1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_msghandler.c 4 * 5 * Incoming and outgoing message routing for an IPMI interface. 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 */ 13 14 #define pr_fmt(fmt) "IPMI message handler: " fmt 15 #define dev_fmt(fmt) pr_fmt(fmt) 16 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/spinlock.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/ipmi.h> 27 #include <linux/ipmi_smi.h> 28 #include <linux/notifier.h> 29 #include <linux/init.h> 30 #include <linux/rcupdate.h> 31 #include <linux/interrupt.h> 32 #include <linux/moduleparam.h> 33 #include <linux/workqueue.h> 34 #include <linux/uuid.h> 35 #include <linux/nospec.h> 36 #include <linux/vmalloc.h> 37 #include <linux/delay.h> 38 39 #define IPMI_DRIVER_VERSION "39.2" 40 41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user); 42 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg, 43 struct ipmi_user *user); 44 static int ipmi_init_msghandler(void); 45 static void smi_work(struct work_struct *t); 46 static void handle_new_recv_msgs(struct ipmi_smi *intf); 47 static void need_waiter(struct ipmi_smi *intf); 48 static int handle_one_recv_msg(struct ipmi_smi *intf, 49 struct ipmi_smi_msg *msg); 50 static void intf_free(struct kref *ref); 51 52 static bool initialized; 53 static bool drvregistered; 54 55 static struct timer_list ipmi_timer; 56 57 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */ 58 enum ipmi_panic_event_op { 59 IPMI_SEND_PANIC_EVENT_NONE, 60 IPMI_SEND_PANIC_EVENT, 61 IPMI_SEND_PANIC_EVENT_STRING, 62 IPMI_SEND_PANIC_EVENT_MAX 63 }; 64 65 /* Indices in this array should be mapped to enum ipmi_panic_event_op */ 66 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL }; 67 68 #ifdef CONFIG_IPMI_PANIC_STRING 69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING 70 #elif defined(CONFIG_IPMI_PANIC_EVENT) 71 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT 72 #else 73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE 74 #endif 75 76 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT; 77 78 static int panic_op_write_handler(const char *val, 79 const struct kernel_param *kp) 80 { 81 char valcp[16]; 82 int e; 83 84 strscpy(valcp, val, sizeof(valcp)); 85 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp)); 86 if (e < 0) 87 return e; 88 89 ipmi_send_panic_event = e; 90 return 0; 91 } 92 93 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp) 94 { 95 const char *event_str; 96 97 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX) 98 event_str = "???"; 99 else 100 event_str = ipmi_panic_event_str[ipmi_send_panic_event]; 101 102 return sprintf(buffer, "%s\n", event_str); 103 } 104 105 static const struct kernel_param_ops panic_op_ops = { 106 .set = panic_op_write_handler, 107 .get = panic_op_read_handler 108 }; 109 module_param_cb(panic_op, &panic_op_ops, NULL, 0600); 110 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events."); 111 112 113 #define MAX_EVENTS_IN_QUEUE 25 114 115 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 116 static unsigned long maintenance_mode_timeout_ms = 30000; 117 module_param(maintenance_mode_timeout_ms, ulong, 0644); 118 MODULE_PARM_DESC(maintenance_mode_timeout_ms, 119 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode."); 120 121 /* 122 * Don't let a message sit in a queue forever, always time it with at lest 123 * the max message timer. This is in milliseconds. 124 */ 125 #define MAX_MSG_TIMEOUT 60000 126 127 /* 128 * Timeout times below are in milliseconds, and are done off a 1 129 * second timer. So setting the value to 1000 would mean anything 130 * between 0 and 1000ms. So really the only reasonable minimum 131 * setting it 2000ms, which is between 1 and 2 seconds. 132 */ 133 134 /* The default timeout for message retries. */ 135 static unsigned long default_retry_ms = 2000; 136 module_param(default_retry_ms, ulong, 0644); 137 MODULE_PARM_DESC(default_retry_ms, 138 "The time (milliseconds) between retry sends"); 139 140 /* The default timeout for maintenance mode message retries. */ 141 static unsigned long default_maintenance_retry_ms = 3000; 142 module_param(default_maintenance_retry_ms, ulong, 0644); 143 MODULE_PARM_DESC(default_maintenance_retry_ms, 144 "The time (milliseconds) between retry sends in maintenance mode"); 145 146 /* The default maximum number of retries */ 147 static unsigned int default_max_retries = 4; 148 module_param(default_max_retries, uint, 0644); 149 MODULE_PARM_DESC(default_max_retries, 150 "The time (milliseconds) between retry sends in maintenance mode"); 151 152 /* The default maximum number of users that may register. */ 153 static unsigned int max_users = 30; 154 module_param(max_users, uint, 0644); 155 MODULE_PARM_DESC(max_users, 156 "The most users that may use the IPMI stack at one time."); 157 158 /* The default maximum number of message a user may have outstanding. */ 159 static unsigned int max_msgs_per_user = 100; 160 module_param(max_msgs_per_user, uint, 0644); 161 MODULE_PARM_DESC(max_msgs_per_user, 162 "The most message a user may have outstanding."); 163 164 /* Call every ~1000 ms. */ 165 #define IPMI_TIMEOUT_TIME 1000 166 167 /* How many jiffies does it take to get to the timeout time. */ 168 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 169 170 /* 171 * Request events from the queue every second (this is the number of 172 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 173 * future, IPMI will add a way to know immediately if an event is in 174 * the queue and this silliness can go away. 175 */ 176 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 177 178 /* How long should we cache dynamic device IDs? */ 179 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ) 180 181 /* 182 * The main "user" data structure. 183 */ 184 struct ipmi_user { 185 struct list_head link; 186 187 struct kref refcount; 188 refcount_t destroyed; 189 190 /* The upper layer that handles receive messages. */ 191 const struct ipmi_user_hndl *handler; 192 void *handler_data; 193 194 /* The interface this user is bound to. */ 195 struct ipmi_smi *intf; 196 197 /* Does this interface receive IPMI events? */ 198 bool gets_events; 199 200 atomic_t nr_msgs; 201 }; 202 203 struct cmd_rcvr { 204 struct list_head link; 205 206 struct ipmi_user *user; 207 unsigned char netfn; 208 unsigned char cmd; 209 unsigned int chans; 210 211 /* 212 * This is used to form a linked lised during mass deletion. 213 * Since this is in an RCU list, we cannot use the link above 214 * or change any data until the RCU period completes. So we 215 * use this next variable during mass deletion so we can have 216 * a list and don't have to wait and restart the search on 217 * every individual deletion of a command. 218 */ 219 struct cmd_rcvr *next; 220 }; 221 222 struct seq_table { 223 unsigned int inuse : 1; 224 unsigned int broadcast : 1; 225 226 unsigned long timeout; 227 unsigned long orig_timeout; 228 unsigned int retries_left; 229 230 /* 231 * To verify on an incoming send message response that this is 232 * the message that the response is for, we keep a sequence id 233 * and increment it every time we send a message. 234 */ 235 long seqid; 236 237 /* 238 * This is held so we can properly respond to the message on a 239 * timeout, and it is used to hold the temporary data for 240 * retransmission, too. 241 */ 242 struct ipmi_recv_msg *recv_msg; 243 }; 244 245 /* 246 * Store the information in a msgid (long) to allow us to find a 247 * sequence table entry from the msgid. 248 */ 249 #define STORE_SEQ_IN_MSGID(seq, seqid) \ 250 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff)) 251 252 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 253 do { \ 254 seq = (((msgid) >> 26) & 0x3f); \ 255 seqid = ((msgid) & 0x3ffffff); \ 256 } while (0) 257 258 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff) 259 260 #define IPMI_MAX_CHANNELS 16 261 struct ipmi_channel { 262 unsigned char medium; 263 unsigned char protocol; 264 }; 265 266 struct ipmi_channel_set { 267 struct ipmi_channel c[IPMI_MAX_CHANNELS]; 268 }; 269 270 struct ipmi_my_addrinfo { 271 /* 272 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 273 * but may be changed by the user. 274 */ 275 unsigned char address; 276 277 /* 278 * My LUN. This should generally stay the SMS LUN, but just in 279 * case... 280 */ 281 unsigned char lun; 282 }; 283 284 /* 285 * Note that the product id, manufacturer id, guid, and device id are 286 * immutable in this structure, so dyn_mutex is not required for 287 * accessing those. If those change on a BMC, a new BMC is allocated. 288 */ 289 struct bmc_device { 290 struct platform_device pdev; 291 struct list_head intfs; /* Interfaces on this BMC. */ 292 struct ipmi_device_id id; 293 struct ipmi_device_id fetch_id; 294 int dyn_id_set; 295 unsigned long dyn_id_expiry; 296 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */ 297 guid_t guid; 298 guid_t fetch_guid; 299 int dyn_guid_set; 300 struct kref usecount; 301 struct work_struct remove_work; 302 unsigned char cc; /* completion code */ 303 }; 304 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 305 306 static struct workqueue_struct *bmc_remove_work_wq; 307 308 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 309 struct ipmi_device_id *id, 310 bool *guid_set, guid_t *guid); 311 312 /* 313 * Various statistics for IPMI, these index stats[] in the ipmi_smi 314 * structure. 315 */ 316 enum ipmi_stat_indexes { 317 /* Commands we got from the user that were invalid. */ 318 IPMI_STAT_sent_invalid_commands = 0, 319 320 /* Commands we sent to the MC. */ 321 IPMI_STAT_sent_local_commands, 322 323 /* Responses from the MC that were delivered to a user. */ 324 IPMI_STAT_handled_local_responses, 325 326 /* Responses from the MC that were not delivered to a user. */ 327 IPMI_STAT_unhandled_local_responses, 328 329 /* Commands we sent out to the IPMB bus. */ 330 IPMI_STAT_sent_ipmb_commands, 331 332 /* Commands sent on the IPMB that had errors on the SEND CMD */ 333 IPMI_STAT_sent_ipmb_command_errs, 334 335 /* Each retransmit increments this count. */ 336 IPMI_STAT_retransmitted_ipmb_commands, 337 338 /* 339 * When a message times out (runs out of retransmits) this is 340 * incremented. 341 */ 342 IPMI_STAT_timed_out_ipmb_commands, 343 344 /* 345 * This is like above, but for broadcasts. Broadcasts are 346 * *not* included in the above count (they are expected to 347 * time out). 348 */ 349 IPMI_STAT_timed_out_ipmb_broadcasts, 350 351 /* Responses I have sent to the IPMB bus. */ 352 IPMI_STAT_sent_ipmb_responses, 353 354 /* The response was delivered to the user. */ 355 IPMI_STAT_handled_ipmb_responses, 356 357 /* The response had invalid data in it. */ 358 IPMI_STAT_invalid_ipmb_responses, 359 360 /* The response didn't have anyone waiting for it. */ 361 IPMI_STAT_unhandled_ipmb_responses, 362 363 /* Commands we sent out to the IPMB bus. */ 364 IPMI_STAT_sent_lan_commands, 365 366 /* Commands sent on the IPMB that had errors on the SEND CMD */ 367 IPMI_STAT_sent_lan_command_errs, 368 369 /* Each retransmit increments this count. */ 370 IPMI_STAT_retransmitted_lan_commands, 371 372 /* 373 * When a message times out (runs out of retransmits) this is 374 * incremented. 375 */ 376 IPMI_STAT_timed_out_lan_commands, 377 378 /* Responses I have sent to the IPMB bus. */ 379 IPMI_STAT_sent_lan_responses, 380 381 /* The response was delivered to the user. */ 382 IPMI_STAT_handled_lan_responses, 383 384 /* The response had invalid data in it. */ 385 IPMI_STAT_invalid_lan_responses, 386 387 /* The response didn't have anyone waiting for it. */ 388 IPMI_STAT_unhandled_lan_responses, 389 390 /* The command was delivered to the user. */ 391 IPMI_STAT_handled_commands, 392 393 /* The command had invalid data in it. */ 394 IPMI_STAT_invalid_commands, 395 396 /* The command didn't have anyone waiting for it. */ 397 IPMI_STAT_unhandled_commands, 398 399 /* Invalid data in an event. */ 400 IPMI_STAT_invalid_events, 401 402 /* Events that were received with the proper format. */ 403 IPMI_STAT_events, 404 405 /* Retransmissions on IPMB that failed. */ 406 IPMI_STAT_dropped_rexmit_ipmb_commands, 407 408 /* Retransmissions on LAN that failed. */ 409 IPMI_STAT_dropped_rexmit_lan_commands, 410 411 /* This *must* remain last, add new values above this. */ 412 IPMI_NUM_STATS 413 }; 414 415 416 #define IPMI_IPMB_NUM_SEQ 64 417 struct ipmi_smi { 418 struct module *owner; 419 420 /* What interface number are we? */ 421 int intf_num; 422 423 struct kref refcount; 424 425 /* Set when the interface is being unregistered. */ 426 bool in_shutdown; 427 428 /* Used for a list of interfaces. */ 429 struct list_head link; 430 431 /* 432 * The list of upper layers that are using me. 433 */ 434 struct list_head users; 435 struct mutex users_mutex; 436 atomic_t nr_users; 437 struct device_attribute nr_users_devattr; 438 struct device_attribute nr_msgs_devattr; 439 struct device_attribute maintenance_mode_devattr; 440 441 442 /* Used for wake ups at startup. */ 443 wait_queue_head_t waitq; 444 445 /* 446 * Prevents the interface from being unregistered when the 447 * interface is used by being looked up through the BMC 448 * structure. 449 */ 450 struct mutex bmc_reg_mutex; 451 452 struct bmc_device tmp_bmc; 453 struct bmc_device *bmc; 454 bool bmc_registered; 455 struct list_head bmc_link; 456 char *my_dev_name; 457 bool in_bmc_register; /* Handle recursive situations. Yuck. */ 458 struct work_struct bmc_reg_work; 459 460 const struct ipmi_smi_handlers *handlers; 461 void *send_info; 462 463 /* Driver-model device for the system interface. */ 464 struct device *si_dev; 465 466 /* 467 * A table of sequence numbers for this interface. We use the 468 * sequence numbers for IPMB messages that go out of the 469 * interface to match them up with their responses. A routine 470 * is called periodically to time the items in this list. 471 */ 472 struct mutex seq_lock; 473 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 474 int curr_seq; 475 476 /* 477 * Messages queued for deliver to the user. 478 */ 479 struct mutex user_msgs_mutex; 480 struct list_head user_msgs; 481 482 /* 483 * Messages queued for processing. If processing fails (out 484 * of memory for instance), They will stay in here to be 485 * processed later in a periodic timer interrupt. The 486 * workqueue is for handling received messages directly from 487 * the handler. 488 */ 489 spinlock_t waiting_rcv_msgs_lock; 490 struct list_head waiting_rcv_msgs; 491 atomic_t watchdog_pretimeouts_to_deliver; 492 struct work_struct smi_work; 493 494 spinlock_t xmit_msgs_lock; 495 struct list_head xmit_msgs; 496 struct ipmi_smi_msg *curr_msg; 497 struct list_head hp_xmit_msgs; 498 499 /* 500 * The list of command receivers that are registered for commands 501 * on this interface. 502 */ 503 struct mutex cmd_rcvrs_mutex; 504 struct list_head cmd_rcvrs; 505 506 /* 507 * Events that were queues because no one was there to receive 508 * them. 509 */ 510 struct mutex events_mutex; /* For dealing with event stuff. */ 511 struct list_head waiting_events; 512 unsigned int waiting_events_count; /* How many events in queue? */ 513 char event_msg_printed; 514 515 /* How many users are waiting for events? */ 516 atomic_t event_waiters; 517 unsigned int ticks_to_req_ev; 518 519 spinlock_t watch_lock; /* For dealing with watch stuff below. */ 520 521 /* How many users are waiting for commands? */ 522 unsigned int command_waiters; 523 524 /* How many users are waiting for watchdogs? */ 525 unsigned int watchdog_waiters; 526 527 /* How many users are waiting for message responses? */ 528 unsigned int response_waiters; 529 530 /* 531 * Tells what the lower layer has last been asked to watch for, 532 * messages and/or watchdogs. Protected by watch_lock. 533 */ 534 unsigned int last_watch_mask; 535 536 /* 537 * The event receiver for my BMC, only really used at panic 538 * shutdown as a place to store this. 539 */ 540 unsigned char event_receiver; 541 unsigned char event_receiver_lun; 542 unsigned char local_sel_device; 543 unsigned char local_event_generator; 544 545 /* For handling of maintenance mode. */ 546 int maintenance_mode; 547 548 #define IPMI_MAINTENANCE_MODE_STATE_OFF 0 549 #define IPMI_MAINTENANCE_MODE_STATE_FIRMWARE 1 550 #define IPMI_MAINTENANCE_MODE_STATE_RESET 2 551 int maintenance_mode_state; 552 int auto_maintenance_timeout; 553 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 554 555 /* 556 * If we are doing maintenance on something on IPMB, extend 557 * the timeout time to avoid timeouts writing firmware and 558 * such. 559 */ 560 int ipmb_maintenance_mode_timeout; 561 562 /* 563 * A cheap hack, if this is non-null and a message to an 564 * interface comes in with a NULL user, call this routine with 565 * it. Note that the message will still be freed by the 566 * caller. This only works on the system interface. 567 * 568 * Protected by bmc_reg_mutex. 569 */ 570 void (*null_user_handler)(struct ipmi_smi *intf, 571 struct ipmi_recv_msg *msg); 572 573 /* 574 * When we are scanning the channels for an SMI, this will 575 * tell which channel we are scanning. 576 */ 577 int curr_channel; 578 579 /* Channel information */ 580 struct ipmi_channel_set *channel_list; 581 unsigned int curr_working_cset; /* First index into the following. */ 582 struct ipmi_channel_set wchannels[2]; 583 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS]; 584 bool channels_ready; 585 586 atomic_t stats[IPMI_NUM_STATS]; 587 588 /* 589 * run_to_completion duplicate of smb_info, smi_info 590 * and ipmi_serial_info structures. Used to decrease numbers of 591 * parameters passed by "low" level IPMI code. 592 */ 593 int run_to_completion; 594 }; 595 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 596 597 static void __get_guid(struct ipmi_smi *intf); 598 static void __ipmi_bmc_unregister(struct ipmi_smi *intf); 599 static int __ipmi_bmc_register(struct ipmi_smi *intf, 600 struct ipmi_device_id *id, 601 bool guid_set, guid_t *guid, int intf_num); 602 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id); 603 604 static void free_ipmi_user(struct kref *ref) 605 { 606 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount); 607 struct module *owner; 608 609 owner = user->intf->owner; 610 kref_put(&user->intf->refcount, intf_free); 611 module_put(owner); 612 vfree(user); 613 } 614 615 static void release_ipmi_user(struct ipmi_user *user) 616 { 617 kref_put(&user->refcount, free_ipmi_user); 618 } 619 620 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user) 621 { 622 if (!kref_get_unless_zero(&user->refcount)) 623 return NULL; 624 return user; 625 } 626 627 /* 628 * The driver model view of the IPMI messaging driver. 629 */ 630 static struct platform_driver ipmidriver = { 631 .driver = { 632 .name = "ipmi", 633 .bus = &platform_bus_type 634 } 635 }; 636 /* 637 * This mutex keeps us from adding the same BMC twice. 638 */ 639 static DEFINE_MUTEX(ipmidriver_mutex); 640 641 static LIST_HEAD(ipmi_interfaces); 642 static DEFINE_MUTEX(ipmi_interfaces_mutex); 643 644 /* 645 * List of watchers that want to know when smi's are added and deleted. 646 */ 647 static LIST_HEAD(smi_watchers); 648 static DEFINE_MUTEX(smi_watchers_mutex); 649 650 #define ipmi_inc_stat(intf, stat) \ 651 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 652 #define ipmi_get_stat(intf, stat) \ 653 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 654 655 static const char * const addr_src_to_str[] = { 656 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI", 657 "device-tree", "platform" 658 }; 659 660 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 661 { 662 if (src >= SI_LAST) 663 src = 0; /* Invalid */ 664 return addr_src_to_str[src]; 665 } 666 EXPORT_SYMBOL(ipmi_addr_src_to_str); 667 668 static int is_lan_addr(struct ipmi_addr *addr) 669 { 670 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 671 } 672 673 static int is_ipmb_addr(struct ipmi_addr *addr) 674 { 675 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 676 } 677 678 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 679 { 680 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 681 } 682 683 static int is_ipmb_direct_addr(struct ipmi_addr *addr) 684 { 685 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE; 686 } 687 688 static void free_recv_msg_list(struct list_head *q) 689 { 690 struct ipmi_recv_msg *msg, *msg2; 691 692 list_for_each_entry_safe(msg, msg2, q, link) { 693 list_del(&msg->link); 694 ipmi_free_recv_msg(msg); 695 } 696 } 697 698 static void free_smi_msg_list(struct list_head *q) 699 { 700 struct ipmi_smi_msg *msg, *msg2; 701 702 list_for_each_entry_safe(msg, msg2, q, link) { 703 list_del(&msg->link); 704 ipmi_free_smi_msg(msg); 705 } 706 } 707 708 static void intf_free(struct kref *ref) 709 { 710 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount); 711 int i; 712 struct cmd_rcvr *rcvr, *rcvr2; 713 714 free_smi_msg_list(&intf->waiting_rcv_msgs); 715 free_recv_msg_list(&intf->waiting_events); 716 717 /* 718 * Wholesale remove all the entries from the list in the 719 * interface. No need for locks, this is single-threaded. 720 */ 721 list_for_each_entry_safe(rcvr, rcvr2, &intf->cmd_rcvrs, link) 722 kfree(rcvr); 723 724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 725 if ((intf->seq_table[i].inuse) 726 && (intf->seq_table[i].recv_msg)) 727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 728 } 729 730 kfree(intf); 731 } 732 733 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 734 { 735 struct ipmi_smi *intf; 736 unsigned int count = 0, i; 737 int *interfaces = NULL; 738 struct device **devices = NULL; 739 int rv = 0; 740 741 /* 742 * Make sure the driver is actually initialized, this handles 743 * problems with initialization order. 744 */ 745 rv = ipmi_init_msghandler(); 746 if (rv) 747 return rv; 748 749 mutex_lock(&smi_watchers_mutex); 750 751 list_add(&watcher->link, &smi_watchers); 752 753 /* 754 * Build an array of ipmi interfaces and fill it in, and 755 * another array of the devices. We can't call the callback 756 * with ipmi_interfaces_mutex held. smi_watchers_mutex will 757 * keep things in order for the user. 758 */ 759 mutex_lock(&ipmi_interfaces_mutex); 760 list_for_each_entry(intf, &ipmi_interfaces, link) 761 count++; 762 if (count > 0) { 763 interfaces = kmalloc_array(count, sizeof(*interfaces), 764 GFP_KERNEL); 765 if (!interfaces) { 766 rv = -ENOMEM; 767 } else { 768 devices = kmalloc_array(count, sizeof(*devices), 769 GFP_KERNEL); 770 if (!devices) { 771 kfree(interfaces); 772 interfaces = NULL; 773 rv = -ENOMEM; 774 } 775 } 776 count = 0; 777 } 778 if (interfaces) { 779 list_for_each_entry(intf, &ipmi_interfaces, link) { 780 int intf_num = READ_ONCE(intf->intf_num); 781 782 if (intf_num == -1) 783 continue; 784 devices[count] = intf->si_dev; 785 interfaces[count++] = intf_num; 786 } 787 } 788 mutex_unlock(&ipmi_interfaces_mutex); 789 790 if (interfaces) { 791 for (i = 0; i < count; i++) 792 watcher->new_smi(interfaces[i], devices[i]); 793 kfree(interfaces); 794 kfree(devices); 795 } 796 797 mutex_unlock(&smi_watchers_mutex); 798 799 return rv; 800 } 801 EXPORT_SYMBOL(ipmi_smi_watcher_register); 802 803 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 804 { 805 mutex_lock(&smi_watchers_mutex); 806 list_del(&watcher->link); 807 mutex_unlock(&smi_watchers_mutex); 808 return 0; 809 } 810 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 811 812 static void 813 call_smi_watchers(int i, struct device *dev) 814 { 815 struct ipmi_smi_watcher *w; 816 817 list_for_each_entry(w, &smi_watchers, link) { 818 if (try_module_get(w->owner)) { 819 w->new_smi(i, dev); 820 module_put(w->owner); 821 } 822 } 823 } 824 825 static int 826 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 827 { 828 if (addr1->addr_type != addr2->addr_type) 829 return 0; 830 831 if (addr1->channel != addr2->channel) 832 return 0; 833 834 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 835 struct ipmi_system_interface_addr *smi_addr1 836 = (struct ipmi_system_interface_addr *) addr1; 837 struct ipmi_system_interface_addr *smi_addr2 838 = (struct ipmi_system_interface_addr *) addr2; 839 return (smi_addr1->lun == smi_addr2->lun); 840 } 841 842 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 843 struct ipmi_ipmb_addr *ipmb_addr1 844 = (struct ipmi_ipmb_addr *) addr1; 845 struct ipmi_ipmb_addr *ipmb_addr2 846 = (struct ipmi_ipmb_addr *) addr2; 847 848 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 849 && (ipmb_addr1->lun == ipmb_addr2->lun)); 850 } 851 852 if (is_ipmb_direct_addr(addr1)) { 853 struct ipmi_ipmb_direct_addr *daddr1 854 = (struct ipmi_ipmb_direct_addr *) addr1; 855 struct ipmi_ipmb_direct_addr *daddr2 856 = (struct ipmi_ipmb_direct_addr *) addr2; 857 858 return daddr1->slave_addr == daddr2->slave_addr && 859 daddr1->rq_lun == daddr2->rq_lun && 860 daddr1->rs_lun == daddr2->rs_lun; 861 } 862 863 if (is_lan_addr(addr1)) { 864 struct ipmi_lan_addr *lan_addr1 865 = (struct ipmi_lan_addr *) addr1; 866 struct ipmi_lan_addr *lan_addr2 867 = (struct ipmi_lan_addr *) addr2; 868 869 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 870 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 871 && (lan_addr1->session_handle 872 == lan_addr2->session_handle) 873 && (lan_addr1->lun == lan_addr2->lun)); 874 } 875 876 return 1; 877 } 878 879 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 880 { 881 if (len < sizeof(struct ipmi_system_interface_addr)) 882 return -EINVAL; 883 884 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 885 if (addr->channel != IPMI_BMC_CHANNEL) 886 return -EINVAL; 887 return 0; 888 } 889 890 if ((addr->channel == IPMI_BMC_CHANNEL) 891 || (addr->channel >= IPMI_MAX_CHANNELS) 892 || (addr->channel < 0)) 893 return -EINVAL; 894 895 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 896 if (len < sizeof(struct ipmi_ipmb_addr)) 897 return -EINVAL; 898 return 0; 899 } 900 901 if (is_ipmb_direct_addr(addr)) { 902 struct ipmi_ipmb_direct_addr *daddr = (void *) addr; 903 904 if (addr->channel != 0) 905 return -EINVAL; 906 if (len < sizeof(struct ipmi_ipmb_direct_addr)) 907 return -EINVAL; 908 909 if (daddr->slave_addr & 0x01) 910 return -EINVAL; 911 if (daddr->rq_lun >= 4) 912 return -EINVAL; 913 if (daddr->rs_lun >= 4) 914 return -EINVAL; 915 return 0; 916 } 917 918 if (is_lan_addr(addr)) { 919 if (len < sizeof(struct ipmi_lan_addr)) 920 return -EINVAL; 921 return 0; 922 } 923 924 return -EINVAL; 925 } 926 EXPORT_SYMBOL(ipmi_validate_addr); 927 928 unsigned int ipmi_addr_length(int addr_type) 929 { 930 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 931 return sizeof(struct ipmi_system_interface_addr); 932 933 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 934 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 935 return sizeof(struct ipmi_ipmb_addr); 936 937 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE) 938 return sizeof(struct ipmi_ipmb_direct_addr); 939 940 if (addr_type == IPMI_LAN_ADDR_TYPE) 941 return sizeof(struct ipmi_lan_addr); 942 943 return 0; 944 } 945 EXPORT_SYMBOL(ipmi_addr_length); 946 947 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 948 { 949 int rv = 0; 950 951 if (!msg->user) { 952 /* Special handling for NULL users. */ 953 if (intf->null_user_handler) { 954 intf->null_user_handler(intf, msg); 955 } else { 956 /* No handler, so give up. */ 957 rv = -EINVAL; 958 } 959 ipmi_free_recv_msg(msg); 960 } else if (oops_in_progress) { 961 /* 962 * If we are running in the panic context, calling the 963 * receive handler doesn't much meaning and has a deadlock 964 * risk. At this moment, simply skip it in that case. 965 */ 966 ipmi_free_recv_msg(msg); 967 } else { 968 /* 969 * Deliver it in smi_work. The message will hold a 970 * refcount to the user. 971 */ 972 mutex_lock(&intf->user_msgs_mutex); 973 list_add_tail(&msg->link, &intf->user_msgs); 974 mutex_unlock(&intf->user_msgs_mutex); 975 queue_work(system_wq, &intf->smi_work); 976 } 977 978 return rv; 979 } 980 981 static void deliver_local_response(struct ipmi_smi *intf, 982 struct ipmi_recv_msg *msg) 983 { 984 if (deliver_response(intf, msg)) 985 ipmi_inc_stat(intf, unhandled_local_responses); 986 else 987 ipmi_inc_stat(intf, handled_local_responses); 988 } 989 990 static void deliver_err_response(struct ipmi_smi *intf, 991 struct ipmi_recv_msg *msg, int err) 992 { 993 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 994 msg->msg_data[0] = err; 995 msg->msg.netfn |= 1; /* Convert to a response. */ 996 msg->msg.data_len = 1; 997 msg->msg.data = msg->msg_data; 998 deliver_local_response(intf, msg); 999 } 1000 1001 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags) 1002 { 1003 unsigned long iflags; 1004 1005 if (!intf->handlers->set_need_watch) 1006 return; 1007 1008 spin_lock_irqsave(&intf->watch_lock, iflags); 1009 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 1010 intf->response_waiters++; 1011 1012 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 1013 intf->watchdog_waiters++; 1014 1015 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 1016 intf->command_waiters++; 1017 1018 if ((intf->last_watch_mask & flags) != flags) { 1019 intf->last_watch_mask |= flags; 1020 intf->handlers->set_need_watch(intf->send_info, 1021 intf->last_watch_mask); 1022 } 1023 spin_unlock_irqrestore(&intf->watch_lock, iflags); 1024 } 1025 1026 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags) 1027 { 1028 unsigned long iflags; 1029 1030 if (!intf->handlers->set_need_watch) 1031 return; 1032 1033 spin_lock_irqsave(&intf->watch_lock, iflags); 1034 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 1035 intf->response_waiters--; 1036 1037 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 1038 intf->watchdog_waiters--; 1039 1040 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 1041 intf->command_waiters--; 1042 1043 flags = 0; 1044 if (intf->response_waiters) 1045 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES; 1046 if (intf->watchdog_waiters) 1047 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG; 1048 if (intf->command_waiters) 1049 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS; 1050 1051 if (intf->last_watch_mask != flags) { 1052 intf->last_watch_mask = flags; 1053 intf->handlers->set_need_watch(intf->send_info, 1054 intf->last_watch_mask); 1055 } 1056 spin_unlock_irqrestore(&intf->watch_lock, iflags); 1057 } 1058 1059 /* 1060 * Find the next sequence number not being used and add the given 1061 * message with the given timeout to the sequence table. This must be 1062 * called with the interface's seq_lock held. 1063 */ 1064 static int intf_next_seq(struct ipmi_smi *intf, 1065 struct ipmi_recv_msg *recv_msg, 1066 unsigned long timeout, 1067 int retries, 1068 int broadcast, 1069 unsigned char *seq, 1070 long *seqid) 1071 { 1072 int rv = 0; 1073 unsigned int i; 1074 1075 if (timeout == 0) 1076 timeout = default_retry_ms; 1077 if (retries < 0) 1078 retries = default_max_retries; 1079 1080 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 1081 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 1082 if (!intf->seq_table[i].inuse) 1083 break; 1084 } 1085 1086 if (!intf->seq_table[i].inuse) { 1087 intf->seq_table[i].recv_msg = recv_msg; 1088 1089 /* 1090 * Start with the maximum timeout, when the send response 1091 * comes in we will start the real timer. 1092 */ 1093 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 1094 intf->seq_table[i].orig_timeout = timeout; 1095 intf->seq_table[i].retries_left = retries; 1096 intf->seq_table[i].broadcast = broadcast; 1097 intf->seq_table[i].inuse = 1; 1098 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 1099 *seq = i; 1100 *seqid = intf->seq_table[i].seqid; 1101 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 1102 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1103 need_waiter(intf); 1104 } else { 1105 rv = -EAGAIN; 1106 } 1107 1108 return rv; 1109 } 1110 1111 /* 1112 * Return the receive message for the given sequence number and 1113 * release the sequence number so it can be reused. Some other data 1114 * is passed in to be sure the message matches up correctly (to help 1115 * guard against message coming in after their timeout and the 1116 * sequence number being reused). 1117 */ 1118 static int intf_find_seq(struct ipmi_smi *intf, 1119 unsigned char seq, 1120 short channel, 1121 unsigned char cmd, 1122 unsigned char netfn, 1123 struct ipmi_addr *addr, 1124 struct ipmi_recv_msg **recv_msg) 1125 { 1126 int rv = -ENODEV; 1127 1128 if (seq >= IPMI_IPMB_NUM_SEQ) 1129 return -EINVAL; 1130 1131 mutex_lock(&intf->seq_lock); 1132 if (intf->seq_table[seq].inuse) { 1133 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 1134 1135 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 1136 && (msg->msg.netfn == netfn) 1137 && (ipmi_addr_equal(addr, &msg->addr))) { 1138 *recv_msg = msg; 1139 intf->seq_table[seq].inuse = 0; 1140 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1141 rv = 0; 1142 } 1143 } 1144 mutex_unlock(&intf->seq_lock); 1145 1146 return rv; 1147 } 1148 1149 1150 /* Start the timer for a specific sequence table entry. */ 1151 static int intf_start_seq_timer(struct ipmi_smi *intf, 1152 long msgid) 1153 { 1154 int rv = -ENODEV; 1155 unsigned char seq; 1156 unsigned long seqid; 1157 1158 1159 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1160 1161 mutex_lock(&intf->seq_lock); 1162 /* 1163 * We do this verification because the user can be deleted 1164 * while a message is outstanding. 1165 */ 1166 if ((intf->seq_table[seq].inuse) 1167 && (intf->seq_table[seq].seqid == seqid)) { 1168 struct seq_table *ent = &intf->seq_table[seq]; 1169 ent->timeout = ent->orig_timeout; 1170 rv = 0; 1171 } 1172 mutex_unlock(&intf->seq_lock); 1173 1174 return rv; 1175 } 1176 1177 /* Got an error for the send message for a specific sequence number. */ 1178 static int intf_err_seq(struct ipmi_smi *intf, 1179 long msgid, 1180 unsigned int err) 1181 { 1182 int rv = -ENODEV; 1183 unsigned char seq; 1184 unsigned long seqid; 1185 struct ipmi_recv_msg *msg = NULL; 1186 1187 1188 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1189 1190 mutex_lock(&intf->seq_lock); 1191 /* 1192 * We do this verification because the user can be deleted 1193 * while a message is outstanding. 1194 */ 1195 if ((intf->seq_table[seq].inuse) 1196 && (intf->seq_table[seq].seqid == seqid)) { 1197 struct seq_table *ent = &intf->seq_table[seq]; 1198 1199 ent->inuse = 0; 1200 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1201 msg = ent->recv_msg; 1202 rv = 0; 1203 } 1204 mutex_unlock(&intf->seq_lock); 1205 1206 if (msg) 1207 deliver_err_response(intf, msg, err); 1208 1209 return rv; 1210 } 1211 1212 int ipmi_create_user(unsigned int if_num, 1213 const struct ipmi_user_hndl *handler, 1214 void *handler_data, 1215 struct ipmi_user **user) 1216 { 1217 struct ipmi_user *new_user = NULL; 1218 int rv = 0; 1219 struct ipmi_smi *intf; 1220 1221 /* 1222 * There is no module usecount here, because it's not 1223 * required. Since this can only be used by and called from 1224 * other modules, they will implicitly use this module, and 1225 * thus this can't be removed unless the other modules are 1226 * removed. 1227 */ 1228 1229 if (handler == NULL) 1230 return -EINVAL; 1231 1232 /* 1233 * Make sure the driver is actually initialized, this handles 1234 * problems with initialization order. 1235 */ 1236 rv = ipmi_init_msghandler(); 1237 if (rv) 1238 return rv; 1239 1240 mutex_lock(&ipmi_interfaces_mutex); 1241 list_for_each_entry(intf, &ipmi_interfaces, link) { 1242 if (intf->intf_num == if_num) 1243 goto found; 1244 } 1245 /* Not found, return an error */ 1246 rv = -EINVAL; 1247 goto out_unlock; 1248 1249 found: 1250 if (intf->in_shutdown) { 1251 rv = -ENODEV; 1252 goto out_unlock; 1253 } 1254 1255 if (atomic_add_return(1, &intf->nr_users) > max_users) { 1256 rv = -EBUSY; 1257 goto out_kfree; 1258 } 1259 1260 new_user = vzalloc(sizeof(*new_user)); 1261 if (!new_user) { 1262 rv = -ENOMEM; 1263 goto out_kfree; 1264 } 1265 1266 if (!try_module_get(intf->owner)) { 1267 rv = -ENODEV; 1268 goto out_kfree; 1269 } 1270 1271 /* Note that each existing user holds a refcount to the interface. */ 1272 kref_get(&intf->refcount); 1273 1274 atomic_set(&new_user->nr_msgs, 0); 1275 kref_init(&new_user->refcount); 1276 refcount_set(&new_user->destroyed, 1); 1277 kref_get(&new_user->refcount); /* Destroy owns a refcount. */ 1278 new_user->handler = handler; 1279 new_user->handler_data = handler_data; 1280 new_user->intf = intf; 1281 new_user->gets_events = false; 1282 1283 mutex_lock(&intf->users_mutex); 1284 mutex_lock(&intf->seq_lock); 1285 list_add(&new_user->link, &intf->users); 1286 mutex_unlock(&intf->seq_lock); 1287 mutex_unlock(&intf->users_mutex); 1288 1289 if (handler->ipmi_watchdog_pretimeout) 1290 /* User wants pretimeouts, so make sure to watch for them. */ 1291 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1292 1293 out_kfree: 1294 if (rv) { 1295 atomic_dec(&intf->nr_users); 1296 vfree(new_user); 1297 } else { 1298 *user = new_user; 1299 } 1300 out_unlock: 1301 mutex_unlock(&ipmi_interfaces_mutex); 1302 return rv; 1303 } 1304 EXPORT_SYMBOL(ipmi_create_user); 1305 1306 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1307 { 1308 int rv = -EINVAL; 1309 struct ipmi_smi *intf; 1310 1311 mutex_lock(&ipmi_interfaces_mutex); 1312 list_for_each_entry(intf, &ipmi_interfaces, link) { 1313 if (intf->intf_num == if_num) { 1314 if (!intf->handlers->get_smi_info) 1315 rv = -ENOTTY; 1316 else 1317 rv = intf->handlers->get_smi_info(intf->send_info, data); 1318 break; 1319 } 1320 } 1321 mutex_unlock(&ipmi_interfaces_mutex); 1322 1323 return rv; 1324 } 1325 EXPORT_SYMBOL(ipmi_get_smi_info); 1326 1327 /* Must be called with intf->users_mutex held. */ 1328 static void _ipmi_destroy_user(struct ipmi_user *user) 1329 { 1330 struct ipmi_smi *intf = user->intf; 1331 int i; 1332 struct cmd_rcvr *rcvr; 1333 struct cmd_rcvr *rcvrs = NULL; 1334 struct ipmi_recv_msg *msg, *msg2; 1335 1336 if (!refcount_dec_if_one(&user->destroyed)) 1337 return; 1338 1339 if (user->handler->shutdown) 1340 user->handler->shutdown(user->handler_data); 1341 1342 if (user->handler->ipmi_watchdog_pretimeout) 1343 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1344 1345 if (user->gets_events) 1346 atomic_dec(&intf->event_waiters); 1347 1348 /* Remove the user from the interface's list and sequence table. */ 1349 list_del(&user->link); 1350 atomic_dec(&intf->nr_users); 1351 1352 mutex_lock(&intf->seq_lock); 1353 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1354 if (intf->seq_table[i].inuse 1355 && (intf->seq_table[i].recv_msg->user == user)) { 1356 intf->seq_table[i].inuse = 0; 1357 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1358 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1359 } 1360 } 1361 mutex_unlock(&intf->seq_lock); 1362 1363 /* 1364 * Remove the user from the command receiver's table. First 1365 * we build a list of everything (not using the standard link, 1366 * since other things may be using it till we do 1367 * synchronize_rcu()) then free everything in that list. 1368 */ 1369 mutex_lock(&intf->cmd_rcvrs_mutex); 1370 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1371 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1372 if (rcvr->user == user) { 1373 list_del_rcu(&rcvr->link); 1374 rcvr->next = rcvrs; 1375 rcvrs = rcvr; 1376 } 1377 } 1378 mutex_unlock(&intf->cmd_rcvrs_mutex); 1379 while (rcvrs) { 1380 rcvr = rcvrs; 1381 rcvrs = rcvr->next; 1382 kfree(rcvr); 1383 } 1384 1385 mutex_lock(&intf->user_msgs_mutex); 1386 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) { 1387 if (msg->user != user) 1388 continue; 1389 list_del(&msg->link); 1390 ipmi_free_recv_msg(msg); 1391 } 1392 mutex_unlock(&intf->user_msgs_mutex); 1393 1394 release_ipmi_user(user); 1395 } 1396 1397 void ipmi_destroy_user(struct ipmi_user *user) 1398 { 1399 struct ipmi_smi *intf = user->intf; 1400 1401 mutex_lock(&intf->users_mutex); 1402 _ipmi_destroy_user(user); 1403 mutex_unlock(&intf->users_mutex); 1404 1405 kref_put(&user->refcount, free_ipmi_user); 1406 } 1407 EXPORT_SYMBOL(ipmi_destroy_user); 1408 1409 int ipmi_get_version(struct ipmi_user *user, 1410 unsigned char *major, 1411 unsigned char *minor) 1412 { 1413 struct ipmi_device_id id; 1414 int rv; 1415 1416 user = acquire_ipmi_user(user); 1417 if (!user) 1418 return -ENODEV; 1419 1420 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL); 1421 if (!rv) { 1422 *major = ipmi_version_major(&id); 1423 *minor = ipmi_version_minor(&id); 1424 } 1425 release_ipmi_user(user); 1426 1427 return rv; 1428 } 1429 EXPORT_SYMBOL(ipmi_get_version); 1430 1431 int ipmi_set_my_address(struct ipmi_user *user, 1432 unsigned int channel, 1433 unsigned char address) 1434 { 1435 int rv = 0; 1436 1437 user = acquire_ipmi_user(user); 1438 if (!user) 1439 return -ENODEV; 1440 1441 if (channel >= IPMI_MAX_CHANNELS) { 1442 rv = -EINVAL; 1443 } else { 1444 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1445 user->intf->addrinfo[channel].address = address; 1446 } 1447 release_ipmi_user(user); 1448 1449 return rv; 1450 } 1451 EXPORT_SYMBOL(ipmi_set_my_address); 1452 1453 int ipmi_get_my_address(struct ipmi_user *user, 1454 unsigned int channel, 1455 unsigned char *address) 1456 { 1457 int rv = 0; 1458 1459 user = acquire_ipmi_user(user); 1460 if (!user) 1461 return -ENODEV; 1462 1463 if (channel >= IPMI_MAX_CHANNELS) { 1464 rv = -EINVAL; 1465 } else { 1466 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1467 *address = user->intf->addrinfo[channel].address; 1468 } 1469 release_ipmi_user(user); 1470 1471 return rv; 1472 } 1473 EXPORT_SYMBOL(ipmi_get_my_address); 1474 1475 int ipmi_set_my_LUN(struct ipmi_user *user, 1476 unsigned int channel, 1477 unsigned char LUN) 1478 { 1479 int rv = 0; 1480 1481 user = acquire_ipmi_user(user); 1482 if (!user) 1483 return -ENODEV; 1484 1485 if (channel >= IPMI_MAX_CHANNELS) { 1486 rv = -EINVAL; 1487 } else { 1488 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1489 user->intf->addrinfo[channel].lun = LUN & 0x3; 1490 } 1491 release_ipmi_user(user); 1492 1493 return rv; 1494 } 1495 EXPORT_SYMBOL(ipmi_set_my_LUN); 1496 1497 int ipmi_get_my_LUN(struct ipmi_user *user, 1498 unsigned int channel, 1499 unsigned char *address) 1500 { 1501 int rv = 0; 1502 1503 user = acquire_ipmi_user(user); 1504 if (!user) 1505 return -ENODEV; 1506 1507 if (channel >= IPMI_MAX_CHANNELS) { 1508 rv = -EINVAL; 1509 } else { 1510 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1511 *address = user->intf->addrinfo[channel].lun; 1512 } 1513 release_ipmi_user(user); 1514 1515 return rv; 1516 } 1517 EXPORT_SYMBOL(ipmi_get_my_LUN); 1518 1519 int ipmi_get_maintenance_mode(struct ipmi_user *user) 1520 { 1521 int mode; 1522 unsigned long flags; 1523 1524 user = acquire_ipmi_user(user); 1525 if (!user) 1526 return -ENODEV; 1527 1528 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1529 mode = user->intf->maintenance_mode; 1530 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1531 release_ipmi_user(user); 1532 1533 return mode; 1534 } 1535 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1536 1537 static void maintenance_mode_update(struct ipmi_smi *intf) 1538 { 1539 if (intf->handlers->set_maintenance_mode) 1540 /* 1541 * Lower level drivers only care about firmware mode 1542 * as it affects their timing. They don't care about 1543 * reset, which disables all commands for a while. 1544 */ 1545 intf->handlers->set_maintenance_mode( 1546 intf->send_info, 1547 (intf->maintenance_mode_state == 1548 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE)); 1549 } 1550 1551 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode) 1552 { 1553 int rv = 0; 1554 unsigned long flags; 1555 struct ipmi_smi *intf = user->intf; 1556 1557 user = acquire_ipmi_user(user); 1558 if (!user) 1559 return -ENODEV; 1560 1561 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1562 if (intf->maintenance_mode != mode) { 1563 switch (mode) { 1564 case IPMI_MAINTENANCE_MODE_AUTO: 1565 /* Just leave it alone. */ 1566 break; 1567 1568 case IPMI_MAINTENANCE_MODE_OFF: 1569 intf->maintenance_mode_state = 1570 IPMI_MAINTENANCE_MODE_STATE_OFF; 1571 break; 1572 1573 case IPMI_MAINTENANCE_MODE_ON: 1574 intf->maintenance_mode_state = 1575 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE; 1576 break; 1577 1578 default: 1579 rv = -EINVAL; 1580 goto out_unlock; 1581 } 1582 intf->maintenance_mode = mode; 1583 1584 maintenance_mode_update(intf); 1585 } 1586 out_unlock: 1587 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1588 release_ipmi_user(user); 1589 1590 return rv; 1591 } 1592 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1593 1594 int ipmi_set_gets_events(struct ipmi_user *user, bool val) 1595 { 1596 struct ipmi_smi *intf = user->intf; 1597 struct ipmi_recv_msg *msg, *msg2; 1598 struct list_head msgs; 1599 1600 user = acquire_ipmi_user(user); 1601 if (!user) 1602 return -ENODEV; 1603 1604 INIT_LIST_HEAD(&msgs); 1605 1606 mutex_lock(&intf->events_mutex); 1607 if (user->gets_events == val) 1608 goto out; 1609 1610 user->gets_events = val; 1611 1612 if (val) { 1613 if (atomic_inc_return(&intf->event_waiters) == 1) 1614 need_waiter(intf); 1615 } else { 1616 atomic_dec(&intf->event_waiters); 1617 } 1618 1619 /* Deliver any queued events. */ 1620 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1621 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1622 list_move_tail(&msg->link, &msgs); 1623 intf->waiting_events_count = 0; 1624 if (intf->event_msg_printed) { 1625 dev_warn(intf->si_dev, "Event queue no longer full\n"); 1626 intf->event_msg_printed = 0; 1627 } 1628 1629 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1630 ipmi_set_recv_msg_user(msg, user); 1631 deliver_local_response(intf, msg); 1632 } 1633 } 1634 1635 out: 1636 mutex_unlock(&intf->events_mutex); 1637 release_ipmi_user(user); 1638 1639 return 0; 1640 } 1641 EXPORT_SYMBOL(ipmi_set_gets_events); 1642 1643 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf, 1644 unsigned char netfn, 1645 unsigned char cmd, 1646 unsigned char chan) 1647 { 1648 struct cmd_rcvr *rcvr; 1649 1650 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1651 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1652 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1653 && (rcvr->chans & (1 << chan))) 1654 return rcvr; 1655 } 1656 return NULL; 1657 } 1658 1659 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf, 1660 unsigned char netfn, 1661 unsigned char cmd, 1662 unsigned int chans) 1663 { 1664 struct cmd_rcvr *rcvr; 1665 1666 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1667 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1668 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1669 && (rcvr->chans & chans)) 1670 return 0; 1671 } 1672 return 1; 1673 } 1674 1675 int ipmi_register_for_cmd(struct ipmi_user *user, 1676 unsigned char netfn, 1677 unsigned char cmd, 1678 unsigned int chans) 1679 { 1680 struct ipmi_smi *intf = user->intf; 1681 struct cmd_rcvr *rcvr; 1682 int rv = 0; 1683 1684 user = acquire_ipmi_user(user); 1685 if (!user) 1686 return -ENODEV; 1687 1688 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1689 if (!rcvr) { 1690 rv = -ENOMEM; 1691 goto out_release; 1692 } 1693 rcvr->cmd = cmd; 1694 rcvr->netfn = netfn; 1695 rcvr->chans = chans; 1696 rcvr->user = user; 1697 1698 mutex_lock(&intf->cmd_rcvrs_mutex); 1699 /* Make sure the command/netfn is not already registered. */ 1700 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1701 rv = -EBUSY; 1702 goto out_unlock; 1703 } 1704 1705 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1706 1707 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1708 1709 out_unlock: 1710 mutex_unlock(&intf->cmd_rcvrs_mutex); 1711 if (rv) 1712 kfree(rcvr); 1713 out_release: 1714 release_ipmi_user(user); 1715 1716 return rv; 1717 } 1718 EXPORT_SYMBOL(ipmi_register_for_cmd); 1719 1720 int ipmi_unregister_for_cmd(struct ipmi_user *user, 1721 unsigned char netfn, 1722 unsigned char cmd, 1723 unsigned int chans) 1724 { 1725 struct ipmi_smi *intf = user->intf; 1726 struct cmd_rcvr *rcvr; 1727 struct cmd_rcvr *rcvrs = NULL; 1728 int i, rv = -ENOENT; 1729 1730 user = acquire_ipmi_user(user); 1731 if (!user) 1732 return -ENODEV; 1733 1734 mutex_lock(&intf->cmd_rcvrs_mutex); 1735 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1736 if (((1 << i) & chans) == 0) 1737 continue; 1738 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1739 if (rcvr == NULL) 1740 continue; 1741 if (rcvr->user == user) { 1742 rv = 0; 1743 rcvr->chans &= ~chans; 1744 if (rcvr->chans == 0) { 1745 list_del_rcu(&rcvr->link); 1746 rcvr->next = rcvrs; 1747 rcvrs = rcvr; 1748 } 1749 } 1750 } 1751 mutex_unlock(&intf->cmd_rcvrs_mutex); 1752 synchronize_rcu(); 1753 release_ipmi_user(user); 1754 while (rcvrs) { 1755 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1756 rcvr = rcvrs; 1757 rcvrs = rcvr->next; 1758 kfree(rcvr); 1759 } 1760 1761 return rv; 1762 } 1763 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1764 1765 unsigned char 1766 ipmb_checksum(unsigned char *data, int size) 1767 { 1768 unsigned char csum = 0; 1769 1770 for (; size > 0; size--, data++) 1771 csum += *data; 1772 1773 return -csum; 1774 } 1775 EXPORT_SYMBOL(ipmb_checksum); 1776 1777 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1778 struct kernel_ipmi_msg *msg, 1779 struct ipmi_ipmb_addr *ipmb_addr, 1780 long msgid, 1781 unsigned char ipmb_seq, 1782 int broadcast, 1783 unsigned char source_address, 1784 unsigned char source_lun) 1785 { 1786 int i = broadcast; 1787 1788 /* Format the IPMB header data. */ 1789 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1790 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1791 smi_msg->data[2] = ipmb_addr->channel; 1792 if (broadcast) 1793 smi_msg->data[3] = 0; 1794 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1795 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1796 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2); 1797 smi_msg->data[i+6] = source_address; 1798 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1799 smi_msg->data[i+8] = msg->cmd; 1800 1801 /* Now tack on the data to the message. */ 1802 if (msg->data_len > 0) 1803 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len); 1804 smi_msg->data_size = msg->data_len + 9; 1805 1806 /* Now calculate the checksum and tack it on. */ 1807 smi_msg->data[i+smi_msg->data_size] 1808 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6); 1809 1810 /* 1811 * Add on the checksum size and the offset from the 1812 * broadcast. 1813 */ 1814 smi_msg->data_size += 1 + i; 1815 1816 smi_msg->msgid = msgid; 1817 } 1818 1819 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1820 struct kernel_ipmi_msg *msg, 1821 struct ipmi_lan_addr *lan_addr, 1822 long msgid, 1823 unsigned char ipmb_seq, 1824 unsigned char source_lun) 1825 { 1826 /* Format the IPMB header data. */ 1827 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1828 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1829 smi_msg->data[2] = lan_addr->channel; 1830 smi_msg->data[3] = lan_addr->session_handle; 1831 smi_msg->data[4] = lan_addr->remote_SWID; 1832 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1833 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2); 1834 smi_msg->data[7] = lan_addr->local_SWID; 1835 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1836 smi_msg->data[9] = msg->cmd; 1837 1838 /* Now tack on the data to the message. */ 1839 if (msg->data_len > 0) 1840 memcpy(&smi_msg->data[10], msg->data, msg->data_len); 1841 smi_msg->data_size = msg->data_len + 10; 1842 1843 /* Now calculate the checksum and tack it on. */ 1844 smi_msg->data[smi_msg->data_size] 1845 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7); 1846 1847 /* 1848 * Add on the checksum size and the offset from the 1849 * broadcast. 1850 */ 1851 smi_msg->data_size += 1; 1852 1853 smi_msg->msgid = msgid; 1854 } 1855 1856 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf, 1857 struct ipmi_smi_msg *smi_msg, 1858 int priority) 1859 { 1860 if (intf->curr_msg) { 1861 if (priority > 0) 1862 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1863 else 1864 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1865 smi_msg = NULL; 1866 } else { 1867 intf->curr_msg = smi_msg; 1868 } 1869 1870 return smi_msg; 1871 } 1872 1873 static void smi_send(struct ipmi_smi *intf, 1874 const struct ipmi_smi_handlers *handlers, 1875 struct ipmi_smi_msg *smi_msg, int priority) 1876 { 1877 int run_to_completion = READ_ONCE(intf->run_to_completion); 1878 unsigned long flags = 0; 1879 1880 if (!run_to_completion) 1881 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1882 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1883 if (!run_to_completion) 1884 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1885 1886 if (smi_msg) 1887 handlers->sender(intf->send_info, smi_msg); 1888 } 1889 1890 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg) 1891 { 1892 return (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1893 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1894 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1895 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)); 1896 } 1897 1898 static int i_ipmi_req_sysintf(struct ipmi_smi *intf, 1899 struct ipmi_addr *addr, 1900 long msgid, 1901 struct kernel_ipmi_msg *msg, 1902 struct ipmi_smi_msg *smi_msg, 1903 struct ipmi_recv_msg *recv_msg, 1904 int retries, 1905 unsigned int retry_time_ms) 1906 { 1907 struct ipmi_system_interface_addr *smi_addr; 1908 1909 if (msg->netfn & 1) 1910 /* Responses are not allowed to the SMI. */ 1911 return -EINVAL; 1912 1913 smi_addr = (struct ipmi_system_interface_addr *) addr; 1914 if (smi_addr->lun > 3) { 1915 ipmi_inc_stat(intf, sent_invalid_commands); 1916 return -EINVAL; 1917 } 1918 1919 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1920 1921 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1922 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1923 || (msg->cmd == IPMI_GET_MSG_CMD) 1924 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1925 /* 1926 * We don't let the user do these, since we manage 1927 * the sequence numbers. 1928 */ 1929 ipmi_inc_stat(intf, sent_invalid_commands); 1930 return -EINVAL; 1931 } 1932 1933 if (is_maintenance_mode_cmd(msg)) { 1934 unsigned long flags; 1935 int newst; 1936 1937 if (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST) 1938 newst = IPMI_MAINTENANCE_MODE_STATE_FIRMWARE; 1939 else 1940 newst = IPMI_MAINTENANCE_MODE_STATE_RESET; 1941 1942 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1943 intf->auto_maintenance_timeout = maintenance_mode_timeout_ms; 1944 if (!intf->maintenance_mode 1945 && intf->maintenance_mode_state < newst) { 1946 intf->maintenance_mode_state = newst; 1947 maintenance_mode_update(intf); 1948 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 1949 } 1950 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1951 flags); 1952 } 1953 1954 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) { 1955 ipmi_inc_stat(intf, sent_invalid_commands); 1956 return -EMSGSIZE; 1957 } 1958 1959 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1960 smi_msg->data[1] = msg->cmd; 1961 smi_msg->msgid = msgid; 1962 smi_msg->recv_msg = recv_msg; 1963 if (msg->data_len > 0) 1964 memcpy(&smi_msg->data[2], msg->data, msg->data_len); 1965 smi_msg->data_size = msg->data_len + 2; 1966 ipmi_inc_stat(intf, sent_local_commands); 1967 1968 return 0; 1969 } 1970 1971 static int i_ipmi_req_ipmb(struct ipmi_smi *intf, 1972 struct ipmi_addr *addr, 1973 long msgid, 1974 struct kernel_ipmi_msg *msg, 1975 struct ipmi_smi_msg *smi_msg, 1976 struct ipmi_recv_msg *recv_msg, 1977 unsigned char source_address, 1978 unsigned char source_lun, 1979 int retries, 1980 unsigned int retry_time_ms) 1981 { 1982 struct ipmi_ipmb_addr *ipmb_addr; 1983 unsigned char ipmb_seq; 1984 long seqid; 1985 int broadcast = 0; 1986 struct ipmi_channel *chans; 1987 int rv = 0; 1988 1989 if (addr->channel >= IPMI_MAX_CHANNELS) { 1990 ipmi_inc_stat(intf, sent_invalid_commands); 1991 return -EINVAL; 1992 } 1993 1994 chans = READ_ONCE(intf->channel_list)->c; 1995 1996 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) { 1997 ipmi_inc_stat(intf, sent_invalid_commands); 1998 return -EINVAL; 1999 } 2000 2001 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 2002 /* 2003 * Broadcasts add a zero at the beginning of the 2004 * message, but otherwise is the same as an IPMB 2005 * address. 2006 */ 2007 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 2008 broadcast = 1; 2009 retries = 0; /* Don't retry broadcasts. */ 2010 } 2011 2012 /* 2013 * 9 for the header and 1 for the checksum, plus 2014 * possibly one for the broadcast. 2015 */ 2016 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 2017 ipmi_inc_stat(intf, sent_invalid_commands); 2018 return -EMSGSIZE; 2019 } 2020 2021 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 2022 if (ipmb_addr->lun > 3) { 2023 ipmi_inc_stat(intf, sent_invalid_commands); 2024 return -EINVAL; 2025 } 2026 2027 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 2028 2029 if (recv_msg->msg.netfn & 0x1) { 2030 /* 2031 * It's a response, so use the user's sequence 2032 * from msgid. 2033 */ 2034 ipmi_inc_stat(intf, sent_ipmb_responses); 2035 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 2036 msgid, broadcast, 2037 source_address, source_lun); 2038 2039 /* 2040 * Save the receive message so we can use it 2041 * to deliver the response. 2042 */ 2043 smi_msg->recv_msg = recv_msg; 2044 } else { 2045 mutex_lock(&intf->seq_lock); 2046 2047 if (is_maintenance_mode_cmd(msg)) 2048 intf->ipmb_maintenance_mode_timeout = 2049 maintenance_mode_timeout_ms; 2050 2051 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0) 2052 /* Different default in maintenance mode */ 2053 retry_time_ms = default_maintenance_retry_ms; 2054 2055 /* 2056 * Create a sequence number with a 1 second 2057 * timeout and 4 retries. 2058 */ 2059 rv = intf_next_seq(intf, 2060 recv_msg, 2061 retry_time_ms, 2062 retries, 2063 broadcast, 2064 &ipmb_seq, 2065 &seqid); 2066 if (rv) 2067 /* 2068 * We have used up all the sequence numbers, 2069 * probably, so abort. 2070 */ 2071 goto out_err; 2072 2073 ipmi_inc_stat(intf, sent_ipmb_commands); 2074 2075 /* 2076 * Store the sequence number in the message, 2077 * so that when the send message response 2078 * comes back we can start the timer. 2079 */ 2080 format_ipmb_msg(smi_msg, msg, ipmb_addr, 2081 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2082 ipmb_seq, broadcast, 2083 source_address, source_lun); 2084 2085 /* 2086 * Copy the message into the recv message data, so we 2087 * can retransmit it later if necessary. 2088 */ 2089 memcpy(recv_msg->msg_data, smi_msg->data, 2090 smi_msg->data_size); 2091 recv_msg->msg.data = recv_msg->msg_data; 2092 recv_msg->msg.data_len = smi_msg->data_size; 2093 2094 /* 2095 * We don't unlock until here, because we need 2096 * to copy the completed message into the 2097 * recv_msg before we release the lock. 2098 * Otherwise, race conditions may bite us. I 2099 * know that's pretty paranoid, but I prefer 2100 * to be correct. 2101 */ 2102 out_err: 2103 mutex_unlock(&intf->seq_lock); 2104 } 2105 2106 return rv; 2107 } 2108 2109 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf, 2110 struct ipmi_addr *addr, 2111 long msgid, 2112 struct kernel_ipmi_msg *msg, 2113 struct ipmi_smi_msg *smi_msg, 2114 struct ipmi_recv_msg *recv_msg, 2115 unsigned char source_lun) 2116 { 2117 struct ipmi_ipmb_direct_addr *daddr; 2118 bool is_cmd = !(recv_msg->msg.netfn & 0x1); 2119 2120 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT)) 2121 return -EAFNOSUPPORT; 2122 2123 /* Responses must have a completion code. */ 2124 if (!is_cmd && msg->data_len < 1) { 2125 ipmi_inc_stat(intf, sent_invalid_commands); 2126 return -EINVAL; 2127 } 2128 2129 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) { 2130 ipmi_inc_stat(intf, sent_invalid_commands); 2131 return -EMSGSIZE; 2132 } 2133 2134 daddr = (struct ipmi_ipmb_direct_addr *) addr; 2135 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) { 2136 ipmi_inc_stat(intf, sent_invalid_commands); 2137 return -EINVAL; 2138 } 2139 2140 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT; 2141 smi_msg->msgid = msgid; 2142 2143 if (is_cmd) { 2144 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun; 2145 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun; 2146 } else { 2147 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun; 2148 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun; 2149 } 2150 smi_msg->data[1] = daddr->slave_addr; 2151 smi_msg->data[3] = msg->cmd; 2152 2153 memcpy(smi_msg->data + 4, msg->data, msg->data_len); 2154 smi_msg->data_size = msg->data_len + 4; 2155 2156 smi_msg->recv_msg = recv_msg; 2157 2158 return 0; 2159 } 2160 2161 static int i_ipmi_req_lan(struct ipmi_smi *intf, 2162 struct ipmi_addr *addr, 2163 long msgid, 2164 struct kernel_ipmi_msg *msg, 2165 struct ipmi_smi_msg *smi_msg, 2166 struct ipmi_recv_msg *recv_msg, 2167 unsigned char source_lun, 2168 int retries, 2169 unsigned int retry_time_ms) 2170 { 2171 struct ipmi_lan_addr *lan_addr; 2172 unsigned char ipmb_seq; 2173 long seqid; 2174 struct ipmi_channel *chans; 2175 int rv = 0; 2176 2177 if (addr->channel >= IPMI_MAX_CHANNELS) { 2178 ipmi_inc_stat(intf, sent_invalid_commands); 2179 return -EINVAL; 2180 } 2181 2182 chans = READ_ONCE(intf->channel_list)->c; 2183 2184 if ((chans[addr->channel].medium 2185 != IPMI_CHANNEL_MEDIUM_8023LAN) 2186 && (chans[addr->channel].medium 2187 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 2188 ipmi_inc_stat(intf, sent_invalid_commands); 2189 return -EINVAL; 2190 } 2191 2192 /* 11 for the header and 1 for the checksum. */ 2193 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 2194 ipmi_inc_stat(intf, sent_invalid_commands); 2195 return -EMSGSIZE; 2196 } 2197 2198 lan_addr = (struct ipmi_lan_addr *) addr; 2199 if (lan_addr->lun > 3) { 2200 ipmi_inc_stat(intf, sent_invalid_commands); 2201 return -EINVAL; 2202 } 2203 2204 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 2205 2206 if (recv_msg->msg.netfn & 0x1) { 2207 /* 2208 * It's a response, so use the user's sequence 2209 * from msgid. 2210 */ 2211 ipmi_inc_stat(intf, sent_lan_responses); 2212 format_lan_msg(smi_msg, msg, lan_addr, msgid, 2213 msgid, source_lun); 2214 2215 /* 2216 * Save the receive message so we can use it 2217 * to deliver the response. 2218 */ 2219 smi_msg->recv_msg = recv_msg; 2220 } else { 2221 mutex_lock(&intf->seq_lock); 2222 2223 /* 2224 * Create a sequence number with a 1 second 2225 * timeout and 4 retries. 2226 */ 2227 rv = intf_next_seq(intf, 2228 recv_msg, 2229 retry_time_ms, 2230 retries, 2231 0, 2232 &ipmb_seq, 2233 &seqid); 2234 if (rv) 2235 /* 2236 * We have used up all the sequence numbers, 2237 * probably, so abort. 2238 */ 2239 goto out_err; 2240 2241 ipmi_inc_stat(intf, sent_lan_commands); 2242 2243 /* 2244 * Store the sequence number in the message, 2245 * so that when the send message response 2246 * comes back we can start the timer. 2247 */ 2248 format_lan_msg(smi_msg, msg, lan_addr, 2249 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2250 ipmb_seq, source_lun); 2251 2252 /* 2253 * Copy the message into the recv message data, so we 2254 * can retransmit it later if necessary. 2255 */ 2256 memcpy(recv_msg->msg_data, smi_msg->data, 2257 smi_msg->data_size); 2258 recv_msg->msg.data = recv_msg->msg_data; 2259 recv_msg->msg.data_len = smi_msg->data_size; 2260 2261 /* 2262 * We don't unlock until here, because we need 2263 * to copy the completed message into the 2264 * recv_msg before we release the lock. 2265 * Otherwise, race conditions may bite us. I 2266 * know that's pretty paranoid, but I prefer 2267 * to be correct. 2268 */ 2269 out_err: 2270 mutex_unlock(&intf->seq_lock); 2271 } 2272 2273 return rv; 2274 } 2275 2276 /* 2277 * Separate from ipmi_request so that the user does not have to be 2278 * supplied in certain circumstances (mainly at panic time). If 2279 * messages are supplied, they will be freed, even if an error 2280 * occurs. 2281 */ 2282 static int i_ipmi_request(struct ipmi_user *user, 2283 struct ipmi_smi *intf, 2284 struct ipmi_addr *addr, 2285 long msgid, 2286 struct kernel_ipmi_msg *msg, 2287 void *user_msg_data, 2288 void *supplied_smi, 2289 struct ipmi_recv_msg *supplied_recv, 2290 int priority, 2291 unsigned char source_address, 2292 unsigned char source_lun, 2293 int retries, 2294 unsigned int retry_time_ms) 2295 { 2296 struct ipmi_smi_msg *smi_msg; 2297 struct ipmi_recv_msg *recv_msg; 2298 int run_to_completion = READ_ONCE(intf->run_to_completion); 2299 int rv = 0; 2300 2301 if (supplied_recv) { 2302 recv_msg = supplied_recv; 2303 recv_msg->user = user; 2304 if (user) 2305 atomic_inc(&user->nr_msgs); 2306 } else { 2307 recv_msg = ipmi_alloc_recv_msg(user); 2308 if (IS_ERR(recv_msg)) 2309 return PTR_ERR(recv_msg); 2310 } 2311 recv_msg->user_msg_data = user_msg_data; 2312 2313 if (supplied_smi) 2314 smi_msg = supplied_smi; 2315 else { 2316 smi_msg = ipmi_alloc_smi_msg(); 2317 if (smi_msg == NULL) { 2318 if (!supplied_recv) 2319 ipmi_free_recv_msg(recv_msg); 2320 return -ENOMEM; 2321 } 2322 } 2323 2324 if (!run_to_completion) 2325 mutex_lock(&intf->users_mutex); 2326 if (intf->maintenance_mode_state == IPMI_MAINTENANCE_MODE_STATE_RESET) { 2327 /* No messages while the BMC is in reset. */ 2328 rv = -EBUSY; 2329 goto out_err; 2330 } 2331 if (intf->in_shutdown) { 2332 rv = -ENODEV; 2333 goto out_err; 2334 } 2335 2336 recv_msg->msgid = msgid; 2337 /* 2338 * Store the message to send in the receive message so timeout 2339 * responses can get the proper response data. 2340 */ 2341 recv_msg->msg = *msg; 2342 2343 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 2344 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg, 2345 recv_msg, retries, retry_time_ms); 2346 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 2347 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg, 2348 source_address, source_lun, 2349 retries, retry_time_ms); 2350 } else if (is_ipmb_direct_addr(addr)) { 2351 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg, 2352 recv_msg, source_lun); 2353 } else if (is_lan_addr(addr)) { 2354 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg, 2355 source_lun, retries, retry_time_ms); 2356 } else { 2357 /* Unknown address type. */ 2358 ipmi_inc_stat(intf, sent_invalid_commands); 2359 rv = -EINVAL; 2360 } 2361 2362 if (rv) { 2363 out_err: 2364 if (!supplied_smi) 2365 ipmi_free_smi_msg(smi_msg); 2366 if (!supplied_recv) 2367 ipmi_free_recv_msg(recv_msg); 2368 } else { 2369 dev_dbg(intf->si_dev, "Send: %*ph\n", 2370 smi_msg->data_size, smi_msg->data); 2371 2372 smi_send(intf, intf->handlers, smi_msg, priority); 2373 } 2374 if (!run_to_completion) 2375 mutex_unlock(&intf->users_mutex); 2376 2377 return rv; 2378 } 2379 2380 static int check_addr(struct ipmi_smi *intf, 2381 struct ipmi_addr *addr, 2382 unsigned char *saddr, 2383 unsigned char *lun) 2384 { 2385 if (addr->channel >= IPMI_MAX_CHANNELS) 2386 return -EINVAL; 2387 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS); 2388 *lun = intf->addrinfo[addr->channel].lun; 2389 *saddr = intf->addrinfo[addr->channel].address; 2390 return 0; 2391 } 2392 2393 int ipmi_request_settime(struct ipmi_user *user, 2394 struct ipmi_addr *addr, 2395 long msgid, 2396 struct kernel_ipmi_msg *msg, 2397 void *user_msg_data, 2398 int priority, 2399 int retries, 2400 unsigned int retry_time_ms) 2401 { 2402 unsigned char saddr = 0, lun = 0; 2403 int rv; 2404 2405 if (!user) 2406 return -EINVAL; 2407 2408 user = acquire_ipmi_user(user); 2409 if (!user) 2410 return -ENODEV; 2411 2412 rv = check_addr(user->intf, addr, &saddr, &lun); 2413 if (!rv) 2414 rv = i_ipmi_request(user, 2415 user->intf, 2416 addr, 2417 msgid, 2418 msg, 2419 user_msg_data, 2420 NULL, NULL, 2421 priority, 2422 saddr, 2423 lun, 2424 retries, 2425 retry_time_ms); 2426 2427 release_ipmi_user(user); 2428 return rv; 2429 } 2430 EXPORT_SYMBOL(ipmi_request_settime); 2431 2432 int ipmi_request_supply_msgs(struct ipmi_user *user, 2433 struct ipmi_addr *addr, 2434 long msgid, 2435 struct kernel_ipmi_msg *msg, 2436 void *user_msg_data, 2437 void *supplied_smi, 2438 struct ipmi_recv_msg *supplied_recv, 2439 int priority) 2440 { 2441 unsigned char saddr = 0, lun = 0; 2442 int rv; 2443 2444 if (!user) 2445 return -EINVAL; 2446 2447 user = acquire_ipmi_user(user); 2448 if (!user) 2449 return -ENODEV; 2450 2451 rv = check_addr(user->intf, addr, &saddr, &lun); 2452 if (!rv) 2453 rv = i_ipmi_request(user, 2454 user->intf, 2455 addr, 2456 msgid, 2457 msg, 2458 user_msg_data, 2459 supplied_smi, 2460 supplied_recv, 2461 priority, 2462 saddr, 2463 lun, 2464 -1, 0); 2465 2466 release_ipmi_user(user); 2467 return rv; 2468 } 2469 EXPORT_SYMBOL(ipmi_request_supply_msgs); 2470 2471 static void bmc_device_id_handler(struct ipmi_smi *intf, 2472 struct ipmi_recv_msg *msg) 2473 { 2474 int rv; 2475 2476 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2477 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2478 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) { 2479 dev_warn(intf->si_dev, 2480 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n", 2481 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd); 2482 return; 2483 } 2484 2485 if (msg->msg.data[0]) { 2486 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n", 2487 msg->msg.data[0]); 2488 intf->bmc->dyn_id_set = 0; 2489 goto out; 2490 } 2491 2492 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd, 2493 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id); 2494 if (rv) { 2495 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv); 2496 /* record completion code when error */ 2497 intf->bmc->cc = msg->msg.data[0]; 2498 intf->bmc->dyn_id_set = 0; 2499 } else { 2500 /* 2501 * Make sure the id data is available before setting 2502 * dyn_id_set. 2503 */ 2504 smp_wmb(); 2505 intf->bmc->dyn_id_set = 1; 2506 } 2507 out: 2508 wake_up(&intf->waitq); 2509 } 2510 2511 static int 2512 send_get_device_id_cmd(struct ipmi_smi *intf) 2513 { 2514 struct ipmi_system_interface_addr si; 2515 struct kernel_ipmi_msg msg; 2516 2517 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2518 si.channel = IPMI_BMC_CHANNEL; 2519 si.lun = 0; 2520 2521 msg.netfn = IPMI_NETFN_APP_REQUEST; 2522 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 2523 msg.data = NULL; 2524 msg.data_len = 0; 2525 2526 return i_ipmi_request(NULL, 2527 intf, 2528 (struct ipmi_addr *) &si, 2529 0, 2530 &msg, 2531 intf, 2532 NULL, 2533 NULL, 2534 0, 2535 intf->addrinfo[0].address, 2536 intf->addrinfo[0].lun, 2537 -1, 0); 2538 } 2539 2540 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc) 2541 { 2542 int rv; 2543 unsigned int retry_count = 0; 2544 2545 intf->null_user_handler = bmc_device_id_handler; 2546 2547 retry: 2548 bmc->cc = 0; 2549 bmc->dyn_id_set = 2; 2550 2551 rv = send_get_device_id_cmd(intf); 2552 if (rv) 2553 goto out_reset_handler; 2554 2555 wait_event(intf->waitq, bmc->dyn_id_set != 2); 2556 2557 if (!bmc->dyn_id_set) { 2558 if (bmc->cc != IPMI_CC_NO_ERROR && 2559 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { 2560 msleep(500); 2561 dev_warn(intf->si_dev, 2562 "BMC returned 0x%2.2x, retry get bmc device id\n", 2563 bmc->cc); 2564 goto retry; 2565 } 2566 2567 rv = -EIO; /* Something went wrong in the fetch. */ 2568 } 2569 2570 /* dyn_id_set makes the id data available. */ 2571 smp_rmb(); 2572 2573 out_reset_handler: 2574 intf->null_user_handler = NULL; 2575 2576 return rv; 2577 } 2578 2579 /* 2580 * Fetch the device id for the bmc/interface. You must pass in either 2581 * bmc or intf, this code will get the other one. If the data has 2582 * been recently fetched, this will just use the cached data. Otherwise 2583 * it will run a new fetch. 2584 * 2585 * Except for the first time this is called (in ipmi_add_smi()), 2586 * this will always return good data; 2587 */ 2588 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2589 struct ipmi_device_id *id, 2590 bool *guid_set, guid_t *guid, int intf_num) 2591 { 2592 int rv = 0; 2593 int prev_dyn_id_set, prev_guid_set; 2594 bool intf_set = intf != NULL; 2595 2596 if (!intf) { 2597 mutex_lock(&bmc->dyn_mutex); 2598 retry_bmc_lock: 2599 if (list_empty(&bmc->intfs)) { 2600 mutex_unlock(&bmc->dyn_mutex); 2601 return -ENOENT; 2602 } 2603 intf = list_first_entry(&bmc->intfs, struct ipmi_smi, 2604 bmc_link); 2605 kref_get(&intf->refcount); 2606 mutex_unlock(&bmc->dyn_mutex); 2607 mutex_lock(&intf->bmc_reg_mutex); 2608 mutex_lock(&bmc->dyn_mutex); 2609 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi, 2610 bmc_link)) { 2611 mutex_unlock(&intf->bmc_reg_mutex); 2612 kref_put(&intf->refcount, intf_free); 2613 goto retry_bmc_lock; 2614 } 2615 } else { 2616 mutex_lock(&intf->bmc_reg_mutex); 2617 bmc = intf->bmc; 2618 mutex_lock(&bmc->dyn_mutex); 2619 kref_get(&intf->refcount); 2620 } 2621 2622 /* If we have a valid and current ID, just return that. */ 2623 if (intf->in_bmc_register || 2624 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry))) 2625 goto out_noprocessing; 2626 2627 /* Don't allow sysfs access when in maintenance mode. */ 2628 if (intf->maintenance_mode_state) { 2629 rv = -EBUSY; 2630 goto out_noprocessing; 2631 } 2632 2633 prev_guid_set = bmc->dyn_guid_set; 2634 __get_guid(intf); 2635 2636 prev_dyn_id_set = bmc->dyn_id_set; 2637 rv = __get_device_id(intf, bmc); 2638 if (rv) 2639 goto out; 2640 2641 /* 2642 * The guid, device id, manufacturer id, and product id should 2643 * not change on a BMC. If it does we have to do some dancing. 2644 */ 2645 if (!intf->bmc_registered 2646 || (!prev_guid_set && bmc->dyn_guid_set) 2647 || (!prev_dyn_id_set && bmc->dyn_id_set) 2648 || (prev_guid_set && bmc->dyn_guid_set 2649 && !guid_equal(&bmc->guid, &bmc->fetch_guid)) 2650 || bmc->id.device_id != bmc->fetch_id.device_id 2651 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id 2652 || bmc->id.product_id != bmc->fetch_id.product_id) { 2653 struct ipmi_device_id id = bmc->fetch_id; 2654 int guid_set = bmc->dyn_guid_set; 2655 guid_t guid; 2656 2657 guid = bmc->fetch_guid; 2658 mutex_unlock(&bmc->dyn_mutex); 2659 2660 __ipmi_bmc_unregister(intf); 2661 /* Fill in the temporary BMC for good measure. */ 2662 intf->bmc->id = id; 2663 intf->bmc->dyn_guid_set = guid_set; 2664 intf->bmc->guid = guid; 2665 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num)) 2666 need_waiter(intf); /* Retry later on an error. */ 2667 else 2668 __scan_channels(intf, &id); 2669 2670 2671 if (!intf_set) { 2672 /* 2673 * We weren't given the interface on the 2674 * command line, so restart the operation on 2675 * the next interface for the BMC. 2676 */ 2677 mutex_unlock(&intf->bmc_reg_mutex); 2678 mutex_lock(&bmc->dyn_mutex); 2679 goto retry_bmc_lock; 2680 } 2681 2682 /* We have a new BMC, set it up. */ 2683 bmc = intf->bmc; 2684 mutex_lock(&bmc->dyn_mutex); 2685 goto out_noprocessing; 2686 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id))) 2687 /* Version info changes, scan the channels again. */ 2688 __scan_channels(intf, &bmc->fetch_id); 2689 2690 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 2691 2692 out: 2693 if (rv && prev_dyn_id_set) { 2694 rv = 0; /* Ignore failures if we have previous data. */ 2695 bmc->dyn_id_set = prev_dyn_id_set; 2696 } 2697 if (!rv) { 2698 bmc->id = bmc->fetch_id; 2699 if (bmc->dyn_guid_set) 2700 bmc->guid = bmc->fetch_guid; 2701 else if (prev_guid_set) 2702 /* 2703 * The guid used to be valid and it failed to fetch, 2704 * just use the cached value. 2705 */ 2706 bmc->dyn_guid_set = prev_guid_set; 2707 } 2708 out_noprocessing: 2709 if (!rv) { 2710 if (id) 2711 *id = bmc->id; 2712 2713 if (guid_set) 2714 *guid_set = bmc->dyn_guid_set; 2715 2716 if (guid && bmc->dyn_guid_set) 2717 *guid = bmc->guid; 2718 } 2719 2720 mutex_unlock(&bmc->dyn_mutex); 2721 mutex_unlock(&intf->bmc_reg_mutex); 2722 2723 kref_put(&intf->refcount, intf_free); 2724 return rv; 2725 } 2726 2727 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2728 struct ipmi_device_id *id, 2729 bool *guid_set, guid_t *guid) 2730 { 2731 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1); 2732 } 2733 2734 static ssize_t device_id_show(struct device *dev, 2735 struct device_attribute *attr, 2736 char *buf) 2737 { 2738 struct bmc_device *bmc = to_bmc_device(dev); 2739 struct ipmi_device_id id; 2740 int rv; 2741 2742 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2743 if (rv) 2744 return rv; 2745 2746 return sysfs_emit(buf, "%u\n", id.device_id); 2747 } 2748 static DEVICE_ATTR_RO(device_id); 2749 2750 static ssize_t provides_device_sdrs_show(struct device *dev, 2751 struct device_attribute *attr, 2752 char *buf) 2753 { 2754 struct bmc_device *bmc = to_bmc_device(dev); 2755 struct ipmi_device_id id; 2756 int rv; 2757 2758 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2759 if (rv) 2760 return rv; 2761 2762 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7); 2763 } 2764 static DEVICE_ATTR_RO(provides_device_sdrs); 2765 2766 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2767 char *buf) 2768 { 2769 struct bmc_device *bmc = to_bmc_device(dev); 2770 struct ipmi_device_id id; 2771 int rv; 2772 2773 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2774 if (rv) 2775 return rv; 2776 2777 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F); 2778 } 2779 static DEVICE_ATTR_RO(revision); 2780 2781 static ssize_t firmware_revision_show(struct device *dev, 2782 struct device_attribute *attr, 2783 char *buf) 2784 { 2785 struct bmc_device *bmc = to_bmc_device(dev); 2786 struct ipmi_device_id id; 2787 int rv; 2788 2789 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2790 if (rv) 2791 return rv; 2792 2793 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1, 2794 id.firmware_revision_2); 2795 } 2796 static DEVICE_ATTR_RO(firmware_revision); 2797 2798 static ssize_t ipmi_version_show(struct device *dev, 2799 struct device_attribute *attr, 2800 char *buf) 2801 { 2802 struct bmc_device *bmc = to_bmc_device(dev); 2803 struct ipmi_device_id id; 2804 int rv; 2805 2806 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2807 if (rv) 2808 return rv; 2809 2810 return sysfs_emit(buf, "%u.%u\n", 2811 ipmi_version_major(&id), 2812 ipmi_version_minor(&id)); 2813 } 2814 static DEVICE_ATTR_RO(ipmi_version); 2815 2816 static ssize_t add_dev_support_show(struct device *dev, 2817 struct device_attribute *attr, 2818 char *buf) 2819 { 2820 struct bmc_device *bmc = to_bmc_device(dev); 2821 struct ipmi_device_id id; 2822 int rv; 2823 2824 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2825 if (rv) 2826 return rv; 2827 2828 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support); 2829 } 2830 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2831 NULL); 2832 2833 static ssize_t manufacturer_id_show(struct device *dev, 2834 struct device_attribute *attr, 2835 char *buf) 2836 { 2837 struct bmc_device *bmc = to_bmc_device(dev); 2838 struct ipmi_device_id id; 2839 int rv; 2840 2841 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2842 if (rv) 2843 return rv; 2844 2845 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id); 2846 } 2847 static DEVICE_ATTR_RO(manufacturer_id); 2848 2849 static ssize_t product_id_show(struct device *dev, 2850 struct device_attribute *attr, 2851 char *buf) 2852 { 2853 struct bmc_device *bmc = to_bmc_device(dev); 2854 struct ipmi_device_id id; 2855 int rv; 2856 2857 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2858 if (rv) 2859 return rv; 2860 2861 return sysfs_emit(buf, "0x%4.4x\n", id.product_id); 2862 } 2863 static DEVICE_ATTR_RO(product_id); 2864 2865 static ssize_t aux_firmware_rev_show(struct device *dev, 2866 struct device_attribute *attr, 2867 char *buf) 2868 { 2869 struct bmc_device *bmc = to_bmc_device(dev); 2870 struct ipmi_device_id id; 2871 int rv; 2872 2873 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2874 if (rv) 2875 return rv; 2876 2877 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2878 id.aux_firmware_revision[3], 2879 id.aux_firmware_revision[2], 2880 id.aux_firmware_revision[1], 2881 id.aux_firmware_revision[0]); 2882 } 2883 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2884 2885 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2886 char *buf) 2887 { 2888 struct bmc_device *bmc = to_bmc_device(dev); 2889 bool guid_set; 2890 guid_t guid; 2891 int rv; 2892 2893 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid); 2894 if (rv) 2895 return rv; 2896 if (!guid_set) 2897 return -ENOENT; 2898 2899 return sysfs_emit(buf, "%pUl\n", &guid); 2900 } 2901 static DEVICE_ATTR_RO(guid); 2902 2903 static struct attribute *bmc_dev_attrs[] = { 2904 &dev_attr_device_id.attr, 2905 &dev_attr_provides_device_sdrs.attr, 2906 &dev_attr_revision.attr, 2907 &dev_attr_firmware_revision.attr, 2908 &dev_attr_ipmi_version.attr, 2909 &dev_attr_additional_device_support.attr, 2910 &dev_attr_manufacturer_id.attr, 2911 &dev_attr_product_id.attr, 2912 &dev_attr_aux_firmware_revision.attr, 2913 &dev_attr_guid.attr, 2914 NULL 2915 }; 2916 2917 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2918 struct attribute *attr, int idx) 2919 { 2920 struct device *dev = kobj_to_dev(kobj); 2921 struct bmc_device *bmc = to_bmc_device(dev); 2922 umode_t mode = attr->mode; 2923 int rv; 2924 2925 if (attr == &dev_attr_aux_firmware_revision.attr) { 2926 struct ipmi_device_id id; 2927 2928 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2929 return (!rv && id.aux_firmware_revision_set) ? mode : 0; 2930 } 2931 if (attr == &dev_attr_guid.attr) { 2932 bool guid_set; 2933 2934 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL); 2935 return (!rv && guid_set) ? mode : 0; 2936 } 2937 return mode; 2938 } 2939 2940 static const struct attribute_group bmc_dev_attr_group = { 2941 .attrs = bmc_dev_attrs, 2942 .is_visible = bmc_dev_attr_is_visible, 2943 }; 2944 2945 static const struct attribute_group *bmc_dev_attr_groups[] = { 2946 &bmc_dev_attr_group, 2947 NULL 2948 }; 2949 2950 static const struct device_type bmc_device_type = { 2951 .groups = bmc_dev_attr_groups, 2952 }; 2953 2954 static int __find_bmc_guid(struct device *dev, const void *data) 2955 { 2956 const guid_t *guid = data; 2957 struct bmc_device *bmc; 2958 int rv; 2959 2960 if (dev->type != &bmc_device_type) 2961 return 0; 2962 2963 bmc = to_bmc_device(dev); 2964 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid); 2965 if (rv) 2966 rv = kref_get_unless_zero(&bmc->usecount); 2967 return rv; 2968 } 2969 2970 /* 2971 * Returns with the bmc's usecount incremented, if it is non-NULL. 2972 */ 2973 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2974 guid_t *guid) 2975 { 2976 struct device *dev; 2977 struct bmc_device *bmc = NULL; 2978 2979 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2980 if (dev) { 2981 bmc = to_bmc_device(dev); 2982 put_device(dev); 2983 } 2984 return bmc; 2985 } 2986 2987 struct prod_dev_id { 2988 unsigned int product_id; 2989 unsigned char device_id; 2990 }; 2991 2992 static int __find_bmc_prod_dev_id(struct device *dev, const void *data) 2993 { 2994 const struct prod_dev_id *cid = data; 2995 struct bmc_device *bmc; 2996 int rv; 2997 2998 if (dev->type != &bmc_device_type) 2999 return 0; 3000 3001 bmc = to_bmc_device(dev); 3002 rv = (bmc->id.product_id == cid->product_id 3003 && bmc->id.device_id == cid->device_id); 3004 if (rv) 3005 rv = kref_get_unless_zero(&bmc->usecount); 3006 return rv; 3007 } 3008 3009 /* 3010 * Returns with the bmc's usecount incremented, if it is non-NULL. 3011 */ 3012 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 3013 struct device_driver *drv, 3014 unsigned int product_id, unsigned char device_id) 3015 { 3016 struct prod_dev_id id = { 3017 .product_id = product_id, 3018 .device_id = device_id, 3019 }; 3020 struct device *dev; 3021 struct bmc_device *bmc = NULL; 3022 3023 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 3024 if (dev) { 3025 bmc = to_bmc_device(dev); 3026 put_device(dev); 3027 } 3028 return bmc; 3029 } 3030 3031 static DEFINE_IDA(ipmi_bmc_ida); 3032 3033 static void 3034 release_bmc_device(struct device *dev) 3035 { 3036 kfree(to_bmc_device(dev)); 3037 } 3038 3039 static void cleanup_bmc_work(struct work_struct *work) 3040 { 3041 struct bmc_device *bmc = container_of(work, struct bmc_device, 3042 remove_work); 3043 int id = bmc->pdev.id; /* Unregister overwrites id */ 3044 3045 platform_device_unregister(&bmc->pdev); 3046 ida_free(&ipmi_bmc_ida, id); 3047 } 3048 3049 static void 3050 cleanup_bmc_device(struct kref *ref) 3051 { 3052 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 3053 3054 /* 3055 * Remove the platform device in a work queue to avoid issues 3056 * with removing the device attributes while reading a device 3057 * attribute. 3058 */ 3059 queue_work(bmc_remove_work_wq, &bmc->remove_work); 3060 } 3061 3062 /* 3063 * Must be called with intf->bmc_reg_mutex held. 3064 */ 3065 static void __ipmi_bmc_unregister(struct ipmi_smi *intf) 3066 { 3067 struct bmc_device *bmc = intf->bmc; 3068 3069 if (!intf->bmc_registered) 3070 return; 3071 3072 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3073 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 3074 kfree(intf->my_dev_name); 3075 intf->my_dev_name = NULL; 3076 3077 mutex_lock(&bmc->dyn_mutex); 3078 list_del(&intf->bmc_link); 3079 mutex_unlock(&bmc->dyn_mutex); 3080 intf->bmc = &intf->tmp_bmc; 3081 kref_put(&bmc->usecount, cleanup_bmc_device); 3082 intf->bmc_registered = false; 3083 } 3084 3085 static void ipmi_bmc_unregister(struct ipmi_smi *intf) 3086 { 3087 mutex_lock(&intf->bmc_reg_mutex); 3088 __ipmi_bmc_unregister(intf); 3089 mutex_unlock(&intf->bmc_reg_mutex); 3090 } 3091 3092 /* 3093 * Must be called with intf->bmc_reg_mutex held. 3094 */ 3095 static int __ipmi_bmc_register(struct ipmi_smi *intf, 3096 struct ipmi_device_id *id, 3097 bool guid_set, guid_t *guid, int intf_num) 3098 { 3099 int rv; 3100 struct bmc_device *bmc; 3101 struct bmc_device *old_bmc; 3102 3103 /* 3104 * platform_device_register() can cause bmc_reg_mutex to 3105 * be claimed because of the is_visible functions of 3106 * the attributes. Eliminate possible recursion and 3107 * release the lock. 3108 */ 3109 intf->in_bmc_register = true; 3110 mutex_unlock(&intf->bmc_reg_mutex); 3111 3112 /* 3113 * Try to find if there is an bmc_device struct 3114 * representing the interfaced BMC already 3115 */ 3116 mutex_lock(&ipmidriver_mutex); 3117 if (guid_set) 3118 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid); 3119 else 3120 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 3121 id->product_id, 3122 id->device_id); 3123 3124 /* 3125 * If there is already an bmc_device, free the new one, 3126 * otherwise register the new BMC device 3127 */ 3128 if (old_bmc) { 3129 bmc = old_bmc; 3130 /* 3131 * Note: old_bmc already has usecount incremented by 3132 * the BMC find functions. 3133 */ 3134 intf->bmc = old_bmc; 3135 mutex_lock(&bmc->dyn_mutex); 3136 list_add_tail(&intf->bmc_link, &bmc->intfs); 3137 mutex_unlock(&bmc->dyn_mutex); 3138 3139 dev_info(intf->si_dev, 3140 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3141 bmc->id.manufacturer_id, 3142 bmc->id.product_id, 3143 bmc->id.device_id); 3144 } else { 3145 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL); 3146 if (!bmc) { 3147 rv = -ENOMEM; 3148 goto out; 3149 } 3150 INIT_LIST_HEAD(&bmc->intfs); 3151 mutex_init(&bmc->dyn_mutex); 3152 INIT_WORK(&bmc->remove_work, cleanup_bmc_work); 3153 3154 bmc->id = *id; 3155 bmc->dyn_id_set = 1; 3156 bmc->dyn_guid_set = guid_set; 3157 bmc->guid = *guid; 3158 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 3159 3160 bmc->pdev.name = "ipmi_bmc"; 3161 3162 rv = ida_alloc(&ipmi_bmc_ida, GFP_KERNEL); 3163 if (rv < 0) { 3164 kfree(bmc); 3165 goto out; 3166 } 3167 3168 bmc->pdev.dev.driver = &ipmidriver.driver; 3169 bmc->pdev.id = rv; 3170 bmc->pdev.dev.release = release_bmc_device; 3171 bmc->pdev.dev.type = &bmc_device_type; 3172 kref_init(&bmc->usecount); 3173 3174 intf->bmc = bmc; 3175 mutex_lock(&bmc->dyn_mutex); 3176 list_add_tail(&intf->bmc_link, &bmc->intfs); 3177 mutex_unlock(&bmc->dyn_mutex); 3178 3179 rv = platform_device_register(&bmc->pdev); 3180 if (rv) { 3181 dev_err(intf->si_dev, 3182 "Unable to register bmc device: %d\n", 3183 rv); 3184 goto out_list_del; 3185 } 3186 3187 dev_info(intf->si_dev, 3188 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3189 bmc->id.manufacturer_id, 3190 bmc->id.product_id, 3191 bmc->id.device_id); 3192 } 3193 3194 /* 3195 * create symlink from system interface device to bmc device 3196 * and back. 3197 */ 3198 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 3199 if (rv) { 3200 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv); 3201 goto out_put_bmc; 3202 } 3203 3204 if (intf_num == -1) 3205 intf_num = intf->intf_num; 3206 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num); 3207 if (!intf->my_dev_name) { 3208 rv = -ENOMEM; 3209 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n", 3210 rv); 3211 goto out_unlink1; 3212 } 3213 3214 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 3215 intf->my_dev_name); 3216 if (rv) { 3217 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n", 3218 rv); 3219 goto out_free_my_dev_name; 3220 } 3221 3222 intf->bmc_registered = true; 3223 3224 out: 3225 mutex_unlock(&ipmidriver_mutex); 3226 mutex_lock(&intf->bmc_reg_mutex); 3227 intf->in_bmc_register = false; 3228 return rv; 3229 3230 3231 out_free_my_dev_name: 3232 kfree(intf->my_dev_name); 3233 intf->my_dev_name = NULL; 3234 3235 out_unlink1: 3236 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3237 3238 out_put_bmc: 3239 mutex_lock(&bmc->dyn_mutex); 3240 list_del(&intf->bmc_link); 3241 mutex_unlock(&bmc->dyn_mutex); 3242 intf->bmc = &intf->tmp_bmc; 3243 kref_put(&bmc->usecount, cleanup_bmc_device); 3244 goto out; 3245 3246 out_list_del: 3247 mutex_lock(&bmc->dyn_mutex); 3248 list_del(&intf->bmc_link); 3249 mutex_unlock(&bmc->dyn_mutex); 3250 intf->bmc = &intf->tmp_bmc; 3251 put_device(&bmc->pdev.dev); 3252 goto out; 3253 } 3254 3255 static int 3256 send_guid_cmd(struct ipmi_smi *intf, int chan) 3257 { 3258 struct kernel_ipmi_msg msg; 3259 struct ipmi_system_interface_addr si; 3260 3261 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3262 si.channel = IPMI_BMC_CHANNEL; 3263 si.lun = 0; 3264 3265 msg.netfn = IPMI_NETFN_APP_REQUEST; 3266 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 3267 msg.data = NULL; 3268 msg.data_len = 0; 3269 return i_ipmi_request(NULL, 3270 intf, 3271 (struct ipmi_addr *) &si, 3272 0, 3273 &msg, 3274 intf, 3275 NULL, 3276 NULL, 3277 0, 3278 intf->addrinfo[0].address, 3279 intf->addrinfo[0].lun, 3280 -1, 0); 3281 } 3282 3283 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3284 { 3285 struct bmc_device *bmc = intf->bmc; 3286 3287 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3288 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 3289 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 3290 /* Not for me */ 3291 return; 3292 3293 if (msg->msg.data[0] != 0) { 3294 /* Error from getting the GUID, the BMC doesn't have one. */ 3295 bmc->dyn_guid_set = 0; 3296 goto out; 3297 } 3298 3299 if (msg->msg.data_len < UUID_SIZE + 1) { 3300 bmc->dyn_guid_set = 0; 3301 dev_warn(intf->si_dev, 3302 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n", 3303 msg->msg.data_len, UUID_SIZE + 1); 3304 goto out; 3305 } 3306 3307 import_guid(&bmc->fetch_guid, msg->msg.data + 1); 3308 /* 3309 * Make sure the guid data is available before setting 3310 * dyn_guid_set. 3311 */ 3312 smp_wmb(); 3313 bmc->dyn_guid_set = 1; 3314 out: 3315 wake_up(&intf->waitq); 3316 } 3317 3318 static void __get_guid(struct ipmi_smi *intf) 3319 { 3320 int rv; 3321 struct bmc_device *bmc = intf->bmc; 3322 3323 bmc->dyn_guid_set = 2; 3324 intf->null_user_handler = guid_handler; 3325 rv = send_guid_cmd(intf, 0); 3326 if (rv) 3327 /* Send failed, no GUID available. */ 3328 bmc->dyn_guid_set = 0; 3329 else 3330 wait_event(intf->waitq, bmc->dyn_guid_set != 2); 3331 3332 /* dyn_guid_set makes the guid data available. */ 3333 smp_rmb(); 3334 3335 intf->null_user_handler = NULL; 3336 } 3337 3338 static int 3339 send_channel_info_cmd(struct ipmi_smi *intf, int chan) 3340 { 3341 struct kernel_ipmi_msg msg; 3342 unsigned char data[1]; 3343 struct ipmi_system_interface_addr si; 3344 3345 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3346 si.channel = IPMI_BMC_CHANNEL; 3347 si.lun = 0; 3348 3349 msg.netfn = IPMI_NETFN_APP_REQUEST; 3350 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 3351 msg.data = data; 3352 msg.data_len = 1; 3353 data[0] = chan; 3354 return i_ipmi_request(NULL, 3355 intf, 3356 (struct ipmi_addr *) &si, 3357 0, 3358 &msg, 3359 intf, 3360 NULL, 3361 NULL, 3362 0, 3363 intf->addrinfo[0].address, 3364 intf->addrinfo[0].lun, 3365 -1, 0); 3366 } 3367 3368 static void 3369 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3370 { 3371 int rv = 0; 3372 int ch; 3373 unsigned int set = intf->curr_working_cset; 3374 struct ipmi_channel *chans; 3375 3376 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3377 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 3378 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 3379 /* It's the one we want */ 3380 if (msg->msg.data[0] != 0) { 3381 /* Got an error from the channel, just go on. */ 3382 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 3383 /* 3384 * If the MC does not support this 3385 * command, that is legal. We just 3386 * assume it has one IPMB at channel 3387 * zero. 3388 */ 3389 intf->wchannels[set].c[0].medium 3390 = IPMI_CHANNEL_MEDIUM_IPMB; 3391 intf->wchannels[set].c[0].protocol 3392 = IPMI_CHANNEL_PROTOCOL_IPMB; 3393 3394 intf->channel_list = intf->wchannels + set; 3395 intf->channels_ready = true; 3396 wake_up(&intf->waitq); 3397 goto out; 3398 } 3399 goto next_channel; 3400 } 3401 if (msg->msg.data_len < 4) { 3402 /* Message not big enough, just go on. */ 3403 goto next_channel; 3404 } 3405 ch = intf->curr_channel; 3406 chans = intf->wchannels[set].c; 3407 chans[ch].medium = msg->msg.data[2] & 0x7f; 3408 chans[ch].protocol = msg->msg.data[3] & 0x1f; 3409 3410 next_channel: 3411 intf->curr_channel++; 3412 if (intf->curr_channel >= IPMI_MAX_CHANNELS) { 3413 intf->channel_list = intf->wchannels + set; 3414 intf->channels_ready = true; 3415 wake_up(&intf->waitq); 3416 } else { 3417 intf->channel_list = intf->wchannels + set; 3418 intf->channels_ready = true; 3419 rv = send_channel_info_cmd(intf, intf->curr_channel); 3420 } 3421 3422 if (rv) { 3423 /* Got an error somehow, just give up. */ 3424 dev_warn(intf->si_dev, 3425 "Error sending channel information for channel %d: %d\n", 3426 intf->curr_channel, rv); 3427 3428 intf->channel_list = intf->wchannels + set; 3429 intf->channels_ready = true; 3430 wake_up(&intf->waitq); 3431 } 3432 } 3433 out: 3434 return; 3435 } 3436 3437 /* 3438 * Must be holding intf->bmc_reg_mutex to call this. 3439 */ 3440 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id) 3441 { 3442 int rv; 3443 3444 if (ipmi_version_major(id) > 1 3445 || (ipmi_version_major(id) == 1 3446 && ipmi_version_minor(id) >= 5)) { 3447 unsigned int set; 3448 3449 /* 3450 * Start scanning the channels to see what is 3451 * available. 3452 */ 3453 set = !intf->curr_working_cset; 3454 intf->curr_working_cset = set; 3455 memset(&intf->wchannels[set], 0, 3456 sizeof(struct ipmi_channel_set)); 3457 3458 intf->null_user_handler = channel_handler; 3459 intf->curr_channel = 0; 3460 rv = send_channel_info_cmd(intf, 0); 3461 if (rv) { 3462 dev_warn(intf->si_dev, 3463 "Error sending channel information for channel 0, %d\n", 3464 rv); 3465 intf->null_user_handler = NULL; 3466 return -EIO; 3467 } 3468 3469 /* Wait for the channel info to be read. */ 3470 wait_event(intf->waitq, intf->channels_ready); 3471 intf->null_user_handler = NULL; 3472 } else { 3473 unsigned int set = intf->curr_working_cset; 3474 3475 /* Assume a single IPMB channel at zero. */ 3476 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 3477 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 3478 intf->channel_list = intf->wchannels + set; 3479 intf->channels_ready = true; 3480 } 3481 3482 return 0; 3483 } 3484 3485 static void ipmi_poll(struct ipmi_smi *intf) 3486 { 3487 if (intf->handlers->poll) 3488 intf->handlers->poll(intf->send_info); 3489 /* In case something came in */ 3490 handle_new_recv_msgs(intf); 3491 } 3492 3493 void ipmi_poll_interface(struct ipmi_user *user) 3494 { 3495 ipmi_poll(user->intf); 3496 } 3497 EXPORT_SYMBOL(ipmi_poll_interface); 3498 3499 static ssize_t nr_users_show(struct device *dev, 3500 struct device_attribute *attr, 3501 char *buf) 3502 { 3503 struct ipmi_smi *intf = container_of(attr, 3504 struct ipmi_smi, nr_users_devattr); 3505 3506 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users)); 3507 } 3508 static DEVICE_ATTR_RO(nr_users); 3509 3510 static ssize_t nr_msgs_show(struct device *dev, 3511 struct device_attribute *attr, 3512 char *buf) 3513 { 3514 struct ipmi_smi *intf = container_of(attr, 3515 struct ipmi_smi, nr_msgs_devattr); 3516 struct ipmi_user *user; 3517 unsigned int count = 0; 3518 3519 mutex_lock(&intf->users_mutex); 3520 list_for_each_entry(user, &intf->users, link) 3521 count += atomic_read(&user->nr_msgs); 3522 mutex_unlock(&intf->users_mutex); 3523 3524 return sysfs_emit(buf, "%u\n", count); 3525 } 3526 static DEVICE_ATTR_RO(nr_msgs); 3527 3528 static ssize_t maintenance_mode_show(struct device *dev, 3529 struct device_attribute *attr, 3530 char *buf) 3531 { 3532 struct ipmi_smi *intf = container_of(attr, 3533 struct ipmi_smi, 3534 maintenance_mode_devattr); 3535 3536 return sysfs_emit(buf, "%u %d\n", intf->maintenance_mode_state, 3537 intf->auto_maintenance_timeout); 3538 } 3539 static DEVICE_ATTR_RO(maintenance_mode); 3540 3541 static void redo_bmc_reg(struct work_struct *work) 3542 { 3543 struct ipmi_smi *intf = container_of(work, struct ipmi_smi, 3544 bmc_reg_work); 3545 3546 if (!intf->in_shutdown) 3547 bmc_get_device_id(intf, NULL, NULL, NULL, NULL); 3548 3549 kref_put(&intf->refcount, intf_free); 3550 } 3551 3552 int ipmi_add_smi(struct module *owner, 3553 const struct ipmi_smi_handlers *handlers, 3554 void *send_info, 3555 struct device *si_dev, 3556 unsigned char slave_addr) 3557 { 3558 int i, j; 3559 int rv; 3560 struct ipmi_smi *intf, *tintf; 3561 struct list_head *link; 3562 struct ipmi_device_id id; 3563 3564 /* 3565 * Make sure the driver is actually initialized, this handles 3566 * problems with initialization order. 3567 */ 3568 rv = ipmi_init_msghandler(); 3569 if (rv) 3570 return rv; 3571 3572 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 3573 if (!intf) 3574 return -ENOMEM; 3575 3576 intf->owner = owner; 3577 intf->bmc = &intf->tmp_bmc; 3578 INIT_LIST_HEAD(&intf->bmc->intfs); 3579 mutex_init(&intf->bmc->dyn_mutex); 3580 INIT_LIST_HEAD(&intf->bmc_link); 3581 mutex_init(&intf->bmc_reg_mutex); 3582 intf->intf_num = -1; /* Mark it invalid for now. */ 3583 kref_init(&intf->refcount); 3584 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg); 3585 intf->si_dev = si_dev; 3586 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 3587 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR; 3588 intf->addrinfo[j].lun = 2; 3589 } 3590 if (slave_addr != 0) 3591 intf->addrinfo[0].address = slave_addr; 3592 INIT_LIST_HEAD(&intf->user_msgs); 3593 mutex_init(&intf->user_msgs_mutex); 3594 INIT_LIST_HEAD(&intf->users); 3595 mutex_init(&intf->users_mutex); 3596 atomic_set(&intf->nr_users, 0); 3597 intf->handlers = handlers; 3598 intf->send_info = send_info; 3599 mutex_init(&intf->seq_lock); 3600 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 3601 intf->seq_table[j].inuse = 0; 3602 intf->seq_table[j].seqid = 0; 3603 } 3604 intf->curr_seq = 0; 3605 spin_lock_init(&intf->waiting_rcv_msgs_lock); 3606 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 3607 INIT_WORK(&intf->smi_work, smi_work); 3608 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 3609 spin_lock_init(&intf->xmit_msgs_lock); 3610 INIT_LIST_HEAD(&intf->xmit_msgs); 3611 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 3612 mutex_init(&intf->events_mutex); 3613 spin_lock_init(&intf->watch_lock); 3614 atomic_set(&intf->event_waiters, 0); 3615 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 3616 INIT_LIST_HEAD(&intf->waiting_events); 3617 intf->waiting_events_count = 0; 3618 mutex_init(&intf->cmd_rcvrs_mutex); 3619 spin_lock_init(&intf->maintenance_mode_lock); 3620 INIT_LIST_HEAD(&intf->cmd_rcvrs); 3621 init_waitqueue_head(&intf->waitq); 3622 for (i = 0; i < IPMI_NUM_STATS; i++) 3623 atomic_set(&intf->stats[i], 0); 3624 3625 /* 3626 * Grab the watchers mutex so we can deliver the new interface 3627 * without races. 3628 */ 3629 mutex_lock(&smi_watchers_mutex); 3630 mutex_lock(&ipmi_interfaces_mutex); 3631 /* Look for a hole in the numbers. */ 3632 i = 0; 3633 link = &ipmi_interfaces; 3634 list_for_each_entry(tintf, &ipmi_interfaces, link) { 3635 if (tintf->intf_num != i) { 3636 link = &tintf->link; 3637 break; 3638 } 3639 i++; 3640 } 3641 /* Add the new interface in numeric order. */ 3642 if (i == 0) 3643 list_add(&intf->link, &ipmi_interfaces); 3644 else 3645 list_add_tail(&intf->link, link); 3646 3647 rv = handlers->start_processing(send_info, intf); 3648 if (rv) 3649 goto out_err; 3650 3651 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i); 3652 if (rv) { 3653 dev_err(si_dev, "Unable to get the device id: %d\n", rv); 3654 goto out_err_started; 3655 } 3656 3657 mutex_lock(&intf->bmc_reg_mutex); 3658 rv = __scan_channels(intf, &id); 3659 mutex_unlock(&intf->bmc_reg_mutex); 3660 if (rv) 3661 goto out_err_bmc_reg; 3662 3663 intf->nr_users_devattr = dev_attr_nr_users; 3664 sysfs_attr_init(&intf->nr_users_devattr.attr); 3665 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr); 3666 if (rv) 3667 goto out_err_bmc_reg; 3668 3669 intf->nr_msgs_devattr = dev_attr_nr_msgs; 3670 sysfs_attr_init(&intf->nr_msgs_devattr.attr); 3671 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr); 3672 if (rv) { 3673 device_remove_file(intf->si_dev, &intf->nr_users_devattr); 3674 goto out_err_bmc_reg; 3675 } 3676 3677 intf->maintenance_mode_devattr = dev_attr_maintenance_mode; 3678 sysfs_attr_init(&intf->maintenance_mode_devattr.attr); 3679 rv = device_create_file(intf->si_dev, &intf->maintenance_mode_devattr); 3680 if (rv) { 3681 device_remove_file(intf->si_dev, &intf->nr_users_devattr); 3682 goto out_err_bmc_reg; 3683 } 3684 3685 intf->intf_num = i; 3686 mutex_unlock(&ipmi_interfaces_mutex); 3687 3688 /* After this point the interface is legal to use. */ 3689 call_smi_watchers(i, intf->si_dev); 3690 3691 mutex_unlock(&smi_watchers_mutex); 3692 3693 return 0; 3694 3695 out_err_bmc_reg: 3696 ipmi_bmc_unregister(intf); 3697 out_err_started: 3698 if (intf->handlers->shutdown) 3699 intf->handlers->shutdown(intf->send_info); 3700 out_err: 3701 list_del(&intf->link); 3702 mutex_unlock(&ipmi_interfaces_mutex); 3703 mutex_unlock(&smi_watchers_mutex); 3704 kref_put(&intf->refcount, intf_free); 3705 3706 return rv; 3707 } 3708 EXPORT_SYMBOL(ipmi_add_smi); 3709 3710 static void deliver_smi_err_response(struct ipmi_smi *intf, 3711 struct ipmi_smi_msg *msg, 3712 unsigned char err) 3713 { 3714 int rv; 3715 msg->rsp[0] = msg->data[0] | 4; 3716 msg->rsp[1] = msg->data[1]; 3717 msg->rsp[2] = err; 3718 msg->rsp_size = 3; 3719 3720 /* This will never requeue, but it may ask us to free the message. */ 3721 rv = handle_one_recv_msg(intf, msg); 3722 if (rv == 0) 3723 ipmi_free_smi_msg(msg); 3724 } 3725 3726 static void cleanup_smi_msgs(struct ipmi_smi *intf) 3727 { 3728 int i; 3729 struct seq_table *ent; 3730 struct ipmi_smi_msg *msg; 3731 struct list_head *entry; 3732 struct list_head tmplist; 3733 3734 /* Clear out our transmit queues and hold the messages. */ 3735 INIT_LIST_HEAD(&tmplist); 3736 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 3737 list_splice_tail(&intf->xmit_msgs, &tmplist); 3738 3739 /* Current message first, to preserve order */ 3740 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 3741 /* Wait for the message to clear out. */ 3742 schedule_timeout(1); 3743 } 3744 3745 /* No need for locks, the interface is down. */ 3746 3747 /* 3748 * Return errors for all pending messages in queue and in the 3749 * tables waiting for remote responses. 3750 */ 3751 while (!list_empty(&tmplist)) { 3752 entry = tmplist.next; 3753 list_del(entry); 3754 msg = list_entry(entry, struct ipmi_smi_msg, link); 3755 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 3756 } 3757 3758 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 3759 ent = &intf->seq_table[i]; 3760 if (!ent->inuse) 3761 continue; 3762 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED); 3763 } 3764 } 3765 3766 void ipmi_unregister_smi(struct ipmi_smi *intf) 3767 { 3768 struct ipmi_smi_watcher *w; 3769 int intf_num; 3770 3771 if (!intf) 3772 return; 3773 3774 intf_num = intf->intf_num; 3775 mutex_lock(&ipmi_interfaces_mutex); 3776 cancel_work_sync(&intf->smi_work); 3777 /* smi_work() can no longer be in progress after this. */ 3778 3779 intf->intf_num = -1; 3780 intf->in_shutdown = true; 3781 list_del(&intf->link); 3782 mutex_unlock(&ipmi_interfaces_mutex); 3783 3784 /* 3785 * At this point no users can be added to the interface and no 3786 * new messages can be sent. 3787 */ 3788 3789 if (intf->handlers->shutdown) 3790 intf->handlers->shutdown(intf->send_info); 3791 3792 device_remove_file(intf->si_dev, &intf->maintenance_mode_devattr); 3793 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr); 3794 device_remove_file(intf->si_dev, &intf->nr_users_devattr); 3795 3796 /* 3797 * Call all the watcher interfaces to tell them that 3798 * an interface is going away. 3799 */ 3800 mutex_lock(&smi_watchers_mutex); 3801 list_for_each_entry(w, &smi_watchers, link) 3802 w->smi_gone(intf_num); 3803 mutex_unlock(&smi_watchers_mutex); 3804 3805 mutex_lock(&intf->users_mutex); 3806 while (!list_empty(&intf->users)) { 3807 struct ipmi_user *user = list_first_entry(&intf->users, 3808 struct ipmi_user, link); 3809 3810 _ipmi_destroy_user(user); 3811 } 3812 mutex_unlock(&intf->users_mutex); 3813 3814 cleanup_smi_msgs(intf); 3815 3816 ipmi_bmc_unregister(intf); 3817 3818 kref_put(&intf->refcount, intf_free); 3819 } 3820 EXPORT_SYMBOL(ipmi_unregister_smi); 3821 3822 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf, 3823 struct ipmi_smi_msg *msg) 3824 { 3825 struct ipmi_ipmb_addr ipmb_addr; 3826 struct ipmi_recv_msg *recv_msg; 3827 3828 /* 3829 * This is 11, not 10, because the response must contain a 3830 * completion code. 3831 */ 3832 if (msg->rsp_size < 11) { 3833 /* Message not big enough, just ignore it. */ 3834 ipmi_inc_stat(intf, invalid_ipmb_responses); 3835 return 0; 3836 } 3837 3838 if (msg->rsp[2] != 0) { 3839 /* An error getting the response, just ignore it. */ 3840 return 0; 3841 } 3842 3843 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3844 ipmb_addr.slave_addr = msg->rsp[6]; 3845 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3846 ipmb_addr.lun = msg->rsp[7] & 3; 3847 3848 /* 3849 * It's a response from a remote entity. Look up the sequence 3850 * number and handle the response. 3851 */ 3852 if (intf_find_seq(intf, 3853 msg->rsp[7] >> 2, 3854 msg->rsp[3] & 0x0f, 3855 msg->rsp[8], 3856 (msg->rsp[4] >> 2) & (~1), 3857 (struct ipmi_addr *) &ipmb_addr, 3858 &recv_msg)) { 3859 /* 3860 * We were unable to find the sequence number, 3861 * so just nuke the message. 3862 */ 3863 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3864 return 0; 3865 } 3866 3867 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9); 3868 /* 3869 * The other fields matched, so no need to set them, except 3870 * for netfn, which needs to be the response that was 3871 * returned, not the request value. 3872 */ 3873 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3874 recv_msg->msg.data = recv_msg->msg_data; 3875 recv_msg->msg.data_len = msg->rsp_size - 10; 3876 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3877 if (deliver_response(intf, recv_msg)) 3878 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3879 else 3880 ipmi_inc_stat(intf, handled_ipmb_responses); 3881 3882 return 0; 3883 } 3884 3885 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf, 3886 struct ipmi_smi_msg *msg) 3887 { 3888 struct cmd_rcvr *rcvr; 3889 int rv = 0; 3890 unsigned char netfn; 3891 unsigned char cmd; 3892 unsigned char chan; 3893 struct ipmi_user *user = NULL; 3894 struct ipmi_ipmb_addr *ipmb_addr; 3895 struct ipmi_recv_msg *recv_msg = NULL; 3896 3897 if (msg->rsp_size < 10) { 3898 /* Message not big enough, just ignore it. */ 3899 ipmi_inc_stat(intf, invalid_commands); 3900 return 0; 3901 } 3902 3903 if (msg->rsp[2] != 0) { 3904 /* An error getting the response, just ignore it. */ 3905 return 0; 3906 } 3907 3908 netfn = msg->rsp[4] >> 2; 3909 cmd = msg->rsp[8]; 3910 chan = msg->rsp[3] & 0xf; 3911 3912 rcu_read_lock(); 3913 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3914 if (rcvr) { 3915 user = rcvr->user; 3916 recv_msg = ipmi_alloc_recv_msg(user); 3917 } 3918 rcu_read_unlock(); 3919 3920 if (user == NULL) { 3921 /* We didn't find a user, deliver an error response. */ 3922 ipmi_inc_stat(intf, unhandled_commands); 3923 3924 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3925 msg->data[1] = IPMI_SEND_MSG_CMD; 3926 msg->data[2] = msg->rsp[3]; 3927 msg->data[3] = msg->rsp[6]; 3928 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3929 msg->data[5] = ipmb_checksum(&msg->data[3], 2); 3930 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address; 3931 /* rqseq/lun */ 3932 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3933 msg->data[8] = msg->rsp[8]; /* cmd */ 3934 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3935 msg->data[10] = ipmb_checksum(&msg->data[6], 4); 3936 msg->data_size = 11; 3937 3938 dev_dbg(intf->si_dev, "Invalid command: %*ph\n", 3939 msg->data_size, msg->data); 3940 3941 smi_send(intf, intf->handlers, msg, 0); 3942 /* 3943 * We used the message, so return the value that 3944 * causes it to not be freed or queued. 3945 */ 3946 rv = -1; 3947 } else if (!IS_ERR(recv_msg)) { 3948 /* Extract the source address from the data. */ 3949 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3950 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3951 ipmb_addr->slave_addr = msg->rsp[6]; 3952 ipmb_addr->lun = msg->rsp[7] & 3; 3953 ipmb_addr->channel = msg->rsp[3] & 0xf; 3954 3955 /* 3956 * Extract the rest of the message information 3957 * from the IPMB header. 3958 */ 3959 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3960 recv_msg->msgid = msg->rsp[7] >> 2; 3961 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3962 recv_msg->msg.cmd = msg->rsp[8]; 3963 recv_msg->msg.data = recv_msg->msg_data; 3964 3965 /* 3966 * We chop off 10, not 9 bytes because the checksum 3967 * at the end also needs to be removed. 3968 */ 3969 recv_msg->msg.data_len = msg->rsp_size - 10; 3970 memcpy(recv_msg->msg_data, &msg->rsp[9], 3971 msg->rsp_size - 10); 3972 if (deliver_response(intf, recv_msg)) 3973 ipmi_inc_stat(intf, unhandled_commands); 3974 else 3975 ipmi_inc_stat(intf, handled_commands); 3976 } else { 3977 /* 3978 * We couldn't allocate memory for the message, so 3979 * requeue it for handling later. 3980 */ 3981 rv = 1; 3982 } 3983 3984 return rv; 3985 } 3986 3987 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf, 3988 struct ipmi_smi_msg *msg) 3989 { 3990 struct cmd_rcvr *rcvr; 3991 int rv = 0; 3992 struct ipmi_user *user = NULL; 3993 struct ipmi_ipmb_direct_addr *daddr; 3994 struct ipmi_recv_msg *recv_msg = NULL; 3995 unsigned char netfn = msg->rsp[0] >> 2; 3996 unsigned char cmd = msg->rsp[3]; 3997 3998 rcu_read_lock(); 3999 /* We always use channel 0 for direct messages. */ 4000 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0); 4001 if (rcvr) { 4002 user = rcvr->user; 4003 recv_msg = ipmi_alloc_recv_msg(user); 4004 } 4005 rcu_read_unlock(); 4006 4007 if (user == NULL) { 4008 /* We didn't find a user, deliver an error response. */ 4009 ipmi_inc_stat(intf, unhandled_commands); 4010 4011 msg->data[0] = (netfn + 1) << 2; 4012 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */ 4013 msg->data[1] = msg->rsp[1]; /* Addr */ 4014 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */ 4015 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */ 4016 msg->data[3] = cmd; 4017 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE; 4018 msg->data_size = 5; 4019 4020 smi_send(intf, intf->handlers, msg, 0); 4021 /* 4022 * We used the message, so return the value that 4023 * causes it to not be freed or queued. 4024 */ 4025 rv = -1; 4026 } else if (!IS_ERR(recv_msg)) { 4027 /* Extract the source address from the data. */ 4028 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr; 4029 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 4030 daddr->channel = 0; 4031 daddr->slave_addr = msg->rsp[1]; 4032 daddr->rs_lun = msg->rsp[0] & 3; 4033 daddr->rq_lun = msg->rsp[2] & 3; 4034 4035 /* 4036 * Extract the rest of the message information 4037 * from the IPMB header. 4038 */ 4039 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 4040 recv_msg->msgid = (msg->rsp[2] >> 2); 4041 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4042 recv_msg->msg.cmd = msg->rsp[3]; 4043 recv_msg->msg.data = recv_msg->msg_data; 4044 4045 recv_msg->msg.data_len = msg->rsp_size - 4; 4046 memcpy(recv_msg->msg_data, msg->rsp + 4, 4047 msg->rsp_size - 4); 4048 if (deliver_response(intf, recv_msg)) 4049 ipmi_inc_stat(intf, unhandled_commands); 4050 else 4051 ipmi_inc_stat(intf, handled_commands); 4052 } else { 4053 /* 4054 * We couldn't allocate memory for the message, so 4055 * requeue it for handling later. 4056 */ 4057 rv = 1; 4058 } 4059 4060 return rv; 4061 } 4062 4063 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf, 4064 struct ipmi_smi_msg *msg) 4065 { 4066 struct ipmi_recv_msg *recv_msg; 4067 struct ipmi_ipmb_direct_addr *daddr; 4068 4069 recv_msg = msg->recv_msg; 4070 if (recv_msg == NULL) { 4071 dev_warn(intf->si_dev, 4072 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 4073 return 0; 4074 } 4075 4076 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4077 recv_msg->msgid = msg->msgid; 4078 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr; 4079 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 4080 daddr->channel = 0; 4081 daddr->slave_addr = msg->rsp[1]; 4082 daddr->rq_lun = msg->rsp[0] & 3; 4083 daddr->rs_lun = msg->rsp[2] & 3; 4084 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4085 recv_msg->msg.cmd = msg->rsp[3]; 4086 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4); 4087 recv_msg->msg.data = recv_msg->msg_data; 4088 recv_msg->msg.data_len = msg->rsp_size - 4; 4089 deliver_local_response(intf, recv_msg); 4090 4091 return 0; 4092 } 4093 4094 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf, 4095 struct ipmi_smi_msg *msg) 4096 { 4097 struct ipmi_lan_addr lan_addr; 4098 struct ipmi_recv_msg *recv_msg; 4099 4100 4101 /* 4102 * This is 13, not 12, because the response must contain a 4103 * completion code. 4104 */ 4105 if (msg->rsp_size < 13) { 4106 /* Message not big enough, just ignore it. */ 4107 ipmi_inc_stat(intf, invalid_lan_responses); 4108 return 0; 4109 } 4110 4111 if (msg->rsp[2] != 0) { 4112 /* An error getting the response, just ignore it. */ 4113 return 0; 4114 } 4115 4116 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 4117 lan_addr.session_handle = msg->rsp[4]; 4118 lan_addr.remote_SWID = msg->rsp[8]; 4119 lan_addr.local_SWID = msg->rsp[5]; 4120 lan_addr.channel = msg->rsp[3] & 0x0f; 4121 lan_addr.privilege = msg->rsp[3] >> 4; 4122 lan_addr.lun = msg->rsp[9] & 3; 4123 4124 /* 4125 * It's a response from a remote entity. Look up the sequence 4126 * number and handle the response. 4127 */ 4128 if (intf_find_seq(intf, 4129 msg->rsp[9] >> 2, 4130 msg->rsp[3] & 0x0f, 4131 msg->rsp[10], 4132 (msg->rsp[6] >> 2) & (~1), 4133 (struct ipmi_addr *) &lan_addr, 4134 &recv_msg)) { 4135 /* 4136 * We were unable to find the sequence number, 4137 * so just nuke the message. 4138 */ 4139 ipmi_inc_stat(intf, unhandled_lan_responses); 4140 return 0; 4141 } 4142 4143 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11); 4144 /* 4145 * The other fields matched, so no need to set them, except 4146 * for netfn, which needs to be the response that was 4147 * returned, not the request value. 4148 */ 4149 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4150 recv_msg->msg.data = recv_msg->msg_data; 4151 recv_msg->msg.data_len = msg->rsp_size - 12; 4152 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4153 if (deliver_response(intf, recv_msg)) 4154 ipmi_inc_stat(intf, unhandled_lan_responses); 4155 else 4156 ipmi_inc_stat(intf, handled_lan_responses); 4157 4158 return 0; 4159 } 4160 4161 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf, 4162 struct ipmi_smi_msg *msg) 4163 { 4164 struct cmd_rcvr *rcvr; 4165 int rv = 0; 4166 unsigned char netfn; 4167 unsigned char cmd; 4168 unsigned char chan; 4169 struct ipmi_user *user = NULL; 4170 struct ipmi_lan_addr *lan_addr; 4171 struct ipmi_recv_msg *recv_msg = NULL; 4172 4173 if (msg->rsp_size < 12) { 4174 /* Message not big enough, just ignore it. */ 4175 ipmi_inc_stat(intf, invalid_commands); 4176 return 0; 4177 } 4178 4179 if (msg->rsp[2] != 0) { 4180 /* An error getting the response, just ignore it. */ 4181 return 0; 4182 } 4183 4184 netfn = msg->rsp[6] >> 2; 4185 cmd = msg->rsp[10]; 4186 chan = msg->rsp[3] & 0xf; 4187 4188 rcu_read_lock(); 4189 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4190 if (rcvr) { 4191 user = rcvr->user; 4192 recv_msg = ipmi_alloc_recv_msg(user); 4193 } 4194 rcu_read_unlock(); 4195 4196 if (user == NULL) { 4197 /* We didn't find a user, just give up and return an error. */ 4198 ipmi_inc_stat(intf, unhandled_commands); 4199 4200 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 4201 msg->data[1] = IPMI_SEND_MSG_CMD; 4202 msg->data[2] = chan; 4203 msg->data[3] = msg->rsp[4]; /* handle */ 4204 msg->data[4] = msg->rsp[8]; /* rsSWID */ 4205 msg->data[5] = ((netfn + 1) << 2) | (msg->rsp[9] & 0x3); 4206 msg->data[6] = ipmb_checksum(&msg->data[3], 3); 4207 msg->data[7] = msg->rsp[5]; /* rqSWID */ 4208 /* rqseq/lun */ 4209 msg->data[8] = (msg->rsp[9] & 0xfc) | (msg->rsp[6] & 0x3); 4210 msg->data[9] = cmd; 4211 msg->data[10] = IPMI_INVALID_CMD_COMPLETION_CODE; 4212 msg->data[11] = ipmb_checksum(&msg->data[7], 4); 4213 msg->data_size = 12; 4214 4215 dev_dbg(intf->si_dev, "Invalid command: %*ph\n", 4216 msg->data_size, msg->data); 4217 4218 smi_send(intf, intf->handlers, msg, 0); 4219 /* 4220 * We used the message, so return the value that 4221 * causes it to not be freed or queued. 4222 */ 4223 rv = -1; 4224 } else if (!IS_ERR(recv_msg)) { 4225 /* Extract the source address from the data. */ 4226 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 4227 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 4228 lan_addr->session_handle = msg->rsp[4]; 4229 lan_addr->remote_SWID = msg->rsp[8]; 4230 lan_addr->local_SWID = msg->rsp[5]; 4231 lan_addr->lun = msg->rsp[9] & 3; 4232 lan_addr->channel = msg->rsp[3] & 0xf; 4233 lan_addr->privilege = msg->rsp[3] >> 4; 4234 4235 /* 4236 * Extract the rest of the message information 4237 * from the IPMB header. 4238 */ 4239 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 4240 recv_msg->msgid = msg->rsp[9] >> 2; 4241 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4242 recv_msg->msg.cmd = msg->rsp[10]; 4243 recv_msg->msg.data = recv_msg->msg_data; 4244 4245 /* 4246 * We chop off 12, not 11 bytes because the checksum 4247 * at the end also needs to be removed. 4248 */ 4249 recv_msg->msg.data_len = msg->rsp_size - 12; 4250 memcpy(recv_msg->msg_data, &msg->rsp[11], 4251 msg->rsp_size - 12); 4252 if (deliver_response(intf, recv_msg)) 4253 ipmi_inc_stat(intf, unhandled_commands); 4254 else 4255 ipmi_inc_stat(intf, handled_commands); 4256 } else { 4257 /* 4258 * We couldn't allocate memory for the message, so 4259 * requeue it for handling later. 4260 */ 4261 rv = 1; 4262 } 4263 4264 return rv; 4265 } 4266 4267 /* 4268 * This routine will handle "Get Message" command responses with 4269 * channels that use an OEM Medium. The message format belongs to 4270 * the OEM. See IPMI 2.0 specification, Chapter 6 and 4271 * Chapter 22, sections 22.6 and 22.24 for more details. 4272 */ 4273 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf, 4274 struct ipmi_smi_msg *msg) 4275 { 4276 struct cmd_rcvr *rcvr; 4277 int rv = 0; 4278 unsigned char netfn; 4279 unsigned char cmd; 4280 unsigned char chan; 4281 struct ipmi_user *user = NULL; 4282 struct ipmi_system_interface_addr *smi_addr; 4283 struct ipmi_recv_msg *recv_msg = NULL; 4284 4285 /* 4286 * We expect the OEM SW to perform error checking 4287 * so we just do some basic sanity checks 4288 */ 4289 if (msg->rsp_size < 4) { 4290 /* Message not big enough, just ignore it. */ 4291 ipmi_inc_stat(intf, invalid_commands); 4292 return 0; 4293 } 4294 4295 if (msg->rsp[2] != 0) { 4296 /* An error getting the response, just ignore it. */ 4297 return 0; 4298 } 4299 4300 /* 4301 * This is an OEM Message so the OEM needs to know how 4302 * handle the message. We do no interpretation. 4303 */ 4304 netfn = msg->rsp[0] >> 2; 4305 cmd = msg->rsp[1]; 4306 chan = msg->rsp[3] & 0xf; 4307 4308 rcu_read_lock(); 4309 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4310 if (rcvr) { 4311 user = rcvr->user; 4312 recv_msg = ipmi_alloc_recv_msg(user); 4313 } 4314 rcu_read_unlock(); 4315 4316 if (user == NULL) { 4317 /* We didn't find a user, just give up. */ 4318 ipmi_inc_stat(intf, unhandled_commands); 4319 4320 /* 4321 * Don't do anything with these messages, just allow 4322 * them to be freed. 4323 */ 4324 4325 rv = 0; 4326 } else if (!IS_ERR(recv_msg)) { 4327 /* 4328 * OEM Messages are expected to be delivered via 4329 * the system interface to SMS software. We might 4330 * need to visit this again depending on OEM 4331 * requirements 4332 */ 4333 smi_addr = ((struct ipmi_system_interface_addr *) 4334 &recv_msg->addr); 4335 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4336 smi_addr->channel = IPMI_BMC_CHANNEL; 4337 smi_addr->lun = msg->rsp[0] & 3; 4338 4339 recv_msg->user_msg_data = NULL; 4340 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 4341 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4342 recv_msg->msg.cmd = msg->rsp[1]; 4343 recv_msg->msg.data = recv_msg->msg_data; 4344 4345 /* 4346 * The message starts at byte 4 which follows the 4347 * Channel Byte in the "GET MESSAGE" command 4348 */ 4349 recv_msg->msg.data_len = msg->rsp_size - 4; 4350 memcpy(recv_msg->msg_data, &msg->rsp[4], 4351 msg->rsp_size - 4); 4352 if (deliver_response(intf, recv_msg)) 4353 ipmi_inc_stat(intf, unhandled_commands); 4354 else 4355 ipmi_inc_stat(intf, handled_commands); 4356 } else { 4357 /* 4358 * We couldn't allocate memory for the message, so 4359 * requeue it for handling later. 4360 */ 4361 rv = 1; 4362 } 4363 4364 return rv; 4365 } 4366 4367 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 4368 struct ipmi_smi_msg *msg) 4369 { 4370 struct ipmi_system_interface_addr *smi_addr; 4371 4372 recv_msg->msgid = 0; 4373 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr; 4374 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4375 smi_addr->channel = IPMI_BMC_CHANNEL; 4376 smi_addr->lun = msg->rsp[0] & 3; 4377 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 4378 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4379 recv_msg->msg.cmd = msg->rsp[1]; 4380 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3); 4381 recv_msg->msg.data = recv_msg->msg_data; 4382 recv_msg->msg.data_len = msg->rsp_size - 3; 4383 } 4384 4385 static int handle_read_event_rsp(struct ipmi_smi *intf, 4386 struct ipmi_smi_msg *msg) 4387 { 4388 struct ipmi_recv_msg *recv_msg, *recv_msg2; 4389 struct list_head msgs; 4390 struct ipmi_user *user; 4391 int rv = 0, deliver_count = 0; 4392 4393 if (msg->rsp_size < 19) { 4394 /* Message is too small to be an IPMB event. */ 4395 ipmi_inc_stat(intf, invalid_events); 4396 return 0; 4397 } 4398 4399 if (msg->rsp[2] != 0) { 4400 /* An error getting the event, just ignore it. */ 4401 return 0; 4402 } 4403 4404 INIT_LIST_HEAD(&msgs); 4405 4406 mutex_lock(&intf->events_mutex); 4407 4408 ipmi_inc_stat(intf, events); 4409 4410 /* 4411 * Allocate and fill in one message for every user that is 4412 * getting events. 4413 */ 4414 mutex_lock(&intf->users_mutex); 4415 list_for_each_entry(user, &intf->users, link) { 4416 if (!user->gets_events) 4417 continue; 4418 4419 recv_msg = ipmi_alloc_recv_msg(user); 4420 if (IS_ERR(recv_msg)) { 4421 mutex_unlock(&intf->users_mutex); 4422 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 4423 link) { 4424 user = recv_msg->user; 4425 list_del(&recv_msg->link); 4426 ipmi_free_recv_msg(recv_msg); 4427 kref_put(&user->refcount, free_ipmi_user); 4428 } 4429 /* 4430 * We couldn't allocate memory for the 4431 * message, so requeue it for handling 4432 * later. 4433 */ 4434 rv = 1; 4435 goto out; 4436 } 4437 4438 deliver_count++; 4439 4440 copy_event_into_recv_msg(recv_msg, msg); 4441 list_add_tail(&recv_msg->link, &msgs); 4442 } 4443 mutex_unlock(&intf->users_mutex); 4444 4445 if (deliver_count) { 4446 /* Now deliver all the messages. */ 4447 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 4448 list_del(&recv_msg->link); 4449 deliver_local_response(intf, recv_msg); 4450 } 4451 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 4452 /* 4453 * No one to receive the message, put it in queue if there's 4454 * not already too many things in the queue. 4455 */ 4456 recv_msg = ipmi_alloc_recv_msg(NULL); 4457 if (IS_ERR(recv_msg)) { 4458 /* 4459 * We couldn't allocate memory for the 4460 * message, so requeue it for handling 4461 * later. 4462 */ 4463 rv = 1; 4464 goto out; 4465 } 4466 4467 copy_event_into_recv_msg(recv_msg, msg); 4468 list_add_tail(&recv_msg->link, &intf->waiting_events); 4469 intf->waiting_events_count++; 4470 } else if (!intf->event_msg_printed) { 4471 /* 4472 * There's too many things in the queue, discard this 4473 * message. 4474 */ 4475 dev_warn(intf->si_dev, 4476 "Event queue full, discarding incoming events\n"); 4477 intf->event_msg_printed = 1; 4478 } 4479 4480 out: 4481 mutex_unlock(&intf->events_mutex); 4482 4483 return rv; 4484 } 4485 4486 static int handle_bmc_rsp(struct ipmi_smi *intf, 4487 struct ipmi_smi_msg *msg) 4488 { 4489 struct ipmi_recv_msg *recv_msg; 4490 struct ipmi_system_interface_addr *smi_addr; 4491 4492 recv_msg = msg->recv_msg; 4493 if (recv_msg == NULL) { 4494 dev_warn(intf->si_dev, 4495 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 4496 return 0; 4497 } 4498 4499 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4500 recv_msg->msgid = msg->msgid; 4501 smi_addr = ((struct ipmi_system_interface_addr *) 4502 &recv_msg->addr); 4503 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4504 smi_addr->channel = IPMI_BMC_CHANNEL; 4505 smi_addr->lun = msg->rsp[0] & 3; 4506 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4507 recv_msg->msg.cmd = msg->rsp[1]; 4508 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2); 4509 recv_msg->msg.data = recv_msg->msg_data; 4510 recv_msg->msg.data_len = msg->rsp_size - 2; 4511 deliver_local_response(intf, recv_msg); 4512 4513 return 0; 4514 } 4515 4516 /* 4517 * Handle a received message. Return 1 if the message should be requeued, 4518 * 0 if the message should be freed, or -1 if the message should not 4519 * be freed or requeued. 4520 */ 4521 static int handle_one_recv_msg(struct ipmi_smi *intf, 4522 struct ipmi_smi_msg *msg) 4523 { 4524 int requeue = 0; 4525 int chan; 4526 unsigned char cc; 4527 bool is_cmd = !((msg->rsp[0] >> 2) & 1); 4528 4529 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp); 4530 4531 if (msg->rsp_size < 2) { 4532 /* Message is too small to be correct. */ 4533 dev_warn_ratelimited(intf->si_dev, 4534 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n", 4535 (msg->data[0] >> 2) | 1, 4536 msg->data[1], msg->rsp_size); 4537 4538 return_unspecified: 4539 /* Generate an error response for the message. */ 4540 msg->rsp[0] = msg->data[0] | (1 << 2); 4541 msg->rsp[1] = msg->data[1]; 4542 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 4543 msg->rsp_size = 3; 4544 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4545 /* commands must have at least 4 bytes, responses 5. */ 4546 if (is_cmd && (msg->rsp_size < 4)) { 4547 ipmi_inc_stat(intf, invalid_commands); 4548 goto out; 4549 } 4550 if (!is_cmd && (msg->rsp_size < 5)) { 4551 ipmi_inc_stat(intf, invalid_ipmb_responses); 4552 /* Construct a valid error response. */ 4553 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */ 4554 msg->rsp[0] |= (1 << 2); /* Make it a response */ 4555 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */ 4556 msg->rsp[1] = msg->data[1]; /* Addr */ 4557 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */ 4558 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */ 4559 msg->rsp[3] = msg->data[3]; /* Cmd */ 4560 msg->rsp[4] = IPMI_ERR_UNSPECIFIED; 4561 msg->rsp_size = 5; 4562 } 4563 } else if ((msg->data_size >= 2) 4564 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 4565 && (msg->data[1] == IPMI_SEND_MSG_CMD) 4566 && (msg->recv_msg == NULL)) { 4567 4568 if (intf->in_shutdown || intf->run_to_completion) 4569 goto out; 4570 4571 /* 4572 * This is the local response to a command send, start 4573 * the timer for these. The recv_msg will not be 4574 * NULL if this is a response send, and we will let 4575 * response sends just go through. 4576 */ 4577 4578 /* 4579 * Check for errors, if we get certain errors (ones 4580 * that mean basically we can try again later), we 4581 * ignore them and start the timer. Otherwise we 4582 * report the error immediately. 4583 */ 4584 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 4585 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 4586 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 4587 && (msg->rsp[2] != IPMI_BUS_ERR) 4588 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 4589 int ch = msg->rsp[3] & 0xf; 4590 struct ipmi_channel *chans; 4591 4592 /* Got an error sending the message, handle it. */ 4593 4594 chans = READ_ONCE(intf->channel_list)->c; 4595 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN) 4596 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC)) 4597 ipmi_inc_stat(intf, sent_lan_command_errs); 4598 else 4599 ipmi_inc_stat(intf, sent_ipmb_command_errs); 4600 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 4601 } else 4602 /* The message was sent, start the timer. */ 4603 intf_start_seq_timer(intf, msg->msgid); 4604 requeue = 0; 4605 goto out; 4606 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 4607 || (msg->rsp[1] != msg->data[1])) { 4608 /* 4609 * The NetFN and Command in the response is not even 4610 * marginally correct. 4611 */ 4612 dev_warn_ratelimited(intf->si_dev, 4613 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n", 4614 (msg->data[0] >> 2) | 1, msg->data[1], 4615 msg->rsp[0] >> 2, msg->rsp[1]); 4616 4617 goto return_unspecified; 4618 } 4619 4620 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4621 if ((msg->data[0] >> 2) & 1) { 4622 /* It's a response to a sent response. */ 4623 chan = 0; 4624 cc = msg->rsp[4]; 4625 goto process_response_response; 4626 } 4627 if (is_cmd) 4628 requeue = handle_ipmb_direct_rcv_cmd(intf, msg); 4629 else 4630 requeue = handle_ipmb_direct_rcv_rsp(intf, msg); 4631 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4632 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 4633 && (msg->recv_msg != NULL)) { 4634 /* 4635 * It's a response to a response we sent. For this we 4636 * deliver a send message response to the user. 4637 */ 4638 struct ipmi_recv_msg *recv_msg; 4639 4640 if (intf->run_to_completion) 4641 goto out; 4642 4643 chan = msg->data[2] & 0x0f; 4644 if (chan >= IPMI_MAX_CHANNELS) 4645 /* Invalid channel number */ 4646 goto out; 4647 cc = msg->rsp[2]; 4648 4649 process_response_response: 4650 recv_msg = msg->recv_msg; 4651 4652 requeue = 0; 4653 if (!recv_msg) 4654 goto out; 4655 4656 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 4657 recv_msg->msg.data = recv_msg->msg_data; 4658 recv_msg->msg_data[0] = cc; 4659 recv_msg->msg.data_len = 1; 4660 deliver_local_response(intf, recv_msg); 4661 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4662 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 4663 struct ipmi_channel *chans; 4664 4665 if (intf->run_to_completion) 4666 goto out; 4667 4668 /* It's from the receive queue. */ 4669 chan = msg->rsp[3] & 0xf; 4670 if (chan >= IPMI_MAX_CHANNELS) { 4671 /* Invalid channel number */ 4672 requeue = 0; 4673 goto out; 4674 } 4675 4676 /* 4677 * We need to make sure the channels have been initialized. 4678 * The channel_handler routine will set the "curr_channel" 4679 * equal to or greater than IPMI_MAX_CHANNELS when all the 4680 * channels for this interface have been initialized. 4681 */ 4682 if (!intf->channels_ready) { 4683 requeue = 0; /* Throw the message away */ 4684 goto out; 4685 } 4686 4687 chans = READ_ONCE(intf->channel_list)->c; 4688 4689 switch (chans[chan].medium) { 4690 case IPMI_CHANNEL_MEDIUM_IPMB: 4691 if (msg->rsp[4] & 0x04) { 4692 /* 4693 * It's a response, so find the 4694 * requesting message and send it up. 4695 */ 4696 requeue = handle_ipmb_get_msg_rsp(intf, msg); 4697 } else { 4698 /* 4699 * It's a command to the SMS from some other 4700 * entity. Handle that. 4701 */ 4702 requeue = handle_ipmb_get_msg_cmd(intf, msg); 4703 } 4704 break; 4705 4706 case IPMI_CHANNEL_MEDIUM_8023LAN: 4707 case IPMI_CHANNEL_MEDIUM_ASYNC: 4708 if (msg->rsp[6] & 0x04) { 4709 /* 4710 * It's a response, so find the 4711 * requesting message and send it up. 4712 */ 4713 requeue = handle_lan_get_msg_rsp(intf, msg); 4714 } else { 4715 /* 4716 * It's a command to the SMS from some other 4717 * entity. Handle that. 4718 */ 4719 requeue = handle_lan_get_msg_cmd(intf, msg); 4720 } 4721 break; 4722 4723 default: 4724 /* Check for OEM Channels. Clients had better 4725 register for these commands. */ 4726 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 4727 && (chans[chan].medium 4728 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 4729 requeue = handle_oem_get_msg_cmd(intf, msg); 4730 } else { 4731 /* 4732 * We don't handle the channel type, so just 4733 * free the message. 4734 */ 4735 requeue = 0; 4736 } 4737 } 4738 4739 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4740 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 4741 /* It's an asynchronous event. */ 4742 if (intf->run_to_completion) 4743 goto out; 4744 4745 requeue = handle_read_event_rsp(intf, msg); 4746 } else { 4747 /* It's a response from the local BMC. */ 4748 requeue = handle_bmc_rsp(intf, msg); 4749 } 4750 4751 out: 4752 return requeue; 4753 } 4754 4755 /* 4756 * If there are messages in the queue or pretimeouts, handle them. 4757 */ 4758 static void handle_new_recv_msgs(struct ipmi_smi *intf) 4759 { 4760 struct ipmi_smi_msg *smi_msg; 4761 unsigned long flags = 0; 4762 int rv; 4763 int run_to_completion = READ_ONCE(intf->run_to_completion); 4764 4765 /* See if any waiting messages need to be processed. */ 4766 if (!run_to_completion) 4767 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4768 while (!list_empty(&intf->waiting_rcv_msgs)) { 4769 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 4770 struct ipmi_smi_msg, link); 4771 list_del(&smi_msg->link); 4772 if (!run_to_completion) 4773 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4774 flags); 4775 rv = handle_one_recv_msg(intf, smi_msg); 4776 if (!run_to_completion) 4777 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4778 if (rv > 0) { 4779 /* 4780 * To preserve message order, quit if we 4781 * can't handle a message. Add the message 4782 * back at the head, this is safe because this 4783 * workqueue is the only thing that pulls the 4784 * messages. 4785 */ 4786 list_add(&smi_msg->link, &intf->waiting_rcv_msgs); 4787 break; 4788 } else { 4789 if (rv == 0) 4790 /* Message handled */ 4791 ipmi_free_smi_msg(smi_msg); 4792 /* If rv < 0, fatal error, del but don't free. */ 4793 } 4794 } 4795 if (!run_to_completion) 4796 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 4797 } 4798 4799 static void smi_work(struct work_struct *t) 4800 { 4801 unsigned long flags = 0; /* keep us warning-free. */ 4802 struct ipmi_smi *intf = from_work(intf, t, smi_work); 4803 int run_to_completion = READ_ONCE(intf->run_to_completion); 4804 struct ipmi_smi_msg *newmsg = NULL; 4805 struct ipmi_recv_msg *msg, *msg2; 4806 int cc; 4807 4808 /* 4809 * Start the next message if available. 4810 * 4811 * Do this here, not in the actual receiver, because we may deadlock 4812 * because the lower layer is allowed to hold locks while calling 4813 * message delivery. 4814 */ 4815 restart: 4816 if (!run_to_completion) 4817 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4818 if (intf->curr_msg == NULL && !intf->in_shutdown) { 4819 struct list_head *entry = NULL; 4820 4821 /* Pick the high priority queue first. */ 4822 if (!list_empty(&intf->hp_xmit_msgs)) 4823 entry = intf->hp_xmit_msgs.next; 4824 else if (!list_empty(&intf->xmit_msgs)) 4825 entry = intf->xmit_msgs.next; 4826 4827 if (entry) { 4828 list_del(entry); 4829 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 4830 intf->curr_msg = newmsg; 4831 } 4832 } 4833 if (!run_to_completion) 4834 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4835 4836 if (newmsg) { 4837 cc = intf->handlers->sender(intf->send_info, newmsg); 4838 if (cc) { 4839 if (newmsg->recv_msg) 4840 deliver_err_response(intf, 4841 newmsg->recv_msg, cc); 4842 else 4843 ipmi_free_smi_msg(newmsg); 4844 goto restart; 4845 } 4846 } 4847 4848 handle_new_recv_msgs(intf); 4849 4850 /* Nothing below applies during panic time. */ 4851 if (run_to_completion) 4852 return; 4853 4854 /* 4855 * If the pretimout count is non-zero, decrement one from it and 4856 * deliver pretimeouts to all the users. 4857 */ 4858 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 4859 struct ipmi_user *user; 4860 4861 mutex_lock(&intf->users_mutex); 4862 list_for_each_entry(user, &intf->users, link) { 4863 if (user->handler->ipmi_watchdog_pretimeout) 4864 user->handler->ipmi_watchdog_pretimeout( 4865 user->handler_data); 4866 } 4867 mutex_unlock(&intf->users_mutex); 4868 } 4869 4870 /* 4871 * Freeing the message can cause a user to be released, which 4872 * can then cause the interface to be freed. Make sure that 4873 * doesn't happen until we are ready. 4874 */ 4875 kref_get(&intf->refcount); 4876 4877 mutex_lock(&intf->user_msgs_mutex); 4878 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) { 4879 struct ipmi_user *user = msg->user; 4880 4881 list_del(&msg->link); 4882 4883 if (refcount_read(&user->destroyed) == 0) 4884 ipmi_free_recv_msg(msg); 4885 else 4886 user->handler->ipmi_recv_hndl(msg, user->handler_data); 4887 } 4888 mutex_unlock(&intf->user_msgs_mutex); 4889 4890 kref_put(&intf->refcount, intf_free); 4891 } 4892 4893 /* Handle a new message from the lower layer. */ 4894 void ipmi_smi_msg_received(struct ipmi_smi *intf, 4895 struct ipmi_smi_msg *msg) 4896 { 4897 unsigned long flags = 0; /* keep us warning-free. */ 4898 int run_to_completion = READ_ONCE(intf->run_to_completion); 4899 4900 /* 4901 * To preserve message order, we keep a queue and deliver from 4902 * a workqueue. 4903 */ 4904 if (!run_to_completion) 4905 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4906 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 4907 if (!run_to_completion) 4908 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4909 flags); 4910 4911 if (!run_to_completion) 4912 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4913 /* 4914 * We can get an asynchronous event or receive message in addition 4915 * to commands we send. 4916 */ 4917 if (msg == intf->curr_msg) 4918 intf->curr_msg = NULL; 4919 if (!run_to_completion) 4920 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4921 4922 if (run_to_completion) 4923 smi_work(&intf->smi_work); 4924 else 4925 queue_work(system_wq, &intf->smi_work); 4926 } 4927 EXPORT_SYMBOL(ipmi_smi_msg_received); 4928 4929 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf) 4930 { 4931 if (intf->in_shutdown) 4932 return; 4933 4934 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 4935 queue_work(system_wq, &intf->smi_work); 4936 } 4937 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 4938 4939 static struct ipmi_smi_msg * 4940 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, 4941 unsigned char seq, long seqid) 4942 { 4943 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 4944 if (!smi_msg) 4945 /* 4946 * If we can't allocate the message, then just return, we 4947 * get 4 retries, so this should be ok. 4948 */ 4949 return NULL; 4950 4951 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4952 smi_msg->data_size = recv_msg->msg.data_len; 4953 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4954 4955 dev_dbg(intf->si_dev, "Resend: %*ph\n", 4956 smi_msg->data_size, smi_msg->data); 4957 4958 return smi_msg; 4959 } 4960 4961 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent, 4962 struct list_head *timeouts, 4963 unsigned long timeout_period, 4964 int slot, bool *need_timer) 4965 { 4966 struct ipmi_recv_msg *msg; 4967 4968 if (intf->in_shutdown) 4969 return; 4970 4971 if (!ent->inuse) 4972 return; 4973 4974 if (timeout_period < ent->timeout) { 4975 ent->timeout -= timeout_period; 4976 *need_timer = true; 4977 return; 4978 } 4979 4980 if (ent->retries_left == 0) { 4981 /* The message has used all its retries. */ 4982 ent->inuse = 0; 4983 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 4984 msg = ent->recv_msg; 4985 list_add_tail(&msg->link, timeouts); 4986 if (ent->broadcast) 4987 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4988 else if (is_lan_addr(&ent->recv_msg->addr)) 4989 ipmi_inc_stat(intf, timed_out_lan_commands); 4990 else 4991 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4992 } else { 4993 struct ipmi_smi_msg *smi_msg; 4994 /* More retries, send again. */ 4995 4996 *need_timer = true; 4997 4998 /* 4999 * Start with the max timer, set to normal timer after 5000 * the message is sent. 5001 */ 5002 ent->timeout = MAX_MSG_TIMEOUT; 5003 ent->retries_left--; 5004 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 5005 ent->seqid); 5006 if (!smi_msg) { 5007 if (is_lan_addr(&ent->recv_msg->addr)) 5008 ipmi_inc_stat(intf, 5009 dropped_rexmit_lan_commands); 5010 else 5011 ipmi_inc_stat(intf, 5012 dropped_rexmit_ipmb_commands); 5013 return; 5014 } 5015 5016 mutex_unlock(&intf->seq_lock); 5017 5018 /* 5019 * Send the new message. We send with a zero 5020 * priority. It timed out, I doubt time is that 5021 * critical now, and high priority messages are really 5022 * only for messages to the local MC, which don't get 5023 * resent. 5024 */ 5025 if (intf->handlers) { 5026 if (is_lan_addr(&ent->recv_msg->addr)) 5027 ipmi_inc_stat(intf, 5028 retransmitted_lan_commands); 5029 else 5030 ipmi_inc_stat(intf, 5031 retransmitted_ipmb_commands); 5032 5033 smi_send(intf, intf->handlers, smi_msg, 0); 5034 } else 5035 ipmi_free_smi_msg(smi_msg); 5036 5037 mutex_lock(&intf->seq_lock); 5038 } 5039 } 5040 5041 static bool ipmi_timeout_handler(struct ipmi_smi *intf, 5042 unsigned long timeout_period) 5043 { 5044 struct list_head timeouts; 5045 struct ipmi_recv_msg *msg, *msg2; 5046 unsigned long flags; 5047 int i; 5048 bool need_timer = false; 5049 5050 if (!intf->bmc_registered) { 5051 kref_get(&intf->refcount); 5052 if (!schedule_work(&intf->bmc_reg_work)) { 5053 kref_put(&intf->refcount, intf_free); 5054 need_timer = true; 5055 } 5056 } 5057 5058 /* 5059 * Go through the seq table and find any messages that 5060 * have timed out, putting them in the timeouts 5061 * list. 5062 */ 5063 INIT_LIST_HEAD(&timeouts); 5064 mutex_lock(&intf->seq_lock); 5065 if (intf->ipmb_maintenance_mode_timeout) { 5066 if (intf->ipmb_maintenance_mode_timeout <= timeout_period) 5067 intf->ipmb_maintenance_mode_timeout = 0; 5068 else 5069 intf->ipmb_maintenance_mode_timeout -= timeout_period; 5070 } 5071 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 5072 check_msg_timeout(intf, &intf->seq_table[i], 5073 &timeouts, timeout_period, i, 5074 &need_timer); 5075 mutex_unlock(&intf->seq_lock); 5076 5077 list_for_each_entry_safe(msg, msg2, &timeouts, link) 5078 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE); 5079 5080 /* 5081 * Maintenance mode handling. Check the timeout 5082 * optimistically before we claim the lock. It may 5083 * mean a timeout gets missed occasionally, but that 5084 * only means the timeout gets extended by one period 5085 * in that case. No big deal, and it avoids the lock 5086 * most of the time. 5087 */ 5088 if (intf->auto_maintenance_timeout > 0) { 5089 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 5090 if (intf->auto_maintenance_timeout > 0) { 5091 intf->auto_maintenance_timeout 5092 -= timeout_period; 5093 if (!intf->maintenance_mode 5094 && (intf->auto_maintenance_timeout <= 0)) { 5095 intf->maintenance_mode_state = 5096 IPMI_MAINTENANCE_MODE_STATE_OFF; 5097 intf->auto_maintenance_timeout = 0; 5098 maintenance_mode_update(intf); 5099 } 5100 } 5101 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 5102 flags); 5103 } 5104 5105 queue_work(system_wq, &intf->smi_work); 5106 5107 return need_timer; 5108 } 5109 5110 static void ipmi_request_event(struct ipmi_smi *intf) 5111 { 5112 /* No event requests when in maintenance mode. */ 5113 if (intf->maintenance_mode_state) 5114 return; 5115 5116 if (!intf->in_shutdown) 5117 intf->handlers->request_events(intf->send_info); 5118 } 5119 5120 static atomic_t stop_operation; 5121 5122 static void ipmi_timeout_work(struct work_struct *work) 5123 { 5124 if (atomic_read(&stop_operation)) 5125 return; 5126 5127 struct ipmi_smi *intf; 5128 bool need_timer = false; 5129 5130 if (atomic_read(&stop_operation)) 5131 return; 5132 5133 mutex_lock(&ipmi_interfaces_mutex); 5134 list_for_each_entry(intf, &ipmi_interfaces, link) { 5135 if (atomic_read(&intf->event_waiters)) { 5136 intf->ticks_to_req_ev--; 5137 if (intf->ticks_to_req_ev == 0) { 5138 ipmi_request_event(intf); 5139 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 5140 } 5141 need_timer = true; 5142 } 5143 if (intf->maintenance_mode_state) 5144 need_timer = true; 5145 5146 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 5147 } 5148 mutex_unlock(&ipmi_interfaces_mutex); 5149 5150 if (need_timer) 5151 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5152 } 5153 5154 static DECLARE_WORK(ipmi_timer_work, ipmi_timeout_work); 5155 5156 static void ipmi_timeout(struct timer_list *unused) 5157 { 5158 if (atomic_read(&stop_operation)) 5159 return; 5160 5161 queue_work(system_wq, &ipmi_timer_work); 5162 } 5163 5164 static void need_waiter(struct ipmi_smi *intf) 5165 { 5166 /* Racy, but worst case we start the timer twice. */ 5167 if (!timer_pending(&ipmi_timer)) 5168 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5169 } 5170 5171 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 5172 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 5173 5174 static void free_smi_msg(struct ipmi_smi_msg *msg) 5175 { 5176 atomic_dec(&smi_msg_inuse_count); 5177 /* Try to keep as much stuff out of the panic path as possible. */ 5178 if (!oops_in_progress) 5179 kfree(msg); 5180 } 5181 5182 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 5183 { 5184 struct ipmi_smi_msg *rv; 5185 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 5186 if (rv) { 5187 rv->done = free_smi_msg; 5188 rv->recv_msg = NULL; 5189 rv->type = IPMI_SMI_MSG_TYPE_NORMAL; 5190 atomic_inc(&smi_msg_inuse_count); 5191 } 5192 return rv; 5193 } 5194 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 5195 5196 static void free_recv_msg(struct ipmi_recv_msg *msg) 5197 { 5198 atomic_dec(&recv_msg_inuse_count); 5199 /* Try to keep as much stuff out of the panic path as possible. */ 5200 if (!oops_in_progress) 5201 kfree(msg); 5202 } 5203 5204 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user) 5205 { 5206 struct ipmi_recv_msg *rv; 5207 5208 if (user) { 5209 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) { 5210 atomic_dec(&user->nr_msgs); 5211 return ERR_PTR(-EBUSY); 5212 } 5213 } 5214 5215 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 5216 if (!rv) { 5217 if (user) 5218 atomic_dec(&user->nr_msgs); 5219 return ERR_PTR(-ENOMEM); 5220 } 5221 5222 rv->user = user; 5223 rv->done = free_recv_msg; 5224 if (user) 5225 kref_get(&user->refcount); 5226 atomic_inc(&recv_msg_inuse_count); 5227 return rv; 5228 } 5229 5230 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 5231 { 5232 if (msg->user && !oops_in_progress) { 5233 atomic_dec(&msg->user->nr_msgs); 5234 kref_put(&msg->user->refcount, free_ipmi_user); 5235 } 5236 msg->done(msg); 5237 } 5238 EXPORT_SYMBOL(ipmi_free_recv_msg); 5239 5240 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg, 5241 struct ipmi_user *user) 5242 { 5243 WARN_ON_ONCE(msg->user); /* User should not be set. */ 5244 msg->user = user; 5245 atomic_inc(&user->nr_msgs); 5246 kref_get(&user->refcount); 5247 } 5248 5249 static atomic_t panic_done_count = ATOMIC_INIT(0); 5250 5251 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 5252 { 5253 atomic_dec(&panic_done_count); 5254 } 5255 5256 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 5257 { 5258 atomic_dec(&panic_done_count); 5259 } 5260 5261 /* 5262 * Inside a panic, send a message and wait for a response. 5263 */ 5264 static void _ipmi_panic_request_and_wait(struct ipmi_smi *intf, 5265 struct ipmi_addr *addr, 5266 struct kernel_ipmi_msg *msg) 5267 { 5268 struct ipmi_smi_msg smi_msg; 5269 struct ipmi_recv_msg recv_msg; 5270 int rv; 5271 5272 smi_msg.done = dummy_smi_done_handler; 5273 recv_msg.done = dummy_recv_done_handler; 5274 atomic_add(2, &panic_done_count); 5275 rv = i_ipmi_request(NULL, 5276 intf, 5277 addr, 5278 0, 5279 msg, 5280 intf, 5281 &smi_msg, 5282 &recv_msg, 5283 0, 5284 intf->addrinfo[0].address, 5285 intf->addrinfo[0].lun, 5286 0, 1); /* Don't retry, and don't wait. */ 5287 if (rv) 5288 atomic_sub(2, &panic_done_count); 5289 else if (intf->handlers->flush_messages) 5290 intf->handlers->flush_messages(intf->send_info); 5291 5292 while (atomic_read(&panic_done_count) != 0) 5293 ipmi_poll(intf); 5294 } 5295 5296 void ipmi_panic_request_and_wait(struct ipmi_user *user, 5297 struct ipmi_addr *addr, 5298 struct kernel_ipmi_msg *msg) 5299 { 5300 user->intf->run_to_completion = 1; 5301 _ipmi_panic_request_and_wait(user->intf, addr, msg); 5302 } 5303 EXPORT_SYMBOL(ipmi_panic_request_and_wait); 5304 5305 static void event_receiver_fetcher(struct ipmi_smi *intf, 5306 struct ipmi_recv_msg *msg) 5307 { 5308 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5309 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 5310 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 5311 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5312 /* A get event receiver command, save it. */ 5313 intf->event_receiver = msg->msg.data[1]; 5314 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 5315 } 5316 } 5317 5318 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 5319 { 5320 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5321 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 5322 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 5323 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5324 /* 5325 * A get device id command, save if we are an event 5326 * receiver or generator. 5327 */ 5328 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 5329 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 5330 } 5331 } 5332 5333 static void send_panic_events(struct ipmi_smi *intf, char *str) 5334 { 5335 struct kernel_ipmi_msg msg; 5336 unsigned char data[16]; 5337 struct ipmi_system_interface_addr *si; 5338 struct ipmi_addr addr; 5339 char *p = str; 5340 struct ipmi_ipmb_addr *ipmb; 5341 int j; 5342 5343 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE) 5344 return; 5345 5346 si = (struct ipmi_system_interface_addr *) &addr; 5347 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5348 si->channel = IPMI_BMC_CHANNEL; 5349 si->lun = 0; 5350 5351 /* Fill in an event telling that we have failed. */ 5352 msg.netfn = 0x04; /* Sensor or Event. */ 5353 msg.cmd = 2; /* Platform event command. */ 5354 msg.data = data; 5355 msg.data_len = 8; 5356 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 5357 data[1] = 0x03; /* This is for IPMI 1.0. */ 5358 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 5359 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 5360 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 5361 5362 /* 5363 * Put a few breadcrumbs in. Hopefully later we can add more things 5364 * to make the panic events more useful. 5365 */ 5366 if (str) { 5367 data[3] = str[0]; 5368 data[6] = str[1]; 5369 data[7] = str[2]; 5370 } 5371 5372 /* Send the event announcing the panic. */ 5373 _ipmi_panic_request_and_wait(intf, &addr, &msg); 5374 5375 /* 5376 * On every interface, dump a bunch of OEM event holding the 5377 * string. 5378 */ 5379 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str) 5380 return; 5381 5382 /* 5383 * intf_num is used as an marker to tell if the 5384 * interface is valid. Thus we need a read barrier to 5385 * make sure data fetched before checking intf_num 5386 * won't be used. 5387 */ 5388 smp_rmb(); 5389 5390 /* 5391 * First job here is to figure out where to send the 5392 * OEM events. There's no way in IPMI to send OEM 5393 * events using an event send command, so we have to 5394 * find the SEL to put them in and stick them in 5395 * there. 5396 */ 5397 5398 /* Get capabilities from the get device id. */ 5399 intf->local_sel_device = 0; 5400 intf->local_event_generator = 0; 5401 intf->event_receiver = 0; 5402 5403 /* Request the device info from the local MC. */ 5404 msg.netfn = IPMI_NETFN_APP_REQUEST; 5405 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 5406 msg.data = NULL; 5407 msg.data_len = 0; 5408 intf->null_user_handler = device_id_fetcher; 5409 _ipmi_panic_request_and_wait(intf, &addr, &msg); 5410 5411 if (intf->local_event_generator) { 5412 /* Request the event receiver from the local MC. */ 5413 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 5414 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 5415 msg.data = NULL; 5416 msg.data_len = 0; 5417 intf->null_user_handler = event_receiver_fetcher; 5418 _ipmi_panic_request_and_wait(intf, &addr, &msg); 5419 } 5420 intf->null_user_handler = NULL; 5421 5422 /* 5423 * Validate the event receiver. The low bit must not 5424 * be 1 (it must be a valid IPMB address), it cannot 5425 * be zero, and it must not be my address. 5426 */ 5427 if (((intf->event_receiver & 1) == 0) 5428 && (intf->event_receiver != 0) 5429 && (intf->event_receiver != intf->addrinfo[0].address)) { 5430 /* 5431 * The event receiver is valid, send an IPMB 5432 * message. 5433 */ 5434 ipmb = (struct ipmi_ipmb_addr *) &addr; 5435 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 5436 ipmb->channel = 0; /* FIXME - is this right? */ 5437 ipmb->lun = intf->event_receiver_lun; 5438 ipmb->slave_addr = intf->event_receiver; 5439 } else if (intf->local_sel_device) { 5440 /* 5441 * The event receiver was not valid (or was 5442 * me), but I am an SEL device, just dump it 5443 * in my SEL. 5444 */ 5445 si = (struct ipmi_system_interface_addr *) &addr; 5446 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5447 si->channel = IPMI_BMC_CHANNEL; 5448 si->lun = 0; 5449 } else 5450 return; /* No where to send the event. */ 5451 5452 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 5453 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 5454 msg.data = data; 5455 msg.data_len = 16; 5456 5457 j = 0; 5458 while (*p) { 5459 int size = strnlen(p, 11); 5460 5461 data[0] = 0; 5462 data[1] = 0; 5463 data[2] = 0xf0; /* OEM event without timestamp. */ 5464 data[3] = intf->addrinfo[0].address; 5465 data[4] = j++; /* sequence # */ 5466 5467 memcpy_and_pad(data+5, 11, p, size, '\0'); 5468 p += size; 5469 5470 _ipmi_panic_request_and_wait(intf, &addr, &msg); 5471 } 5472 } 5473 5474 static int has_panicked; 5475 5476 static int panic_event(struct notifier_block *this, 5477 unsigned long event, 5478 void *ptr) 5479 { 5480 struct ipmi_smi *intf; 5481 struct ipmi_user *user; 5482 5483 if (has_panicked) 5484 return NOTIFY_DONE; 5485 has_panicked = 1; 5486 5487 /* For every registered interface, set it to run to completion. */ 5488 list_for_each_entry(intf, &ipmi_interfaces, link) { 5489 if (!intf->handlers || intf->intf_num == -1) 5490 /* Interface is not ready. */ 5491 continue; 5492 5493 if (!intf->handlers->poll) 5494 continue; 5495 5496 /* 5497 * If we were interrupted while locking xmit_msgs_lock or 5498 * waiting_rcv_msgs_lock, the corresponding list may be 5499 * corrupted. In this case, drop items on the list for 5500 * the safety. 5501 */ 5502 if (!spin_trylock(&intf->xmit_msgs_lock)) { 5503 INIT_LIST_HEAD(&intf->xmit_msgs); 5504 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 5505 } else 5506 spin_unlock(&intf->xmit_msgs_lock); 5507 5508 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 5509 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 5510 else 5511 spin_unlock(&intf->waiting_rcv_msgs_lock); 5512 5513 intf->run_to_completion = 1; 5514 if (intf->handlers->set_run_to_completion) 5515 intf->handlers->set_run_to_completion(intf->send_info, 5516 1); 5517 5518 list_for_each_entry(user, &intf->users, link) { 5519 if (user->handler->ipmi_panic_handler) 5520 user->handler->ipmi_panic_handler( 5521 user->handler_data); 5522 } 5523 5524 send_panic_events(intf, ptr); 5525 } 5526 5527 return NOTIFY_DONE; 5528 } 5529 5530 /* Must be called with ipmi_interfaces_mutex held. */ 5531 static int ipmi_register_driver(void) 5532 { 5533 int rv; 5534 5535 if (drvregistered) 5536 return 0; 5537 5538 rv = driver_register(&ipmidriver.driver); 5539 if (rv) 5540 pr_err("Could not register IPMI driver\n"); 5541 else 5542 drvregistered = true; 5543 return rv; 5544 } 5545 5546 static struct notifier_block panic_block = { 5547 .notifier_call = panic_event, 5548 .next = NULL, 5549 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 5550 }; 5551 5552 static int ipmi_init_msghandler(void) 5553 { 5554 int rv; 5555 5556 mutex_lock(&ipmi_interfaces_mutex); 5557 rv = ipmi_register_driver(); 5558 if (rv) 5559 goto out; 5560 if (initialized) 5561 goto out; 5562 5563 bmc_remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq"); 5564 if (!bmc_remove_work_wq) { 5565 pr_err("unable to create ipmi-msghandler-remove-wq workqueue"); 5566 rv = -ENOMEM; 5567 goto out; 5568 } 5569 5570 timer_setup(&ipmi_timer, ipmi_timeout, 0); 5571 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5572 5573 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 5574 5575 initialized = true; 5576 5577 out: 5578 mutex_unlock(&ipmi_interfaces_mutex); 5579 return rv; 5580 } 5581 5582 static int __init ipmi_init_msghandler_mod(void) 5583 { 5584 int rv; 5585 5586 pr_info("version " IPMI_DRIVER_VERSION "\n"); 5587 5588 mutex_lock(&ipmi_interfaces_mutex); 5589 rv = ipmi_register_driver(); 5590 mutex_unlock(&ipmi_interfaces_mutex); 5591 5592 return rv; 5593 } 5594 5595 static void __exit cleanup_ipmi(void) 5596 { 5597 int count; 5598 5599 if (initialized) { 5600 destroy_workqueue(bmc_remove_work_wq); 5601 5602 atomic_notifier_chain_unregister(&panic_notifier_list, 5603 &panic_block); 5604 5605 /* 5606 * This can't be called if any interfaces exist, so no worry 5607 * about shutting down the interfaces. 5608 */ 5609 5610 /* 5611 * Tell the timer to stop, then wait for it to stop. This 5612 * avoids problems with race conditions removing the timer 5613 * here. 5614 */ 5615 atomic_set(&stop_operation, 1); 5616 timer_delete_sync(&ipmi_timer); 5617 cancel_work_sync(&ipmi_timer_work); 5618 5619 initialized = false; 5620 5621 /* Check for buffer leaks. */ 5622 count = atomic_read(&smi_msg_inuse_count); 5623 if (count != 0) 5624 pr_warn("SMI message count %d at exit\n", count); 5625 count = atomic_read(&recv_msg_inuse_count); 5626 if (count != 0) 5627 pr_warn("recv message count %d at exit\n", count); 5628 } 5629 if (drvregistered) 5630 driver_unregister(&ipmidriver.driver); 5631 } 5632 module_exit(cleanup_ipmi); 5633 5634 module_init(ipmi_init_msghandler_mod); 5635 MODULE_LICENSE("GPL"); 5636 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 5637 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface."); 5638 MODULE_VERSION(IPMI_DRIVER_VERSION); 5639 MODULE_SOFTDEP("post: ipmi_devintf"); 5640