_up_interface_data(intf);
711 	kfree(intf);
712 }
713 
714 struct watcher_entry {
715 	int              intf_num;
716 	struct ipmi_smi  *intf;
717 	struct list_head link;
718 };
719 
720 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
721 {
722 	struct ipmi_smi *intf;
723 	int index, rv;
724 
725 	/*
726 	 * Make sure the driver is actually initialized, this handles
727 	 * problems with initialization order.
728 	 */
729 	rv = ipmi_init_msghandler();
730 	if (rv)
731 		return rv;
732 
733 	mutex_lock(&smi_watchers_mutex);
734 
735 	list_add(&watcher->link, &smi_watchers);
736 
737 	index = srcu_read_lock(&ipmi_interfaces_srcu);
738 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
739 			lockdep_is_held(&smi_watchers_mutex)) {
740 		int intf_num = READ_ONCE(intf->intf_num);
741 
742 		if (intf_num == -1)
743 			continue;
744 		watcher->new_smi(intf_num, intf->si_dev);
745 	}
746 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
747 
748 	mutex_unlock(&smi_watchers_mutex);
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL(ipmi_smi_watcher_register);
753 
754 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
755 {
756 	mutex_lock(&smi_watchers_mutex);
757 	list_del(&watcher->link);
758 	mutex_unlock(&smi_watchers_mutex);
759 	return 0;
760 }
761 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
762 
763 /*
764  * Must be called with smi_watchers_mutex held.
765  */
766 static void
767 call_smi_watchers(int i, struct device *dev)
768 {
769 	struct ipmi_smi_watcher *w;
770 
771 	mutex_lock(&smi_watchers_mutex);
772 	list_for_each_entry(w, &smi_watchers, link) {
773 		if (try_module_get(w->owner)) {
774 			w->new_smi(i, dev);
775 			module_put(w->owner);
776 		}
777 	}
778 	mutex_unlock(&smi_watchers_mutex);
779 }
780 
781 static int
782 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
783 {
784 	if (addr1->addr_type != addr2->addr_type)
785 		return 0;
786 
787 	if (addr1->channel != addr2->channel)
788 		return 0;
789 
790 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
791 		struct ipmi_system_interface_addr *smi_addr1
792 		    = (struct ipmi_system_interface_addr *) addr1;
793 		struct ipmi_system_interface_addr *smi_addr2
794 		    = (struct ipmi_system_interface_addr *) addr2;
795 		return (smi_addr1->lun == smi_addr2->lun);
796 	}
797 
798 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
799 		struct ipmi_ipmb_addr *ipmb_addr1
800 		    = (struct ipmi_ipmb_addr *) addr1;
801 		struct ipmi_ipmb_addr *ipmb_addr2
802 		    = (struct ipmi_ipmb_addr *) addr2;
803 
804 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
805 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
806 	}
807 
808 	if (is_lan_addr(addr1)) {
809 		struct ipmi_lan_addr *lan_addr1
810 			= (struct ipmi_lan_addr *) addr1;
811 		struct ipmi_lan_addr *lan_addr2
812 		    = (struct ipmi_lan_addr *) addr2;
813 
814 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
815 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
816 			&& (lan_addr1->session_handle
817 			    == lan_addr2->session_handle)
818 			&& (lan_addr1->lun == lan_addr2->lun));
819 	}
820 
821 	return 1;
822 }
823 
824 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
825 {
826 	if (len < sizeof(struct ipmi_system_interface_addr))
827 		return -EINVAL;
828 
829 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
830 		if (addr->channel != IPMI_BMC_CHANNEL)
831 			return -EINVAL;
832 		return 0;
833 	}
834 
835 	if ((addr->channel == IPMI_BMC_CHANNEL)
836 	    || (addr->channel >= IPMI_MAX_CHANNELS)
837 	    || (addr->channel < 0))
838 		return -EINVAL;
839 
840 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
841 		if (len < sizeof(struct ipmi_ipmb_addr))
842 			return -EINVAL;
843 		return 0;
844 	}
845 
846 	if (is_lan_addr(addr)) {
847 		if (len < sizeof(struct ipmi_lan_addr))
848 			return -EINVAL;
849 		return 0;
850 	}
851 
852 	return -EINVAL;
853 }
854 EXPORT_SYMBOL(ipmi_validate_addr);
855 
856 unsigned int ipmi_addr_length(int addr_type)
857 {
858 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
859 		return sizeof(struct ipmi_system_interface_addr);
860 
861 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
862 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
863 		return sizeof(struct ipmi_ipmb_addr);
864 
865 	if (addr_type == IPMI_LAN_ADDR_TYPE)
866 		return sizeof(struct ipmi_lan_addr);
867 
868 	return 0;
869 }
870 EXPORT_SYMBOL(ipmi_addr_length);
871 
872 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
873 {
874 	int rv = 0;
875 
876 	if (!msg->user) {
877 		/* Special handling for NULL users. */
878 		if (intf->null_user_handler) {
879 			intf->null_user_handler(intf, msg);
880 		} else {
881 			/* No handler, so give up. */
882 			rv = -EINVAL;
883 		}
884 		ipmi_free_recv_msg(msg);
885 	} else if (oops_in_progress) {
886 		/*
887 		 * If we are running in the panic context, calling the
888 		 * receive handler doesn't much meaning and has a deadlock
889 		 * risk.  At this moment, simply skip it in that case.
890 		 */
891 		ipmi_free_recv_msg(msg);
892 	} else {
893 		int index;
894 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
895 
896 		if (user) {
897 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
898 			release_ipmi_user(user, index);
899 		} else {
900 			/* User went away, give up. */
901 			ipmi_free_recv_msg(msg);
902 			rv = -EINVAL;
903 		}
904 	}
905 
906 	return rv;
907 }
908 
909 static void deliver_local_response(struct ipmi_smi *intf,
910 				   struct ipmi_recv_msg *msg)
911 {
912 	if (deliver_response(intf, msg))
913 		ipmi_inc_stat(intf, unhandled_local_responses);
914 	else
915 		ipmi_inc_stat(intf, handled_local_responses);
916 }
917 
918 static void deliver_err_response(struct ipmi_smi *intf,
919 				 struct ipmi_recv_msg *msg, int err)
920 {
921 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
922 	msg->msg_data[0] = err;
923 	msg->msg.netfn |= 1; /* Convert to a response. */
924 	msg->msg.data_len = 1;
925 	msg->msg.data = msg->msg_data;
926 	deliver_local_response(intf, msg);
927 }
928 
929 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
930 {
931 	unsigned long iflags;
932 
933 	if (!intf->handlers->set_need_watch)
934 		return;
935 
936 	spin_lock_irqsave(&intf->watch_lock, iflags);
937 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
938 		intf->response_waiters++;
939 
940 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
941 		intf->watchdog_waiters++;
942 
943 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
944 		intf->command_waiters++;
945 
946 	if ((intf->last_watch_mask & flags) != flags) {
947 		intf->last_watch_mask |= flags;
948 		intf->handlers->set_need_watch(intf->send_info,
949 					       intf->last_watch_mask);
950 	}
951 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
952 }
953 
954 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
955 {
956 	unsigned long iflags;
957 
958 	if (!intf->handlers->set_need_watch)
959 		return;
960 
961 	spin_lock_irqsave(&intf->watch_lock, iflags);
962 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
963 		intf->response_waiters--;
964 
965 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
966 		intf->watchdog_waiters--;
967 
968 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
969 		intf->command_waiters--;
970 
971 	flags = 0;
972 	if (intf->response_waiters)
973 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
974 	if (intf->watchdog_waiters)
975 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
976 	if (intf->command_waiters)
977 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
978 
979 	if (intf->last_watch_mask != flags) {
980 		intf->last_watch_mask = flags;
981 		intf->handlers->set_need_watch(intf->send_info,
982 					       intf->last_watch_mask);
983 	}
984 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
985 }
986 
987 /*
988  * Find the next sequence number not being used and add the given
989  * message with the given timeout to the sequence table.  This must be
990  * called with the interface's seq_lock held.
991  */
992 static int intf_next_seq(struct ipmi_smi      *intf,
993 			 struct ipmi_recv_msg *recv_msg,
994 			 unsigned long        timeout,
995 			 int                  retries,
996 			 int                  broadcast,
997 			 unsigned char        *seq,
998 			 long                 *seqid)
999 {
1000 	int          rv = 0;
1001 	unsigned int i;
1002 
1003 	if (timeout == 0)
1004 		timeout = default_retry_ms;
1005 	if (retries < 0)
1006 		retries = default_max_retries;
1007 
1008 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1009 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1010 		if (!intf->seq_table[i].inuse)
1011 			break;
1012 	}
1013 
1014 	if (!intf->seq_table[i].inuse) {
1015 		intf->seq_table[i].recv_msg = recv_msg;
1016 
1017 		/*
1018 		 * Start with the maximum timeout, when the send response
1019 		 * comes in we will start the real timer.
1020 		 */
1021 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1022 		intf->seq_table[i].orig_timeout = timeout;
1023 		intf->seq_table[i].retries_left = retries;
1024 		intf->seq_table[i].broadcast = broadcast;
1025 		intf->seq_table[i].inuse = 1;
1026 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1027 		*seq = i;
1028 		*seqid = intf->seq_table[i].seqid;
1029 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1030 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1031 		need_waiter(intf);
1032 	} else {
1033 		rv = -EAGAIN;
1034 	}
1035 
1036 	return rv;
1037 }
1038 
1039 /*
1040  * Return the receive message for the given sequence number and
1041  * release the sequence number so it can be reused.  Some other data
1042  * is passed in to be sure the message matches up correctly (to help
1043  * guard against message coming in after their timeout and the
1044  * sequence number being reused).
1045  */
1046 static int intf_find_seq(struct ipmi_smi      *intf,
1047 			 unsigned char        seq,
1048 			 short                channel,
1049 			 unsigned char        cmd,
1050 			 unsigned char        netfn,
1051 			 struct ipmi_addr     *addr,
1052 			 struct ipmi_recv_msg **recv_msg)
1053 {
1054 	int           rv = -ENODEV;
1055 	unsigned long flags;
1056 
1057 	if (seq >= IPMI_IPMB_NUM_SEQ)
1058 		return -EINVAL;
1059 
1060 	spin_lock_irqsave(&intf->seq_lock, flags);
1061 	if (intf->seq_table[seq].inuse) {
1062 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1063 
1064 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1065 				&& (msg->msg.netfn == netfn)
1066 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1067 			*recv_msg = msg;
1068 			intf->seq_table[seq].inuse = 0;
1069 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1070 			rv = 0;
1071 		}
1072 	}
1073 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1074 
1075 	return rv;
1076 }
1077 
1078 
1079 /* Start the timer for a specific sequence table entry. */
1080 static int intf_start_seq_timer(struct ipmi_smi *intf,
1081 				long       msgid)
1082 {
1083 	int           rv = -ENODEV;
1084 	unsigned long flags;
1085 	unsigned char seq;
1086 	unsigned long seqid;
1087 
1088 
1089 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1090 
1091 	spin_lock_irqsave(&intf->seq_lock, flags);
1092 	/*
1093 	 * We do this verification because the user can be deleted
1094 	 * while a message is outstanding.
1095 	 */
1096 	if ((intf->seq_table[seq].inuse)
1097 				&& (intf->seq_table[seq].seqid == seqid)) {
1098 		struct seq_table *ent = &intf->seq_table[seq];
1099 		ent->timeout = ent->orig_timeout;
1100 		rv = 0;
1101 	}
1102 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1103 
1104 	return rv;
1105 }
1106 
1107 /* Got an error for the send message for a specific sequence number. */
1108 static int intf_err_seq(struct ipmi_smi *intf,
1109 			long         msgid,
1110 			unsigned int err)
1111 {
1112 	int                  rv = -ENODEV;
1113 	unsigned long        flags;
1114 	unsigned char        seq;
1115 	unsigned long        seqid;
1116 	struct ipmi_recv_msg *msg = NULL;
1117 
1118 
1119 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1120 
1121 	spin_lock_irqsave(&intf->seq_lock, flags);
1122 	/*
1123 	 * We do this verification because the user can be deleted
1124 	 * while a message is outstanding.
1125 	 */
1126 	if ((intf->seq_table[seq].inuse)
1127 				&& (intf->seq_table[seq].seqid == seqid)) {
1128 		struct seq_table *ent = &intf->seq_table[seq];
1129 
1130 		ent->inuse = 0;
1131 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1132 		msg = ent->recv_msg;
1133 		rv = 0;
1134 	}
1135 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1136 
1137 	if (msg)
1138 		deliver_err_response(intf, msg, err);
1139 
1140 	return rv;
1141 }
1142 
1143 static void free_user_work(struct work_struct *work)
1144 {
1145 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1146 					      remove_work);
1147 
1148 	cleanup_srcu_struct(&user->release_barrier);
1149 	vfree(user);
1150 }
1151 
1152 int ipmi_create_user(unsigned int          if_num,
1153 		     const struct ipmi_user_hndl *handler,
1154 		     void                  *handler_data,
1155 		     struct ipmi_user      **user)
1156 {
1157 	unsigned long flags;
1158 	struct ipmi_user *new_user;
1159 	int           rv, index;
1160 	struct ipmi_smi *intf;
1161 
1162 	/*
1163 	 * There is no module usecount here, because it's not
1164 	 * required.  Since this can only be used by and called from
1165 	 * other modules, they will implicitly use this module, and
1166 	 * thus this can't be removed unless the other modules are
1167 	 * removed.
1168 	 */
1169 
1170 	if (handler == NULL)
1171 		return -EINVAL;
1172 
1173 	/*
1174 	 * Make sure the driver is actually initialized, this handles
1175 	 * problems with initialization order.
1176 	 */
1177 	rv = ipmi_init_msghandler();
1178 	if (rv)
1179 		return rv;
1180 
1181 	new_user = vzalloc(sizeof(*new_user));
1182 	if (!new_user)
1183 		return -ENOMEM;
1184 
1185 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1186 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1187 		if (intf->intf_num == if_num)
1188 			goto found;
1189 	}
1190 	/* Not found, return an error */
1191 	rv = -EINVAL;
1192 	goto out_kfree;
1193 
1194  found:
1195 	INIT_WORK(&new_user->remove_work, free_user_work);
1196 
1197 	rv = init_srcu_struct(&new_user->release_barrier);
1198 	if (rv)
1199 		goto out_kfree;
1200 
1201 	if (!try_module_get(intf->owner)) {
1202 		rv = -ENODEV;
1203 		goto out_kfree;
1204 	}
1205 
1206 	/* Note that each existing user holds a refcount to the interface. */
1207 	kref_get(&intf->refcount);
1208 
1209 	kref_init(&new_user->refcount);
1210 	new_user->handler = handler;
1211 	new_user->handler_data = handler_data;
1212 	new_user->intf = intf;
1213 	new_user->gets_events = false;
1214 
1215 	rcu_assign_pointer(new_user->self, new_user);
1216 	spin_lock_irqsave(&intf->seq_lock, flags);
1217 	list_add_rcu(&new_user->link, &intf->users);
1218 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1219 	if (handler->ipmi_watchdog_pretimeout)
1220 		/* User wants pretimeouts, so make sure to watch for them. */
1221 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1222 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1223 	*user = new_user;
1224 	return 0;
1225 
1226 out_kfree:
1227 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1228 	vfree(new_user);
1229 	return rv;
1230 }
1231 EXPORT_SYMBOL(ipmi_create_user);
1232 
1233 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1234 {
1235 	int rv, index;
1236 	struct ipmi_smi *intf;
1237 
1238 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1239 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1240 		if (intf->intf_num == if_num)
1241 			goto found;
1242 	}
1243 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1244 
1245 	/* Not found, return an error */
1246 	return -EINVAL;
1247 
1248 found:
1249 	if (!intf->handlers->get_smi_info)
1250 		rv = -ENOTTY;
1251 	else
1252 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1253 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1254 
1255 	return rv;
1256 }
1257 EXPORT_SYMBOL(ipmi_get_smi_info);
1258 
1259 static void free_user(struct kref *ref)
1260 {
1261 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1262 
1263 	/* SRCU cleanup must happen in task context. */
1264 	schedule_work(&user->remove_work);
1265 }
1266 
1267 static void _ipmi_destroy_user(struct ipmi_user *user)
1268 {
1269 	struct ipmi_smi  *intf = user->intf;
1270 	int              i;
1271 	unsigned long    flags;
1272 	struct cmd_rcvr  *rcvr;
1273 	struct cmd_rcvr  *rcvrs = NULL;
1274 
1275 	if (!acquire_ipmi_user(user, &i)) {
1276 		/*
1277 		 * The user has already been cleaned up, just make sure
1278 		 * nothing is using it and return.
1279 		 */
1280 		synchronize_srcu(&user->release_barrier);
1281 		return;
1282 	}
1283 
1284 	rcu_assign_pointer(user->self, NULL);
1285 	release_ipmi_user(user, i);
1286 
1287 	synchronize_srcu(&user->release_barrier);
1288 
1289 	if (user->handler->shutdown)
1290 		user->handler->shutdown(user->handler_data);
1291 
1292 	if (user->handler->ipmi_watchdog_pretimeout)
1293 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1294 
1295 	if (user->gets_events)
1296 		atomic_dec(&intf->event_waiters);
1297 
1298 	/* Remove the user from the interface's sequence table. */
1299 	spin_lock_irqsave(&intf->seq_lock, flags);
1300 	list_del_rcu(&user->link);
1301 
1302 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1303 		if (intf->seq_table[i].inuse
1304 		    && (intf->seq_table[i].recv_msg->user == user)) {
1305 			intf->seq_table[i].inuse = 0;
1306 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1307 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1308 		}
1309 	}
1310 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1311 
1312 	/*
1313 	 * Remove the user from the command receiver's table.  First
1314 	 * we build a list of everything (not using the standard link,
1315 	 * since other things may be using it till we do
1316 	 * synchronize_srcu()) then free everything in that list.
1317 	 */
1318 	mutex_lock(&intf->cmd_rcvrs_mutex);
1319 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1320 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1321 		if (rcvr->user == user) {
1322 			list_del_rcu(&rcvr->link);
1323 			rcvr->next = rcvrs;
1324 			rcvrs = rcvr;
1325 		}
1326 	}
1327 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1328 	synchronize_rcu();
1329 	while (rcvrs) {
1330 		rcvr = rcvrs;
1331 		rcvrs = rcvr->next;
1332 		kfree(rcvr);
1333 	}
1334 
1335 	kref_put(&intf->refcount, intf_free);
1336 	module_put(intf->owner);
1337 }
1338 
1339 int ipmi_destroy_user(struct ipmi_user *user)
1340 {
1341 	_ipmi_destroy_user(user);
1342 
1343 	kref_put(&user->refcount, free_user);
1344 
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL(ipmi_destroy_user);
1348 
1349 int ipmi_get_version(struct ipmi_user *user,
1350 		     unsigned char *major,
1351 		     unsigned char *minor)
1352 {
1353 	struct ipmi_device_id id;
1354 	int rv, index;
1355 
1356 	user = acquire_ipmi_user(user, &index);
1357 	if (!user)
1358 		return -ENODEV;
1359 
1360 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1361 	if (!rv) {
1362 		*major = ipmi_version_major(&id);
1363 		*minor = ipmi_version_minor(&id);
1364 	}
1365 	release_ipmi_user(user, index);
1366 
1367 	return rv;
1368 }
1369 EXPORT_SYMBOL(ipmi_get_version);
1370 
1371 int ipmi_set_my_address(struct ipmi_user *user,
1372 			unsigned int  channel,
1373 			unsigned char address)
1374 {
1375 	int index, rv = 0;
1376 
1377 	user = acquire_ipmi_user(user, &index);
1378 	if (!user)
1379 		return -ENODEV;
1380 
1381 	if (channel >= IPMI_MAX_CHANNELS) {
1382 		rv = -EINVAL;
1383 	} else {
1384 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1385 		user->intf->addrinfo[channel].address = address;
1386 	}
1387 	release_ipmi_user(user, index);
1388 
1389 	return rv;
1390 }
1391 EXPORT_SYMBOL(ipmi_set_my_address);
1392 
1393 int ipmi_get_my_address(struct ipmi_user *user,
1394 			unsigned int  channel,
1395 			unsigned char *address)
1396 {
1397 	int index, rv = 0;
1398 
1399 	user = acquire_ipmi_user(user, &index);
1400 	if (!user)
1401 		return -ENODEV;
1402 
1403 	if (channel >= IPMI_MAX_CHANNELS) {
1404 		rv = -EINVAL;
1405 	} else {
1406 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1407 		*address = user->intf->addrinfo[channel].address;
1408 	}
1409 	release_ipmi_user(user, index);
1410 
1411 	return rv;
1412 }
1413 EXPORT_SYMBOL(ipmi_get_my_address);
1414 
1415 int ipmi_set_my_LUN(struct ipmi_user *user,
1416 		    unsigned int  channel,
1417 		    unsigned char LUN)
1418 {
1419 	int index, rv = 0;
1420 
1421 	user = acquire_ipmi_user(user, &index);
1422 	if (!user)
1423 		return -ENODEV;
1424 
1425 	if (channel >= IPMI_MAX_CHANNELS) {
1426 		rv = -EINVAL;
1427 	} else {
1428 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1429 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1430 	}
1431 	release_ipmi_user(user, index);
1432 
1433 	return rv;
1434 }
1435 EXPORT_SYMBOL(ipmi_set_my_LUN);
1436 
1437 int ipmi_get_my_LUN(struct ipmi_user *user,
1438 		    unsigned int  channel,
1439 		    unsigned char *address)
1440 {
1441 	int index, rv = 0;
1442 
1443 	user = acquire_ipmi_user(user, &index);
1444 	if (!user)
1445 		return -ENODEV;
1446 
1447 	if (channel >= IPMI_MAX_CHANNELS) {
1448 		rv = -EINVAL;
1449 	} else {
1450 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1451 		*address = user->intf->addrinfo[channel].lun;
1452 	}
1453 	release_ipmi_user(user, index);
1454 
1455 	return rv;
1456 }
1457 EXPORT_SYMBOL(ipmi_get_my_LUN);
1458 
1459 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1460 {
1461 	int mode, index;
1462 	unsigned long flags;
1463 
1464 	user = acquire_ipmi_user(user, &index);
1465 	if (!user)
1466 		return -ENODEV;
1467 
1468 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1469 	mode = user->intf->maintenance_mode;
1470 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1471 	release_ipmi_user(user, index);
1472 
1473 	return mode;
1474 }
1475 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1476 
1477 static void maintenance_mode_update(struct ipmi_smi *intf)
1478 {
1479 	if (intf->handlers->set_maintenance_mode)
1480 		intf->handlers->set_maintenance_mode(
1481 			intf->send_info, intf->maintenance_mode_enable);
1482 }
1483 
1484 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1485 {
1486 	int rv = 0, index;
1487 	unsigned long flags;
1488 	struct ipmi_smi *intf = user->intf;
1489 
1490 	user = acquire_ipmi_user(user, &index);
1491 	if (!user)
1492 		return -ENODEV;
1493 
1494 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1495 	if (intf->maintenance_mode != mode) {
1496 		switch (mode) {
1497 		case IPMI_MAINTENANCE_MODE_AUTO:
1498 			intf->maintenance_mode_enable
1499 				= (intf->auto_maintenance_timeout > 0);
1500 			break;
1501 
1502 		case IPMI_MAINTENANCE_MODE_OFF:
1503 			intf->maintenance_mode_enable = false;
1504 			break;
1505 
1506 		case IPMI_MAINTENANCE_MODE_ON:
1507 			intf->maintenance_mode_enable = true;
1508 			break;
1509 
1510 		default:
1511 			rv = -EINVAL;
1512 			goto out_unlock;
1513 		}
1514 		intf->maintenance_mode = mode;
1515 
1516 		maintenance_mode_update(intf);
1517 	}
1518  out_unlock:
1519 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1520 	release_ipmi_user(user, index);
1521 
1522 	return rv;
1523 }
1524 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1525 
1526 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1527 {
1528 	unsigned long        flags;
1529 	struct ipmi_smi      *intf = user->intf;
1530 	struct ipmi_recv_msg *msg, *msg2;
1531 	struct list_head     msgs;
1532 	int index;
1533 
1534 	user = acquire_ipmi_user(user, &index);
1535 	if (!user)
1536 		return -ENODEV;
1537 
1538 	INIT_LIST_HEAD(&msgs);
1539 
1540 	spin_lock_irqsave(&intf->events_lock, flags);
1541 	if (user->gets_events == val)
1542 		goto out;
1543 
1544 	user->gets_events = val;
1545 
1546 	if (val) {
1547 		if (atomic_inc_return(&intf->event_waiters) == 1)
1548 			need_waiter(intf);
1549 	} else {
1550 		atomic_dec(&intf->event_waiters);
1551 	}
1552 
1553 	if (intf->delivering_events)
1554 		/*
1555 		 * Another thread is delivering events for this, so
1556 		 * let it handle any new events.
1557 		 */
1558 		goto out;
1559 
1560 	/* Deliver any queued events. */
1561 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1562 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1563 			list_move_tail(&msg->link, &msgs);
1564 		intf->waiting_events_count = 0;
1565 		if (intf->event_msg_printed) {
1566 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1567 			intf->event_msg_printed = 0;
1568 		}
1569 
1570 		intf->delivering_events = 1;
1571 		spin_unlock_irqrestore(&intf->events_lock, flags);
1572 
1573 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1574 			msg->user = user;
1575 			kref_get(&user->refcount);
1576 			deliver_local_response(intf, msg);
1577 		}
1578 
1579 		spin_lock_irqsave(&intf->events_lock, flags);
1580 		intf->delivering_events = 0;
1581 	}
1582 
1583  out:
1584 	spin_unlock_irqrestore(&intf->events_lock, flags);
1585 	release_ipmi_user(user, index);
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL(ipmi_set_gets_events);
1590 
1591 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1592 				      unsigned char netfn,
1593 				      unsigned char cmd,
1594 				      unsigned char chan)
1595 {
1596 	struct cmd_rcvr *rcvr;
1597 
1598 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1599 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1600 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1601 					&& (rcvr->chans & (1 << chan)))
1602 			return rcvr;
1603 	}
1604 	return NULL;
1605 }
1606 
1607 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1608 				 unsigned char netfn,
1609 				 unsigned char cmd,
1610 				 unsigned int  chans)
1611 {
1612 	struct cmd_rcvr *rcvr;
1613 
1614 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1615 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1616 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1617 					&& (rcvr->chans & chans))
1618 			return 0;
1619 	}
1620 	return 1;
1621 }
1622 
1623 int ipmi_register_for_cmd(struct ipmi_user *user,
1624 			  unsigned char netfn,
1625 			  unsigned char cmd,
1626 			  unsigned int  chans)
1627 {
1628 	struct ipmi_smi *intf = user->intf;
1629 	struct cmd_rcvr *rcvr;
1630 	int rv = 0, index;
1631 
1632 	user = acquire_ipmi_user(user, &index);
1633 	if (!user)
1634 		return -ENODEV;
1635 
1636 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1637 	if (!rcvr) {
1638 		rv = -ENOMEM;
1639 		goto out_release;
1640 	}
1641 	rcvr->cmd = cmd;
1642 	rcvr->netfn = netfn;
1643 	rcvr->chans = chans;
1644 	rcvr->user = user;
1645 
1646 	mutex_lock(&intf->cmd_rcvrs_mutex);
1647 	/* Make sure the command/netfn is not already registered. */
1648 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1649 		rv = -EBUSY;
1650 		goto out_unlock;
1651 	}
1652 
1653 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1654 
1655 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1656 
1657 out_unlock:
1658 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1659 	if (rv)
1660 		kfree(rcvr);
1661 out_release:
1662 	release_ipmi_user(user, index);
1663 
1664 	return rv;
1665 }
1666 EXPORT_SYMBOL(ipmi_register_for_cmd);
1667 
1668 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1669 			    unsigned char netfn,
1670 			    unsigned char cmd,
1671 			    unsigned int  chans)
1672 {
1673 	struct ipmi_smi *intf = user->intf;
1674 	struct cmd_rcvr *rcvr;
1675 	struct cmd_rcvr *rcvrs = NULL;
1676 	int i, rv = -ENOENT, index;
1677 
1678 	user = acquire_ipmi_user(user, &index);
1679 	if (!user)
1680 		return -ENODEV;
1681 
1682 	mutex_lock(&intf->cmd_rcvrs_mutex);
1683 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1684 		if (((1 << i) & chans) == 0)
1685 			continue;
1686 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1687 		if (rcvr == NULL)
1688 			continue;
1689 		if (rcvr->user == user) {
1690 			rv = 0;
1691 			rcvr->chans &= ~chans;
1692 			if (rcvr->chans == 0) {
1693 				list_del_rcu(&rcvr->link);
1694 				rcvr->next = rcvrs;
1695 				rcvrs = rcvr;
1696 			}
1697 		}
1698 	}
1699 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1700 	synchronize_rcu();
1701 	release_ipmi_user(user, index);
1702 	while (rcvrs) {
1703 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1704 		rcvr = rcvrs;
1705 		rcvrs = rcvr->next;
1706 		kfree(rcvr);
1707 	}
1708 
1709 	return rv;
1710 }
1711 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1712 
1713 static unsigned char
1714 ipmb_checksum(unsigned char *data, int size)
1715 {
1716 	unsigned char csum = 0;
1717 
1718 	for (; size > 0; size--, data++)
1719 		csum += *data;
1720 
1721 	return -csum;
1722 }
1723 
1724 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1725 				   struct kernel_ipmi_msg *msg,
1726 				   struct ipmi_ipmb_addr *ipmb_addr,
1727 				   long                  msgid,
1728 				   unsigned char         ipmb_seq,
1729 				   int                   broadcast,
1730 				   unsigned char         source_address,
1731 				   unsigned char         source_lun)
1732 {
1733 	int i = broadcast;
1734 
1735 	/* Format the IPMB header data. */
1736 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1737 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1738 	smi_msg->data[2] = ipmb_addr->channel;
1739 	if (broadcast)
1740 		smi_msg->data[3] = 0;
1741 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1742 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1743 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1744 	smi_msg->data[i+6] = source_address;
1745 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1746 	smi_msg->data[i+8] = msg->cmd;
1747 
1748 	/* Now tack on the data to the message. */
1749 	if (msg->data_len > 0)
1750 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1751 	smi_msg->data_size = msg->data_len + 9;
1752 
1753 	/* Now calculate the checksum and tack it on. */
1754 	smi_msg->data[i+smi_msg->data_size]
1755 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1756 
1757 	/*
1758 	 * Add on the checksum size and the offset from the
1759 	 * broadcast.
1760 	 */
1761 	smi_msg->data_size += 1 + i;
1762 
1763 	smi_msg->msgid = msgid;
1764 }
1765 
1766 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1767 				  struct kernel_ipmi_msg *msg,
1768 				  struct ipmi_lan_addr  *lan_addr,
1769 				  long                  msgid,
1770 				  unsigned char         ipmb_seq,
1771 				  unsigned char         source_lun)
1772 {
1773 	/* Format the IPMB header data. */
1774 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1775 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1776 	smi_msg->data[2] = lan_addr->channel;
1777 	smi_msg->data[3] = lan_addr->session_handle;
1778 	smi_msg->data[4] = lan_addr->remote_SWID;
1779 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1780 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1781 	smi_msg->data[7] = lan_addr->local_SWID;
1782 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1783 	smi_msg->data[9] = msg->cmd;
1784 
1785 	/* Now tack on the data to the message. */
1786 	if (msg->data_len > 0)
1787 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1788 	smi_msg->data_size = msg->data_len + 10;
1789 
1790 	/* Now calculate the checksum and tack it on. */
1791 	smi_msg->data[smi_msg->data_size]
1792 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1793 
1794 	/*
1795 	 * Add on the checksum size and the offset from the
1796 	 * broadcast.
1797 	 */
1798 	smi_msg->data_size += 1;
1799 
1800 	smi_msg->msgid = msgid;
1801 }
1802 
1803 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1804 					     struct ipmi_smi_msg *smi_msg,
1805 					     int priority)
1806 {
1807 	if (intf->curr_msg) {
1808 		if (priority > 0)
1809 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1810 		else
1811 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1812 		smi_msg = NULL;
1813 	} else {
1814 		intf->curr_msg = smi_msg;
1815 	}
1816 
1817 	return smi_msg;
1818 }
1819 
1820 static void smi_send(struct ipmi_smi *intf,
1821 		     const struct ipmi_smi_handlers *handlers,
1822 		     struct ipmi_smi_msg *smi_msg, int priority)
1823 {
1824 	int run_to_completion = intf->run_to_completion;
1825 	unsigned long flags = 0;
1826 
1827 	if (!run_to_completion)
1828 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1829 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1830 
1831 	if (!run_to_completion)
1832 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1833 
1834 	if (smi_msg)
1835 		handlers->sender(intf->send_info, smi_msg);
1836 }
1837 
1838 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1839 {
1840 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1841 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1842 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1843 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1844 }
1845 
1846 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1847 			      struct ipmi_addr       *addr,
1848 			      long                   msgid,
1849 			      struct kernel_ipmi_msg *msg,
1850 			      struct ipmi_smi_msg    *smi_msg,
1851 			      struct ipmi_recv_msg   *recv_msg,
1852 			      int                    retries,
1853 			      unsigned int           retry_time_ms)
1854 {
1855 	struct ipmi_system_interface_addr *smi_addr;
1856 
1857 	if (msg->netfn & 1)
1858 		/* Responses are not allowed to the SMI. */
1859 		return -EINVAL;
1860 
1861 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1862 	if (smi_addr->lun > 3) {
1863 		ipmi_inc_stat(intf, sent_invalid_commands);
1864 		return -EINVAL;
1865 	}
1866 
1867 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1868 
1869 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1870 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1871 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1872 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1873 		/*
1874 		 * We don't let the user do these, since we manage
1875 		 * the sequence numbers.
1876 		 */
1877 		ipmi_inc_stat(intf, sent_invalid_commands);
1878 		return -EINVAL;
1879 	}
1880 
1881 	if (is_maintenance_mode_cmd(msg)) {
1882 		unsigned long flags;
1883 
1884 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1885 		intf->auto_maintenance_timeout
1886 			= maintenance_mode_timeout_ms;
1887 		if (!intf->maintenance_mode
1888 		    && !intf->maintenance_mode_enable) {
1889 			intf->maintenance_mode_enable = true;
1890 			maintenance_mode_update(intf);
1891 		}
1892 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1893 				       flags);
1894 	}
1895 
1896 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1897 		ipmi_inc_stat(intf, sent_invalid_commands);
1898 		return -EMSGSIZE;
1899 	}
1900 
1901 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1902 	smi_msg->data[1] = msg->cmd;
1903 	smi_msg->msgid = msgid;
1904 	smi_msg->user_data = recv_msg;
1905 	if (msg->data_len > 0)
1906 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1907 	smi_msg->data_size = msg->data_len + 2;
1908 	ipmi_inc_stat(intf, sent_local_commands);
1909 
1910 	return 0;
1911 }
1912 
1913 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1914 			   struct ipmi_addr       *addr,
1915 			   long                   msgid,
1916 			   struct kernel_ipmi_msg *msg,
1917 			   struct ipmi_smi_msg    *smi_msg,
1918 			   struct ipmi_recv_msg   *recv_msg,
1919 			   unsigned char          source_address,
1920 			   unsigned char          source_lun,
1921 			   int                    retries,
1922 			   unsigned int           retry_time_ms)
1923 {
1924 	struct ipmi_ipmb_addr *ipmb_addr;
1925 	unsigned char ipmb_seq;
1926 	long seqid;
1927 	int broadcast = 0;
1928 	struct ipmi_channel *chans;
1929 	int rv = 0;
1930 
1931 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1932 		ipmi_inc_stat(intf, sent_invalid_commands);
1933 		return -EINVAL;
1934 	}
1935 
1936 	chans = READ_ONCE(intf->channel_list)->c;
1937 
1938 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1939 		ipmi_inc_stat(intf, sent_invalid_commands);
1940 		return -EINVAL;
1941 	}
1942 
1943 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1944 		/*
1945 		 * Broadcasts add a zero at the beginning of the
1946 		 * message, but otherwise is the same as an IPMB
1947 		 * address.
1948 		 */
1949 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1950 		broadcast = 1;
1951 		retries = 0; /* Don't retry broadcasts. */
1952 	}
1953 
1954 	/*
1955 	 * 9 for the header and 1 for the checksum, plus
1956 	 * possibly one for the broadcast.
1957 	 */
1958 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1959 		ipmi_inc_stat(intf, sent_invalid_commands);
1960 		return -EMSGSIZE;
1961 	}
1962 
1963 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1964 	if (ipmb_addr->lun > 3) {
1965 		ipmi_inc_stat(intf, sent_invalid_commands);
1966 		return -EINVAL;
1967 	}
1968 
1969 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1970 
1971 	if (recv_msg->msg.netfn & 0x1) {
1972 		/*
1973 		 * It's a response, so use the user's sequence
1974 		 * from msgid.
1975 		 */
1976 		ipmi_inc_stat(intf, sent_ipmb_responses);
1977 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1978 				msgid, broadcast,
1979 				source_address, source_lun);
1980 
1981 		/*
1982 		 * Save the receive message so we can use it
1983 		 * to deliver the response.
1984 		 */
1985 		smi_msg->user_data = recv_msg;
1986 	} else {
1987 		/* It's a command, so get a sequence for it. */
1988 		unsigned long flags;
1989 
1990 		spin_lock_irqsave(&intf->seq_lock, flags);
1991 
1992 		if (is_maintenance_mode_cmd(msg))
1993 			intf->ipmb_maintenance_mode_timeout =
1994 				maintenance_mode_timeout_ms;
1995 
1996 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1997 			/* Different default in maintenance mode */
1998 			retry_time_ms = default_maintenance_retry_ms;
1999 
2000 		/*
2001 		 * Create a sequence number with a 1 second
2002 		 * timeout and 4 retries.
2003 		 */
2004 		rv = intf_next_seq(intf,
2005 				   recv_msg,
2006 				   retry_time_ms,
2007 				   retries,
2008 				   broadcast,
2009 				   &ipmb_seq,
2010 				   &seqid);
2011 		if (rv)
2012 			/*
2013 			 * We have used up all the sequence numbers,
2014 			 * probably, so abort.
2015 			 */
2016 			goto out_err;
2017 
2018 		ipmi_inc_stat(intf, sent_ipmb_commands);
2019 
2020 		/*
2021 		 * Store the sequence number in the message,
2022 		 * so that when the send message response
2023 		 * comes back we can start the timer.
2024 		 */
2025 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2026 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2027 				ipmb_seq, broadcast,
2028 				source_address, source_lun);
2029 
2030 		/*
2031 		 * Copy the message into the recv message data, so we
2032 		 * can retransmit it later if necessary.
2033 		 */
2034 		memcpy(recv_msg->msg_data, smi_msg->data,
2035 		       smi_msg->data_size);
2036 		recv_msg->msg.data = recv_msg->msg_data;
2037 		recv_msg->msg.data_len = smi_msg->data_size;
2038 
2039 		/*
2040 		 * We don't unlock until here, because we need
2041 		 * to copy the completed message into the
2042 		 * recv_msg before we release the lock.
2043 		 * Otherwise, race conditions may bite us.  I
2044 		 * know that's pretty paranoid, but I prefer
2045 		 * to be correct.
2046 		 */
2047 out_err:
2048 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2049 	}
2050 
2051 	return rv;
2052 }
2053 
2054 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2055 			  struct ipmi_addr       *addr,
2056 			  long                   msgid,
2057 			  struct kernel_ipmi_msg *msg,
2058 			  struct ipmi_smi_msg    *smi_msg,
2059 			  struct ipmi_recv_msg   *recv_msg,
2060 			  unsigned char          source_lun,
2061 			  int                    retries,
2062 			  unsigned int           retry_time_ms)
2063 {
2064 	struct ipmi_lan_addr  *lan_addr;
2065 	unsigned char ipmb_seq;
2066 	long seqid;
2067 	struct ipmi_channel *chans;
2068 	int rv = 0;
2069 
2070 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2071 		ipmi_inc_stat(intf, sent_invalid_commands);
2072 		return -EINVAL;
2073 	}
2074 
2075 	chans = READ_ONCE(intf->channel_list)->c;
2076 
2077 	if ((chans[addr->channel].medium
2078 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2079 			&& (chans[addr->channel].medium
2080 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2081 		ipmi_inc_stat(intf, sent_invalid_commands);
2082 		return -EINVAL;
2083 	}
2084 
2085 	/* 11 for the header and 1 for the checksum. */
2086 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2087 		ipmi_inc_stat(intf, sent_invalid_commands);
2088 		return -EMSGSIZE;
2089 	}
2090 
2091 	lan_addr = (struct ipmi_lan_addr *) addr;
2092 	if (lan_addr->lun > 3) {
2093 		ipmi_inc_stat(intf, sent_invalid_commands);
2094 		return -EINVAL;
2095 	}
2096 
2097 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2098 
2099 	if (recv_msg->msg.netfn & 0x1) {
2100 		/*
2101 		 * It's a response, so use the user's sequence
2102 		 * from msgid.
2103 		 */
2104 		ipmi_inc_stat(intf, sent_lan_responses);
2105 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2106 			       msgid, source_lun);
2107 
2108 		/*
2109 		 * Save the receive message so we can use it
2110 		 * to deliver the response.
2111 		 */
2112 		smi_msg->user_data = recv_msg;
2113 	} else {
2114 		/* It's a command, so get a sequence for it. */
2115 		unsigned long flags;
2116 
2117 		spin_lock_irqsave(&intf->seq_lock, flags);
2118 
2119 		/*
2120 		 * Create a sequence number with a 1 second
2121 		 * timeout and 4 retries.
2122 		 */
2123 		rv = intf_next_seq(intf,
2124 				   recv_msg,
2125 				   retry_time_ms,
2126 				   retries,
2127 				   0,
2128 				   &ipmb_seq,
2129 				   &seqid);
2130 		if (rv)
2131 			/*
2132 			 * We have used up all the sequence numbers,
2133 			 * probably, so abort.
2134 			 */
2135 			goto out_err;
2136 
2137 		ipmi_inc_stat(intf, sent_lan_commands);
2138 
2139 		/*
2140 		 * Store the sequence number in the message,
2141 		 * so that when the send message response
2142 		 * comes back we can start the timer.
2143 		 */
2144 		format_lan_msg(smi_msg, msg, lan_addr,
2145 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2146 			       ipmb_seq, source_lun);
2147 
2148 		/*
2149 		 * Copy the message into the recv message data, so we
2150 		 * can retransmit it later if necessary.
2151 		 */
2152 		memcpy(recv_msg->msg_data, smi_msg->data,
2153 		       smi_msg->data_size);
2154 		recv_msg->msg.data = recv_msg->msg_data;
2155 		recv_msg->msg.data_len = smi_msg->data_size;
2156 
2157 		/*
2158 		 * We don't unlock until here, because we need
2159 		 * to copy the completed message into the
2160 		 * recv_msg before we release the lock.
2161 		 * Otherwise, race conditions may bite us.  I
2162 		 * know that's pretty paranoid, but I prefer
2163 		 * to be correct.
2164 		 */
2165 out_err:
2166 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2167 	}
2168 
2169 	return rv;
2170 }
2171 
2172 /*
2173  * Separate from ipmi_request so that the user does not have to be
2174  * supplied in certain circumstances (mainly at panic time).  If
2175  * messages are supplied, they will be freed, even if an error
2176  * occurs.
2177  */
2178 static int i_ipmi_request(struct ipmi_user     *user,
2179 			  struct ipmi_smi      *intf,
2180 			  struct ipmi_addr     *addr,
2181 			  long                 msgid,
2182 			  struct kernel_ipmi_msg *msg,
2183 			  void                 *user_msg_data,
2184 			  void                 *supplied_smi,
2185 			  struct ipmi_recv_msg *supplied_recv,
2186 			  int                  priority,
2187 			  unsigned char        source_address,
2188 			  unsigned char        source_lun,
2189 			  int                  retries,
2190 			  unsigned int         retry_time_ms)
2191 {
2192 	struct ipmi_smi_msg *smi_msg;
2193 	struct ipmi_recv_msg *recv_msg;
2194 	int rv = 0;
2195 
2196 	if (supplied_recv)
2197 		recv_msg = supplied_recv;
2198 	else {
2199 		recv_msg = ipmi_alloc_recv_msg();
2200 		if (recv_msg == NULL) {
2201 			rv = -ENOMEM;
2202 			goto out;
2203 		}
2204 	}
2205 	recv_msg->user_msg_data = user_msg_data;
2206 
2207 	if (supplied_smi)
2208 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2209 	else {
2210 		smi_msg = ipmi_alloc_smi_msg();
2211 		if (smi_msg == NULL) {
2212 			if (!supplied_recv)
2213 				ipmi_free_recv_msg(recv_msg);
2214 			rv = -ENOMEM;
2215 			goto out;
2216 		}
2217 	}
2218 
2219 	rcu_read_lock();
2220 	if (intf->in_shutdown) {
2221 		rv = -ENODEV;
2222 		goto out_err;
2223 	}
2224 
2225 	recv_msg->user = user;
2226 	if (user)
2227 		/* The put happens when the message is freed. */
2228 		kref_get(&user->refcount);
2229 	recv_msg->msgid = msgid;
2230 	/*
2231 	 * Store the message to send in the receive message so timeout
2232 	 * responses can get the proper response data.
2233 	 */
2234 	recv_msg->msg = *msg;
2235 
2236 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2237 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2238 					recv_msg, retries, retry_time_ms);
2239 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2240 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2241 				     source_address, source_lun,
2242 				     retries, retry_time_ms);
2243 	} else if (is_lan_addr(addr)) {
2244 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2245 				    source_lun, retries, retry_time_ms);
2246 	} else {
2247 	    /* Unknown address type. */
2248 		ipmi_inc_stat(intf, sent_invalid_commands);
2249 		rv = -EINVAL;
2250 	}
2251 
2252 	if (rv) {
2253 out_err:
2254 		ipmi_free_smi_msg(smi_msg);
2255 		ipmi_free_recv_msg(recv_msg);
2256 	} else {
2257 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2258 
2259 		smi_send(intf, intf->handlers, smi_msg, priority);
2260 	}
2261 	rcu_read_unlock();
2262 
2263 out:
2264 	return rv;
2265 }
2266 
2267 static int check_addr(struct ipmi_smi  *intf,
2268 		      struct ipmi_addr *addr,
2269 		      unsigned char    *saddr,
2270 		      unsigned char    *lun)
2271 {
2272 	if (addr->channel >= IPMI_MAX_CHANNELS)
2273 		return -EINVAL;
2274 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2275 	*lun = intf->addrinfo[addr->channel].lun;
2276 	*saddr = intf->addrinfo[addr->channel].address;
2277 	return 0;
2278 }
2279 
2280 int ipmi_request_settime(struct ipmi_user *user,
2281 			 struct ipmi_addr *addr,
2282 			 long             msgid,
2283 			 struct kernel_ipmi_msg  *msg,
2284 			 void             *user_msg_data,
2285 			 int              priority,
2286 			 int              retries,
2287 			 unsigned int     retry_time_ms)
2288 {
2289 	unsigned char saddr = 0, lun = 0;
2290 	int rv, index;
2291 
2292 	if (!user)
2293 		return -EINVAL;
2294 
2295 	user = acquire_ipmi_user(user, &index);
2296 	if (!user)
2297 		return -ENODEV;
2298 
2299 	rv = check_addr(user->intf, addr, &saddr, &lun);
2300 	if (!rv)
2301 		rv = i_ipmi_request(user,
2302 				    user->intf,
2303 				    addr,
2304 				    msgid,
2305 				    msg,
2306 				    user_msg_data,
2307 				    NULL, NULL,
2308 				    priority,
2309 				    saddr,
2310 				    lun,
2311 				    retries,
2312 				    retry_time_ms);
2313 
2314 	release_ipmi_user(user, index);
2315 	return rv;
2316 }
2317 EXPORT_SYMBOL(ipmi_request_settime);
2318 
2319 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2320 			     struct ipmi_addr     *addr,
2321 			     long                 msgid,
2322 			     struct kernel_ipmi_msg *msg,
2323 			     void                 *user_msg_data,
2324 			     void                 *supplied_smi,
2325 			     struct ipmi_recv_msg *supplied_recv,
2326 			     int                  priority)
2327 {
2328 	unsigned char saddr = 0, lun = 0;
2329 	int rv, index;
2330 
2331 	if (!user)
2332 		return -EINVAL;
2333 
2334 	user = acquire_ipmi_user(user, &index);
2335 	if (!user)
2336 		return -ENODEV;
2337 
2338 	rv = check_addr(user->intf, addr, &saddr, &lun);
2339 	if (!rv)
2340 		rv = i_ipmi_request(user,
2341 				    user->intf,
2342 				    addr,
2343 				    msgid,
2344 				    msg,
2345 				    user_msg_data,
2346 				    supplied_smi,
2347 				    supplied_recv,
2348 				    priority,
2349 				    saddr,
2350 				    lun,
2351 				    -1, 0);
2352 
2353 	release_ipmi_user(user, index);
2354 	return rv;
2355 }
2356 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2357 
2358 static void bmc_device_id_handler(struct ipmi_smi *intf,
2359 				  struct ipmi_recv_msg *msg)
2360 {
2361 	int rv;
2362 
2363 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2364 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2365 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2366 		dev_warn(intf->si_dev,
2367 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2368 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2369 		return;
2370 	}
2371 
2372 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2373 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2374 	if (rv) {
2375 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2376 		/* record completion code when error */
2377 		intf->bmc->cc = msg->msg.data[0];
2378 		intf->bmc->dyn_id_set = 0;
2379 	} else {
2380 		/*
2381 		 * Make sure the id data is available before setting
2382 		 * dyn_id_set.
2383 		 */
2384 		smp_wmb();
2385 		intf->bmc->dyn_id_set = 1;
2386 	}
2387 
2388 	wake_up(&intf->waitq);
2389 }
2390 
2391 static int
2392 send_get_device_id_cmd(struct ipmi_smi *intf)
2393 {
2394 	struct ipmi_system_interface_addr si;
2395 	struct kernel_ipmi_msg msg;
2396 
2397 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2398 	si.channel = IPMI_BMC_CHANNEL;
2399 	si.lun = 0;
2400 
2401 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2402 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2403 	msg.data = NULL;
2404 	msg.data_len = 0;
2405 
2406 	return i_ipmi_request(NULL,
2407 			      intf,
2408 			      (struct ipmi_addr *) &si,
2409 			      0,
2410 			      &msg,
2411 			      intf,
2412 			      NULL,
2413 			      NULL,
2414 			      0,
2415 			      intf->addrinfo[0].address,
2416 			      intf->addrinfo[0].lun,
2417 			      -1, 0);
2418 }
2419 
2420 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2421 {
2422 	int rv;
2423 	unsigned int retry_count = 0;
2424 
2425 	intf->null_user_handler = bmc_device_id_handler;
2426 
2427 retry:
2428 	bmc->cc = 0;
2429 	bmc->dyn_id_set = 2;
2430 
2431 	rv = send_get_device_id_cmd(intf);
2432 	if (rv)
2433 		goto out_reset_handler;
2434 
2435 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2436 
2437 	if (!bmc->dyn_id_set) {
2438 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2439 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2440 			msleep(500);
2441 			dev_warn(intf->si_dev,
2442 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2443 			    bmc->cc);
2444 			goto retry;
2445 		}
2446 
2447 		rv = -EIO; /* Something went wrong in the fetch. */
2448 	}
2449 
2450 	/* dyn_id_set makes the id data available. */
2451 	smp_rmb();
2452 
2453 out_reset_handler:
2454 	intf->null_user_handler = NULL;
2455 
2456 	return rv;
2457 }
2458 
2459 /*
2460  * Fetch the device id for the bmc/interface.  You must pass in either
2461  * bmc or intf, this code will get the other one.  If the data has
2462  * been recently fetched, this will just use the cached data.  Otherwise
2463  * it will run a new fetch.
2464  *
2465  * Except for the first time this is called (in ipmi_add_smi()),
2466  * this will always return good data;
2467  */
2468 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2469 			       struct ipmi_device_id *id,
2470 			       bool *guid_set, guid_t *guid, int intf_num)
2471 {
2472 	int rv = 0;
2473 	int prev_dyn_id_set, prev_guid_set;
2474 	bool intf_set = intf != NULL;
2475 
2476 	if (!intf) {
2477 		mutex_lock(&bmc->dyn_mutex);
2478 retry_bmc_lock:
2479 		if (list_empty(&bmc->intfs)) {
2480 			mutex_unlock(&bmc->dyn_mutex);
2481 			return -ENOENT;
2482 		}
2483 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2484 					bmc_link);
2485 		kref_get(&intf->refcount);
2486 		mutex_unlock(&bmc->dyn_mutex);
2487 		mutex_lock(&intf->bmc_reg_mutex);
2488 		mutex_lock(&bmc->dyn_mutex);
2489 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2490 					     bmc_link)) {
2491 			mutex_unlock(&intf->bmc_reg_mutex);
2492 			kref_put(&intf->refcount, intf_free);
2493 			goto retry_bmc_lock;
2494 		}
2495 	} else {
2496 		mutex_lock(&intf->bmc_reg_mutex);
2497 		bmc = intf->bmc;
2498 		mutex_lock(&bmc->dyn_mutex);
2499 		kref_get(&intf->refcount);
2500 	}
2501 
2502 	/* If we have a valid and current ID, just return that. */
2503 	if (intf->in_bmc_register ||
2504 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2505 		goto out_noprocessing;
2506 
2507 	prev_guid_set = bmc->dyn_guid_set;
2508 	__get_guid(intf);
2509 
2510 	prev_dyn_id_set = bmc->dyn_id_set;
2511 	rv = __get_device_id(intf, bmc);
2512 	if (rv)
2513 		goto out;
2514 
2515 	/*
2516 	 * The guid, device id, manufacturer id, and product id should
2517 	 * not change on a BMC.  If it does we have to do some dancing.
2518 	 */
2519 	if (!intf->bmc_registered
2520 	    || (!prev_guid_set && bmc->dyn_guid_set)
2521 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2522 	    || (prev_guid_set && bmc->dyn_guid_set
2523 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2524 	    || bmc->id.device_id != bmc->fetch_id.device_id
2525 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2526 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2527 		struct ipmi_device_id id = bmc->fetch_id;
2528 		int guid_set = bmc->dyn_guid_set;
2529 		guid_t guid;
2530 
2531 		guid = bmc->fetch_guid;
2532 		mutex_unlock(&bmc->dyn_mutex);
2533 
2534 		__ipmi_bmc_unregister(intf);
2535 		/* Fill in the temporary BMC for good measure. */
2536 		intf->bmc->id = id;
2537 		intf->bmc->dyn_guid_set = guid_set;
2538 		intf->bmc->guid = guid;
2539 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2540 			need_waiter(intf); /* Retry later on an error. */
2541 		else
2542 			__scan_channels(intf, &id);
2543 
2544 
2545 		if (!intf_set) {
2546 			/*
2547 			 * We weren't given the interface on the
2548 			 * command line, so restart the operation on
2549 			 * the next interface for the BMC.
2550 			 */
2551 			mutex_unlock(&intf->bmc_reg_mutex);
2552 			mutex_lock(&bmc->dyn_mutex);
2553 			goto retry_bmc_lock;
2554 		}
2555 
2556 		/* We have a new BMC, set it up. */
2557 		bmc = intf->bmc;
2558 		mutex_lock(&bmc->dyn_mutex);
2559 		goto out_noprocessing;
2560 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2561 		/* Version info changes, scan the channels again. */
2562 		__scan_channels(intf, &bmc->fetch_id);
2563 
2564 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2565 
2566 out:
2567 	if (rv && prev_dyn_id_set) {
2568 		rv = 0; /* Ignore failures if we have previous data. */
2569 		bmc->dyn_id_set = prev_dyn_id_set;
2570 	}
2571 	if (!rv) {
2572 		bmc->id = bmc->fetch_id;
2573 		if (bmc->dyn_guid_set)
2574 			bmc->guid = bmc->fetch_guid;
2575 		else if (prev_guid_set)
2576 			/*
2577 			 * The guid used to be valid and it failed to fetch,
2578 			 * just use the cached value.
2579 			 */
2580 			bmc->dyn_guid_set = prev_guid_set;
2581 	}
2582 out_noprocessing:
2583 	if (!rv) {
2584 		if (id)
2585 			*id = bmc->id;
2586 
2587 		if (guid_set)
2588 			*guid_set = bmc->dyn_guid_set;
2589 
2590 		if (guid && bmc->dyn_guid_set)
2591 			*guid =  bmc->guid;
2592 	}
2593 
2594 	mutex_unlock(&bmc->dyn_mutex);
2595 	mutex_unlock(&intf->bmc_reg_mutex);
2596 
2597 	kref_put(&intf->refcount, intf_free);
2598 	return rv;
2599 }
2600 
2601 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2602 			     struct ipmi_device_id *id,
2603 			     bool *guid_set, guid_t *guid)
2604 {
2605 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2606 }
2607 
2608 static ssize_t device_id_show(struct device *dev,
2609 			      struct device_attribute *attr,
2610 			      char *buf)
2611 {
2612 	struct bmc_device *bmc = to_bmc_device(dev);
2613 	struct ipmi_device_id id;
2614 	int rv;
2615 
2616 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2617 	if (rv)
2618 		return rv;
2619 
2620 	return snprintf(buf, 10, "%u\n", id.device_id);
2621 }
2622 static DEVICE_ATTR_RO(device_id);
2623 
2624 static ssize_t provides_device_sdrs_show(struct device *dev,
2625 					 struct device_attribute *attr,
2626 					 char *buf)
2627 {
2628 	struct bmc_device *bmc = to_bmc_device(dev);
2629 	struct ipmi_device_id id;
2630 	int rv;
2631 
2632 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2633 	if (rv)
2634 		return rv;
2635 
2636 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2637 }
2638 static DEVICE_ATTR_RO(provides_device_sdrs);
2639 
2640 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2641 			     char *buf)
2642 {
2643 	struct bmc_device *bmc = to_bmc_device(dev);
2644 	struct ipmi_device_id id;
2645 	int rv;
2646 
2647 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2648 	if (rv)
2649 		return rv;
2650 
2651 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2652 }
2653 static DEVICE_ATTR_RO(revision);
2654 
2655 static ssize_t firmware_revision_show(struct device *dev,
2656 				      struct device_attribute *attr,
2657 				      char *buf)
2658 {
2659 	struct bmc_device *bmc = to_bmc_device(dev);
2660 	struct ipmi_device_id id;
2661 	int rv;
2662 
2663 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2664 	if (rv)
2665 		return rv;
2666 
2667 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2668 			id.firmware_revision_2);
2669 }
2670 static DEVICE_ATTR_RO(firmware_revision);
2671 
2672 static ssize_t ipmi_version_show(struct device *dev,
2673 				 struct device_attribute *attr,
2674 				 char *buf)
2675 {
2676 	struct bmc_device *bmc = to_bmc_device(dev);
2677 	struct ipmi_device_id id;
2678 	int rv;
2679 
2680 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2681 	if (rv)
2682 		return rv;
2683 
2684 	return snprintf(buf, 20, "%u.%u\n",
2685 			ipmi_version_major(&id),
2686 			ipmi_version_minor(&id));
2687 }
2688 static DEVICE_ATTR_RO(ipmi_version);
2689 
2690 static ssize_t add_dev_support_show(struct device *dev,
2691 				    struct device_attribute *attr,
2692 				    char *buf)
2693 {
2694 	struct bmc_device *bmc = to_bmc_device(dev);
2695 	struct ipmi_device_id id;
2696 	int rv;
2697 
2698 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2699 	if (rv)
2700 		return rv;
2701 
2702 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2703 }
2704 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2705 		   NULL);
2706 
2707 static ssize_t manufacturer_id_show(struct device *dev,
2708 				    struct device_attribute *attr,
2709 				    char *buf)
2710 {
2711 	struct bmc_device *bmc = to_bmc_device(dev);
2712 	struct ipmi_device_id id;
2713 	int rv;
2714 
2715 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2716 	if (rv)
2717 		return rv;
2718 
2719 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2720 }
2721 static DEVICE_ATTR_RO(manufacturer_id);
2722 
2723 static ssize_t product_id_show(struct device *dev,
2724 			       struct device_attribute *attr,
2725 			       char *buf)
2726 {
2727 	struct bmc_device *bmc = to_bmc_device(dev);
2728 	struct ipmi_device_id id;
2729 	int rv;
2730 
2731 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2732 	if (rv)
2733 		return rv;
2734 
2735 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2736 }
2737 static DEVICE_ATTR_RO(product_id);
2738 
2739 static ssize_t aux_firmware_rev_show(struct device *dev,
2740 				     struct device_attribute *attr,
2741 				     char *buf)
2742 {
2743 	struct bmc_device *bmc = to_bmc_device(dev);
2744 	struct ipmi_device_id id;
2745 	int rv;
2746 
2747 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2748 	if (rv)
2749 		return rv;
2750 
2751 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2752 			id.aux_firmware_revision[3],
2753 			id.aux_firmware_revision[2],
2754 			id.aux_firmware_revision[1],
2755 			id.aux_firmware_revision[0]);
2756 }
2757 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2758 
2759 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2760 			 char *buf)
2761 {
2762 	struct bmc_device *bmc = to_bmc_device(dev);
2763 	bool guid_set;
2764 	guid_t guid;
2765 	int rv;
2766 
2767 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2768 	if (rv)
2769 		return rv;
2770 	if (!guid_set)
2771 		return -ENOENT;
2772 
2773 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2774 }
2775 static DEVICE_ATTR_RO(guid);
2776 
2777 static struct attribute *bmc_dev_attrs[] = {
2778 	&dev_attr_device_id.attr,
2779 	&dev_attr_provides_device_sdrs.attr,
2780 	&dev_attr_revision.attr,
2781 	&dev_attr_firmware_revision.attr,
2782 	&dev_attr_ipmi_version.attr,
2783 	&dev_attr_additional_device_support.attr,
2784 	&dev_attr_manufacturer_id.attr,
2785 	&dev_attr_product_id.attr,
2786 	&dev_attr_aux_firmware_revision.attr,
2787 	&dev_attr_guid.attr,
2788 	NULL
2789 };
2790 
2791 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2792 				       struct attribute *attr, int idx)
2793 {
2794 	struct device *dev = kobj_to_dev(kobj);
2795 	struct bmc_device *bmc = to_bmc_device(dev);
2796 	umode_t mode = attr->mode;
2797 	int rv;
2798 
2799 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2800 		struct ipmi_device_id id;
2801 
2802 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2803 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2804 	}
2805 	if (attr == &dev_attr_guid.attr) {
2806 		bool guid_set;
2807 
2808 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2809 		return (!rv && guid_set) ? mode : 0;
2810 	}
2811 	return mode;
2812 }
2813 
2814 static const struct attribute_group bmc_dev_attr_group = {
2815 	.attrs		= bmc_dev_attrs,
2816 	.is_visible	= bmc_dev_attr_is_visible,
2817 };
2818 
2819 static const struct attribute_group *bmc_dev_attr_groups[] = {
2820 	&bmc_dev_attr_group,
2821 	NULL
2822 };
2823 
2824 static const struct device_type bmc_device_type = {
2825 	.groups		= bmc_dev_attr_groups,
2826 };
2827 
2828 static int __find_bmc_guid(struct device *dev, const void *data)
2829 {
2830 	const guid_t *guid = data;
2831 	struct bmc_device *bmc;
2832 	int rv;
2833 
2834 	if (dev->type != &bmc_device_type)
2835 		return 0;
2836 
2837 	bmc = to_bmc_device(dev);
2838 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2839 	if (rv)
2840 		rv = kref_get_unless_zero(&bmc->usecount);
2841 	return rv;
2842 }
2843 
2844 /*
2845  * Returns with the bmc's usecount incremented, if it is non-NULL.
2846  */
2847 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2848 					     guid_t *guid)
2849 {
2850 	struct device *dev;
2851 	struct bmc_device *bmc = NULL;
2852 
2853 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2854 	if (dev) {
2855 		bmc = to_bmc_device(dev);
2856 		put_device(dev);
2857 	}
2858 	return bmc;
2859 }
2860 
2861 struct prod_dev_id {
2862 	unsigned int  product_id;
2863 	unsigned char device_id;
2864 };
2865 
2866 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2867 {
2868 	const struct prod_dev_id *cid = data;
2869 	struct bmc_device *bmc;
2870 	int rv;
2871 
2872 	if (dev->type != &bmc_device_type)
2873 		return 0;
2874 
2875 	bmc = to_bmc_device(dev);
2876 	rv = (bmc->id.product_id == cid->product_id
2877 	      && bmc->id.device_id == cid->device_id);
2878 	if (rv)
2879 		rv = kref_get_unless_zero(&bmc->usecount);
2880 	return rv;
2881 }
2882 
2883 /*
2884  * Returns with the bmc's usecount incremented, if it is non-NULL.
2885  */
2886 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2887 	struct device_driver *drv,
2888 	unsigned int product_id, unsigned char device_id)
2889 {
2890 	struct prod_dev_id id = {
2891 		.product_id = product_id,
2892 		.device_id = device_id,
2893 	};
2894 	struct device *dev;
2895 	struct bmc_device *bmc = NULL;
2896 
2897 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2898 	if (dev) {
2899 		bmc = to_bmc_device(dev);
2900 		put_device(dev);
2901 	}
2902 	return bmc;
2903 }
2904 
2905 static DEFINE_IDA(ipmi_bmc_ida);
2906 
2907 static void
2908 release_bmc_device(struct device *dev)
2909 {
2910 	kfree(to_bmc_device(dev));
2911 }
2912 
2913 static void cleanup_bmc_work(struct work_struct *work)
2914 {
2915 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2916 					      remove_work);
2917 	int id = bmc->pdev.id; /* Unregister overwrites id */
2918 
2919 	platform_device_unregister(&bmc->pdev);
2920 	ida_simple_remove(&ipmi_bmc_ida, id);
2921 }
2922 
2923 static void
2924 cleanup_bmc_device(struct kref *ref)
2925 {
2926 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2927 
2928 	/*
2929 	 * Remove the platform device in a work queue to avoid issues
2930 	 * with removing the device attributes while reading a device
2931 	 * attribute.
2932 	 */
2933 	schedule_work(&bmc->remove_work);
2934 }
2935 
2936 /*
2937  * Must be called with intf->bmc_reg_mutex held.
2938  */
2939 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2940 {
2941 	struct bmc_device *bmc = intf->bmc;
2942 
2943 	if (!intf->bmc_registered)
2944 		return;
2945 
2946 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2947 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2948 	kfree(intf->my_dev_name);
2949 	intf->my_dev_name = NULL;
2950 
2951 	mutex_lock(&bmc->dyn_mutex);
2952 	list_del(&intf->bmc_link);
2953 	mutex_unlock(&bmc->dyn_mutex);
2954 	intf->bmc = &intf->tmp_bmc;
2955 	kref_put(&bmc->usecount, cleanup_bmc_device);
2956 	intf->bmc_registered = false;
2957 }
2958 
2959 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2960 {
2961 	mutex_lock(&intf->bmc_reg_mutex);
2962 	__ipmi_bmc_unregister(intf);
2963 	mutex_unlock(&intf->bmc_reg_mutex);
2964 }
2965 
2966 /*
2967  * Must be called with intf->bmc_reg_mutex held.
2968  */
2969 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2970 			       struct ipmi_device_id *id,
2971 			       bool guid_set, guid_t *guid, int intf_num)
2972 {
2973 	int               rv;
2974 	struct bmc_device *bmc;
2975 	struct bmc_device *old_bmc;
2976 
2977 	/*
2978 	 * platform_device_register() can cause bmc_reg_mutex to
2979 	 * be claimed because of the is_visible functions of
2980 	 * the attributes.  Eliminate possible recursion and
2981 	 * release the lock.
2982 	 */
2983 	intf->in_bmc_register = true;
2984 	mutex_unlock(&intf->bmc_reg_mutex);
2985 
2986 	/*
2987 	 * Try to find if there is an bmc_device struct
2988 	 * representing the interfaced BMC already
2989 	 */
2990 	mutex_lock(&ipmidriver_mutex);
2991 	if (guid_set)
2992 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2993 	else
2994 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2995 						    id->product_id,
2996 						    id->device_id);
2997 
2998 	/*
2999 	 * If there is already an bmc_device, free the new one,
3000 	 * otherwise register the new BMC device
3001 	 */
3002 	if (old_bmc) {
3003 		bmc = old_bmc;
3004 		/*
3005 		 * Note: old_bmc already has usecount incremented by
3006 		 * the BMC find functions.
3007 		 */
3008 		intf->bmc = old_bmc;
3009 		mutex_lock(&bmc->dyn_mutex);
3010 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3011 		mutex_unlock(&bmc->dyn_mutex);
3012 
3013 		dev_info(intf->si_dev,
3014 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3015 			 bmc->id.manufacturer_id,
3016 			 bmc->id.product_id,
3017 			 bmc->id.device_id);
3018 	} else {
3019 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3020 		if (!bmc) {
3021 			rv = -ENOMEM;
3022 			goto out;
3023 		}
3024 		INIT_LIST_HEAD(&bmc->intfs);
3025 		mutex_init(&bmc->dyn_mutex);
3026 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3027 
3028 		bmc->id = *id;
3029 		bmc->dyn_id_set = 1;
3030 		bmc->dyn_guid_set = guid_set;
3031 		bmc->guid = *guid;
3032 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3033 
3034 		bmc->pdev.name = "ipmi_bmc";
3035 
3036 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3037 		if (rv < 0) {
3038 			kfree(bmc);
3039 			goto out;
3040 		}
3041 
3042 		bmc->pdev.dev.driver = &ipmidriver.driver;
3043 		bmc->pdev.id = rv;
3044 		bmc->pdev.dev.release = release_bmc_device;
3045 		bmc->pdev.dev.type = &bmc_device_type;
3046 		kref_init(&bmc->usecount);
3047 
3048 		intf->bmc = bmc;
3049 		mutex_lock(&bmc->dyn_mutex);
3050 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3051 		mutex_unlock(&bmc->dyn_mutex);
3052 
3053 		rv = platform_device_register(&bmc->pdev);
3054 		if (rv) {
3055 			dev_err(intf->si_dev,
3056 				"Unable to register bmc device: %d\n",
3057 				rv);
3058 			goto out_list_del;
3059 		}
3060 
3061 		dev_info(intf->si_dev,
3062 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3063 			 bmc->id.manufacturer_id,
3064 			 bmc->id.product_id,
3065 			 bmc->id.device_id);
3066 	}
3067 
3068 	/*
3069 	 * create symlink from system interface device to bmc device
3070 	 * and back.
3071 	 */
3072 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3073 	if (rv) {
3074 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3075 		goto out_put_bmc;
3076 	}
3077 
3078 	if (intf_num == -1)
3079 		intf_num = intf->intf_num;
3080 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3081 	if (!intf->my_dev_name) {
3082 		rv = -ENOMEM;
3083 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3084 			rv);
3085 		goto out_unlink1;
3086 	}
3087 
3088 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3089 			       intf->my_dev_name);
3090 	if (rv) {
3091 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3092 			rv);
3093 		goto out_free_my_dev_name;
3094 	}
3095 
3096 	intf->bmc_registered = true;
3097 
3098 out:
3099 	mutex_unlock(&ipmidriver_mutex);
3100 	mutex_lock(&intf->bmc_reg_mutex);
3101 	intf->in_bmc_register = false;
3102 	return rv;
3103 
3104 
3105 out_free_my_dev_name:
3106 	kfree(intf->my_dev_name);
3107 	intf->my_dev_name = NULL;
3108 
3109 out_unlink1:
3110 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3111 
3112 out_put_bmc:
3113 	mutex_lock(&bmc->dyn_mutex);
3114 	list_del(&intf->bmc_link);
3115 	mutex_unlock(&bmc->dyn_mutex);
3116 	intf->bmc = &intf->tmp_bmc;
3117 	kref_put(&bmc->usecount, cleanup_bmc_device);
3118 	goto out;
3119 
3120 out_list_del:
3121 	mutex_lock(&bmc->dyn_mutex);
3122 	list_del(&intf->bmc_link);
3123 	mutex_unlock(&bmc->dyn_mutex);
3124 	intf->bmc = &intf->tmp_bmc;
3125 	put_device(&bmc->pdev.dev);
3126 	goto out;
3127 }
3128 
3129 static int
3130 send_guid_cmd(struct ipmi_smi *intf, int chan)
3131 {
3132 	struct kernel_ipmi_msg            msg;
3133 	struct ipmi_system_interface_addr si;
3134 
3135 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3136 	si.channel = IPMI_BMC_CHANNEL;
3137 	si.lun = 0;
3138 
3139 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3140 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3141 	msg.data = NULL;
3142 	msg.data_len = 0;
3143 	return i_ipmi_request(NULL,
3144 			      intf,
3145 			      (struct ipmi_addr *) &si,
3146 			      0,
3147 			      &msg,
3148 			      intf,
3149 			      NULL,
3150 			      NULL,
3151 			      0,
3152 			      intf->addrinfo[0].address,
3153 			      intf->addrinfo[0].lun,
3154 			      -1, 0);
3155 }
3156 
3157 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3158 {
3159 	struct bmc_device *bmc = intf->bmc;
3160 
3161 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3162 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3163 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3164 		/* Not for me */
3165 		return;
3166 
3167 	if (msg->msg.data[0] != 0) {
3168 		/* Error from getting the GUID, the BMC doesn't have one. */
3169 		bmc->dyn_guid_set = 0;
3170 		goto out;
3171 	}
3172 
3173 	if (msg->msg.data_len < UUID_SIZE + 1) {
3174 		bmc->dyn_guid_set = 0;
3175 		dev_warn(intf->si_dev,
3176 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3177 			 msg->msg.data_len, UUID_SIZE + 1);
3178 		goto out;
3179 	}
3180 
3181 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3182 	/*
3183 	 * Make sure the guid data is available before setting
3184 	 * dyn_guid_set.
3185 	 */
3186 	smp_wmb();
3187 	bmc->dyn_guid_set = 1;
3188  out:
3189 	wake_up(&intf->waitq);
3190 }
3191 
3192 static void __get_guid(struct ipmi_smi *intf)
3193 {
3194 	int rv;
3195 	struct bmc_device *bmc = intf->bmc;
3196 
3197 	bmc->dyn_guid_set = 2;
3198 	intf->null_user_handler = guid_handler;
3199 	rv = send_guid_cmd(intf, 0);
3200 	if (rv)
3201 		/* Send failed, no GUID available. */
3202 		bmc->dyn_guid_set = 0;
3203 	else
3204 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3205 
3206 	/* dyn_guid_set makes the guid data available. */
3207 	smp_rmb();
3208 
3209 	intf->null_user_handler = NULL;
3210 }
3211 
3212 static int
3213 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3214 {
3215 	struct kernel_ipmi_msg            msg;
3216 	unsigned char                     data[1];
3217 	struct ipmi_system_interface_addr si;
3218 
3219 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3220 	si.channel = IPMI_BMC_CHANNEL;
3221 	si.lun = 0;
3222 
3223 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3224 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3225 	msg.data = data;
3226 	msg.data_len = 1;
3227 	data[0] = chan;
3228 	return i_ipmi_request(NULL,
3229 			      intf,
3230 			      (struct ipmi_addr *) &si,
3231 			      0,
3232 			      &msg,
3233 			      intf,
3234 			      NULL,
3235 			      NULL,
3236 			      0,
3237 			      intf->addrinfo[0].address,
3238 			      intf->addrinfo[0].lun,
3239 			      -1, 0);
3240 }
3241 
3242 static void
3243 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3244 {
3245 	int rv = 0;
3246 	int ch;
3247 	unsigned int set = intf->curr_working_cset;
3248 	struct ipmi_channel *chans;
3249 
3250 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3251 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3252 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3253 		/* It's the one we want */
3254 		if (msg->msg.data[0] != 0) {
3255 			/* Got an error from the channel, just go on. */
3256 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3257 				/*
3258 				 * If the MC does not support this
3259 				 * command, that is legal.  We just
3260 				 * assume it has one IPMB at channel
3261 				 * zero.
3262 				 */
3263 				intf->wchannels[set].c[0].medium
3264 					= IPMI_CHANNEL_MEDIUM_IPMB;
3265 				intf->wchannels[set].c[0].protocol
3266 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3267 
3268 				intf->channel_list = intf->wchannels + set;
3269 				intf->channels_ready = true;
3270 				wake_up(&intf->waitq);
3271 				goto out;
3272 			}
3273 			goto next_channel;
3274 		}
3275 		if (msg->msg.data_len < 4) {
3276 			/* Message not big enough, just go on. */
3277 			goto next_channel;
3278 		}
3279 		ch = intf->curr_channel;
3280 		chans = intf->wchannels[set].c;
3281 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3282 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3283 
3284  next_channel:
3285 		intf->curr_channel++;
3286 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3287 			intf->channel_list = intf->wchannels + set;
3288 			intf->channels_ready = true;
3289 			wake_up(&intf->waitq);
3290 		} else {
3291 			intf->channel_list = intf->wchannels + set;
3292 			intf->channels_ready = true;
3293 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3294 		}
3295 
3296 		if (rv) {
3297 			/* Got an error somehow, just give up. */
3298 			dev_warn(intf->si_dev,
3299 				 "Error sending channel information for channel %d: %d\n",
3300 				 intf->curr_channel, rv);
3301 
3302 			intf->channel_list = intf->wchannels + set;
3303 			intf->channels_ready = true;
3304 			wake_up(&intf->waitq);
3305 		}
3306 	}
3307  out:
3308 	return;
3309 }
3310 
3311 /*
3312  * Must be holding intf->bmc_reg_mutex to call this.
3313  */
3314 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3315 {
3316 	int rv;
3317 
3318 	if (ipmi_version_major(id) > 1
3319 			|| (ipmi_version_major(id) == 1
3320 			    && ipmi_version_minor(id) >= 5)) {
3321 		unsigned int set;
3322 
3323 		/*
3324 		 * Start scanning the channels to see what is
3325 		 * available.
3326 		 */
3327 		set = !intf->curr_working_cset;
3328 		intf->curr_working_cset = set;
3329 		memset(&intf->wchannels[set], 0,
3330 		       sizeof(struct ipmi_channel_set));
3331 
3332 		intf->null_user_handler = channel_handler;
3333 		intf->curr_channel = 0;
3334 		rv = send_channel_info_cmd(intf, 0);
3335 		if (rv) {
3336 			dev_warn(intf->si_dev,
3337 				 "Error sending channel information for channel 0, %d\n",
3338 				 rv);
3339 			intf->null_user_handler = NULL;
3340 			return -EIO;
3341 		}
3342 
3343 		/* Wait for the channel info to be read. */
3344 		wait_event(intf->waitq, intf->channels_ready);
3345 		intf->null_user_handler = NULL;
3346 	} else {
3347 		unsigned int set = intf->curr_working_cset;
3348 
3349 		/* Assume a single IPMB channel at zero. */
3350 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3351 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3352 		intf->channel_list = intf->wchannels + set;
3353 		intf->channels_ready = true;
3354 	}
3355 
3356 	return 0;
3357 }
3358 
3359 static void ipmi_poll(struct ipmi_smi *intf)
3360 {
3361 	if (intf->handlers->poll)
3362 		intf->handlers->poll(intf->send_info);
3363 	/* In case something came in */
3364 	handle_new_recv_msgs(intf);
3365 }
3366 
3367 void ipmi_poll_interface(struct ipmi_user *user)
3368 {
3369 	ipmi_poll(user->intf);
3370 }
3371 EXPORT_SYMBOL(ipmi_poll_interface);
3372 
3373 static void redo_bmc_reg(struct work_struct *work)
3374 {
3375 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3376 					     bmc_reg_work);
3377 
3378 	if (!intf->in_shutdown)
3379 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3380 
3381 	kref_put(&intf->refcount, intf_free);
3382 }
3383 
3384 int ipmi_add_smi(struct module         *owner,
3385 		 const struct ipmi_smi_handlers *handlers,
3386 		 void		       *send_info,
3387 		 struct device         *si_dev,
3388 		 unsigned char         slave_addr)
3389 {
3390 	int              i, j;
3391 	int              rv;
3392 	struct ipmi_smi *intf, *tintf;
3393 	struct list_head *link;
3394 	struct ipmi_device_id id;
3395 
3396 	/*
3397 	 * Make sure the driver is actually initialized, this handles
3398 	 * problems with initialization order.
3399 	 */
3400 	rv = ipmi_init_msghandler();
3401 	if (rv)
3402 		return rv;
3403 
3404 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3405 	if (!intf)
3406 		return -ENOMEM;
3407 
3408 	rv = init_srcu_struct(&intf->users_srcu);
3409 	if (rv) {
3410 		kfree(intf);
3411 		return rv;
3412 	}
3413 
3414 	intf->owner = owner;
3415 	intf->bmc = &intf->tmp_bmc;
3416 	INIT_LIST_HEAD(&intf->bmc->intfs);
3417 	mutex_init(&intf->bmc->dyn_mutex);
3418 	INIT_LIST_HEAD(&intf->bmc_link);
3419 	mutex_init(&intf->bmc_reg_mutex);
3420 	intf->intf_num = -1; /* Mark it invalid for now. */
3421 	kref_init(&intf->refcount);
3422 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3423 	intf->si_dev = si_dev;
3424 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3425 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3426 		intf->addrinfo[j].lun = 2;
3427 	}
3428 	if (slave_addr != 0)
3429 		intf->addrinfo[0].address = slave_addr;
3430 	INIT_LIST_HEAD(&intf->users);
3431 	intf->handlers = handlers;
3432 	intf->send_info = send_info;
3433 	spin_lock_init(&intf->seq_lock);
3434 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3435 		intf->seq_table[j].inuse = 0;
3436 		intf->seq_table[j].seqid = 0;
3437 	}
3438 	intf->curr_seq = 0;
3439 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3440 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3441 	tasklet_setup(&intf->recv_tasklet,
3442 		     smi_recv_tasklet);
3443 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3444 	spin_lock_init(&intf->xmit_msgs_lock);
3445 	INIT_LIST_HEAD(&intf->xmit_msgs);
3446 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3447 	spin_lock_init(&intf->events_lock);
3448 	spin_lock_init(&intf->watch_lock);
3449 	atomic_set(&intf->event_waiters, 0);
3450 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3451 	INIT_LIST_HEAD(&intf->waiting_events);
3452 	intf->waiting_events_count = 0;
3453 	mutex_init(&intf->cmd_rcvrs_mutex);
3454 	spin_lock_init(&intf->maintenance_mode_lock);
3455 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3456 	init_waitqueue_head(&intf->waitq);
3457 	for (i = 0; i < IPMI_NUM_STATS; i++)
3458 		atomic_set(&intf->stats[i], 0);
3459 
3460 	mutex_lock(&ipmi_interfaces_mutex);
3461 	/* Look for a hole in the numbers. */
3462 	i = 0;
3463 	link = &ipmi_interfaces;
3464 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3465 				ipmi_interfaces_mutex_held()) {
3466 		if (tintf->intf_num != i) {
3467 			link = &tintf->link;
3468 			break;
3469 		}
3470 		i++;
3471 	}
3472 	/* Add the new interface in numeric order. */
3473 	if (i == 0)
3474 		list_add_rcu(&intf->link, &ipmi_interfaces);
3475 	else
3476 		list_add_tail_rcu(&intf->link, link);
3477 
3478 	rv = handlers->start_processing(send_info, intf);
3479 	if (rv)
3480 		goto out_err;
3481 
3482 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3483 	if (rv) {
3484 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3485 		goto out_err_started;
3486 	}
3487 
3488 	mutex_lock(&intf->bmc_reg_mutex);
3489 	rv = __scan_channels(intf, &id);
3490 	mutex_unlock(&intf->bmc_reg_mutex);
3491 	if (rv)
3492 		goto out_err_bmc_reg;
3493 
3494 	/*
3495 	 * Keep memory order straight for RCU readers.  Make
3496 	 * sure everything else is committed to memory before
3497 	 * setting intf_num to mark the interface valid.
3498 	 */
3499 	smp_wmb();
3500 	intf->intf_num = i;
3501 	mutex_unlock(&ipmi_interfaces_mutex);
3502 
3503 	/* After this point the interface is legal to use. */
3504 	call_smi_watchers(i, intf->si_dev);
3505 
3506 	return 0;
3507 
3508  out_err_bmc_reg:
3509 	ipmi_bmc_unregister(intf);
3510  out_err_started:
3511 	if (intf->handlers->shutdown)
3512 		intf->handlers->shutdown(intf->send_info);
3513  out_err:
3514 	list_del_rcu(&intf->link);
3515 	mutex_unlock(&ipmi_interfaces_mutex);
3516 	synchronize_srcu(&ipmi_interfaces_srcu);
3517 	cleanup_srcu_struct(&intf->users_srcu);
3518 	kref_put(&intf->refcount, intf_free);
3519 
3520 	return rv;
3521 }
3522 EXPORT_SYMBOL(ipmi_add_smi);
3523 
3524 static void deliver_smi_err_response(struct ipmi_smi *intf,
3525 				     struct ipmi_smi_msg *msg,
3526 				     unsigned char err)
3527 {
3528 	msg->rsp[0] = msg->data[0] | 4;
3529 	msg->rsp[1] = msg->data[1];
3530 	msg->rsp[2] = err;
3531 	msg->rsp_size = 3;
3532 	/* It's an error, so it will never requeue, no need to check return. */
3533 	handle_one_recv_msg(intf, msg);
3534 }
3535 
3536 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3537 {
3538 	int              i;
3539 	struct seq_table *ent;
3540 	struct ipmi_smi_msg *msg;
3541 	struct list_head *entry;
3542 	struct list_head tmplist;
3543 
3544 	/* Clear out our transmit queues and hold the messages. */
3545 	INIT_LIST_HEAD(&tmplist);
3546 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3547 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3548 
3549 	/* Current message first, to preserve order */
3550 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3551 		/* Wait for the message to clear out. */
3552 		schedule_timeout(1);
3553 	}
3554 
3555 	/* No need for locks, the interface is down. */
3556 
3557 	/*
3558 	 * Return errors for all pending messages in queue and in the
3559 	 * tables waiting for remote responses.
3560 	 */
3561 	while (!list_empty(&tmplist)) {
3562 		entry = tmplist.next;
3563 		list_del(entry);
3564 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3565 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3566 	}
3567 
3568 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3569 		ent = &intf->seq_table[i];
3570 		if (!ent->inuse)
3571 			continue;
3572 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3573 	}
3574 }
3575 
3576 void ipmi_unregister_smi(struct ipmi_smi *intf)
3577 {
3578 	struct ipmi_smi_watcher *w;
3579 	int intf_num = intf->intf_num, index;
3580 
3581 	mutex_lock(&ipmi_interfaces_mutex);
3582 	intf->intf_num = -1;
3583 	intf->in_shutdown = true;
3584 	list_del_rcu(&intf->link);
3585 	mutex_unlock(&ipmi_interfaces_mutex);
3586 	synchronize_srcu(&ipmi_interfaces_srcu);
3587 
3588 	/* At this point no users can be added to the interface. */
3589 
3590 	/*
3591 	 * Call all the watcher interfaces to tell them that
3592 	 * an interface is going away.
3593 	 */
3594 	mutex_lock(&smi_watchers_mutex);
3595 	list_for_each_entry(w, &smi_watchers, link)
3596 		w->smi_gone(intf_num);
3597 	mutex_unlock(&smi_watchers_mutex);
3598 
3599 	index = srcu_read_lock(&intf->users_srcu);
3600 	while (!list_empty(&intf->users)) {
3601 		struct ipmi_user *user =
3602 			container_of(list_next_rcu(&intf->users),
3603 				     struct ipmi_user, link);
3604 
3605 		_ipmi_destroy_user(user);
3606 	}
3607 	srcu_read_unlock(&intf->users_srcu, index);
3608 
3609 	if (intf->handlers->shutdown)
3610 		intf->handlers->shutdown(intf->send_info);
3611 
3612 	cleanup_smi_msgs(intf);
3613 
3614 	ipmi_bmc_unregister(intf);
3615 
3616 	cleanup_srcu_struct(&intf->users_srcu);
3617 	kref_put(&intf->refcount, intf_free);
3618 }
3619 EXPORT_SYMBOL(ipmi_unregister_smi);
3620 
3621 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3622 				   struct ipmi_smi_msg *msg)
3623 {
3624 	struct ipmi_ipmb_addr ipmb_addr;
3625 	struct ipmi_recv_msg  *recv_msg;
3626 
3627 	/*
3628 	 * This is 11, not 10, because the response must contain a
3629 	 * completion code.
3630 	 */
3631 	if (msg->rsp_size < 11) {
3632 		/* Message not big enough, just ignore it. */
3633 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3634 		return 0;
3635 	}
3636 
3637 	if (msg->rsp[2] != 0) {
3638 		/* An error getting the response, just ignore it. */
3639 		return 0;
3640 	}
3641 
3642 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3643 	ipmb_addr.slave_addr = msg->rsp[6];
3644 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3645 	ipmb_addr.lun = msg->rsp[7] & 3;
3646 
3647 	/*
3648 	 * It's a response from a remote entity.  Look up the sequence
3649 	 * number and handle the response.
3650 	 */
3651 	if (intf_find_seq(intf,
3652 			  msg->rsp[7] >> 2,
3653 			  msg->rsp[3] & 0x0f,
3654 			  msg->rsp[8],
3655 			  (msg->rsp[4] >> 2) & (~1),
3656 			  (struct ipmi_addr *) &ipmb_addr,
3657 			  &recv_msg)) {
3658 		/*
3659 		 * We were unable to find the sequence number,
3660 		 * so just nuke the message.
3661 		 */
3662 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3663 		return 0;
3664 	}
3665 
3666 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3667 	/*
3668 	 * The other fields matched, so no need to set them, except
3669 	 * for netfn, which needs to be the response that was
3670 	 * returned, not the request value.
3671 	 */
3672 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3673 	recv_msg->msg.data = recv_msg->msg_data;
3674 	recv_msg->msg.data_len = msg->rsp_size - 10;
3675 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3676 	if (deliver_response(intf, recv_msg))
3677 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3678 	else
3679 		ipmi_inc_stat(intf, handled_ipmb_responses);
3680 
3681 	return 0;
3682 }
3683 
3684 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3685 				   struct ipmi_smi_msg *msg)
3686 {
3687 	struct cmd_rcvr          *rcvr;
3688 	int                      rv = 0;
3689 	unsigned char            netfn;
3690 	unsigned char            cmd;
3691 	unsigned char            chan;
3692 	struct ipmi_user         *user = NULL;
3693 	struct ipmi_ipmb_addr    *ipmb_addr;
3694 	struct ipmi_recv_msg     *recv_msg;
3695 
3696 	if (msg->rsp_size < 10) {
3697 		/* Message not big enough, just ignore it. */
3698 		ipmi_inc_stat(intf, invalid_commands);
3699 		return 0;
3700 	}
3701 
3702 	if (msg->rsp[2] != 0) {
3703 		/* An error getting the response, just ignore it. */
3704 		return 0;
3705 	}
3706 
3707 	netfn = msg->rsp[4] >> 2;
3708 	cmd = msg->rsp[8];
3709 	chan = msg->rsp[3] & 0xf;
3710 
3711 	rcu_read_lock();
3712 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3713 	if (rcvr) {
3714 		user = rcvr->user;
3715 		kref_get(&user->refcount);
3716 	} else
3717 		user = NULL;
3718 	rcu_read_unlock();
3719 
3720 	if (user == NULL) {
3721 		/* We didn't find a user, deliver an error response. */
3722 		ipmi_inc_stat(intf, unhandled_commands);
3723 
3724 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3725 		msg->data[1] = IPMI_SEND_MSG_CMD;
3726 		msg->data[2] = msg->rsp[3];
3727 		msg->data[3] = msg->rsp[6];
3728 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3729 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3730 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3731 		/* rqseq/lun */
3732 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3733 		msg->data[8] = msg->rsp[8]; /* cmd */
3734 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3735 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3736 		msg->data_size = 11;
3737 
3738 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3739 
3740 		rcu_read_lock();
3741 		if (!intf->in_shutdown) {
3742 			smi_send(intf, intf->handlers, msg, 0);
3743 			/*
3744 			 * We used the message, so return the value
3745 			 * that causes it to not be freed or
3746 			 * queued.
3747 			 */
3748 			rv = -1;
3749 		}
3750 		rcu_read_unlock();
3751 	} else {
3752 		recv_msg = ipmi_alloc_recv_msg();
3753 		if (!recv_msg) {
3754 			/*
3755 			 * We couldn't allocate memory for the
3756 			 * message, so requeue it for handling
3757 			 * later.
3758 			 */
3759 			rv = 1;
3760 			kref_put(&user->refcount, free_user);
3761 		} else {
3762 			/* Extract the source address from the data. */
3763 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3764 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3765 			ipmb_addr->slave_addr = msg->rsp[6];
3766 			ipmb_addr->lun = msg->rsp[7] & 3;
3767 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3768 
3769 			/*
3770 			 * Extract the rest of the message information
3771 			 * from the IPMB header.
3772 			 */
3773 			recv_msg->user = user;
3774 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3775 			recv_msg->msgid = msg->rsp[7] >> 2;
3776 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3777 			recv_msg->msg.cmd = msg->rsp[8];
3778 			recv_msg->msg.data = recv_msg->msg_data;
3779 
3780 			/*
3781 			 * We chop off 10, not 9 bytes because the checksum
3782 			 * at the end also needs to be removed.
3783 			 */
3784 			recv_msg->msg.data_len = msg->rsp_size - 10;
3785 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3786 			       msg->rsp_size - 10);
3787 			if (deliver_response(intf, recv_msg))
3788 				ipmi_inc_stat(intf, unhandled_commands);
3789 			else
3790 				ipmi_inc_stat(intf, handled_commands);
3791 		}
3792 	}
3793 
3794 	return rv;
3795 }
3796 
3797 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3798 				  struct ipmi_smi_msg *msg)
3799 {
3800 	struct ipmi_lan_addr  lan_addr;
3801 	struct ipmi_recv_msg  *recv_msg;
3802 
3803 
3804 	/*
3805 	 * This is 13, not 12, because the response must contain a
3806 	 * completion code.
3807 	 */
3808 	if (msg->rsp_size < 13) {
3809 		/* Message not big enough, just ignore it. */
3810 		ipmi_inc_stat(intf, invalid_lan_responses);
3811 		return 0;
3812 	}
3813 
3814 	if (msg->rsp[2] != 0) {
3815 		/* An error getting the response, just ignore it. */
3816 		return 0;
3817 	}
3818 
3819 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3820 	lan_addr.session_handle = msg->rsp[4];
3821 	lan_addr.remote_SWID = msg->rsp[8];
3822 	lan_addr.local_SWID = msg->rsp[5];
3823 	lan_addr.channel = msg->rsp[3] & 0x0f;
3824 	lan_addr.privilege = msg->rsp[3] >> 4;
3825 	lan_addr.lun = msg->rsp[9] & 3;
3826 
3827 	/*
3828 	 * It's a response from a remote entity.  Look up the sequence
3829 	 * number and handle the response.
3830 	 */
3831 	if (intf_find_seq(intf,
3832 			  msg->rsp[9] >> 2,
3833 			  msg->rsp[3] & 0x0f,
3834 			  msg->rsp[10],
3835 			  (msg->rsp[6] >> 2) & (~1),
3836 			  (struct ipmi_addr *) &lan_addr,
3837 			  &recv_msg)) {
3838 		/*
3839 		 * We were unable to find the sequence number,
3840 		 * so just nuke the message.
3841 		 */
3842 		ipmi_inc_stat(intf, unhandled_lan_responses);
3843 		return 0;
3844 	}
3845 
3846 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3847 	/*
3848 	 * The other fields matched, so no need to set them, except
3849 	 * for netfn, which needs to be the response that was
3850 	 * returned, not the request value.
3851 	 */
3852 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3853 	recv_msg->msg.data = recv_msg->msg_data;
3854 	recv_msg->msg.data_len = msg->rsp_size - 12;
3855 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3856 	if (deliver_response(intf, recv_msg))
3857 		ipmi_inc_stat(intf, unhandled_lan_responses);
3858 	else
3859 		ipmi_inc_stat(intf, handled_lan_responses);
3860 
3861 	return 0;
3862 }
3863 
3864 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3865 				  struct ipmi_smi_msg *msg)
3866 {
3867 	struct cmd_rcvr          *rcvr;
3868 	int                      rv = 0;
3869 	unsigned char            netfn;
3870 	unsigned char            cmd;
3871 	unsigned char            chan;
3872 	struct ipmi_user         *user = NULL;
3873 	struct ipmi_lan_addr     *lan_addr;
3874 	struct ipmi_recv_msg     *recv_msg;
3875 
3876 	if (msg->rsp_size < 12) {
3877 		/* Message not big enough, just ignore it. */
3878 		ipmi_inc_stat(intf, invalid_commands);
3879 		return 0;
3880 	}
3881 
3882 	if (msg->rsp[2] != 0) {
3883 		/* An error getting the response, just ignore it. */
3884 		return 0;
3885 	}
3886 
3887 	netfn = msg->rsp[6] >> 2;
3888 	cmd = msg->rsp[10];
3889 	chan = msg->rsp[3] & 0xf;
3890 
3891 	rcu_read_lock();
3892 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3893 	if (rcvr) {
3894 		user = rcvr->user;
3895 		kref_get(&user->refcount);
3896 	} else
3897 		user = NULL;
3898 	rcu_read_unlock();
3899 
3900 	if (user == NULL) {
3901 		/* We didn't find a user, just give up. */
3902 		ipmi_inc_stat(intf, unhandled_commands);
3903 
3904 		/*
3905 		 * Don't do anything with these messages, just allow
3906 		 * them to be freed.
3907 		 */
3908 		rv = 0;
3909 	} else {
3910 		recv_msg = ipmi_alloc_recv_msg();
3911 		if (!recv_msg) {
3912 			/*
3913 			 * We couldn't allocate memory for the
3914 			 * message, so requeue it for handling later.
3915 			 */
3916 			rv = 1;
3917 			kref_put(&user->refcount, free_user);
3918 		} else {
3919 			/* Extract the source address from the data. */
3920 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3921 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3922 			lan_addr->session_handle = msg->rsp[4];
3923 			lan_addr->remote_SWID = msg->rsp[8];
3924 			lan_addr->local_SWID = msg->rsp[5];
3925 			lan_addr->lun = msg->rsp[9] & 3;
3926 			lan_addr->channel = msg->rsp[3] & 0xf;
3927 			lan_addr->privilege = msg->rsp[3] >> 4;
3928 
3929 			/*
3930 			 * Extract the rest of the message information
3931 			 * from the IPMB header.
3932 			 */
3933 			recv_msg->user = user;
3934 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3935 			recv_msg->msgid = msg->rsp[9] >> 2;
3936 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3937 			recv_msg->msg.cmd = msg->rsp[10];
3938 			recv_msg->msg.data = recv_msg->msg_data;
3939 
3940 			/*
3941 			 * We chop off 12, not 11 bytes because the checksum
3942 			 * at the end also needs to be removed.
3943 			 */
3944 			recv_msg->msg.data_len = msg->rsp_size - 12;
3945 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3946 			       msg->rsp_size - 12);
3947 			if (deliver_response(intf, recv_msg))
3948 				ipmi_inc_stat(intf, unhandled_commands);
3949 			else
3950 				ipmi_inc_stat(intf, handled_commands);
3951 		}
3952 	}
3953 
3954 	return rv;
3955 }
3956 
3957 /*
3958  * This routine will handle "Get Message" command responses with
3959  * channels that use an OEM Medium. The message format belongs to
3960  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3961  * Chapter 22, sections 22.6 and 22.24 for more details.
3962  */
3963 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3964 				  struct ipmi_smi_msg *msg)
3965 {
3966 	struct cmd_rcvr       *rcvr;
3967 	int                   rv = 0;
3968 	unsigned char         netfn;
3969 	unsigned char         cmd;
3970 	unsigned char         chan;
3971 	struct ipmi_user *user = NULL;
3972 	struct ipmi_system_interface_addr *smi_addr;
3973 	struct ipmi_recv_msg  *recv_msg;
3974 
3975 	/*
3976 	 * We expect the OEM SW to perform error checking
3977 	 * so we just do some basic sanity checks
3978 	 */
3979 	if (msg->rsp_size < 4) {
3980 		/* Message not big enough, just ignore it. */
3981 		ipmi_inc_stat(intf, invalid_commands);
3982 		return 0;
3983 	}
3984 
3985 	if (msg->rsp[2] != 0) {
3986 		/* An error getting the response, just ignore it. */
3987 		return 0;
3988 	}
3989 
3990 	/*
3991 	 * This is an OEM Message so the OEM needs to know how
3992 	 * handle the message. We do no interpretation.
3993 	 */
3994 	netfn = msg->rsp[0] >> 2;
3995 	cmd = msg->rsp[1];
3996 	chan = msg->rsp[3] & 0xf;
3997 
3998 	rcu_read_lock();
3999 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4000 	if (rcvr) {
4001 		user = rcvr->user;
4002 		kref_get(&user->refcount);
4003 	} else
4004 		user = NULL;
4005 	rcu_read_unlock();
4006 
4007 	if (user == NULL) {
4008 		/* We didn't find a user, just give up. */
4009 		ipmi_inc_stat(intf, unhandled_commands);
4010 
4011 		/*
4012 		 * Don't do anything with these messages, just allow
4013 		 * them to be freed.
4014 		 */
4015 
4016 		rv = 0;
4017 	} else {
4018 		recv_msg = ipmi_alloc_recv_msg();
4019 		if (!recv_msg) {
4020 			/*
4021 			 * We couldn't allocate memory for the
4022 			 * message, so requeue it for handling
4023 			 * later.
4024 			 */
4025 			rv = 1;
4026 			kref_put(&user->refcount, free_user);
4027 		} else {
4028 			/*
4029 			 * OEM Messages are expected to be delivered via
4030 			 * the system interface to SMS software.  We might
4031 			 * need to visit this again depending on OEM
4032 			 * requirements
4033 			 */
4034 			smi_addr = ((struct ipmi_system_interface_addr *)
4035 				    &recv_msg->addr);
4036 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4037 			smi_addr->channel = IPMI_BMC_CHANNEL;
4038 			smi_addr->lun = msg->rsp[0] & 3;
4039 
4040 			recv_msg->user = user;
4041 			recv_msg->user_msg_data = NULL;
4042 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4043 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4044 			recv_msg->msg.cmd = msg->rsp[1];
4045 			recv_msg->msg.data = recv_msg->msg_data;
4046 
4047 			/*
4048 			 * The message starts at byte 4 which follows the
4049 			 * the Channel Byte in the "GET MESSAGE" command
4050 			 */
4051 			recv_msg->msg.data_len = msg->rsp_size - 4;
4052 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4053 			       msg->rsp_size - 4);
4054 			if (deliver_response(intf, recv_msg))
4055 				ipmi_inc_stat(intf, unhandled_commands);
4056 			else
4057 				ipmi_inc_stat(intf, handled_commands);
4058 		}
4059 	}
4060 
4061 	return rv;
4062 }
4063 
4064 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4065 				     struct ipmi_smi_msg  *msg)
4066 {
4067 	struct ipmi_system_interface_addr *smi_addr;
4068 
4069 	recv_msg->msgid = 0;
4070 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4071 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4072 	smi_addr->channel = IPMI_BMC_CHANNEL;
4073 	smi_addr->lun = msg->rsp[0] & 3;
4074 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4075 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4076 	recv_msg->msg.cmd = msg->rsp[1];
4077 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4078 	recv_msg->msg.data = recv_msg->msg_data;
4079 	recv_msg->msg.data_len = msg->rsp_size - 3;
4080 }
4081 
4082 static int handle_read_event_rsp(struct ipmi_smi *intf,
4083 				 struct ipmi_smi_msg *msg)
4084 {
4085 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4086 	struct list_head     msgs;
4087 	struct ipmi_user     *user;
4088 	int rv = 0, deliver_count = 0, index;
4089 	unsigned long        flags;
4090 
4091 	if (msg->rsp_size < 19) {
4092 		/* Message is too small to be an IPMB event. */
4093 		ipmi_inc_stat(intf, invalid_events);
4094 		return 0;
4095 	}
4096 
4097 	if (msg->rsp[2] != 0) {
4098 		/* An error getting the event, just ignore it. */
4099 		return 0;
4100 	}
4101 
4102 	INIT_LIST_HEAD(&msgs);
4103 
4104 	spin_lock_irqsave(&intf->events_lock, flags);
4105 
4106 	ipmi_inc_stat(intf, events);
4107 
4108 	/*
4109 	 * Allocate and fill in one message for every user that is
4110 	 * getting events.
4111 	 */
4112 	index = srcu_read_lock(&intf->users_srcu);
4113 	list_for_each_entry_rcu(user, &intf->users, link) {
4114 		if (!user->gets_events)
4115 			continue;
4116 
4117 		recv_msg = ipmi_alloc_recv_msg();
4118 		if (!recv_msg) {
4119 			rcu_read_unlock();
4120 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4121 						 link) {
4122 				list_del(&recv_msg->link);
4123 				ipmi_free_recv_msg(recv_msg);
4124 			}
4125 			/*
4126 			 * We couldn't allocate memory for the
4127 			 * message, so requeue it for handling
4128 			 * later.
4129 			 */
4130 			rv = 1;
4131 			goto out;
4132 		}
4133 
4134 		deliver_count++;
4135 
4136 		copy_event_into_recv_msg(recv_msg, msg);
4137 		recv_msg->user = user;
4138 		kref_get(&user->refcount);
4139 		list_add_tail(&recv_msg->link, &msgs);
4140 	}
4141 	srcu_read_unlock(&intf->users_srcu, index);
4142 
4143 	if (deliver_count) {
4144 		/* Now deliver all the messages. */
4145 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4146 			list_del(&recv_msg->link);
4147 			deliver_local_response(intf, recv_msg);
4148 		}
4149 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4150 		/*
4151 		 * No one to receive the message, put it in queue if there's
4152 		 * not already too many things in the queue.
4153 		 */
4154 		recv_msg = ipmi_alloc_recv_msg();
4155 		if (!recv_msg) {
4156 			/*
4157 			 * We couldn't allocate memory for the
4158 			 * message, so requeue it for handling
4159 			 * later.
4160 			 */
4161 			rv = 1;
4162 			goto out;
4163 		}
4164 
4165 		copy_event_into_recv_msg(recv_msg, msg);
4166 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4167 		intf->waiting_events_count++;
4168 	} else if (!intf->event_msg_printed) {
4169 		/*
4170 		 * There's too many things in the queue, discard this
4171 		 * message.
4172 		 */
4173 		dev_warn(intf->si_dev,
4174 			 "Event queue full, discarding incoming events\n");
4175 		intf->event_msg_printed = 1;
4176 	}
4177 
4178  out:
4179 	spin_unlock_irqrestore(&intf->events_lock, flags);
4180 
4181 	return rv;
4182 }
4183 
4184 static int handle_bmc_rsp(struct ipmi_smi *intf,
4185 			  struct ipmi_smi_msg *msg)
4186 {
4187 	struct ipmi_recv_msg *recv_msg;
4188 	struct ipmi_system_interface_addr *smi_addr;
4189 
4190 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4191 	if (recv_msg == NULL) {
4192 		dev_warn(intf->si_dev,
4193 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4194 		return 0;
4195 	}
4196 
4197 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4198 	recv_msg->msgid = msg->msgid;
4199 	smi_addr = ((struct ipmi_system_interface_addr *)
4200 		    &recv_msg->addr);
4201 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4202 	smi_addr->channel = IPMI_BMC_CHANNEL;
4203 	smi_addr->lun = msg->rsp[0] & 3;
4204 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4205 	recv_msg->msg.cmd = msg->rsp[1];
4206 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4207 	recv_msg->msg.data = recv_msg->msg_data;
4208 	recv_msg->msg.data_len = msg->rsp_size - 2;
4209 	deliver_local_response(intf, recv_msg);
4210 
4211 	return 0;
4212 }
4213 
4214 /*
4215  * Handle a received message.  Return 1 if the message should be requeued,
4216  * 0 if the message should be freed, or -1 if the message should not
4217  * be freed or requeued.
4218  */
4219 static int handle_one_recv_msg(struct ipmi_smi *intf,
4220 			       struct ipmi_smi_msg *msg)
4221 {
4222 	int requeue;
4223 	int chan;
4224 
4225 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4226 
4227 	if ((msg->data_size >= 2)
4228 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4229 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4230 	    && (msg->user_data == NULL)) {
4231 
4232 		if (intf->in_shutdown)
4233 			goto free_msg;
4234 
4235 		/*
4236 		 * This is the local response to a command send, start
4237 		 * the timer for these.  The user_data will not be
4238 		 * NULL if this is a response send, and we will let
4239 		 * response sends just go through.
4240 		 */
4241 
4242 		/*
4243 		 * Check for errors, if we get certain errors (ones
4244 		 * that mean basically we can try again later), we
4245 		 * ignore them and start the timer.  Otherwise we
4246 		 * report the error immediately.
4247 		 */
4248 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4249 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4250 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4251 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4252 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4253 			int ch = msg->rsp[3] & 0xf;
4254 			struct ipmi_channel *chans;
4255 
4256 			/* Got an error sending the message, handle it. */
4257 
4258 			chans = READ_ONCE(intf->channel_list)->c;
4259 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4260 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4261 				ipmi_inc_stat(intf, sent_lan_command_errs);
4262 			else
4263 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4264 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4265 		} else
4266 			/* The message was sent, start the timer. */
4267 			intf_start_seq_timer(intf, msg->msgid);
4268 free_msg:
4269 		requeue = 0;
4270 		goto out;
4271 
4272 	} else if (msg->rsp_size < 2) {
4273 		/* Message is too small to be correct. */
4274 		dev_warn(intf->si_dev,
4275 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4276 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4277 
4278 		/* Generate an error response for the message. */
4279 		msg->rsp[0] = msg->data[0] | (1 << 2);
4280 		msg->rsp[1] = msg->data[1];
4281 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4282 		msg->rsp_size = 3;
4283 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4284 		   || (msg->rsp[1] != msg->data[1])) {
4285 		/*
4286 		 * The NetFN and Command in the response is not even
4287 		 * marginally correct.
4288 		 */
4289 		dev_warn(intf->si_dev,
4290 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4291 			 (msg->data[0] >> 2) | 1, msg->data[1],
4292 			 msg->rsp[0] >> 2, msg->rsp[1]);
4293 
4294 		/* Generate an error response for the message. */
4295 		msg->rsp[0] = msg->data[0] | (1 << 2);
4296 		msg->rsp[1] = msg->data[1];
4297 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4298 		msg->rsp_size = 3;
4299 	}
4300 
4301 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4302 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4303 	    && (msg->user_data != NULL)) {
4304 		/*
4305 		 * It's a response to a response we sent.  For this we
4306 		 * deliver a send message response to the user.
4307 		 */
4308 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4309 
4310 		requeue = 0;
4311 		if (msg->rsp_size < 2)
4312 			/* Message is too small to be correct. */
4313 			goto out;
4314 
4315 		chan = msg->data[2] & 0x0f;
4316 		if (chan >= IPMI_MAX_CHANNELS)
4317 			/* Invalid channel number */
4318 			goto out;
4319 
4320 		if (!recv_msg)
4321 			goto out;
4322 
4323 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4324 		recv_msg->msg.data = recv_msg->msg_data;
4325 		recv_msg->msg.data_len = 1;
4326 		recv_msg->msg_data[0] = msg->rsp[2];
4327 		deliver_local_response(intf, recv_msg);
4328 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4329 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4330 		struct ipmi_channel   *chans;
4331 
4332 		/* It's from the receive queue. */
4333 		chan = msg->rsp[3] & 0xf;
4334 		if (chan >= IPMI_MAX_CHANNELS) {
4335 			/* Invalid channel number */
4336 			requeue = 0;
4337 			goto out;
4338 		}
4339 
4340 		/*
4341 		 * We need to make sure the channels have been initialized.
4342 		 * The channel_handler routine will set the "curr_channel"
4343 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4344 		 * channels for this interface have been initialized.
4345 		 */
4346 		if (!intf->channels_ready) {
4347 			requeue = 0; /* Throw the message away */
4348 			goto out;
4349 		}
4350 
4351 		chans = READ_ONCE(intf->channel_list)->c;
4352 
4353 		switch (chans[chan].medium) {
4354 		case IPMI_CHANNEL_MEDIUM_IPMB:
4355 			if (msg->rsp[4] & 0x04) {
4356 				/*
4357 				 * It's a response, so find the
4358 				 * requesting message and send it up.
4359 				 */
4360 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4361 			} else {
4362 				/*
4363 				 * It's a command to the SMS from some other
4364 				 * entity.  Handle that.
4365 				 */
4366 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4367 			}
4368 			break;
4369 
4370 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4371 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4372 			if (msg->rsp[6] & 0x04) {
4373 				/*
4374 				 * It's a response, so find the
4375 				 * requesting message and send it up.
4376 				 */
4377 				requeue = handle_lan_get_msg_rsp(intf, msg);
4378 			} else {
4379 				/*
4380 				 * It's a command to the SMS from some other
4381 				 * entity.  Handle that.
4382 				 */
4383 				requeue = handle_lan_get_msg_cmd(intf, msg);
4384 			}
4385 			break;
4386 
4387 		default:
4388 			/* Check for OEM Channels.  Clients had better
4389 			   register for these commands. */
4390 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4391 			    && (chans[chan].medium
4392 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4393 				requeue = handle_oem_get_msg_cmd(intf, msg);
4394 			} else {
4395 				/*
4396 				 * We don't handle the channel type, so just
4397 				 * free the message.
4398 				 */
4399 				requeue = 0;
4400 			}
4401 		}
4402 
4403 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4404 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4405 		/* It's an asynchronous event. */
4406 		requeue = handle_read_event_rsp(intf, msg);
4407 	} else {
4408 		/* It's a response from the local BMC. */
4409 		requeue = handle_bmc_rsp(intf, msg);
4410 	}
4411 
4412  out:
4413 	return requeue;
4414 }
4415 
4416 /*
4417  * If there are messages in the queue or pretimeouts, handle them.
4418  */
4419 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4420 {
4421 	struct ipmi_smi_msg  *smi_msg;
4422 	unsigned long        flags = 0;
4423 	int                  rv;
4424 	int                  run_to_completion = intf->run_to_completion;
4425 
4426 	/* See if any waiting messages need to be processed. */
4427 	if (!run_to_completion)
4428 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4429 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4430 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4431 				     struct ipmi_smi_msg, link);
4432 		list_del(&smi_msg->link);
4433 		if (!run_to_completion)
4434 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4435 					       flags);
4436 		rv = handle_one_recv_msg(intf, smi_msg);
4437 		if (!run_to_completion)
4438 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4439 		if (rv > 0) {
4440 			/*
4441 			 * To preserve message order, quit if we
4442 			 * can't handle a message.  Add the message
4443 			 * back at the head, this is safe because this
4444 			 * tasklet is the only thing that pulls the
4445 			 * messages.
4446 			 */
4447 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4448 			break;
4449 		} else {
4450 			if (rv == 0)
4451 				/* Message handled */
4452 				ipmi_free_smi_msg(smi_msg);
4453 			/* If rv < 0, fatal error, del but don't free. */
4454 		}
4455 	}
4456 	if (!run_to_completion)
4457 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4458 
4459 	/*
4460 	 * If the pretimout count is non-zero, decrement one from it and
4461 	 * deliver pretimeouts to all the users.
4462 	 */
4463 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4464 		struct ipmi_user *user;
4465 		int index;
4466 
4467 		index = srcu_read_lock(&intf->users_srcu);
4468 		list_for_each_entry_rcu(user, &intf->users, link) {
4469 			if (user->handler->ipmi_watchdog_pretimeout)
4470 				user->handler->ipmi_watchdog_pretimeout(
4471 					user->handler_data);
4472 		}
4473 		srcu_read_unlock(&intf->users_srcu, index);
4474 	}
4475 }
4476 
4477 static void smi_recv_tasklet(struct tasklet_struct *t)
4478 {
4479 	unsigned long flags = 0; /* keep us warning-free. */
4480 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4481 	int run_to_completion = intf->run_to_completion;
4482 	struct ipmi_smi_msg *newmsg = NULL;
4483 
4484 	/*
4485 	 * Start the next message if available.
4486 	 *
4487 	 * Do this here, not in the actual receiver, because we may deadlock
4488 	 * because the lower layer is allowed to hold locks while calling
4489 	 * message delivery.
4490 	 */
4491 
4492 	rcu_read_lock();
4493 
4494 	if (!run_to_completion)
4495 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4496 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4497 		struct list_head *entry = NULL;
4498 
4499 		/* Pick the high priority queue first. */
4500 		if (!list_empty(&intf->hp_xmit_msgs))
4501 			entry = intf->hp_xmit_msgs.next;
4502 		else if (!list_empty(&intf->xmit_msgs))
4503 			entry = intf->xmit_msgs.next;
4504 
4505 		if (entry) {
4506 			list_del(entry);
4507 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4508 			intf->curr_msg = newmsg;
4509 		}
4510 	}
4511 
4512 	if (!run_to_completion)
4513 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4514 	if (newmsg)
4515 		intf->handlers->sender(intf->send_info, newmsg);
4516 
4517 	rcu_read_unlock();
4518 
4519 	handle_new_recv_msgs(intf);
4520 }
4521 
4522 /* Handle a new message from the lower layer. */
4523 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4524 			   struct ipmi_smi_msg *msg)
4525 {
4526 	unsigned long flags = 0; /* keep us warning-free. */
4527 	int run_to_completion = intf->run_to_completion;
4528 
4529 	/*
4530 	 * To preserve message order, we keep a queue and deliver from
4531 	 * a tasklet.
4532 	 */
4533 	if (!run_to_completion)
4534 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4535 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4536 	if (!run_to_completion)
4537 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4538 				       flags);
4539 
4540 	if (!run_to_completion)
4541 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4542 	/*
4543 	 * We can get an asynchronous event or receive message in addition
4544 	 * to commands we send.
4545 	 */
4546 	if (msg == intf->curr_msg)
4547 		intf->curr_msg = NULL;
4548 	if (!run_to_completion)
4549 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4550 
4551 	if (run_to_completion)
4552 		smi_recv_tasklet(&intf->recv_tasklet);
4553 	else
4554 		tasklet_schedule(&intf->recv_tasklet);
4555 }
4556 EXPORT_SYMBOL(ipmi_smi_msg_received);
4557 
4558 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4559 {
4560 	if (intf->in_shutdown)
4561 		return;
4562 
4563 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4564 	tasklet_schedule(&intf->recv_tasklet);
4565 }
4566 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4567 
4568 static struct ipmi_smi_msg *
4569 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4570 		  unsigned char seq, long seqid)
4571 {
4572 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4573 	if (!smi_msg)
4574 		/*
4575 		 * If we can't allocate the message, then just return, we
4576 		 * get 4 retries, so this should be ok.
4577 		 */
4578 		return NULL;
4579 
4580 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4581 	smi_msg->data_size = recv_msg->msg.data_len;
4582 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4583 
4584 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4585 
4586 	return smi_msg;
4587 }
4588 
4589 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4590 			      struct list_head *timeouts,
4591 			      unsigned long timeout_period,
4592 			      int slot, unsigned long *flags,
4593 			      bool *need_timer)
4594 {
4595 	struct ipmi_recv_msg *msg;
4596 
4597 	if (intf->in_shutdown)
4598 		return;
4599 
4600 	if (!ent->inuse)
4601 		return;
4602 
4603 	if (timeout_period < ent->timeout) {
4604 		ent->timeout -= timeout_period;
4605 		*need_timer = true;
4606 		return;
4607 	}
4608 
4609 	if (ent->retries_left == 0) {
4610 		/* The message has used all its retries. */
4611 		ent->inuse = 0;
4612 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4613 		msg = ent->recv_msg;
4614 		list_add_tail(&msg->link, timeouts);
4615 		if (ent->broadcast)
4616 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4617 		else if (is_lan_addr(&ent->recv_msg->addr))
4618 			ipmi_inc_stat(intf, timed_out_lan_commands);
4619 		else
4620 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4621 	} else {
4622 		struct ipmi_smi_msg *smi_msg;
4623 		/* More retries, send again. */
4624 
4625 		*need_timer = true;
4626 
4627 		/*
4628 		 * Start with the max timer, set to normal timer after
4629 		 * the message is sent.
4630 		 */
4631 		ent->timeout = MAX_MSG_TIMEOUT;
4632 		ent->retries_left--;
4633 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4634 					    ent->seqid);
4635 		if (!smi_msg) {
4636 			if (is_lan_addr(&ent->recv_msg->addr))
4637 				ipmi_inc_stat(intf,
4638 					      dropped_rexmit_lan_commands);
4639 			else
4640 				ipmi_inc_stat(intf,
4641 					      dropped_rexmit_ipmb_commands);
4642 			return;
4643 		}
4644 
4645 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4646 
4647 		/*
4648 		 * Send the new message.  We send with a zero
4649 		 * priority.  It timed out, I doubt time is that
4650 		 * critical now, and high priority messages are really
4651 		 * only for messages to the local MC, which don't get
4652 		 * resent.
4653 		 */
4654 		if (intf->handlers) {
4655 			if (is_lan_addr(&ent->recv_msg->addr))
4656 				ipmi_inc_stat(intf,
4657 					      retransmitted_lan_commands);
4658 			else
4659 				ipmi_inc_stat(intf,
4660 					      retransmitted_ipmb_commands);
4661 
4662 			smi_send(intf, intf->handlers, smi_msg, 0);
4663 		} else
4664 			ipmi_free_smi_msg(smi_msg);
4665 
4666 		spin_lock_irqsave(&intf->seq_lock, *flags);
4667 	}
4668 }
4669 
4670 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4671 				 unsigned long timeout_period)
4672 {
4673 	struct list_head     timeouts;
4674 	struct ipmi_recv_msg *msg, *msg2;
4675 	unsigned long        flags;
4676 	int                  i;
4677 	bool                 need_timer = false;
4678 
4679 	if (!intf->bmc_registered) {
4680 		kref_get(&intf->refcount);
4681 		if (!schedule_work(&intf->bmc_reg_work)) {
4682 			kref_put(&intf->refcount, intf_free);
4683 			need_timer = true;
4684 		}
4685 	}
4686 
4687 	/*
4688 	 * Go through the seq table and find any messages that
4689 	 * have timed out, putting them in the timeouts
4690 	 * list.
4691 	 */
4692 	INIT_LIST_HEAD(&timeouts);
4693 	spin_lock_irqsave(&intf->seq_lock, flags);
4694 	if (intf->ipmb_maintenance_mode_timeout) {
4695 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4696 			intf->ipmb_maintenance_mode_timeout = 0;
4697 		else
4698 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4699 	}
4700 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4701 		check_msg_timeout(intf, &intf->seq_table[i],
4702 				  &timeouts, timeout_period, i,
4703 				  &flags, &need_timer);
4704 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4705 
4706 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4707 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4708 
4709 	/*
4710 	 * Maintenance mode handling.  Check the timeout
4711 	 * optimistically before we claim the lock.  It may
4712 	 * mean a timeout gets missed occasionally, but that
4713 	 * only means the timeout gets extended by one period
4714 	 * in that case.  No big deal, and it avoids the lock
4715 	 * most of the time.
4716 	 */
4717 	if (intf->auto_maintenance_timeout > 0) {
4718 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4719 		if (intf->auto_maintenance_timeout > 0) {
4720 			intf->auto_maintenance_timeout
4721 				-= timeout_period;
4722 			if (!intf->maintenance_mode
4723 			    && (intf->auto_maintenance_timeout <= 0)) {
4724 				intf->maintenance_mode_enable = false;
4725 				maintenance_mode_update(intf);
4726 			}
4727 		}
4728 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4729 				       flags);
4730 	}
4731 
4732 	tasklet_schedule(&intf->recv_tasklet);
4733 
4734 	return need_timer;
4735 }
4736 
4737 static void ipmi_request_event(struct ipmi_smi *intf)
4738 {
4739 	/* No event requests when in maintenance mode. */
4740 	if (intf->maintenance_mode_enable)
4741 		return;
4742 
4743 	if (!intf->in_shutdown)
4744 		intf->handlers->request_events(intf->send_info);
4745 }
4746 
4747 static struct timer_list ipmi_timer;
4748 
4749 static atomic_t stop_operation;
4750 
4751 static void ipmi_timeout(struct timer_list *unused)
4752 {
4753 	struct ipmi_smi *intf;
4754 	bool need_timer = false;
4755 	int index;
4756 
4757 	if (atomic_read(&stop_operation))
4758 		return;
4759 
4760 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4761 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4762 		if (atomic_read(&intf->event_waiters)) {
4763 			intf->ticks_to_req_ev--;
4764 			if (intf->ticks_to_req_ev == 0) {
4765 				ipmi_request_event(intf);
4766 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4767 			}
4768 			need_timer = true;
4769 		}
4770 
4771 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4772 	}
4773 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4774 
4775 	if (need_timer)
4776 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4777 }
4778 
4779 static void need_waiter(struct ipmi_smi *intf)
4780 {
4781 	/* Racy, but worst case we start the timer twice. */
4782 	if (!timer_pending(&ipmi_timer))
4783 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4784 }
4785 
4786 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4787 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4788 
4789 static void free_smi_msg(struct ipmi_smi_msg *msg)
4790 {
4791 	atomic_dec(&smi_msg_inuse_count);
4792 	kfree(msg);
4793 }
4794 
4795 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4796 {
4797 	struct ipmi_smi_msg *rv;
4798 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4799 	if (rv) {
4800 		rv->done = free_smi_msg;
4801 		rv->user_data = NULL;
4802 		atomic_inc(&smi_msg_inuse_count);
4803 	}
4804 	return rv;
4805 }
4806 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4807 
4808 static void free_recv_msg(struct ipmi_recv_msg *msg)
4809 {
4810 	atomic_dec(&recv_msg_inuse_count);
4811 	kfree(msg);
4812 }
4813 
4814 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4815 {
4816 	struct ipmi_recv_msg *rv;
4817 
4818 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4819 	if (rv) {
4820 		rv->user = NULL;
4821 		rv->done = free_recv_msg;
4822 		atomic_inc(&recv_msg_inuse_count);
4823 	}
4824 	return rv;
4825 }
4826 
4827 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4828 {
4829 	if (msg->user)
4830 		kref_put(&msg->user->refcount, free_user);
4831 	msg->done(msg);
4832 }
4833 EXPORT_SYMBOL(ipmi_free_recv_msg);
4834 
4835 static atomic_t panic_done_count = ATOMIC_INIT(0);
4836 
4837 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4838 {
4839 	atomic_dec(&panic_done_count);
4840 }
4841 
4842 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4843 {
4844 	atomic_dec(&panic_done_count);
4845 }
4846 
4847 /*
4848  * Inside a panic, send a message and wait for a response.
4849  */
4850 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4851 					struct ipmi_addr *addr,
4852 					struct kernel_ipmi_msg *msg)
4853 {
4854 	struct ipmi_smi_msg  smi_msg;
4855 	struct ipmi_recv_msg recv_msg;
4856 	int rv;
4857 
4858 	smi_msg.done = dummy_smi_done_handler;
4859 	recv_msg.done = dummy_recv_done_handler;
4860 	atomic_add(2, &panic_done_count);
4861 	rv = i_ipmi_request(NULL,
4862 			    intf,
4863 			    addr,
4864 			    0,
4865 			    msg,
4866 			    intf,
4867 			    &smi_msg,
4868 			    &recv_msg,
4869 			    0,
4870 			    intf->addrinfo[0].address,
4871 			    intf->addrinfo[0].lun,
4872 			    0, 1); /* Don't retry, and don't wait. */
4873 	if (rv)
4874 		atomic_sub(2, &panic_done_count);
4875 	else if (intf->handlers->flush_messages)
4876 		intf->handlers->flush_messages(intf->send_info);
4877 
4878 	while (atomic_read(&panic_done_count) != 0)
4879 		ipmi_poll(intf);
4880 }
4881 
4882 static void event_receiver_fetcher(struct ipmi_smi *intf,
4883 				   struct ipmi_recv_msg *msg)
4884 {
4885 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4886 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4887 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4888 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4889 		/* A get event receiver command, save it. */
4890 		intf->event_receiver = msg->msg.data[1];
4891 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4892 	}
4893 }
4894 
4895 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4896 {
4897 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4898 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4899 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4900 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4901 		/*
4902 		 * A get device id command, save if we are an event
4903 		 * receiver or generator.
4904 		 */
4905 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4906 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4907 	}
4908 }
4909 
4910 static void send_panic_events(struct ipmi_smi *intf, char *str)
4911 {
4912 	struct kernel_ipmi_msg msg;
4913 	unsigned char data[16];
4914 	struct ipmi_system_interface_addr *si;
4915 	struct ipmi_addr addr;
4916 	char *p = str;
4917 	struct ipmi_ipmb_addr *ipmb;
4918 	int j;
4919 
4920 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4921 		return;
4922 
4923 	si = (struct ipmi_system_interface_addr *) &addr;
4924 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4925 	si->channel = IPMI_BMC_CHANNEL;
4926 	si->lun = 0;
4927 
4928 	/* Fill in an event telling that we have failed. */
4929 	msg.netfn = 0x04; /* Sensor or Event. */
4930 	msg.cmd = 2; /* Platform event command. */
4931 	msg.data = data;
4932 	msg.data_len = 8;
4933 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4934 	data[1] = 0x03; /* This is for IPMI 1.0. */
4935 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4936 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4937 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4938 
4939 	/*
4940 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4941 	 * to make the panic events more useful.
4942 	 */
4943 	if (str) {
4944 		data[3] = str[0];
4945 		data[6] = str[1];
4946 		data[7] = str[2];
4947 	}
4948 
4949 	/* Send the event announcing the panic. */
4950 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4951 
4952 	/*
4953 	 * On every interface, dump a bunch of OEM event holding the
4954 	 * string.
4955 	 */
4956 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4957 		return;
4958 
4959 	/*
4960 	 * intf_num is used as an marker to tell if the
4961 	 * interface is valid.  Thus we need a read barrier to
4962 	 * make sure data fetched before checking intf_num
4963 	 * won't be used.
4964 	 */
4965 	smp_rmb();
4966 
4967 	/*
4968 	 * First job here is to figure out where to send the
4969 	 * OEM events.  There's no way in IPMI to send OEM
4970 	 * events using an event send command, so we have to
4971 	 * find the SEL to put them in and stick them in
4972 	 * there.
4973 	 */
4974 
4975 	/* Get capabilities from the get device id. */
4976 	intf->local_sel_device = 0;
4977 	intf->local_event_generator = 0;
4978 	intf->event_receiver = 0;
4979 
4980 	/* Request the device info from the local MC. */
4981 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4982 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4983 	msg.data = NULL;
4984 	msg.data_len = 0;
4985 	intf->null_user_handler = device_id_fetcher;
4986 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4987 
4988 	if (intf->local_event_generator) {
4989 		/* Request the event receiver from the local MC. */
4990 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4991 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4992 		msg.data = NULL;
4993 		msg.data_len = 0;
4994 		intf->null_user_handler = event_receiver_fetcher;
4995 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4996 	}
4997 	intf->null_user_handler = NULL;
4998 
4999 	/*
5000 	 * Validate the event receiver.  The low bit must not
5001 	 * be 1 (it must be a valid IPMB address), it cannot
5002 	 * be zero, and it must not be my address.
5003 	 */
5004 	if (((intf->event_receiver & 1) == 0)
5005 	    && (intf->event_receiver != 0)
5006 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5007 		/*
5008 		 * The event receiver is valid, send an IPMB
5009 		 * message.
5010 		 */
5011 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5012 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5013 		ipmb->channel = 0; /* FIXME - is this right? */
5014 		ipmb->lun = intf->event_receiver_lun;
5015 		ipmb->slave_addr = intf->event_receiver;
5016 	} else if (intf->local_sel_device) {
5017 		/*
5018 		 * The event receiver was not valid (or was
5019 		 * me), but I am an SEL device, just dump it
5020 		 * in my SEL.
5021 		 */
5022 		si = (struct ipmi_system_interface_addr *) &addr;
5023 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5024 		si->channel = IPMI_BMC_CHANNEL;
5025 		si->lun = 0;
5026 	} else
5027 		return; /* No where to send the event. */
5028 
5029 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5030 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5031 	msg.data = data;
5032 	msg.data_len = 16;
5033 
5034 	j = 0;
5035 	while (*p) {
5036 		int size = strlen(p);
5037 
5038 		if (size > 11)
5039 			size = 11;
5040 		data[0] = 0;
5041 		data[1] = 0;
5042 		data[2] = 0xf0; /* OEM event without timestamp. */
5043 		data[3] = intf->addrinfo[0].address;
5044 		data[4] = j++; /* sequence # */
5045 		/*
5046 		 * Always give 11 bytes, so strncpy will fill
5047 		 * it with zeroes for me.
5048 		 */
5049 		strncpy(data+5, p, 11);
5050 		p += size;
5051 
5052 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5053 	}
5054 }
5055 
5056 static int has_panicked;
5057 
5058 static int panic_event(struct notifier_block *this,
5059 		       unsigned long         event,
5060 		       void                  *ptr)
5061 {
5062 	struct ipmi_smi *intf;
5063 	struct ipmi_user *user;
5064 
5065 	if (has_panicked)
5066 		return NOTIFY_DONE;
5067 	has_panicked = 1;
5068 
5069 	/* For every registered interface, set it to run to completion. */
5070 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5071 		if (!intf->handlers || intf->intf_num == -1)
5072 			/* Interface is not ready. */
5073 			continue;
5074 
5075 		if (!intf->handlers->poll)
5076 			continue;
5077 
5078 		/*
5079 		 * If we were interrupted while locking xmit_msgs_lock or
5080 		 * waiting_rcv_msgs_lock, the corresponding list may be
5081 		 * corrupted.  In this case, drop items on the list for
5082 		 * the safety.
5083 		 */
5084 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5085 			INIT_LIST_HEAD(&intf->xmit_msgs);
5086 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5087 		} else
5088 			spin_unlock(&intf->xmit_msgs_lock);
5089 
5090 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5091 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5092 		else
5093 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5094 
5095 		intf->run_to_completion = 1;
5096 		if (intf->handlers->set_run_to_completion)
5097 			intf->handlers->set_run_to_completion(intf->send_info,
5098 							      1);
5099 
5100 		list_for_each_entry_rcu(user, &intf->users, link) {
5101 			if (user->handler->ipmi_panic_handler)
5102 				user->handler->ipmi_panic_handler(
5103 					user->handler_data);
5104 		}
5105 
5106 		send_panic_events(intf, ptr);
5107 	}
5108 
5109 	return NOTIFY_DONE;
5110 }
5111 
5112 /* Must be called with ipmi_interfaces_mutex held. */
5113 static int ipmi_register_driver(void)
5114 {
5115 	int rv;
5116 
5117 	if (drvregistered)
5118 		return 0;
5119 
5120 	rv = driver_register(&ipmidriver.driver);
5121 	if (rv)
5122 		pr_err("Could not register IPMI driver\n");
5123 	else
5124 		drvregistered = true;
5125 	return rv;
5126 }
5127 
5128 static struct notifier_block panic_block = {
5129 	.notifier_call	= panic_event,
5130 	.next		= NULL,
5131 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5132 };
5133 
5134 static int ipmi_init_msghandler(void)
5135 {
5136 	int rv;
5137 
5138 	mutex_lock(&ipmi_interfaces_mutex);
5139 	rv = ipmi_register_driver();
5140 	if (rv)
5141 		goto out;
5142 	if (initialized)
5143 		goto out;
5144 
5145 	init_srcu_struct(&ipmi_interfaces_srcu);
5146 
5147 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5148 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5149 
5150 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5151 
5152 	initialized = true;
5153 
5154 out:
5155 	mutex_unlock(&ipmi_interfaces_mutex);
5156 	return rv;
5157 }
5158 
5159 static int __init ipmi_init_msghandler_mod(void)
5160 {
5161 	int rv;
5162 
5163 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5164 
5165 	mutex_lock(&ipmi_interfaces_mutex);
5166 	rv = ipmi_register_driver();
5167 	mutex_unlock(&ipmi_interfaces_mutex);
5168 
5169 	return rv;
5170 }
5171 
5172 static void __exit cleanup_ipmi(void)
5173 {
5174 	int count;
5175 
5176 	if (initialized) {
5177 		atomic_notifier_chain_unregister(&panic_notifier_list,
5178 						 &panic_block);
5179 
5180 		/*
5181 		 * This can't be called if any interfaces exist, so no worry
5182 		 * about shutting down the interfaces.
5183 		 */
5184 
5185 		/*
5186 		 * Tell the timer to stop, then wait for it to stop.  This
5187 		 * avoids problems with race conditions removing the timer
5188 		 * here.
5189 		 */
5190 		atomic_set(&stop_operation, 1);
5191 		del_timer_sync(&ipmi_timer);
5192 
5193 		initialized = false;
5194 
5195 		/* Check for buffer leaks. */
5196 		count = atomic_read(&smi_msg_inuse_count);
5197 		if (count != 0)
5198 			pr_warn("SMI message count %d at exit\n", count);
5199 		count = atomic_read(&recv_msg_inuse_count);
5200 		if (count != 0)
5201 			pr_warn("recv message count %d at exit\n", count);
5202 
5203 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5204 	}
5205 	if (drvregistered)
5206 		driver_unregister(&ipmidriver.driver);
5207 }
5208 module_exit(cleanup_ipmi);
5209 
5210 module_init(ipmi_init_msghandler_mod);
5211 MODULE_LICENSE("GPL");
5212 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5213 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5214 MODULE_VERSION(IPMI_DRIVER_VERSION);
5215 MODULE_SOFTDEP("post: ipmi_devintf");
5216