xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39 
40 #define IPMI_DRIVER_VERSION "39.2"
41 
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 			       struct ipmi_smi_msg *msg);
49 
50 static bool initialized;
51 static bool drvregistered;
52 
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 	IPMI_SEND_PANIC_EVENT_NONE,
56 	IPMI_SEND_PANIC_EVENT,
57 	IPMI_SEND_PANIC_EVENT_STRING,
58 	IPMI_SEND_PANIC_EVENT_MAX
59 };
60 
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63 
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71 
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73 
74 static int panic_op_write_handler(const char *val,
75 				  const struct kernel_param *kp)
76 {
77 	char valcp[16];
78 	int e;
79 
80 	strscpy(valcp, val, sizeof(valcp));
81 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 	if (e < 0)
83 		return e;
84 
85 	ipmi_send_panic_event = e;
86 	return 0;
87 }
88 
89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 	const char *event_str;
92 
93 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 		event_str = "???";
95 	else
96 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97 
98 	return sprintf(buffer, "%s\n", event_str);
99 }
100 
101 static const struct kernel_param_ops panic_op_ops = {
102 	.set = panic_op_write_handler,
103 	.get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107 
108 
109 #define MAX_EVENTS_IN_QUEUE	25
110 
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116 
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT		60000
122 
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129 
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 		 "The time (milliseconds) between retry sends");
135 
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 		 "The time (milliseconds) between retry sends in maintenance mode");
141 
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 		 "The time (milliseconds) between retry sends in maintenance mode");
147 
148 /* Call every ~1000 ms. */
149 #define IPMI_TIMEOUT_TIME	1000
150 
151 /* How many jiffies does it take to get to the timeout time. */
152 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
153 
154 /*
155  * Request events from the queue every second (this is the number of
156  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
157  * future, IPMI will add a way to know immediately if an event is in
158  * the queue and this silliness can go away.
159  */
160 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
161 
162 /* How long should we cache dynamic device IDs? */
163 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
164 
165 /*
166  * The main "user" data structure.
167  */
168 struct ipmi_user {
169 	struct list_head link;
170 
171 	/*
172 	 * Set to NULL when the user is destroyed, a pointer to myself
173 	 * so srcu_dereference can be used on it.
174 	 */
175 	struct ipmi_user *self;
176 	struct srcu_struct release_barrier;
177 
178 	struct kref refcount;
179 
180 	/* The upper layer that handles receive messages. */
181 	const struct ipmi_user_hndl *handler;
182 	void             *handler_data;
183 
184 	/* The interface this user is bound to. */
185 	struct ipmi_smi *intf;
186 
187 	/* Does this interface receive IPMI events? */
188 	bool gets_events;
189 
190 	/* Free must run in process context for RCU cleanup. */
191 	struct work_struct remove_work;
192 };
193 
194 static struct workqueue_struct *remove_work_wq;
195 
196 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
197 	__acquires(user->release_barrier)
198 {
199 	struct ipmi_user *ruser;
200 
201 	*index = srcu_read_lock(&user->release_barrier);
202 	ruser = srcu_dereference(user->self, &user->release_barrier);
203 	if (!ruser)
204 		srcu_read_unlock(&user->release_barrier, *index);
205 	return ruser;
206 }
207 
208 static void release_ipmi_user(struct ipmi_user *user, int index)
209 {
210 	srcu_read_unlock(&user->release_barrier, index);
211 }
212 
213 struct cmd_rcvr {
214 	struct list_head link;
215 
216 	struct ipmi_user *user;
217 	unsigned char netfn;
218 	unsigned char cmd;
219 	unsigned int  chans;
220 
221 	/*
222 	 * This is used to form a linked lised during mass deletion.
223 	 * Since this is in an RCU list, we cannot use the link above
224 	 * or change any data until the RCU period completes.  So we
225 	 * use this next variable during mass deletion so we can have
226 	 * a list and don't have to wait and restart the search on
227 	 * every individual deletion of a command.
228 	 */
229 	struct cmd_rcvr *next;
230 };
231 
232 struct seq_table {
233 	unsigned int         inuse : 1;
234 	unsigned int         broadcast : 1;
235 
236 	unsigned long        timeout;
237 	unsigned long        orig_timeout;
238 	unsigned int         retries_left;
239 
240 	/*
241 	 * To verify on an incoming send message response that this is
242 	 * the message that the response is for, we keep a sequence id
243 	 * and increment it every time we send a message.
244 	 */
245 	long                 seqid;
246 
247 	/*
248 	 * This is held so we can properly respond to the message on a
249 	 * timeout, and it is used to hold the temporary data for
250 	 * retransmission, too.
251 	 */
252 	struct ipmi_recv_msg *recv_msg;
253 };
254 
255 /*
256  * Store the information in a msgid (long) to allow us to find a
257  * sequence table entry from the msgid.
258  */
259 #define STORE_SEQ_IN_MSGID(seq, seqid) \
260 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
261 
262 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
263 	do {								\
264 		seq = (((msgid) >> 26) & 0x3f);				\
265 		seqid = ((msgid) & 0x3ffffff);				\
266 	} while (0)
267 
268 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
269 
270 #define IPMI_MAX_CHANNELS       16
271 struct ipmi_channel {
272 	unsigned char medium;
273 	unsigned char protocol;
274 };
275 
276 struct ipmi_channel_set {
277 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
278 };
279 
280 struct ipmi_my_addrinfo {
281 	/*
282 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
283 	 * but may be changed by the user.
284 	 */
285 	unsigned char address;
286 
287 	/*
288 	 * My LUN.  This should generally stay the SMS LUN, but just in
289 	 * case...
290 	 */
291 	unsigned char lun;
292 };
293 
294 /*
295  * Note that the product id, manufacturer id, guid, and device id are
296  * immutable in this structure, so dyn_mutex is not required for
297  * accessing those.  If those change on a BMC, a new BMC is allocated.
298  */
299 struct bmc_device {
300 	struct platform_device pdev;
301 	struct list_head       intfs; /* Interfaces on this BMC. */
302 	struct ipmi_device_id  id;
303 	struct ipmi_device_id  fetch_id;
304 	int                    dyn_id_set;
305 	unsigned long          dyn_id_expiry;
306 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
307 	guid_t                 guid;
308 	guid_t                 fetch_guid;
309 	int                    dyn_guid_set;
310 	struct kref	       usecount;
311 	struct work_struct     remove_work;
312 	unsigned char	       cc; /* completion code */
313 };
314 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
315 
316 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
317 			     struct ipmi_device_id *id,
318 			     bool *guid_set, guid_t *guid);
319 
320 /*
321  * Various statistics for IPMI, these index stats[] in the ipmi_smi
322  * structure.
323  */
324 enum ipmi_stat_indexes {
325 	/* Commands we got from the user that were invalid. */
326 	IPMI_STAT_sent_invalid_commands = 0,
327 
328 	/* Commands we sent to the MC. */
329 	IPMI_STAT_sent_local_commands,
330 
331 	/* Responses from the MC that were delivered to a user. */
332 	IPMI_STAT_handled_local_responses,
333 
334 	/* Responses from the MC that were not delivered to a user. */
335 	IPMI_STAT_unhandled_local_responses,
336 
337 	/* Commands we sent out to the IPMB bus. */
338 	IPMI_STAT_sent_ipmb_commands,
339 
340 	/* Commands sent on the IPMB that had errors on the SEND CMD */
341 	IPMI_STAT_sent_ipmb_command_errs,
342 
343 	/* Each retransmit increments this count. */
344 	IPMI_STAT_retransmitted_ipmb_commands,
345 
346 	/*
347 	 * When a message times out (runs out of retransmits) this is
348 	 * incremented.
349 	 */
350 	IPMI_STAT_timed_out_ipmb_commands,
351 
352 	/*
353 	 * This is like above, but for broadcasts.  Broadcasts are
354 	 * *not* included in the above count (they are expected to
355 	 * time out).
356 	 */
357 	IPMI_STAT_timed_out_ipmb_broadcasts,
358 
359 	/* Responses I have sent to the IPMB bus. */
360 	IPMI_STAT_sent_ipmb_responses,
361 
362 	/* The response was delivered to the user. */
363 	IPMI_STAT_handled_ipmb_responses,
364 
365 	/* The response had invalid data in it. */
366 	IPMI_STAT_invalid_ipmb_responses,
367 
368 	/* The response didn't have anyone waiting for it. */
369 	IPMI_STAT_unhandled_ipmb_responses,
370 
371 	/* Commands we sent out to the IPMB bus. */
372 	IPMI_STAT_sent_lan_commands,
373 
374 	/* Commands sent on the IPMB that had errors on the SEND CMD */
375 	IPMI_STAT_sent_lan_command_errs,
376 
377 	/* Each retransmit increments this count. */
378 	IPMI_STAT_retransmitted_lan_commands,
379 
380 	/*
381 	 * When a message times out (runs out of retransmits) this is
382 	 * incremented.
383 	 */
384 	IPMI_STAT_timed_out_lan_commands,
385 
386 	/* Responses I have sent to the IPMB bus. */
387 	IPMI_STAT_sent_lan_responses,
388 
389 	/* The response was delivered to the user. */
390 	IPMI_STAT_handled_lan_responses,
391 
392 	/* The response had invalid data in it. */
393 	IPMI_STAT_invalid_lan_responses,
394 
395 	/* The response didn't have anyone waiting for it. */
396 	IPMI_STAT_unhandled_lan_responses,
397 
398 	/* The command was delivered to the user. */
399 	IPMI_STAT_handled_commands,
400 
401 	/* The command had invalid data in it. */
402 	IPMI_STAT_invalid_commands,
403 
404 	/* The command didn't have anyone waiting for it. */
405 	IPMI_STAT_unhandled_commands,
406 
407 	/* Invalid data in an event. */
408 	IPMI_STAT_invalid_events,
409 
410 	/* Events that were received with the proper format. */
411 	IPMI_STAT_events,
412 
413 	/* Retransmissions on IPMB that failed. */
414 	IPMI_STAT_dropped_rexmit_ipmb_commands,
415 
416 	/* Retransmissions on LAN that failed. */
417 	IPMI_STAT_dropped_rexmit_lan_commands,
418 
419 	/* This *must* remain last, add new values above this. */
420 	IPMI_NUM_STATS
421 };
422 
423 
424 #define IPMI_IPMB_NUM_SEQ	64
425 struct ipmi_smi {
426 	struct module *owner;
427 
428 	/* What interface number are we? */
429 	int intf_num;
430 
431 	struct kref refcount;
432 
433 	/* Set when the interface is being unregistered. */
434 	bool in_shutdown;
435 
436 	/* Used for a list of interfaces. */
437 	struct list_head link;
438 
439 	/*
440 	 * The list of upper layers that are using me.  seq_lock write
441 	 * protects this.  Read protection is with srcu.
442 	 */
443 	struct list_head users;
444 	struct srcu_struct users_srcu;
445 
446 	/* Used for wake ups at startup. */
447 	wait_queue_head_t waitq;
448 
449 	/*
450 	 * Prevents the interface from being unregistered when the
451 	 * interface is used by being looked up through the BMC
452 	 * structure.
453 	 */
454 	struct mutex bmc_reg_mutex;
455 
456 	struct bmc_device tmp_bmc;
457 	struct bmc_device *bmc;
458 	bool bmc_registered;
459 	struct list_head bmc_link;
460 	char *my_dev_name;
461 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
462 	struct work_struct bmc_reg_work;
463 
464 	const struct ipmi_smi_handlers *handlers;
465 	void                     *send_info;
466 
467 	/* Driver-model device for the system interface. */
468 	struct device          *si_dev;
469 
470 	/*
471 	 * A table of sequence numbers for this interface.  We use the
472 	 * sequence numbers for IPMB messages that go out of the
473 	 * interface to match them up with their responses.  A routine
474 	 * is called periodically to time the items in this list.
475 	 */
476 	spinlock_t       seq_lock;
477 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
478 	int curr_seq;
479 
480 	/*
481 	 * Messages queued for delivery.  If delivery fails (out of memory
482 	 * for instance), They will stay in here to be processed later in a
483 	 * periodic timer interrupt.  The tasklet is for handling received
484 	 * messages directly from the handler.
485 	 */
486 	spinlock_t       waiting_rcv_msgs_lock;
487 	struct list_head waiting_rcv_msgs;
488 	atomic_t	 watchdog_pretimeouts_to_deliver;
489 	struct tasklet_struct recv_tasklet;
490 
491 	spinlock_t             xmit_msgs_lock;
492 	struct list_head       xmit_msgs;
493 	struct ipmi_smi_msg    *curr_msg;
494 	struct list_head       hp_xmit_msgs;
495 
496 	/*
497 	 * The list of command receivers that are registered for commands
498 	 * on this interface.
499 	 */
500 	struct mutex     cmd_rcvrs_mutex;
501 	struct list_head cmd_rcvrs;
502 
503 	/*
504 	 * Events that were queues because no one was there to receive
505 	 * them.
506 	 */
507 	spinlock_t       events_lock; /* For dealing with event stuff. */
508 	struct list_head waiting_events;
509 	unsigned int     waiting_events_count; /* How many events in queue? */
510 	char             delivering_events;
511 	char             event_msg_printed;
512 
513 	/* How many users are waiting for events? */
514 	atomic_t         event_waiters;
515 	unsigned int     ticks_to_req_ev;
516 
517 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
518 
519 	/* How many users are waiting for commands? */
520 	unsigned int     command_waiters;
521 
522 	/* How many users are waiting for watchdogs? */
523 	unsigned int     watchdog_waiters;
524 
525 	/* How many users are waiting for message responses? */
526 	unsigned int     response_waiters;
527 
528 	/*
529 	 * Tells what the lower layer has last been asked to watch for,
530 	 * messages and/or watchdogs.  Protected by watch_lock.
531 	 */
532 	unsigned int     last_watch_mask;
533 
534 	/*
535 	 * The event receiver for my BMC, only really used at panic
536 	 * shutdown as a place to store this.
537 	 */
538 	unsigned char event_receiver;
539 	unsigned char event_receiver_lun;
540 	unsigned char local_sel_device;
541 	unsigned char local_event_generator;
542 
543 	/* For handling of maintenance mode. */
544 	int maintenance_mode;
545 	bool maintenance_mode_enable;
546 	int auto_maintenance_timeout;
547 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
548 
549 	/*
550 	 * If we are doing maintenance on something on IPMB, extend
551 	 * the timeout time to avoid timeouts writing firmware and
552 	 * such.
553 	 */
554 	int ipmb_maintenance_mode_timeout;
555 
556 	/*
557 	 * A cheap hack, if this is non-null and a message to an
558 	 * interface comes in with a NULL user, call this routine with
559 	 * it.  Note that the message will still be freed by the
560 	 * caller.  This only works on the system interface.
561 	 *
562 	 * Protected by bmc_reg_mutex.
563 	 */
564 	void (*null_user_handler)(struct ipmi_smi *intf,
565 				  struct ipmi_recv_msg *msg);
566 
567 	/*
568 	 * When we are scanning the channels for an SMI, this will
569 	 * tell which channel we are scanning.
570 	 */
571 	int curr_channel;
572 
573 	/* Channel information */
574 	struct ipmi_channel_set *channel_list;
575 	unsigned int curr_working_cset; /* First index into the following. */
576 	struct ipmi_channel_set wchannels[2];
577 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
578 	bool channels_ready;
579 
580 	atomic_t stats[IPMI_NUM_STATS];
581 
582 	/*
583 	 * run_to_completion duplicate of smb_info, smi_info
584 	 * and ipmi_serial_info structures. Used to decrease numbers of
585 	 * parameters passed by "low" level IPMI code.
586 	 */
587 	int run_to_completion;
588 };
589 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
590 
591 static void __get_guid(struct ipmi_smi *intf);
592 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
593 static int __ipmi_bmc_register(struct ipmi_smi *intf,
594 			       struct ipmi_device_id *id,
595 			       bool guid_set, guid_t *guid, int intf_num);
596 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
597 
598 
599 /**
600  * The driver model view of the IPMI messaging driver.
601  */
602 static struct platform_driver ipmidriver = {
603 	.driver = {
604 		.name = "ipmi",
605 		.bus = &platform_bus_type
606 	}
607 };
608 /*
609  * This mutex keeps us from adding the same BMC twice.
610  */
611 static DEFINE_MUTEX(ipmidriver_mutex);
612 
613 static LIST_HEAD(ipmi_interfaces);
614 static DEFINE_MUTEX(ipmi_interfaces_mutex);
615 #define ipmi_interfaces_mutex_held() \
616 	lockdep_is_held(&ipmi_interfaces_mutex)
617 static struct srcu_struct ipmi_interfaces_srcu;
618 
619 /*
620  * List of watchers that want to know when smi's are added and deleted.
621  */
622 static LIST_HEAD(smi_watchers);
623 static DEFINE_MUTEX(smi_watchers_mutex);
624 
625 #define ipmi_inc_stat(intf, stat) \
626 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
627 #define ipmi_get_stat(intf, stat) \
628 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
629 
630 static const char * const addr_src_to_str[] = {
631 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
632 	"device-tree", "platform"
633 };
634 
635 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
636 {
637 	if (src >= SI_LAST)
638 		src = 0; /* Invalid */
639 	return addr_src_to_str[src];
640 }
641 EXPORT_SYMBOL(ipmi_addr_src_to_str);
642 
643 static int is_lan_addr(struct ipmi_addr *addr)
644 {
645 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
646 }
647 
648 static int is_ipmb_addr(struct ipmi_addr *addr)
649 {
650 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
651 }
652 
653 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
654 {
655 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
656 }
657 
658 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
659 {
660 	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
661 }
662 
663 static void free_recv_msg_list(struct list_head *q)
664 {
665 	struct ipmi_recv_msg *msg, *msg2;
666 
667 	list_for_each_entry_safe(msg, msg2, q, link) {
668 		list_del(&msg->link);
669 		ipmi_free_recv_msg(msg);
670 	}
671 }
672 
673 static void free_smi_msg_list(struct list_head *q)
674 {
675 	struct ipmi_smi_msg *msg, *msg2;
676 
677 	list_for_each_entry_safe(msg, msg2, q, link) {
678 		list_del(&msg->link);
679 		ipmi_free_smi_msg(msg);
680 	}
681 }
682 
683 static void clean_up_interface_data(struct ipmi_smi *intf)
684 {
685 	int              i;
686 	struct cmd_rcvr  *rcvr, *rcvr2;
687 	struct list_head list;
688 
689 	tasklet_kill(&intf->recv_tasklet);
690 
691 	free_smi_msg_list(&intf->waiting_rcv_msgs);
692 	free_recv_msg_list(&intf->waiting_events);
693 
694 	/*
695 	 * Wholesale remove all the entries from the list in the
696 	 * interface and wait for RCU to know that none are in use.
697 	 */
698 	mutex_lock(&intf->cmd_rcvrs_mutex);
699 	INIT_LIST_HEAD(&list);
700 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
701 	mutex_unlock(&intf->cmd_rcvrs_mutex);
702 
703 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
704 		kfree(rcvr);
705 
706 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
707 		if ((intf->seq_table[i].inuse)
708 					&& (intf->seq_table[i].recv_msg))
709 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
710 	}
711 }
712 
713 static void intf_free(struct kref *ref)
714 {
715 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
716 
717 	clean_up_interface_data(intf);
718 	kfree(intf);
719 }
720 
721 struct watcher_entry {
722 	int              intf_num;
723 	struct ipmi_smi  *intf;
724 	struct list_head link;
725 };
726 
727 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
728 {
729 	struct ipmi_smi *intf;
730 	int index, rv;
731 
732 	/*
733 	 * Make sure the driver is actually initialized, this handles
734 	 * problems with initialization order.
735 	 */
736 	rv = ipmi_init_msghandler();
737 	if (rv)
738 		return rv;
739 
740 	mutex_lock(&smi_watchers_mutex);
741 
742 	list_add(&watcher->link, &smi_watchers);
743 
744 	index = srcu_read_lock(&ipmi_interfaces_srcu);
745 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
746 			lockdep_is_held(&smi_watchers_mutex)) {
747 		int intf_num = READ_ONCE(intf->intf_num);
748 
749 		if (intf_num == -1)
750 			continue;
751 		watcher->new_smi(intf_num, intf->si_dev);
752 	}
753 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
754 
755 	mutex_unlock(&smi_watchers_mutex);
756 
757 	return 0;
758 }
759 EXPORT_SYMBOL(ipmi_smi_watcher_register);
760 
761 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
762 {
763 	mutex_lock(&smi_watchers_mutex);
764 	list_del(&watcher->link);
765 	mutex_unlock(&smi_watchers_mutex);
766 	return 0;
767 }
768 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
769 
770 /*
771  * Must be called with smi_watchers_mutex held.
772  */
773 static void
774 call_smi_watchers(int i, struct device *dev)
775 {
776 	struct ipmi_smi_watcher *w;
777 
778 	mutex_lock(&smi_watchers_mutex);
779 	list_for_each_entry(w, &smi_watchers, link) {
780 		if (try_module_get(w->owner)) {
781 			w->new_smi(i, dev);
782 			module_put(w->owner);
783 		}
784 	}
785 	mutex_unlock(&smi_watchers_mutex);
786 }
787 
788 static int
789 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
790 {
791 	if (addr1->addr_type != addr2->addr_type)
792 		return 0;
793 
794 	if (addr1->channel != addr2->channel)
795 		return 0;
796 
797 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
798 		struct ipmi_system_interface_addr *smi_addr1
799 		    = (struct ipmi_system_interface_addr *) addr1;
800 		struct ipmi_system_interface_addr *smi_addr2
801 		    = (struct ipmi_system_interface_addr *) addr2;
802 		return (smi_addr1->lun == smi_addr2->lun);
803 	}
804 
805 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
806 		struct ipmi_ipmb_addr *ipmb_addr1
807 		    = (struct ipmi_ipmb_addr *) addr1;
808 		struct ipmi_ipmb_addr *ipmb_addr2
809 		    = (struct ipmi_ipmb_addr *) addr2;
810 
811 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
812 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
813 	}
814 
815 	if (is_ipmb_direct_addr(addr1)) {
816 		struct ipmi_ipmb_direct_addr *daddr1
817 			= (struct ipmi_ipmb_direct_addr *) addr1;
818 		struct ipmi_ipmb_direct_addr *daddr2
819 			= (struct ipmi_ipmb_direct_addr *) addr2;
820 
821 		return daddr1->slave_addr == daddr2->slave_addr &&
822 			daddr1->rq_lun == daddr2->rq_lun &&
823 			daddr1->rs_lun == daddr2->rs_lun;
824 	}
825 
826 	if (is_lan_addr(addr1)) {
827 		struct ipmi_lan_addr *lan_addr1
828 			= (struct ipmi_lan_addr *) addr1;
829 		struct ipmi_lan_addr *lan_addr2
830 		    = (struct ipmi_lan_addr *) addr2;
831 
832 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
833 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
834 			&& (lan_addr1->session_handle
835 			    == lan_addr2->session_handle)
836 			&& (lan_addr1->lun == lan_addr2->lun));
837 	}
838 
839 	return 1;
840 }
841 
842 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
843 {
844 	if (len < sizeof(struct ipmi_system_interface_addr))
845 		return -EINVAL;
846 
847 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
848 		if (addr->channel != IPMI_BMC_CHANNEL)
849 			return -EINVAL;
850 		return 0;
851 	}
852 
853 	if ((addr->channel == IPMI_BMC_CHANNEL)
854 	    || (addr->channel >= IPMI_MAX_CHANNELS)
855 	    || (addr->channel < 0))
856 		return -EINVAL;
857 
858 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
859 		if (len < sizeof(struct ipmi_ipmb_addr))
860 			return -EINVAL;
861 		return 0;
862 	}
863 
864 	if (is_ipmb_direct_addr(addr)) {
865 		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
866 
867 		if (addr->channel != 0)
868 			return -EINVAL;
869 		if (len < sizeof(struct ipmi_ipmb_direct_addr))
870 			return -EINVAL;
871 
872 		if (daddr->slave_addr & 0x01)
873 			return -EINVAL;
874 		if (daddr->rq_lun >= 4)
875 			return -EINVAL;
876 		if (daddr->rs_lun >= 4)
877 			return -EINVAL;
878 		return 0;
879 	}
880 
881 	if (is_lan_addr(addr)) {
882 		if (len < sizeof(struct ipmi_lan_addr))
883 			return -EINVAL;
884 		return 0;
885 	}
886 
887 	return -EINVAL;
888 }
889 EXPORT_SYMBOL(ipmi_validate_addr);
890 
891 unsigned int ipmi_addr_length(int addr_type)
892 {
893 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
894 		return sizeof(struct ipmi_system_interface_addr);
895 
896 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
897 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
898 		return sizeof(struct ipmi_ipmb_addr);
899 
900 	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
901 		return sizeof(struct ipmi_ipmb_direct_addr);
902 
903 	if (addr_type == IPMI_LAN_ADDR_TYPE)
904 		return sizeof(struct ipmi_lan_addr);
905 
906 	return 0;
907 }
908 EXPORT_SYMBOL(ipmi_addr_length);
909 
910 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
911 {
912 	int rv = 0;
913 
914 	if (!msg->user) {
915 		/* Special handling for NULL users. */
916 		if (intf->null_user_handler) {
917 			intf->null_user_handler(intf, msg);
918 		} else {
919 			/* No handler, so give up. */
920 			rv = -EINVAL;
921 		}
922 		ipmi_free_recv_msg(msg);
923 	} else if (oops_in_progress) {
924 		/*
925 		 * If we are running in the panic context, calling the
926 		 * receive handler doesn't much meaning and has a deadlock
927 		 * risk.  At this moment, simply skip it in that case.
928 		 */
929 		ipmi_free_recv_msg(msg);
930 	} else {
931 		int index;
932 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
933 
934 		if (user) {
935 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
936 			release_ipmi_user(user, index);
937 		} else {
938 			/* User went away, give up. */
939 			ipmi_free_recv_msg(msg);
940 			rv = -EINVAL;
941 		}
942 	}
943 
944 	return rv;
945 }
946 
947 static void deliver_local_response(struct ipmi_smi *intf,
948 				   struct ipmi_recv_msg *msg)
949 {
950 	if (deliver_response(intf, msg))
951 		ipmi_inc_stat(intf, unhandled_local_responses);
952 	else
953 		ipmi_inc_stat(intf, handled_local_responses);
954 }
955 
956 static void deliver_err_response(struct ipmi_smi *intf,
957 				 struct ipmi_recv_msg *msg, int err)
958 {
959 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
960 	msg->msg_data[0] = err;
961 	msg->msg.netfn |= 1; /* Convert to a response. */
962 	msg->msg.data_len = 1;
963 	msg->msg.data = msg->msg_data;
964 	deliver_local_response(intf, msg);
965 }
966 
967 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
968 {
969 	unsigned long iflags;
970 
971 	if (!intf->handlers->set_need_watch)
972 		return;
973 
974 	spin_lock_irqsave(&intf->watch_lock, iflags);
975 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
976 		intf->response_waiters++;
977 
978 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
979 		intf->watchdog_waiters++;
980 
981 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
982 		intf->command_waiters++;
983 
984 	if ((intf->last_watch_mask & flags) != flags) {
985 		intf->last_watch_mask |= flags;
986 		intf->handlers->set_need_watch(intf->send_info,
987 					       intf->last_watch_mask);
988 	}
989 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
990 }
991 
992 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
993 {
994 	unsigned long iflags;
995 
996 	if (!intf->handlers->set_need_watch)
997 		return;
998 
999 	spin_lock_irqsave(&intf->watch_lock, iflags);
1000 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1001 		intf->response_waiters--;
1002 
1003 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1004 		intf->watchdog_waiters--;
1005 
1006 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1007 		intf->command_waiters--;
1008 
1009 	flags = 0;
1010 	if (intf->response_waiters)
1011 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1012 	if (intf->watchdog_waiters)
1013 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1014 	if (intf->command_waiters)
1015 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1016 
1017 	if (intf->last_watch_mask != flags) {
1018 		intf->last_watch_mask = flags;
1019 		intf->handlers->set_need_watch(intf->send_info,
1020 					       intf->last_watch_mask);
1021 	}
1022 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1023 }
1024 
1025 /*
1026  * Find the next sequence number not being used and add the given
1027  * message with the given timeout to the sequence table.  This must be
1028  * called with the interface's seq_lock held.
1029  */
1030 static int intf_next_seq(struct ipmi_smi      *intf,
1031 			 struct ipmi_recv_msg *recv_msg,
1032 			 unsigned long        timeout,
1033 			 int                  retries,
1034 			 int                  broadcast,
1035 			 unsigned char        *seq,
1036 			 long                 *seqid)
1037 {
1038 	int          rv = 0;
1039 	unsigned int i;
1040 
1041 	if (timeout == 0)
1042 		timeout = default_retry_ms;
1043 	if (retries < 0)
1044 		retries = default_max_retries;
1045 
1046 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1047 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1048 		if (!intf->seq_table[i].inuse)
1049 			break;
1050 	}
1051 
1052 	if (!intf->seq_table[i].inuse) {
1053 		intf->seq_table[i].recv_msg = recv_msg;
1054 
1055 		/*
1056 		 * Start with the maximum timeout, when the send response
1057 		 * comes in we will start the real timer.
1058 		 */
1059 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1060 		intf->seq_table[i].orig_timeout = timeout;
1061 		intf->seq_table[i].retries_left = retries;
1062 		intf->seq_table[i].broadcast = broadcast;
1063 		intf->seq_table[i].inuse = 1;
1064 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1065 		*seq = i;
1066 		*seqid = intf->seq_table[i].seqid;
1067 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1068 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1069 		need_waiter(intf);
1070 	} else {
1071 		rv = -EAGAIN;
1072 	}
1073 
1074 	return rv;
1075 }
1076 
1077 /*
1078  * Return the receive message for the given sequence number and
1079  * release the sequence number so it can be reused.  Some other data
1080  * is passed in to be sure the message matches up correctly (to help
1081  * guard against message coming in after their timeout and the
1082  * sequence number being reused).
1083  */
1084 static int intf_find_seq(struct ipmi_smi      *intf,
1085 			 unsigned char        seq,
1086 			 short                channel,
1087 			 unsigned char        cmd,
1088 			 unsigned char        netfn,
1089 			 struct ipmi_addr     *addr,
1090 			 struct ipmi_recv_msg **recv_msg)
1091 {
1092 	int           rv = -ENODEV;
1093 	unsigned long flags;
1094 
1095 	if (seq >= IPMI_IPMB_NUM_SEQ)
1096 		return -EINVAL;
1097 
1098 	spin_lock_irqsave(&intf->seq_lock, flags);
1099 	if (intf->seq_table[seq].inuse) {
1100 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1101 
1102 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1103 				&& (msg->msg.netfn == netfn)
1104 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1105 			*recv_msg = msg;
1106 			intf->seq_table[seq].inuse = 0;
1107 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1108 			rv = 0;
1109 		}
1110 	}
1111 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1112 
1113 	return rv;
1114 }
1115 
1116 
1117 /* Start the timer for a specific sequence table entry. */
1118 static int intf_start_seq_timer(struct ipmi_smi *intf,
1119 				long       msgid)
1120 {
1121 	int           rv = -ENODEV;
1122 	unsigned long flags;
1123 	unsigned char seq;
1124 	unsigned long seqid;
1125 
1126 
1127 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1128 
1129 	spin_lock_irqsave(&intf->seq_lock, flags);
1130 	/*
1131 	 * We do this verification because the user can be deleted
1132 	 * while a message is outstanding.
1133 	 */
1134 	if ((intf->seq_table[seq].inuse)
1135 				&& (intf->seq_table[seq].seqid == seqid)) {
1136 		struct seq_table *ent = &intf->seq_table[seq];
1137 		ent->timeout = ent->orig_timeout;
1138 		rv = 0;
1139 	}
1140 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1141 
1142 	return rv;
1143 }
1144 
1145 /* Got an error for the send message for a specific sequence number. */
1146 static int intf_err_seq(struct ipmi_smi *intf,
1147 			long         msgid,
1148 			unsigned int err)
1149 {
1150 	int                  rv = -ENODEV;
1151 	unsigned long        flags;
1152 	unsigned char        seq;
1153 	unsigned long        seqid;
1154 	struct ipmi_recv_msg *msg = NULL;
1155 
1156 
1157 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1158 
1159 	spin_lock_irqsave(&intf->seq_lock, flags);
1160 	/*
1161 	 * We do this verification because the user can be deleted
1162 	 * while a message is outstanding.
1163 	 */
1164 	if ((intf->seq_table[seq].inuse)
1165 				&& (intf->seq_table[seq].seqid == seqid)) {
1166 		struct seq_table *ent = &intf->seq_table[seq];
1167 
1168 		ent->inuse = 0;
1169 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1170 		msg = ent->recv_msg;
1171 		rv = 0;
1172 	}
1173 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1174 
1175 	if (msg)
1176 		deliver_err_response(intf, msg, err);
1177 
1178 	return rv;
1179 }
1180 
1181 static void free_user_work(struct work_struct *work)
1182 {
1183 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1184 					      remove_work);
1185 
1186 	cleanup_srcu_struct(&user->release_barrier);
1187 	vfree(user);
1188 }
1189 
1190 int ipmi_create_user(unsigned int          if_num,
1191 		     const struct ipmi_user_hndl *handler,
1192 		     void                  *handler_data,
1193 		     struct ipmi_user      **user)
1194 {
1195 	unsigned long flags;
1196 	struct ipmi_user *new_user;
1197 	int           rv, index;
1198 	struct ipmi_smi *intf;
1199 
1200 	/*
1201 	 * There is no module usecount here, because it's not
1202 	 * required.  Since this can only be used by and called from
1203 	 * other modules, they will implicitly use this module, and
1204 	 * thus this can't be removed unless the other modules are
1205 	 * removed.
1206 	 */
1207 
1208 	if (handler == NULL)
1209 		return -EINVAL;
1210 
1211 	/*
1212 	 * Make sure the driver is actually initialized, this handles
1213 	 * problems with initialization order.
1214 	 */
1215 	rv = ipmi_init_msghandler();
1216 	if (rv)
1217 		return rv;
1218 
1219 	new_user = vzalloc(sizeof(*new_user));
1220 	if (!new_user)
1221 		return -ENOMEM;
1222 
1223 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1224 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1225 		if (intf->intf_num == if_num)
1226 			goto found;
1227 	}
1228 	/* Not found, return an error */
1229 	rv = -EINVAL;
1230 	goto out_kfree;
1231 
1232  found:
1233 	INIT_WORK(&new_user->remove_work, free_user_work);
1234 
1235 	rv = init_srcu_struct(&new_user->release_barrier);
1236 	if (rv)
1237 		goto out_kfree;
1238 
1239 	if (!try_module_get(intf->owner)) {
1240 		rv = -ENODEV;
1241 		goto out_kfree;
1242 	}
1243 
1244 	/* Note that each existing user holds a refcount to the interface. */
1245 	kref_get(&intf->refcount);
1246 
1247 	kref_init(&new_user->refcount);
1248 	new_user->handler = handler;
1249 	new_user->handler_data = handler_data;
1250 	new_user->intf = intf;
1251 	new_user->gets_events = false;
1252 
1253 	rcu_assign_pointer(new_user->self, new_user);
1254 	spin_lock_irqsave(&intf->seq_lock, flags);
1255 	list_add_rcu(&new_user->link, &intf->users);
1256 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1257 	if (handler->ipmi_watchdog_pretimeout)
1258 		/* User wants pretimeouts, so make sure to watch for them. */
1259 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1260 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1261 	*user = new_user;
1262 	return 0;
1263 
1264 out_kfree:
1265 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1266 	vfree(new_user);
1267 	return rv;
1268 }
1269 EXPORT_SYMBOL(ipmi_create_user);
1270 
1271 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1272 {
1273 	int rv, index;
1274 	struct ipmi_smi *intf;
1275 
1276 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1277 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1278 		if (intf->intf_num == if_num)
1279 			goto found;
1280 	}
1281 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1282 
1283 	/* Not found, return an error */
1284 	return -EINVAL;
1285 
1286 found:
1287 	if (!intf->handlers->get_smi_info)
1288 		rv = -ENOTTY;
1289 	else
1290 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1291 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1292 
1293 	return rv;
1294 }
1295 EXPORT_SYMBOL(ipmi_get_smi_info);
1296 
1297 static void free_user(struct kref *ref)
1298 {
1299 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1300 
1301 	/* SRCU cleanup must happen in task context. */
1302 	queue_work(remove_work_wq, &user->remove_work);
1303 }
1304 
1305 static void _ipmi_destroy_user(struct ipmi_user *user)
1306 {
1307 	struct ipmi_smi  *intf = user->intf;
1308 	int              i;
1309 	unsigned long    flags;
1310 	struct cmd_rcvr  *rcvr;
1311 	struct cmd_rcvr  *rcvrs = NULL;
1312 
1313 	if (!acquire_ipmi_user(user, &i)) {
1314 		/*
1315 		 * The user has already been cleaned up, just make sure
1316 		 * nothing is using it and return.
1317 		 */
1318 		synchronize_srcu(&user->release_barrier);
1319 		return;
1320 	}
1321 
1322 	rcu_assign_pointer(user->self, NULL);
1323 	release_ipmi_user(user, i);
1324 
1325 	synchronize_srcu(&user->release_barrier);
1326 
1327 	if (user->handler->shutdown)
1328 		user->handler->shutdown(user->handler_data);
1329 
1330 	if (user->handler->ipmi_watchdog_pretimeout)
1331 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1332 
1333 	if (user->gets_events)
1334 		atomic_dec(&intf->event_waiters);
1335 
1336 	/* Remove the user from the interface's sequence table. */
1337 	spin_lock_irqsave(&intf->seq_lock, flags);
1338 	list_del_rcu(&user->link);
1339 
1340 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1341 		if (intf->seq_table[i].inuse
1342 		    && (intf->seq_table[i].recv_msg->user == user)) {
1343 			intf->seq_table[i].inuse = 0;
1344 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1345 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1346 		}
1347 	}
1348 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1349 
1350 	/*
1351 	 * Remove the user from the command receiver's table.  First
1352 	 * we build a list of everything (not using the standard link,
1353 	 * since other things may be using it till we do
1354 	 * synchronize_srcu()) then free everything in that list.
1355 	 */
1356 	mutex_lock(&intf->cmd_rcvrs_mutex);
1357 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1358 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1359 		if (rcvr->user == user) {
1360 			list_del_rcu(&rcvr->link);
1361 			rcvr->next = rcvrs;
1362 			rcvrs = rcvr;
1363 		}
1364 	}
1365 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1366 	synchronize_rcu();
1367 	while (rcvrs) {
1368 		rcvr = rcvrs;
1369 		rcvrs = rcvr->next;
1370 		kfree(rcvr);
1371 	}
1372 
1373 	kref_put(&intf->refcount, intf_free);
1374 	module_put(intf->owner);
1375 }
1376 
1377 int ipmi_destroy_user(struct ipmi_user *user)
1378 {
1379 	_ipmi_destroy_user(user);
1380 
1381 	kref_put(&user->refcount, free_user);
1382 
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(ipmi_destroy_user);
1386 
1387 int ipmi_get_version(struct ipmi_user *user,
1388 		     unsigned char *major,
1389 		     unsigned char *minor)
1390 {
1391 	struct ipmi_device_id id;
1392 	int rv, index;
1393 
1394 	user = acquire_ipmi_user(user, &index);
1395 	if (!user)
1396 		return -ENODEV;
1397 
1398 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1399 	if (!rv) {
1400 		*major = ipmi_version_major(&id);
1401 		*minor = ipmi_version_minor(&id);
1402 	}
1403 	release_ipmi_user(user, index);
1404 
1405 	return rv;
1406 }
1407 EXPORT_SYMBOL(ipmi_get_version);
1408 
1409 int ipmi_set_my_address(struct ipmi_user *user,
1410 			unsigned int  channel,
1411 			unsigned char address)
1412 {
1413 	int index, rv = 0;
1414 
1415 	user = acquire_ipmi_user(user, &index);
1416 	if (!user)
1417 		return -ENODEV;
1418 
1419 	if (channel >= IPMI_MAX_CHANNELS) {
1420 		rv = -EINVAL;
1421 	} else {
1422 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1423 		user->intf->addrinfo[channel].address = address;
1424 	}
1425 	release_ipmi_user(user, index);
1426 
1427 	return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_set_my_address);
1430 
1431 int ipmi_get_my_address(struct ipmi_user *user,
1432 			unsigned int  channel,
1433 			unsigned char *address)
1434 {
1435 	int index, rv = 0;
1436 
1437 	user = acquire_ipmi_user(user, &index);
1438 	if (!user)
1439 		return -ENODEV;
1440 
1441 	if (channel >= IPMI_MAX_CHANNELS) {
1442 		rv = -EINVAL;
1443 	} else {
1444 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 		*address = user->intf->addrinfo[channel].address;
1446 	}
1447 	release_ipmi_user(user, index);
1448 
1449 	return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_get_my_address);
1452 
1453 int ipmi_set_my_LUN(struct ipmi_user *user,
1454 		    unsigned int  channel,
1455 		    unsigned char LUN)
1456 {
1457 	int index, rv = 0;
1458 
1459 	user = acquire_ipmi_user(user, &index);
1460 	if (!user)
1461 		return -ENODEV;
1462 
1463 	if (channel >= IPMI_MAX_CHANNELS) {
1464 		rv = -EINVAL;
1465 	} else {
1466 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1468 	}
1469 	release_ipmi_user(user, index);
1470 
1471 	return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_set_my_LUN);
1474 
1475 int ipmi_get_my_LUN(struct ipmi_user *user,
1476 		    unsigned int  channel,
1477 		    unsigned char *address)
1478 {
1479 	int index, rv = 0;
1480 
1481 	user = acquire_ipmi_user(user, &index);
1482 	if (!user)
1483 		return -ENODEV;
1484 
1485 	if (channel >= IPMI_MAX_CHANNELS) {
1486 		rv = -EINVAL;
1487 	} else {
1488 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1489 		*address = user->intf->addrinfo[channel].lun;
1490 	}
1491 	release_ipmi_user(user, index);
1492 
1493 	return rv;
1494 }
1495 EXPORT_SYMBOL(ipmi_get_my_LUN);
1496 
1497 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1498 {
1499 	int mode, index;
1500 	unsigned long flags;
1501 
1502 	user = acquire_ipmi_user(user, &index);
1503 	if (!user)
1504 		return -ENODEV;
1505 
1506 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1507 	mode = user->intf->maintenance_mode;
1508 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1509 	release_ipmi_user(user, index);
1510 
1511 	return mode;
1512 }
1513 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1514 
1515 static void maintenance_mode_update(struct ipmi_smi *intf)
1516 {
1517 	if (intf->handlers->set_maintenance_mode)
1518 		intf->handlers->set_maintenance_mode(
1519 			intf->send_info, intf->maintenance_mode_enable);
1520 }
1521 
1522 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1523 {
1524 	int rv = 0, index;
1525 	unsigned long flags;
1526 	struct ipmi_smi *intf = user->intf;
1527 
1528 	user = acquire_ipmi_user(user, &index);
1529 	if (!user)
1530 		return -ENODEV;
1531 
1532 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1533 	if (intf->maintenance_mode != mode) {
1534 		switch (mode) {
1535 		case IPMI_MAINTENANCE_MODE_AUTO:
1536 			intf->maintenance_mode_enable
1537 				= (intf->auto_maintenance_timeout > 0);
1538 			break;
1539 
1540 		case IPMI_MAINTENANCE_MODE_OFF:
1541 			intf->maintenance_mode_enable = false;
1542 			break;
1543 
1544 		case IPMI_MAINTENANCE_MODE_ON:
1545 			intf->maintenance_mode_enable = true;
1546 			break;
1547 
1548 		default:
1549 			rv = -EINVAL;
1550 			goto out_unlock;
1551 		}
1552 		intf->maintenance_mode = mode;
1553 
1554 		maintenance_mode_update(intf);
1555 	}
1556  out_unlock:
1557 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1558 	release_ipmi_user(user, index);
1559 
1560 	return rv;
1561 }
1562 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1563 
1564 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1565 {
1566 	unsigned long        flags;
1567 	struct ipmi_smi      *intf = user->intf;
1568 	struct ipmi_recv_msg *msg, *msg2;
1569 	struct list_head     msgs;
1570 	int index;
1571 
1572 	user = acquire_ipmi_user(user, &index);
1573 	if (!user)
1574 		return -ENODEV;
1575 
1576 	INIT_LIST_HEAD(&msgs);
1577 
1578 	spin_lock_irqsave(&intf->events_lock, flags);
1579 	if (user->gets_events == val)
1580 		goto out;
1581 
1582 	user->gets_events = val;
1583 
1584 	if (val) {
1585 		if (atomic_inc_return(&intf->event_waiters) == 1)
1586 			need_waiter(intf);
1587 	} else {
1588 		atomic_dec(&intf->event_waiters);
1589 	}
1590 
1591 	if (intf->delivering_events)
1592 		/*
1593 		 * Another thread is delivering events for this, so
1594 		 * let it handle any new events.
1595 		 */
1596 		goto out;
1597 
1598 	/* Deliver any queued events. */
1599 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1600 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1601 			list_move_tail(&msg->link, &msgs);
1602 		intf->waiting_events_count = 0;
1603 		if (intf->event_msg_printed) {
1604 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1605 			intf->event_msg_printed = 0;
1606 		}
1607 
1608 		intf->delivering_events = 1;
1609 		spin_unlock_irqrestore(&intf->events_lock, flags);
1610 
1611 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1612 			msg->user = user;
1613 			kref_get(&user->refcount);
1614 			deliver_local_response(intf, msg);
1615 		}
1616 
1617 		spin_lock_irqsave(&intf->events_lock, flags);
1618 		intf->delivering_events = 0;
1619 	}
1620 
1621  out:
1622 	spin_unlock_irqrestore(&intf->events_lock, flags);
1623 	release_ipmi_user(user, index);
1624 
1625 	return 0;
1626 }
1627 EXPORT_SYMBOL(ipmi_set_gets_events);
1628 
1629 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1630 				      unsigned char netfn,
1631 				      unsigned char cmd,
1632 				      unsigned char chan)
1633 {
1634 	struct cmd_rcvr *rcvr;
1635 
1636 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1637 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1638 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1639 					&& (rcvr->chans & (1 << chan)))
1640 			return rcvr;
1641 	}
1642 	return NULL;
1643 }
1644 
1645 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1646 				 unsigned char netfn,
1647 				 unsigned char cmd,
1648 				 unsigned int  chans)
1649 {
1650 	struct cmd_rcvr *rcvr;
1651 
1652 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1653 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1654 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1655 					&& (rcvr->chans & chans))
1656 			return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 int ipmi_register_for_cmd(struct ipmi_user *user,
1662 			  unsigned char netfn,
1663 			  unsigned char cmd,
1664 			  unsigned int  chans)
1665 {
1666 	struct ipmi_smi *intf = user->intf;
1667 	struct cmd_rcvr *rcvr;
1668 	int rv = 0, index;
1669 
1670 	user = acquire_ipmi_user(user, &index);
1671 	if (!user)
1672 		return -ENODEV;
1673 
1674 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1675 	if (!rcvr) {
1676 		rv = -ENOMEM;
1677 		goto out_release;
1678 	}
1679 	rcvr->cmd = cmd;
1680 	rcvr->netfn = netfn;
1681 	rcvr->chans = chans;
1682 	rcvr->user = user;
1683 
1684 	mutex_lock(&intf->cmd_rcvrs_mutex);
1685 	/* Make sure the command/netfn is not already registered. */
1686 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1687 		rv = -EBUSY;
1688 		goto out_unlock;
1689 	}
1690 
1691 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1692 
1693 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1694 
1695 out_unlock:
1696 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1697 	if (rv)
1698 		kfree(rcvr);
1699 out_release:
1700 	release_ipmi_user(user, index);
1701 
1702 	return rv;
1703 }
1704 EXPORT_SYMBOL(ipmi_register_for_cmd);
1705 
1706 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1707 			    unsigned char netfn,
1708 			    unsigned char cmd,
1709 			    unsigned int  chans)
1710 {
1711 	struct ipmi_smi *intf = user->intf;
1712 	struct cmd_rcvr *rcvr;
1713 	struct cmd_rcvr *rcvrs = NULL;
1714 	int i, rv = -ENOENT, index;
1715 
1716 	user = acquire_ipmi_user(user, &index);
1717 	if (!user)
1718 		return -ENODEV;
1719 
1720 	mutex_lock(&intf->cmd_rcvrs_mutex);
1721 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1722 		if (((1 << i) & chans) == 0)
1723 			continue;
1724 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1725 		if (rcvr == NULL)
1726 			continue;
1727 		if (rcvr->user == user) {
1728 			rv = 0;
1729 			rcvr->chans &= ~chans;
1730 			if (rcvr->chans == 0) {
1731 				list_del_rcu(&rcvr->link);
1732 				rcvr->next = rcvrs;
1733 				rcvrs = rcvr;
1734 			}
1735 		}
1736 	}
1737 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1738 	synchronize_rcu();
1739 	release_ipmi_user(user, index);
1740 	while (rcvrs) {
1741 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1742 		rcvr = rcvrs;
1743 		rcvrs = rcvr->next;
1744 		kfree(rcvr);
1745 	}
1746 
1747 	return rv;
1748 }
1749 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1750 
1751 unsigned char
1752 ipmb_checksum(unsigned char *data, int size)
1753 {
1754 	unsigned char csum = 0;
1755 
1756 	for (; size > 0; size--, data++)
1757 		csum += *data;
1758 
1759 	return -csum;
1760 }
1761 EXPORT_SYMBOL(ipmb_checksum);
1762 
1763 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1764 				   struct kernel_ipmi_msg *msg,
1765 				   struct ipmi_ipmb_addr *ipmb_addr,
1766 				   long                  msgid,
1767 				   unsigned char         ipmb_seq,
1768 				   int                   broadcast,
1769 				   unsigned char         source_address,
1770 				   unsigned char         source_lun)
1771 {
1772 	int i = broadcast;
1773 
1774 	/* Format the IPMB header data. */
1775 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1776 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1777 	smi_msg->data[2] = ipmb_addr->channel;
1778 	if (broadcast)
1779 		smi_msg->data[3] = 0;
1780 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1781 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1782 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1783 	smi_msg->data[i+6] = source_address;
1784 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1785 	smi_msg->data[i+8] = msg->cmd;
1786 
1787 	/* Now tack on the data to the message. */
1788 	if (msg->data_len > 0)
1789 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1790 	smi_msg->data_size = msg->data_len + 9;
1791 
1792 	/* Now calculate the checksum and tack it on. */
1793 	smi_msg->data[i+smi_msg->data_size]
1794 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1795 
1796 	/*
1797 	 * Add on the checksum size and the offset from the
1798 	 * broadcast.
1799 	 */
1800 	smi_msg->data_size += 1 + i;
1801 
1802 	smi_msg->msgid = msgid;
1803 }
1804 
1805 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1806 				  struct kernel_ipmi_msg *msg,
1807 				  struct ipmi_lan_addr  *lan_addr,
1808 				  long                  msgid,
1809 				  unsigned char         ipmb_seq,
1810 				  unsigned char         source_lun)
1811 {
1812 	/* Format the IPMB header data. */
1813 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1814 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1815 	smi_msg->data[2] = lan_addr->channel;
1816 	smi_msg->data[3] = lan_addr->session_handle;
1817 	smi_msg->data[4] = lan_addr->remote_SWID;
1818 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1819 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1820 	smi_msg->data[7] = lan_addr->local_SWID;
1821 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1822 	smi_msg->data[9] = msg->cmd;
1823 
1824 	/* Now tack on the data to the message. */
1825 	if (msg->data_len > 0)
1826 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1827 	smi_msg->data_size = msg->data_len + 10;
1828 
1829 	/* Now calculate the checksum and tack it on. */
1830 	smi_msg->data[smi_msg->data_size]
1831 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1832 
1833 	/*
1834 	 * Add on the checksum size and the offset from the
1835 	 * broadcast.
1836 	 */
1837 	smi_msg->data_size += 1;
1838 
1839 	smi_msg->msgid = msgid;
1840 }
1841 
1842 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1843 					     struct ipmi_smi_msg *smi_msg,
1844 					     int priority)
1845 {
1846 	if (intf->curr_msg) {
1847 		if (priority > 0)
1848 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1849 		else
1850 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1851 		smi_msg = NULL;
1852 	} else {
1853 		intf->curr_msg = smi_msg;
1854 	}
1855 
1856 	return smi_msg;
1857 }
1858 
1859 static void smi_send(struct ipmi_smi *intf,
1860 		     const struct ipmi_smi_handlers *handlers,
1861 		     struct ipmi_smi_msg *smi_msg, int priority)
1862 {
1863 	int run_to_completion = intf->run_to_completion;
1864 	unsigned long flags = 0;
1865 
1866 	if (!run_to_completion)
1867 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1868 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1869 
1870 	if (!run_to_completion)
1871 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1872 
1873 	if (smi_msg)
1874 		handlers->sender(intf->send_info, smi_msg);
1875 }
1876 
1877 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1878 {
1879 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1880 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1881 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1882 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1883 }
1884 
1885 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1886 			      struct ipmi_addr       *addr,
1887 			      long                   msgid,
1888 			      struct kernel_ipmi_msg *msg,
1889 			      struct ipmi_smi_msg    *smi_msg,
1890 			      struct ipmi_recv_msg   *recv_msg,
1891 			      int                    retries,
1892 			      unsigned int           retry_time_ms)
1893 {
1894 	struct ipmi_system_interface_addr *smi_addr;
1895 
1896 	if (msg->netfn & 1)
1897 		/* Responses are not allowed to the SMI. */
1898 		return -EINVAL;
1899 
1900 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1901 	if (smi_addr->lun > 3) {
1902 		ipmi_inc_stat(intf, sent_invalid_commands);
1903 		return -EINVAL;
1904 	}
1905 
1906 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1907 
1908 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1909 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1910 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1911 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1912 		/*
1913 		 * We don't let the user do these, since we manage
1914 		 * the sequence numbers.
1915 		 */
1916 		ipmi_inc_stat(intf, sent_invalid_commands);
1917 		return -EINVAL;
1918 	}
1919 
1920 	if (is_maintenance_mode_cmd(msg)) {
1921 		unsigned long flags;
1922 
1923 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1924 		intf->auto_maintenance_timeout
1925 			= maintenance_mode_timeout_ms;
1926 		if (!intf->maintenance_mode
1927 		    && !intf->maintenance_mode_enable) {
1928 			intf->maintenance_mode_enable = true;
1929 			maintenance_mode_update(intf);
1930 		}
1931 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1932 				       flags);
1933 	}
1934 
1935 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1936 		ipmi_inc_stat(intf, sent_invalid_commands);
1937 		return -EMSGSIZE;
1938 	}
1939 
1940 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1941 	smi_msg->data[1] = msg->cmd;
1942 	smi_msg->msgid = msgid;
1943 	smi_msg->user_data = recv_msg;
1944 	if (msg->data_len > 0)
1945 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1946 	smi_msg->data_size = msg->data_len + 2;
1947 	ipmi_inc_stat(intf, sent_local_commands);
1948 
1949 	return 0;
1950 }
1951 
1952 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1953 			   struct ipmi_addr       *addr,
1954 			   long                   msgid,
1955 			   struct kernel_ipmi_msg *msg,
1956 			   struct ipmi_smi_msg    *smi_msg,
1957 			   struct ipmi_recv_msg   *recv_msg,
1958 			   unsigned char          source_address,
1959 			   unsigned char          source_lun,
1960 			   int                    retries,
1961 			   unsigned int           retry_time_ms)
1962 {
1963 	struct ipmi_ipmb_addr *ipmb_addr;
1964 	unsigned char ipmb_seq;
1965 	long seqid;
1966 	int broadcast = 0;
1967 	struct ipmi_channel *chans;
1968 	int rv = 0;
1969 
1970 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1971 		ipmi_inc_stat(intf, sent_invalid_commands);
1972 		return -EINVAL;
1973 	}
1974 
1975 	chans = READ_ONCE(intf->channel_list)->c;
1976 
1977 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1978 		ipmi_inc_stat(intf, sent_invalid_commands);
1979 		return -EINVAL;
1980 	}
1981 
1982 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1983 		/*
1984 		 * Broadcasts add a zero at the beginning of the
1985 		 * message, but otherwise is the same as an IPMB
1986 		 * address.
1987 		 */
1988 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1989 		broadcast = 1;
1990 		retries = 0; /* Don't retry broadcasts. */
1991 	}
1992 
1993 	/*
1994 	 * 9 for the header and 1 for the checksum, plus
1995 	 * possibly one for the broadcast.
1996 	 */
1997 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1998 		ipmi_inc_stat(intf, sent_invalid_commands);
1999 		return -EMSGSIZE;
2000 	}
2001 
2002 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2003 	if (ipmb_addr->lun > 3) {
2004 		ipmi_inc_stat(intf, sent_invalid_commands);
2005 		return -EINVAL;
2006 	}
2007 
2008 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2009 
2010 	if (recv_msg->msg.netfn & 0x1) {
2011 		/*
2012 		 * It's a response, so use the user's sequence
2013 		 * from msgid.
2014 		 */
2015 		ipmi_inc_stat(intf, sent_ipmb_responses);
2016 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2017 				msgid, broadcast,
2018 				source_address, source_lun);
2019 
2020 		/*
2021 		 * Save the receive message so we can use it
2022 		 * to deliver the response.
2023 		 */
2024 		smi_msg->user_data = recv_msg;
2025 	} else {
2026 		/* It's a command, so get a sequence for it. */
2027 		unsigned long flags;
2028 
2029 		spin_lock_irqsave(&intf->seq_lock, flags);
2030 
2031 		if (is_maintenance_mode_cmd(msg))
2032 			intf->ipmb_maintenance_mode_timeout =
2033 				maintenance_mode_timeout_ms;
2034 
2035 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2036 			/* Different default in maintenance mode */
2037 			retry_time_ms = default_maintenance_retry_ms;
2038 
2039 		/*
2040 		 * Create a sequence number with a 1 second
2041 		 * timeout and 4 retries.
2042 		 */
2043 		rv = intf_next_seq(intf,
2044 				   recv_msg,
2045 				   retry_time_ms,
2046 				   retries,
2047 				   broadcast,
2048 				   &ipmb_seq,
2049 				   &seqid);
2050 		if (rv)
2051 			/*
2052 			 * We have used up all the sequence numbers,
2053 			 * probably, so abort.
2054 			 */
2055 			goto out_err;
2056 
2057 		ipmi_inc_stat(intf, sent_ipmb_commands);
2058 
2059 		/*
2060 		 * Store the sequence number in the message,
2061 		 * so that when the send message response
2062 		 * comes back we can start the timer.
2063 		 */
2064 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2065 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2066 				ipmb_seq, broadcast,
2067 				source_address, source_lun);
2068 
2069 		/*
2070 		 * Copy the message into the recv message data, so we
2071 		 * can retransmit it later if necessary.
2072 		 */
2073 		memcpy(recv_msg->msg_data, smi_msg->data,
2074 		       smi_msg->data_size);
2075 		recv_msg->msg.data = recv_msg->msg_data;
2076 		recv_msg->msg.data_len = smi_msg->data_size;
2077 
2078 		/*
2079 		 * We don't unlock until here, because we need
2080 		 * to copy the completed message into the
2081 		 * recv_msg before we release the lock.
2082 		 * Otherwise, race conditions may bite us.  I
2083 		 * know that's pretty paranoid, but I prefer
2084 		 * to be correct.
2085 		 */
2086 out_err:
2087 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2088 	}
2089 
2090 	return rv;
2091 }
2092 
2093 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2094 				  struct ipmi_addr       *addr,
2095 				  long			 msgid,
2096 				  struct kernel_ipmi_msg *msg,
2097 				  struct ipmi_smi_msg    *smi_msg,
2098 				  struct ipmi_recv_msg   *recv_msg,
2099 				  unsigned char          source_lun)
2100 {
2101 	struct ipmi_ipmb_direct_addr *daddr;
2102 	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2103 
2104 	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2105 		return -EAFNOSUPPORT;
2106 
2107 	/* Responses must have a completion code. */
2108 	if (!is_cmd && msg->data_len < 1) {
2109 		ipmi_inc_stat(intf, sent_invalid_commands);
2110 		return -EINVAL;
2111 	}
2112 
2113 	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2114 		ipmi_inc_stat(intf, sent_invalid_commands);
2115 		return -EMSGSIZE;
2116 	}
2117 
2118 	daddr = (struct ipmi_ipmb_direct_addr *) addr;
2119 	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2120 		ipmi_inc_stat(intf, sent_invalid_commands);
2121 		return -EINVAL;
2122 	}
2123 
2124 	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2125 	smi_msg->msgid = msgid;
2126 
2127 	if (is_cmd) {
2128 		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2129 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2130 	} else {
2131 		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2132 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2133 	}
2134 	smi_msg->data[1] = daddr->slave_addr;
2135 	smi_msg->data[3] = msg->cmd;
2136 
2137 	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2138 	smi_msg->data_size = msg->data_len + 4;
2139 
2140 	smi_msg->user_data = recv_msg;
2141 
2142 	return 0;
2143 }
2144 
2145 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2146 			  struct ipmi_addr       *addr,
2147 			  long                   msgid,
2148 			  struct kernel_ipmi_msg *msg,
2149 			  struct ipmi_smi_msg    *smi_msg,
2150 			  struct ipmi_recv_msg   *recv_msg,
2151 			  unsigned char          source_lun,
2152 			  int                    retries,
2153 			  unsigned int           retry_time_ms)
2154 {
2155 	struct ipmi_lan_addr  *lan_addr;
2156 	unsigned char ipmb_seq;
2157 	long seqid;
2158 	struct ipmi_channel *chans;
2159 	int rv = 0;
2160 
2161 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2162 		ipmi_inc_stat(intf, sent_invalid_commands);
2163 		return -EINVAL;
2164 	}
2165 
2166 	chans = READ_ONCE(intf->channel_list)->c;
2167 
2168 	if ((chans[addr->channel].medium
2169 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2170 			&& (chans[addr->channel].medium
2171 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2172 		ipmi_inc_stat(intf, sent_invalid_commands);
2173 		return -EINVAL;
2174 	}
2175 
2176 	/* 11 for the header and 1 for the checksum. */
2177 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2178 		ipmi_inc_stat(intf, sent_invalid_commands);
2179 		return -EMSGSIZE;
2180 	}
2181 
2182 	lan_addr = (struct ipmi_lan_addr *) addr;
2183 	if (lan_addr->lun > 3) {
2184 		ipmi_inc_stat(intf, sent_invalid_commands);
2185 		return -EINVAL;
2186 	}
2187 
2188 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2189 
2190 	if (recv_msg->msg.netfn & 0x1) {
2191 		/*
2192 		 * It's a response, so use the user's sequence
2193 		 * from msgid.
2194 		 */
2195 		ipmi_inc_stat(intf, sent_lan_responses);
2196 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2197 			       msgid, source_lun);
2198 
2199 		/*
2200 		 * Save the receive message so we can use it
2201 		 * to deliver the response.
2202 		 */
2203 		smi_msg->user_data = recv_msg;
2204 	} else {
2205 		/* It's a command, so get a sequence for it. */
2206 		unsigned long flags;
2207 
2208 		spin_lock_irqsave(&intf->seq_lock, flags);
2209 
2210 		/*
2211 		 * Create a sequence number with a 1 second
2212 		 * timeout and 4 retries.
2213 		 */
2214 		rv = intf_next_seq(intf,
2215 				   recv_msg,
2216 				   retry_time_ms,
2217 				   retries,
2218 				   0,
2219 				   &ipmb_seq,
2220 				   &seqid);
2221 		if (rv)
2222 			/*
2223 			 * We have used up all the sequence numbers,
2224 			 * probably, so abort.
2225 			 */
2226 			goto out_err;
2227 
2228 		ipmi_inc_stat(intf, sent_lan_commands);
2229 
2230 		/*
2231 		 * Store the sequence number in the message,
2232 		 * so that when the send message response
2233 		 * comes back we can start the timer.
2234 		 */
2235 		format_lan_msg(smi_msg, msg, lan_addr,
2236 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2237 			       ipmb_seq, source_lun);
2238 
2239 		/*
2240 		 * Copy the message into the recv message data, so we
2241 		 * can retransmit it later if necessary.
2242 		 */
2243 		memcpy(recv_msg->msg_data, smi_msg->data,
2244 		       smi_msg->data_size);
2245 		recv_msg->msg.data = recv_msg->msg_data;
2246 		recv_msg->msg.data_len = smi_msg->data_size;
2247 
2248 		/*
2249 		 * We don't unlock until here, because we need
2250 		 * to copy the completed message into the
2251 		 * recv_msg before we release the lock.
2252 		 * Otherwise, race conditions may bite us.  I
2253 		 * know that's pretty paranoid, but I prefer
2254 		 * to be correct.
2255 		 */
2256 out_err:
2257 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2258 	}
2259 
2260 	return rv;
2261 }
2262 
2263 /*
2264  * Separate from ipmi_request so that the user does not have to be
2265  * supplied in certain circumstances (mainly at panic time).  If
2266  * messages are supplied, they will be freed, even if an error
2267  * occurs.
2268  */
2269 static int i_ipmi_request(struct ipmi_user     *user,
2270 			  struct ipmi_smi      *intf,
2271 			  struct ipmi_addr     *addr,
2272 			  long                 msgid,
2273 			  struct kernel_ipmi_msg *msg,
2274 			  void                 *user_msg_data,
2275 			  void                 *supplied_smi,
2276 			  struct ipmi_recv_msg *supplied_recv,
2277 			  int                  priority,
2278 			  unsigned char        source_address,
2279 			  unsigned char        source_lun,
2280 			  int                  retries,
2281 			  unsigned int         retry_time_ms)
2282 {
2283 	struct ipmi_smi_msg *smi_msg;
2284 	struct ipmi_recv_msg *recv_msg;
2285 	int rv = 0;
2286 
2287 	if (supplied_recv)
2288 		recv_msg = supplied_recv;
2289 	else {
2290 		recv_msg = ipmi_alloc_recv_msg();
2291 		if (recv_msg == NULL) {
2292 			rv = -ENOMEM;
2293 			goto out;
2294 		}
2295 	}
2296 	recv_msg->user_msg_data = user_msg_data;
2297 
2298 	if (supplied_smi)
2299 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2300 	else {
2301 		smi_msg = ipmi_alloc_smi_msg();
2302 		if (smi_msg == NULL) {
2303 			if (!supplied_recv)
2304 				ipmi_free_recv_msg(recv_msg);
2305 			rv = -ENOMEM;
2306 			goto out;
2307 		}
2308 	}
2309 
2310 	rcu_read_lock();
2311 	if (intf->in_shutdown) {
2312 		rv = -ENODEV;
2313 		goto out_err;
2314 	}
2315 
2316 	recv_msg->user = user;
2317 	if (user)
2318 		/* The put happens when the message is freed. */
2319 		kref_get(&user->refcount);
2320 	recv_msg->msgid = msgid;
2321 	/*
2322 	 * Store the message to send in the receive message so timeout
2323 	 * responses can get the proper response data.
2324 	 */
2325 	recv_msg->msg = *msg;
2326 
2327 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2328 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2329 					recv_msg, retries, retry_time_ms);
2330 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2331 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2332 				     source_address, source_lun,
2333 				     retries, retry_time_ms);
2334 	} else if (is_ipmb_direct_addr(addr)) {
2335 		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2336 					    recv_msg, source_lun);
2337 	} else if (is_lan_addr(addr)) {
2338 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2339 				    source_lun, retries, retry_time_ms);
2340 	} else {
2341 	    /* Unknown address type. */
2342 		ipmi_inc_stat(intf, sent_invalid_commands);
2343 		rv = -EINVAL;
2344 	}
2345 
2346 	if (rv) {
2347 out_err:
2348 		ipmi_free_smi_msg(smi_msg);
2349 		ipmi_free_recv_msg(recv_msg);
2350 	} else {
2351 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2352 
2353 		smi_send(intf, intf->handlers, smi_msg, priority);
2354 	}
2355 	rcu_read_unlock();
2356 
2357 out:
2358 	return rv;
2359 }
2360 
2361 static int check_addr(struct ipmi_smi  *intf,
2362 		      struct ipmi_addr *addr,
2363 		      unsigned char    *saddr,
2364 		      unsigned char    *lun)
2365 {
2366 	if (addr->channel >= IPMI_MAX_CHANNELS)
2367 		return -EINVAL;
2368 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2369 	*lun = intf->addrinfo[addr->channel].lun;
2370 	*saddr = intf->addrinfo[addr->channel].address;
2371 	return 0;
2372 }
2373 
2374 int ipmi_request_settime(struct ipmi_user *user,
2375 			 struct ipmi_addr *addr,
2376 			 long             msgid,
2377 			 struct kernel_ipmi_msg  *msg,
2378 			 void             *user_msg_data,
2379 			 int              priority,
2380 			 int              retries,
2381 			 unsigned int     retry_time_ms)
2382 {
2383 	unsigned char saddr = 0, lun = 0;
2384 	int rv, index;
2385 
2386 	if (!user)
2387 		return -EINVAL;
2388 
2389 	user = acquire_ipmi_user(user, &index);
2390 	if (!user)
2391 		return -ENODEV;
2392 
2393 	rv = check_addr(user->intf, addr, &saddr, &lun);
2394 	if (!rv)
2395 		rv = i_ipmi_request(user,
2396 				    user->intf,
2397 				    addr,
2398 				    msgid,
2399 				    msg,
2400 				    user_msg_data,
2401 				    NULL, NULL,
2402 				    priority,
2403 				    saddr,
2404 				    lun,
2405 				    retries,
2406 				    retry_time_ms);
2407 
2408 	release_ipmi_user(user, index);
2409 	return rv;
2410 }
2411 EXPORT_SYMBOL(ipmi_request_settime);
2412 
2413 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2414 			     struct ipmi_addr     *addr,
2415 			     long                 msgid,
2416 			     struct kernel_ipmi_msg *msg,
2417 			     void                 *user_msg_data,
2418 			     void                 *supplied_smi,
2419 			     struct ipmi_recv_msg *supplied_recv,
2420 			     int                  priority)
2421 {
2422 	unsigned char saddr = 0, lun = 0;
2423 	int rv, index;
2424 
2425 	if (!user)
2426 		return -EINVAL;
2427 
2428 	user = acquire_ipmi_user(user, &index);
2429 	if (!user)
2430 		return -ENODEV;
2431 
2432 	rv = check_addr(user->intf, addr, &saddr, &lun);
2433 	if (!rv)
2434 		rv = i_ipmi_request(user,
2435 				    user->intf,
2436 				    addr,
2437 				    msgid,
2438 				    msg,
2439 				    user_msg_data,
2440 				    supplied_smi,
2441 				    supplied_recv,
2442 				    priority,
2443 				    saddr,
2444 				    lun,
2445 				    -1, 0);
2446 
2447 	release_ipmi_user(user, index);
2448 	return rv;
2449 }
2450 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2451 
2452 static void bmc_device_id_handler(struct ipmi_smi *intf,
2453 				  struct ipmi_recv_msg *msg)
2454 {
2455 	int rv;
2456 
2457 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2458 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2459 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2460 		dev_warn(intf->si_dev,
2461 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2462 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2463 		return;
2464 	}
2465 
2466 	if (msg->msg.data[0]) {
2467 		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2468 			 msg->msg.data[0]);
2469 		intf->bmc->dyn_id_set = 0;
2470 		goto out;
2471 	}
2472 
2473 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2474 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2475 	if (rv) {
2476 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2477 		/* record completion code when error */
2478 		intf->bmc->cc = msg->msg.data[0];
2479 		intf->bmc->dyn_id_set = 0;
2480 	} else {
2481 		/*
2482 		 * Make sure the id data is available before setting
2483 		 * dyn_id_set.
2484 		 */
2485 		smp_wmb();
2486 		intf->bmc->dyn_id_set = 1;
2487 	}
2488 out:
2489 	wake_up(&intf->waitq);
2490 }
2491 
2492 static int
2493 send_get_device_id_cmd(struct ipmi_smi *intf)
2494 {
2495 	struct ipmi_system_interface_addr si;
2496 	struct kernel_ipmi_msg msg;
2497 
2498 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2499 	si.channel = IPMI_BMC_CHANNEL;
2500 	si.lun = 0;
2501 
2502 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2503 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2504 	msg.data = NULL;
2505 	msg.data_len = 0;
2506 
2507 	return i_ipmi_request(NULL,
2508 			      intf,
2509 			      (struct ipmi_addr *) &si,
2510 			      0,
2511 			      &msg,
2512 			      intf,
2513 			      NULL,
2514 			      NULL,
2515 			      0,
2516 			      intf->addrinfo[0].address,
2517 			      intf->addrinfo[0].lun,
2518 			      -1, 0);
2519 }
2520 
2521 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2522 {
2523 	int rv;
2524 	unsigned int retry_count = 0;
2525 
2526 	intf->null_user_handler = bmc_device_id_handler;
2527 
2528 retry:
2529 	bmc->cc = 0;
2530 	bmc->dyn_id_set = 2;
2531 
2532 	rv = send_get_device_id_cmd(intf);
2533 	if (rv)
2534 		goto out_reset_handler;
2535 
2536 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2537 
2538 	if (!bmc->dyn_id_set) {
2539 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2540 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2541 			msleep(500);
2542 			dev_warn(intf->si_dev,
2543 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2544 			    bmc->cc);
2545 			goto retry;
2546 		}
2547 
2548 		rv = -EIO; /* Something went wrong in the fetch. */
2549 	}
2550 
2551 	/* dyn_id_set makes the id data available. */
2552 	smp_rmb();
2553 
2554 out_reset_handler:
2555 	intf->null_user_handler = NULL;
2556 
2557 	return rv;
2558 }
2559 
2560 /*
2561  * Fetch the device id for the bmc/interface.  You must pass in either
2562  * bmc or intf, this code will get the other one.  If the data has
2563  * been recently fetched, this will just use the cached data.  Otherwise
2564  * it will run a new fetch.
2565  *
2566  * Except for the first time this is called (in ipmi_add_smi()),
2567  * this will always return good data;
2568  */
2569 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2570 			       struct ipmi_device_id *id,
2571 			       bool *guid_set, guid_t *guid, int intf_num)
2572 {
2573 	int rv = 0;
2574 	int prev_dyn_id_set, prev_guid_set;
2575 	bool intf_set = intf != NULL;
2576 
2577 	if (!intf) {
2578 		mutex_lock(&bmc->dyn_mutex);
2579 retry_bmc_lock:
2580 		if (list_empty(&bmc->intfs)) {
2581 			mutex_unlock(&bmc->dyn_mutex);
2582 			return -ENOENT;
2583 		}
2584 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2585 					bmc_link);
2586 		kref_get(&intf->refcount);
2587 		mutex_unlock(&bmc->dyn_mutex);
2588 		mutex_lock(&intf->bmc_reg_mutex);
2589 		mutex_lock(&bmc->dyn_mutex);
2590 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2591 					     bmc_link)) {
2592 			mutex_unlock(&intf->bmc_reg_mutex);
2593 			kref_put(&intf->refcount, intf_free);
2594 			goto retry_bmc_lock;
2595 		}
2596 	} else {
2597 		mutex_lock(&intf->bmc_reg_mutex);
2598 		bmc = intf->bmc;
2599 		mutex_lock(&bmc->dyn_mutex);
2600 		kref_get(&intf->refcount);
2601 	}
2602 
2603 	/* If we have a valid and current ID, just return that. */
2604 	if (intf->in_bmc_register ||
2605 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2606 		goto out_noprocessing;
2607 
2608 	prev_guid_set = bmc->dyn_guid_set;
2609 	__get_guid(intf);
2610 
2611 	prev_dyn_id_set = bmc->dyn_id_set;
2612 	rv = __get_device_id(intf, bmc);
2613 	if (rv)
2614 		goto out;
2615 
2616 	/*
2617 	 * The guid, device id, manufacturer id, and product id should
2618 	 * not change on a BMC.  If it does we have to do some dancing.
2619 	 */
2620 	if (!intf->bmc_registered
2621 	    || (!prev_guid_set && bmc->dyn_guid_set)
2622 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2623 	    || (prev_guid_set && bmc->dyn_guid_set
2624 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2625 	    || bmc->id.device_id != bmc->fetch_id.device_id
2626 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2627 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2628 		struct ipmi_device_id id = bmc->fetch_id;
2629 		int guid_set = bmc->dyn_guid_set;
2630 		guid_t guid;
2631 
2632 		guid = bmc->fetch_guid;
2633 		mutex_unlock(&bmc->dyn_mutex);
2634 
2635 		__ipmi_bmc_unregister(intf);
2636 		/* Fill in the temporary BMC for good measure. */
2637 		intf->bmc->id = id;
2638 		intf->bmc->dyn_guid_set = guid_set;
2639 		intf->bmc->guid = guid;
2640 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2641 			need_waiter(intf); /* Retry later on an error. */
2642 		else
2643 			__scan_channels(intf, &id);
2644 
2645 
2646 		if (!intf_set) {
2647 			/*
2648 			 * We weren't given the interface on the
2649 			 * command line, so restart the operation on
2650 			 * the next interface for the BMC.
2651 			 */
2652 			mutex_unlock(&intf->bmc_reg_mutex);
2653 			mutex_lock(&bmc->dyn_mutex);
2654 			goto retry_bmc_lock;
2655 		}
2656 
2657 		/* We have a new BMC, set it up. */
2658 		bmc = intf->bmc;
2659 		mutex_lock(&bmc->dyn_mutex);
2660 		goto out_noprocessing;
2661 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2662 		/* Version info changes, scan the channels again. */
2663 		__scan_channels(intf, &bmc->fetch_id);
2664 
2665 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2666 
2667 out:
2668 	if (rv && prev_dyn_id_set) {
2669 		rv = 0; /* Ignore failures if we have previous data. */
2670 		bmc->dyn_id_set = prev_dyn_id_set;
2671 	}
2672 	if (!rv) {
2673 		bmc->id = bmc->fetch_id;
2674 		if (bmc->dyn_guid_set)
2675 			bmc->guid = bmc->fetch_guid;
2676 		else if (prev_guid_set)
2677 			/*
2678 			 * The guid used to be valid and it failed to fetch,
2679 			 * just use the cached value.
2680 			 */
2681 			bmc->dyn_guid_set = prev_guid_set;
2682 	}
2683 out_noprocessing:
2684 	if (!rv) {
2685 		if (id)
2686 			*id = bmc->id;
2687 
2688 		if (guid_set)
2689 			*guid_set = bmc->dyn_guid_set;
2690 
2691 		if (guid && bmc->dyn_guid_set)
2692 			*guid =  bmc->guid;
2693 	}
2694 
2695 	mutex_unlock(&bmc->dyn_mutex);
2696 	mutex_unlock(&intf->bmc_reg_mutex);
2697 
2698 	kref_put(&intf->refcount, intf_free);
2699 	return rv;
2700 }
2701 
2702 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2703 			     struct ipmi_device_id *id,
2704 			     bool *guid_set, guid_t *guid)
2705 {
2706 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2707 }
2708 
2709 static ssize_t device_id_show(struct device *dev,
2710 			      struct device_attribute *attr,
2711 			      char *buf)
2712 {
2713 	struct bmc_device *bmc = to_bmc_device(dev);
2714 	struct ipmi_device_id id;
2715 	int rv;
2716 
2717 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2718 	if (rv)
2719 		return rv;
2720 
2721 	return sysfs_emit(buf, "%u\n", id.device_id);
2722 }
2723 static DEVICE_ATTR_RO(device_id);
2724 
2725 static ssize_t provides_device_sdrs_show(struct device *dev,
2726 					 struct device_attribute *attr,
2727 					 char *buf)
2728 {
2729 	struct bmc_device *bmc = to_bmc_device(dev);
2730 	struct ipmi_device_id id;
2731 	int rv;
2732 
2733 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2734 	if (rv)
2735 		return rv;
2736 
2737 	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2738 }
2739 static DEVICE_ATTR_RO(provides_device_sdrs);
2740 
2741 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2742 			     char *buf)
2743 {
2744 	struct bmc_device *bmc = to_bmc_device(dev);
2745 	struct ipmi_device_id id;
2746 	int rv;
2747 
2748 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2749 	if (rv)
2750 		return rv;
2751 
2752 	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2753 }
2754 static DEVICE_ATTR_RO(revision);
2755 
2756 static ssize_t firmware_revision_show(struct device *dev,
2757 				      struct device_attribute *attr,
2758 				      char *buf)
2759 {
2760 	struct bmc_device *bmc = to_bmc_device(dev);
2761 	struct ipmi_device_id id;
2762 	int rv;
2763 
2764 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2765 	if (rv)
2766 		return rv;
2767 
2768 	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2769 			id.firmware_revision_2);
2770 }
2771 static DEVICE_ATTR_RO(firmware_revision);
2772 
2773 static ssize_t ipmi_version_show(struct device *dev,
2774 				 struct device_attribute *attr,
2775 				 char *buf)
2776 {
2777 	struct bmc_device *bmc = to_bmc_device(dev);
2778 	struct ipmi_device_id id;
2779 	int rv;
2780 
2781 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2782 	if (rv)
2783 		return rv;
2784 
2785 	return sysfs_emit(buf, "%u.%u\n",
2786 			ipmi_version_major(&id),
2787 			ipmi_version_minor(&id));
2788 }
2789 static DEVICE_ATTR_RO(ipmi_version);
2790 
2791 static ssize_t add_dev_support_show(struct device *dev,
2792 				    struct device_attribute *attr,
2793 				    char *buf)
2794 {
2795 	struct bmc_device *bmc = to_bmc_device(dev);
2796 	struct ipmi_device_id id;
2797 	int rv;
2798 
2799 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2800 	if (rv)
2801 		return rv;
2802 
2803 	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2804 }
2805 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2806 		   NULL);
2807 
2808 static ssize_t manufacturer_id_show(struct device *dev,
2809 				    struct device_attribute *attr,
2810 				    char *buf)
2811 {
2812 	struct bmc_device *bmc = to_bmc_device(dev);
2813 	struct ipmi_device_id id;
2814 	int rv;
2815 
2816 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2817 	if (rv)
2818 		return rv;
2819 
2820 	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2821 }
2822 static DEVICE_ATTR_RO(manufacturer_id);
2823 
2824 static ssize_t product_id_show(struct device *dev,
2825 			       struct device_attribute *attr,
2826 			       char *buf)
2827 {
2828 	struct bmc_device *bmc = to_bmc_device(dev);
2829 	struct ipmi_device_id id;
2830 	int rv;
2831 
2832 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2833 	if (rv)
2834 		return rv;
2835 
2836 	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2837 }
2838 static DEVICE_ATTR_RO(product_id);
2839 
2840 static ssize_t aux_firmware_rev_show(struct device *dev,
2841 				     struct device_attribute *attr,
2842 				     char *buf)
2843 {
2844 	struct bmc_device *bmc = to_bmc_device(dev);
2845 	struct ipmi_device_id id;
2846 	int rv;
2847 
2848 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2849 	if (rv)
2850 		return rv;
2851 
2852 	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2853 			id.aux_firmware_revision[3],
2854 			id.aux_firmware_revision[2],
2855 			id.aux_firmware_revision[1],
2856 			id.aux_firmware_revision[0]);
2857 }
2858 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2859 
2860 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2861 			 char *buf)
2862 {
2863 	struct bmc_device *bmc = to_bmc_device(dev);
2864 	bool guid_set;
2865 	guid_t guid;
2866 	int rv;
2867 
2868 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2869 	if (rv)
2870 		return rv;
2871 	if (!guid_set)
2872 		return -ENOENT;
2873 
2874 	return sysfs_emit(buf, "%pUl\n", &guid);
2875 }
2876 static DEVICE_ATTR_RO(guid);
2877 
2878 static struct attribute *bmc_dev_attrs[] = {
2879 	&dev_attr_device_id.attr,
2880 	&dev_attr_provides_device_sdrs.attr,
2881 	&dev_attr_revision.attr,
2882 	&dev_attr_firmware_revision.attr,
2883 	&dev_attr_ipmi_version.attr,
2884 	&dev_attr_additional_device_support.attr,
2885 	&dev_attr_manufacturer_id.attr,
2886 	&dev_attr_product_id.attr,
2887 	&dev_attr_aux_firmware_revision.attr,
2888 	&dev_attr_guid.attr,
2889 	NULL
2890 };
2891 
2892 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2893 				       struct attribute *attr, int idx)
2894 {
2895 	struct device *dev = kobj_to_dev(kobj);
2896 	struct bmc_device *bmc = to_bmc_device(dev);
2897 	umode_t mode = attr->mode;
2898 	int rv;
2899 
2900 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2901 		struct ipmi_device_id id;
2902 
2903 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2904 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2905 	}
2906 	if (attr == &dev_attr_guid.attr) {
2907 		bool guid_set;
2908 
2909 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2910 		return (!rv && guid_set) ? mode : 0;
2911 	}
2912 	return mode;
2913 }
2914 
2915 static const struct attribute_group bmc_dev_attr_group = {
2916 	.attrs		= bmc_dev_attrs,
2917 	.is_visible	= bmc_dev_attr_is_visible,
2918 };
2919 
2920 static const struct attribute_group *bmc_dev_attr_groups[] = {
2921 	&bmc_dev_attr_group,
2922 	NULL
2923 };
2924 
2925 static const struct device_type bmc_device_type = {
2926 	.groups		= bmc_dev_attr_groups,
2927 };
2928 
2929 static int __find_bmc_guid(struct device *dev, const void *data)
2930 {
2931 	const guid_t *guid = data;
2932 	struct bmc_device *bmc;
2933 	int rv;
2934 
2935 	if (dev->type != &bmc_device_type)
2936 		return 0;
2937 
2938 	bmc = to_bmc_device(dev);
2939 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2940 	if (rv)
2941 		rv = kref_get_unless_zero(&bmc->usecount);
2942 	return rv;
2943 }
2944 
2945 /*
2946  * Returns with the bmc's usecount incremented, if it is non-NULL.
2947  */
2948 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2949 					     guid_t *guid)
2950 {
2951 	struct device *dev;
2952 	struct bmc_device *bmc = NULL;
2953 
2954 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2955 	if (dev) {
2956 		bmc = to_bmc_device(dev);
2957 		put_device(dev);
2958 	}
2959 	return bmc;
2960 }
2961 
2962 struct prod_dev_id {
2963 	unsigned int  product_id;
2964 	unsigned char device_id;
2965 };
2966 
2967 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2968 {
2969 	const struct prod_dev_id *cid = data;
2970 	struct bmc_device *bmc;
2971 	int rv;
2972 
2973 	if (dev->type != &bmc_device_type)
2974 		return 0;
2975 
2976 	bmc = to_bmc_device(dev);
2977 	rv = (bmc->id.product_id == cid->product_id
2978 	      && bmc->id.device_id == cid->device_id);
2979 	if (rv)
2980 		rv = kref_get_unless_zero(&bmc->usecount);
2981 	return rv;
2982 }
2983 
2984 /*
2985  * Returns with the bmc's usecount incremented, if it is non-NULL.
2986  */
2987 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2988 	struct device_driver *drv,
2989 	unsigned int product_id, unsigned char device_id)
2990 {
2991 	struct prod_dev_id id = {
2992 		.product_id = product_id,
2993 		.device_id = device_id,
2994 	};
2995 	struct device *dev;
2996 	struct bmc_device *bmc = NULL;
2997 
2998 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2999 	if (dev) {
3000 		bmc = to_bmc_device(dev);
3001 		put_device(dev);
3002 	}
3003 	return bmc;
3004 }
3005 
3006 static DEFINE_IDA(ipmi_bmc_ida);
3007 
3008 static void
3009 release_bmc_device(struct device *dev)
3010 {
3011 	kfree(to_bmc_device(dev));
3012 }
3013 
3014 static void cleanup_bmc_work(struct work_struct *work)
3015 {
3016 	struct bmc_device *bmc = container_of(work, struct bmc_device,
3017 					      remove_work);
3018 	int id = bmc->pdev.id; /* Unregister overwrites id */
3019 
3020 	platform_device_unregister(&bmc->pdev);
3021 	ida_simple_remove(&ipmi_bmc_ida, id);
3022 }
3023 
3024 static void
3025 cleanup_bmc_device(struct kref *ref)
3026 {
3027 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3028 
3029 	/*
3030 	 * Remove the platform device in a work queue to avoid issues
3031 	 * with removing the device attributes while reading a device
3032 	 * attribute.
3033 	 */
3034 	queue_work(remove_work_wq, &bmc->remove_work);
3035 }
3036 
3037 /*
3038  * Must be called with intf->bmc_reg_mutex held.
3039  */
3040 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3041 {
3042 	struct bmc_device *bmc = intf->bmc;
3043 
3044 	if (!intf->bmc_registered)
3045 		return;
3046 
3047 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3048 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3049 	kfree(intf->my_dev_name);
3050 	intf->my_dev_name = NULL;
3051 
3052 	mutex_lock(&bmc->dyn_mutex);
3053 	list_del(&intf->bmc_link);
3054 	mutex_unlock(&bmc->dyn_mutex);
3055 	intf->bmc = &intf->tmp_bmc;
3056 	kref_put(&bmc->usecount, cleanup_bmc_device);
3057 	intf->bmc_registered = false;
3058 }
3059 
3060 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3061 {
3062 	mutex_lock(&intf->bmc_reg_mutex);
3063 	__ipmi_bmc_unregister(intf);
3064 	mutex_unlock(&intf->bmc_reg_mutex);
3065 }
3066 
3067 /*
3068  * Must be called with intf->bmc_reg_mutex held.
3069  */
3070 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3071 			       struct ipmi_device_id *id,
3072 			       bool guid_set, guid_t *guid, int intf_num)
3073 {
3074 	int               rv;
3075 	struct bmc_device *bmc;
3076 	struct bmc_device *old_bmc;
3077 
3078 	/*
3079 	 * platform_device_register() can cause bmc_reg_mutex to
3080 	 * be claimed because of the is_visible functions of
3081 	 * the attributes.  Eliminate possible recursion and
3082 	 * release the lock.
3083 	 */
3084 	intf->in_bmc_register = true;
3085 	mutex_unlock(&intf->bmc_reg_mutex);
3086 
3087 	/*
3088 	 * Try to find if there is an bmc_device struct
3089 	 * representing the interfaced BMC already
3090 	 */
3091 	mutex_lock(&ipmidriver_mutex);
3092 	if (guid_set)
3093 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3094 	else
3095 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3096 						    id->product_id,
3097 						    id->device_id);
3098 
3099 	/*
3100 	 * If there is already an bmc_device, free the new one,
3101 	 * otherwise register the new BMC device
3102 	 */
3103 	if (old_bmc) {
3104 		bmc = old_bmc;
3105 		/*
3106 		 * Note: old_bmc already has usecount incremented by
3107 		 * the BMC find functions.
3108 		 */
3109 		intf->bmc = old_bmc;
3110 		mutex_lock(&bmc->dyn_mutex);
3111 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3112 		mutex_unlock(&bmc->dyn_mutex);
3113 
3114 		dev_info(intf->si_dev,
3115 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3116 			 bmc->id.manufacturer_id,
3117 			 bmc->id.product_id,
3118 			 bmc->id.device_id);
3119 	} else {
3120 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3121 		if (!bmc) {
3122 			rv = -ENOMEM;
3123 			goto out;
3124 		}
3125 		INIT_LIST_HEAD(&bmc->intfs);
3126 		mutex_init(&bmc->dyn_mutex);
3127 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3128 
3129 		bmc->id = *id;
3130 		bmc->dyn_id_set = 1;
3131 		bmc->dyn_guid_set = guid_set;
3132 		bmc->guid = *guid;
3133 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3134 
3135 		bmc->pdev.name = "ipmi_bmc";
3136 
3137 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3138 		if (rv < 0) {
3139 			kfree(bmc);
3140 			goto out;
3141 		}
3142 
3143 		bmc->pdev.dev.driver = &ipmidriver.driver;
3144 		bmc->pdev.id = rv;
3145 		bmc->pdev.dev.release = release_bmc_device;
3146 		bmc->pdev.dev.type = &bmc_device_type;
3147 		kref_init(&bmc->usecount);
3148 
3149 		intf->bmc = bmc;
3150 		mutex_lock(&bmc->dyn_mutex);
3151 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3152 		mutex_unlock(&bmc->dyn_mutex);
3153 
3154 		rv = platform_device_register(&bmc->pdev);
3155 		if (rv) {
3156 			dev_err(intf->si_dev,
3157 				"Unable to register bmc device: %d\n",
3158 				rv);
3159 			goto out_list_del;
3160 		}
3161 
3162 		dev_info(intf->si_dev,
3163 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3164 			 bmc->id.manufacturer_id,
3165 			 bmc->id.product_id,
3166 			 bmc->id.device_id);
3167 	}
3168 
3169 	/*
3170 	 * create symlink from system interface device to bmc device
3171 	 * and back.
3172 	 */
3173 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3174 	if (rv) {
3175 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3176 		goto out_put_bmc;
3177 	}
3178 
3179 	if (intf_num == -1)
3180 		intf_num = intf->intf_num;
3181 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3182 	if (!intf->my_dev_name) {
3183 		rv = -ENOMEM;
3184 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3185 			rv);
3186 		goto out_unlink1;
3187 	}
3188 
3189 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3190 			       intf->my_dev_name);
3191 	if (rv) {
3192 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3193 			rv);
3194 		goto out_free_my_dev_name;
3195 	}
3196 
3197 	intf->bmc_registered = true;
3198 
3199 out:
3200 	mutex_unlock(&ipmidriver_mutex);
3201 	mutex_lock(&intf->bmc_reg_mutex);
3202 	intf->in_bmc_register = false;
3203 	return rv;
3204 
3205 
3206 out_free_my_dev_name:
3207 	kfree(intf->my_dev_name);
3208 	intf->my_dev_name = NULL;
3209 
3210 out_unlink1:
3211 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3212 
3213 out_put_bmc:
3214 	mutex_lock(&bmc->dyn_mutex);
3215 	list_del(&intf->bmc_link);
3216 	mutex_unlock(&bmc->dyn_mutex);
3217 	intf->bmc = &intf->tmp_bmc;
3218 	kref_put(&bmc->usecount, cleanup_bmc_device);
3219 	goto out;
3220 
3221 out_list_del:
3222 	mutex_lock(&bmc->dyn_mutex);
3223 	list_del(&intf->bmc_link);
3224 	mutex_unlock(&bmc->dyn_mutex);
3225 	intf->bmc = &intf->tmp_bmc;
3226 	put_device(&bmc->pdev.dev);
3227 	goto out;
3228 }
3229 
3230 static int
3231 send_guid_cmd(struct ipmi_smi *intf, int chan)
3232 {
3233 	struct kernel_ipmi_msg            msg;
3234 	struct ipmi_system_interface_addr si;
3235 
3236 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3237 	si.channel = IPMI_BMC_CHANNEL;
3238 	si.lun = 0;
3239 
3240 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3241 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3242 	msg.data = NULL;
3243 	msg.data_len = 0;
3244 	return i_ipmi_request(NULL,
3245 			      intf,
3246 			      (struct ipmi_addr *) &si,
3247 			      0,
3248 			      &msg,
3249 			      intf,
3250 			      NULL,
3251 			      NULL,
3252 			      0,
3253 			      intf->addrinfo[0].address,
3254 			      intf->addrinfo[0].lun,
3255 			      -1, 0);
3256 }
3257 
3258 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3259 {
3260 	struct bmc_device *bmc = intf->bmc;
3261 
3262 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3263 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3264 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3265 		/* Not for me */
3266 		return;
3267 
3268 	if (msg->msg.data[0] != 0) {
3269 		/* Error from getting the GUID, the BMC doesn't have one. */
3270 		bmc->dyn_guid_set = 0;
3271 		goto out;
3272 	}
3273 
3274 	if (msg->msg.data_len < UUID_SIZE + 1) {
3275 		bmc->dyn_guid_set = 0;
3276 		dev_warn(intf->si_dev,
3277 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3278 			 msg->msg.data_len, UUID_SIZE + 1);
3279 		goto out;
3280 	}
3281 
3282 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3283 	/*
3284 	 * Make sure the guid data is available before setting
3285 	 * dyn_guid_set.
3286 	 */
3287 	smp_wmb();
3288 	bmc->dyn_guid_set = 1;
3289  out:
3290 	wake_up(&intf->waitq);
3291 }
3292 
3293 static void __get_guid(struct ipmi_smi *intf)
3294 {
3295 	int rv;
3296 	struct bmc_device *bmc = intf->bmc;
3297 
3298 	bmc->dyn_guid_set = 2;
3299 	intf->null_user_handler = guid_handler;
3300 	rv = send_guid_cmd(intf, 0);
3301 	if (rv)
3302 		/* Send failed, no GUID available. */
3303 		bmc->dyn_guid_set = 0;
3304 	else
3305 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3306 
3307 	/* dyn_guid_set makes the guid data available. */
3308 	smp_rmb();
3309 
3310 	intf->null_user_handler = NULL;
3311 }
3312 
3313 static int
3314 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3315 {
3316 	struct kernel_ipmi_msg            msg;
3317 	unsigned char                     data[1];
3318 	struct ipmi_system_interface_addr si;
3319 
3320 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3321 	si.channel = IPMI_BMC_CHANNEL;
3322 	si.lun = 0;
3323 
3324 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3325 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3326 	msg.data = data;
3327 	msg.data_len = 1;
3328 	data[0] = chan;
3329 	return i_ipmi_request(NULL,
3330 			      intf,
3331 			      (struct ipmi_addr *) &si,
3332 			      0,
3333 			      &msg,
3334 			      intf,
3335 			      NULL,
3336 			      NULL,
3337 			      0,
3338 			      intf->addrinfo[0].address,
3339 			      intf->addrinfo[0].lun,
3340 			      -1, 0);
3341 }
3342 
3343 static void
3344 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3345 {
3346 	int rv = 0;
3347 	int ch;
3348 	unsigned int set = intf->curr_working_cset;
3349 	struct ipmi_channel *chans;
3350 
3351 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3352 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3353 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3354 		/* It's the one we want */
3355 		if (msg->msg.data[0] != 0) {
3356 			/* Got an error from the channel, just go on. */
3357 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3358 				/*
3359 				 * If the MC does not support this
3360 				 * command, that is legal.  We just
3361 				 * assume it has one IPMB at channel
3362 				 * zero.
3363 				 */
3364 				intf->wchannels[set].c[0].medium
3365 					= IPMI_CHANNEL_MEDIUM_IPMB;
3366 				intf->wchannels[set].c[0].protocol
3367 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3368 
3369 				intf->channel_list = intf->wchannels + set;
3370 				intf->channels_ready = true;
3371 				wake_up(&intf->waitq);
3372 				goto out;
3373 			}
3374 			goto next_channel;
3375 		}
3376 		if (msg->msg.data_len < 4) {
3377 			/* Message not big enough, just go on. */
3378 			goto next_channel;
3379 		}
3380 		ch = intf->curr_channel;
3381 		chans = intf->wchannels[set].c;
3382 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3383 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3384 
3385  next_channel:
3386 		intf->curr_channel++;
3387 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3388 			intf->channel_list = intf->wchannels + set;
3389 			intf->channels_ready = true;
3390 			wake_up(&intf->waitq);
3391 		} else {
3392 			intf->channel_list = intf->wchannels + set;
3393 			intf->channels_ready = true;
3394 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3395 		}
3396 
3397 		if (rv) {
3398 			/* Got an error somehow, just give up. */
3399 			dev_warn(intf->si_dev,
3400 				 "Error sending channel information for channel %d: %d\n",
3401 				 intf->curr_channel, rv);
3402 
3403 			intf->channel_list = intf->wchannels + set;
3404 			intf->channels_ready = true;
3405 			wake_up(&intf->waitq);
3406 		}
3407 	}
3408  out:
3409 	return;
3410 }
3411 
3412 /*
3413  * Must be holding intf->bmc_reg_mutex to call this.
3414  */
3415 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3416 {
3417 	int rv;
3418 
3419 	if (ipmi_version_major(id) > 1
3420 			|| (ipmi_version_major(id) == 1
3421 			    && ipmi_version_minor(id) >= 5)) {
3422 		unsigned int set;
3423 
3424 		/*
3425 		 * Start scanning the channels to see what is
3426 		 * available.
3427 		 */
3428 		set = !intf->curr_working_cset;
3429 		intf->curr_working_cset = set;
3430 		memset(&intf->wchannels[set], 0,
3431 		       sizeof(struct ipmi_channel_set));
3432 
3433 		intf->null_user_handler = channel_handler;
3434 		intf->curr_channel = 0;
3435 		rv = send_channel_info_cmd(intf, 0);
3436 		if (rv) {
3437 			dev_warn(intf->si_dev,
3438 				 "Error sending channel information for channel 0, %d\n",
3439 				 rv);
3440 			intf->null_user_handler = NULL;
3441 			return -EIO;
3442 		}
3443 
3444 		/* Wait for the channel info to be read. */
3445 		wait_event(intf->waitq, intf->channels_ready);
3446 		intf->null_user_handler = NULL;
3447 	} else {
3448 		unsigned int set = intf->curr_working_cset;
3449 
3450 		/* Assume a single IPMB channel at zero. */
3451 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3452 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3453 		intf->channel_list = intf->wchannels + set;
3454 		intf->channels_ready = true;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static void ipmi_poll(struct ipmi_smi *intf)
3461 {
3462 	if (intf->handlers->poll)
3463 		intf->handlers->poll(intf->send_info);
3464 	/* In case something came in */
3465 	handle_new_recv_msgs(intf);
3466 }
3467 
3468 void ipmi_poll_interface(struct ipmi_user *user)
3469 {
3470 	ipmi_poll(user->intf);
3471 }
3472 EXPORT_SYMBOL(ipmi_poll_interface);
3473 
3474 static void redo_bmc_reg(struct work_struct *work)
3475 {
3476 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3477 					     bmc_reg_work);
3478 
3479 	if (!intf->in_shutdown)
3480 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3481 
3482 	kref_put(&intf->refcount, intf_free);
3483 }
3484 
3485 int ipmi_add_smi(struct module         *owner,
3486 		 const struct ipmi_smi_handlers *handlers,
3487 		 void		       *send_info,
3488 		 struct device         *si_dev,
3489 		 unsigned char         slave_addr)
3490 {
3491 	int              i, j;
3492 	int              rv;
3493 	struct ipmi_smi *intf, *tintf;
3494 	struct list_head *link;
3495 	struct ipmi_device_id id;
3496 
3497 	/*
3498 	 * Make sure the driver is actually initialized, this handles
3499 	 * problems with initialization order.
3500 	 */
3501 	rv = ipmi_init_msghandler();
3502 	if (rv)
3503 		return rv;
3504 
3505 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3506 	if (!intf)
3507 		return -ENOMEM;
3508 
3509 	rv = init_srcu_struct(&intf->users_srcu);
3510 	if (rv) {
3511 		kfree(intf);
3512 		return rv;
3513 	}
3514 
3515 	intf->owner = owner;
3516 	intf->bmc = &intf->tmp_bmc;
3517 	INIT_LIST_HEAD(&intf->bmc->intfs);
3518 	mutex_init(&intf->bmc->dyn_mutex);
3519 	INIT_LIST_HEAD(&intf->bmc_link);
3520 	mutex_init(&intf->bmc_reg_mutex);
3521 	intf->intf_num = -1; /* Mark it invalid for now. */
3522 	kref_init(&intf->refcount);
3523 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3524 	intf->si_dev = si_dev;
3525 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3526 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3527 		intf->addrinfo[j].lun = 2;
3528 	}
3529 	if (slave_addr != 0)
3530 		intf->addrinfo[0].address = slave_addr;
3531 	INIT_LIST_HEAD(&intf->users);
3532 	intf->handlers = handlers;
3533 	intf->send_info = send_info;
3534 	spin_lock_init(&intf->seq_lock);
3535 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3536 		intf->seq_table[j].inuse = 0;
3537 		intf->seq_table[j].seqid = 0;
3538 	}
3539 	intf->curr_seq = 0;
3540 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3541 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3542 	tasklet_setup(&intf->recv_tasklet,
3543 		     smi_recv_tasklet);
3544 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3545 	spin_lock_init(&intf->xmit_msgs_lock);
3546 	INIT_LIST_HEAD(&intf->xmit_msgs);
3547 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3548 	spin_lock_init(&intf->events_lock);
3549 	spin_lock_init(&intf->watch_lock);
3550 	atomic_set(&intf->event_waiters, 0);
3551 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3552 	INIT_LIST_HEAD(&intf->waiting_events);
3553 	intf->waiting_events_count = 0;
3554 	mutex_init(&intf->cmd_rcvrs_mutex);
3555 	spin_lock_init(&intf->maintenance_mode_lock);
3556 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3557 	init_waitqueue_head(&intf->waitq);
3558 	for (i = 0; i < IPMI_NUM_STATS; i++)
3559 		atomic_set(&intf->stats[i], 0);
3560 
3561 	mutex_lock(&ipmi_interfaces_mutex);
3562 	/* Look for a hole in the numbers. */
3563 	i = 0;
3564 	link = &ipmi_interfaces;
3565 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3566 				ipmi_interfaces_mutex_held()) {
3567 		if (tintf->intf_num != i) {
3568 			link = &tintf->link;
3569 			break;
3570 		}
3571 		i++;
3572 	}
3573 	/* Add the new interface in numeric order. */
3574 	if (i == 0)
3575 		list_add_rcu(&intf->link, &ipmi_interfaces);
3576 	else
3577 		list_add_tail_rcu(&intf->link, link);
3578 
3579 	rv = handlers->start_processing(send_info, intf);
3580 	if (rv)
3581 		goto out_err;
3582 
3583 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3584 	if (rv) {
3585 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3586 		goto out_err_started;
3587 	}
3588 
3589 	mutex_lock(&intf->bmc_reg_mutex);
3590 	rv = __scan_channels(intf, &id);
3591 	mutex_unlock(&intf->bmc_reg_mutex);
3592 	if (rv)
3593 		goto out_err_bmc_reg;
3594 
3595 	/*
3596 	 * Keep memory order straight for RCU readers.  Make
3597 	 * sure everything else is committed to memory before
3598 	 * setting intf_num to mark the interface valid.
3599 	 */
3600 	smp_wmb();
3601 	intf->intf_num = i;
3602 	mutex_unlock(&ipmi_interfaces_mutex);
3603 
3604 	/* After this point the interface is legal to use. */
3605 	call_smi_watchers(i, intf->si_dev);
3606 
3607 	return 0;
3608 
3609  out_err_bmc_reg:
3610 	ipmi_bmc_unregister(intf);
3611  out_err_started:
3612 	if (intf->handlers->shutdown)
3613 		intf->handlers->shutdown(intf->send_info);
3614  out_err:
3615 	list_del_rcu(&intf->link);
3616 	mutex_unlock(&ipmi_interfaces_mutex);
3617 	synchronize_srcu(&ipmi_interfaces_srcu);
3618 	cleanup_srcu_struct(&intf->users_srcu);
3619 	kref_put(&intf->refcount, intf_free);
3620 
3621 	return rv;
3622 }
3623 EXPORT_SYMBOL(ipmi_add_smi);
3624 
3625 static void deliver_smi_err_response(struct ipmi_smi *intf,
3626 				     struct ipmi_smi_msg *msg,
3627 				     unsigned char err)
3628 {
3629 	msg->rsp[0] = msg->data[0] | 4;
3630 	msg->rsp[1] = msg->data[1];
3631 	msg->rsp[2] = err;
3632 	msg->rsp_size = 3;
3633 	/* It's an error, so it will never requeue, no need to check return. */
3634 	handle_one_recv_msg(intf, msg);
3635 }
3636 
3637 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3638 {
3639 	int              i;
3640 	struct seq_table *ent;
3641 	struct ipmi_smi_msg *msg;
3642 	struct list_head *entry;
3643 	struct list_head tmplist;
3644 
3645 	/* Clear out our transmit queues and hold the messages. */
3646 	INIT_LIST_HEAD(&tmplist);
3647 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3648 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3649 
3650 	/* Current message first, to preserve order */
3651 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3652 		/* Wait for the message to clear out. */
3653 		schedule_timeout(1);
3654 	}
3655 
3656 	/* No need for locks, the interface is down. */
3657 
3658 	/*
3659 	 * Return errors for all pending messages in queue and in the
3660 	 * tables waiting for remote responses.
3661 	 */
3662 	while (!list_empty(&tmplist)) {
3663 		entry = tmplist.next;
3664 		list_del(entry);
3665 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3666 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3667 	}
3668 
3669 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3670 		ent = &intf->seq_table[i];
3671 		if (!ent->inuse)
3672 			continue;
3673 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3674 	}
3675 }
3676 
3677 void ipmi_unregister_smi(struct ipmi_smi *intf)
3678 {
3679 	struct ipmi_smi_watcher *w;
3680 	int intf_num = intf->intf_num, index;
3681 
3682 	mutex_lock(&ipmi_interfaces_mutex);
3683 	intf->intf_num = -1;
3684 	intf->in_shutdown = true;
3685 	list_del_rcu(&intf->link);
3686 	mutex_unlock(&ipmi_interfaces_mutex);
3687 	synchronize_srcu(&ipmi_interfaces_srcu);
3688 
3689 	/* At this point no users can be added to the interface. */
3690 
3691 	/*
3692 	 * Call all the watcher interfaces to tell them that
3693 	 * an interface is going away.
3694 	 */
3695 	mutex_lock(&smi_watchers_mutex);
3696 	list_for_each_entry(w, &smi_watchers, link)
3697 		w->smi_gone(intf_num);
3698 	mutex_unlock(&smi_watchers_mutex);
3699 
3700 	index = srcu_read_lock(&intf->users_srcu);
3701 	while (!list_empty(&intf->users)) {
3702 		struct ipmi_user *user =
3703 			container_of(list_next_rcu(&intf->users),
3704 				     struct ipmi_user, link);
3705 
3706 		_ipmi_destroy_user(user);
3707 	}
3708 	srcu_read_unlock(&intf->users_srcu, index);
3709 
3710 	if (intf->handlers->shutdown)
3711 		intf->handlers->shutdown(intf->send_info);
3712 
3713 	cleanup_smi_msgs(intf);
3714 
3715 	ipmi_bmc_unregister(intf);
3716 
3717 	cleanup_srcu_struct(&intf->users_srcu);
3718 	kref_put(&intf->refcount, intf_free);
3719 }
3720 EXPORT_SYMBOL(ipmi_unregister_smi);
3721 
3722 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3723 				   struct ipmi_smi_msg *msg)
3724 {
3725 	struct ipmi_ipmb_addr ipmb_addr;
3726 	struct ipmi_recv_msg  *recv_msg;
3727 
3728 	/*
3729 	 * This is 11, not 10, because the response must contain a
3730 	 * completion code.
3731 	 */
3732 	if (msg->rsp_size < 11) {
3733 		/* Message not big enough, just ignore it. */
3734 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3735 		return 0;
3736 	}
3737 
3738 	if (msg->rsp[2] != 0) {
3739 		/* An error getting the response, just ignore it. */
3740 		return 0;
3741 	}
3742 
3743 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3744 	ipmb_addr.slave_addr = msg->rsp[6];
3745 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3746 	ipmb_addr.lun = msg->rsp[7] & 3;
3747 
3748 	/*
3749 	 * It's a response from a remote entity.  Look up the sequence
3750 	 * number and handle the response.
3751 	 */
3752 	if (intf_find_seq(intf,
3753 			  msg->rsp[7] >> 2,
3754 			  msg->rsp[3] & 0x0f,
3755 			  msg->rsp[8],
3756 			  (msg->rsp[4] >> 2) & (~1),
3757 			  (struct ipmi_addr *) &ipmb_addr,
3758 			  &recv_msg)) {
3759 		/*
3760 		 * We were unable to find the sequence number,
3761 		 * so just nuke the message.
3762 		 */
3763 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3764 		return 0;
3765 	}
3766 
3767 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3768 	/*
3769 	 * The other fields matched, so no need to set them, except
3770 	 * for netfn, which needs to be the response that was
3771 	 * returned, not the request value.
3772 	 */
3773 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3774 	recv_msg->msg.data = recv_msg->msg_data;
3775 	recv_msg->msg.data_len = msg->rsp_size - 10;
3776 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3777 	if (deliver_response(intf, recv_msg))
3778 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3779 	else
3780 		ipmi_inc_stat(intf, handled_ipmb_responses);
3781 
3782 	return 0;
3783 }
3784 
3785 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3786 				   struct ipmi_smi_msg *msg)
3787 {
3788 	struct cmd_rcvr          *rcvr;
3789 	int                      rv = 0;
3790 	unsigned char            netfn;
3791 	unsigned char            cmd;
3792 	unsigned char            chan;
3793 	struct ipmi_user         *user = NULL;
3794 	struct ipmi_ipmb_addr    *ipmb_addr;
3795 	struct ipmi_recv_msg     *recv_msg;
3796 
3797 	if (msg->rsp_size < 10) {
3798 		/* Message not big enough, just ignore it. */
3799 		ipmi_inc_stat(intf, invalid_commands);
3800 		return 0;
3801 	}
3802 
3803 	if (msg->rsp[2] != 0) {
3804 		/* An error getting the response, just ignore it. */
3805 		return 0;
3806 	}
3807 
3808 	netfn = msg->rsp[4] >> 2;
3809 	cmd = msg->rsp[8];
3810 	chan = msg->rsp[3] & 0xf;
3811 
3812 	rcu_read_lock();
3813 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3814 	if (rcvr) {
3815 		user = rcvr->user;
3816 		kref_get(&user->refcount);
3817 	} else
3818 		user = NULL;
3819 	rcu_read_unlock();
3820 
3821 	if (user == NULL) {
3822 		/* We didn't find a user, deliver an error response. */
3823 		ipmi_inc_stat(intf, unhandled_commands);
3824 
3825 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3826 		msg->data[1] = IPMI_SEND_MSG_CMD;
3827 		msg->data[2] = msg->rsp[3];
3828 		msg->data[3] = msg->rsp[6];
3829 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3830 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3831 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3832 		/* rqseq/lun */
3833 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3834 		msg->data[8] = msg->rsp[8]; /* cmd */
3835 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3836 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3837 		msg->data_size = 11;
3838 
3839 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3840 
3841 		rcu_read_lock();
3842 		if (!intf->in_shutdown) {
3843 			smi_send(intf, intf->handlers, msg, 0);
3844 			/*
3845 			 * We used the message, so return the value
3846 			 * that causes it to not be freed or
3847 			 * queued.
3848 			 */
3849 			rv = -1;
3850 		}
3851 		rcu_read_unlock();
3852 	} else {
3853 		recv_msg = ipmi_alloc_recv_msg();
3854 		if (!recv_msg) {
3855 			/*
3856 			 * We couldn't allocate memory for the
3857 			 * message, so requeue it for handling
3858 			 * later.
3859 			 */
3860 			rv = 1;
3861 			kref_put(&user->refcount, free_user);
3862 		} else {
3863 			/* Extract the source address from the data. */
3864 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3865 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3866 			ipmb_addr->slave_addr = msg->rsp[6];
3867 			ipmb_addr->lun = msg->rsp[7] & 3;
3868 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3869 
3870 			/*
3871 			 * Extract the rest of the message information
3872 			 * from the IPMB header.
3873 			 */
3874 			recv_msg->user = user;
3875 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3876 			recv_msg->msgid = msg->rsp[7] >> 2;
3877 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3878 			recv_msg->msg.cmd = msg->rsp[8];
3879 			recv_msg->msg.data = recv_msg->msg_data;
3880 
3881 			/*
3882 			 * We chop off 10, not 9 bytes because the checksum
3883 			 * at the end also needs to be removed.
3884 			 */
3885 			recv_msg->msg.data_len = msg->rsp_size - 10;
3886 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3887 			       msg->rsp_size - 10);
3888 			if (deliver_response(intf, recv_msg))
3889 				ipmi_inc_stat(intf, unhandled_commands);
3890 			else
3891 				ipmi_inc_stat(intf, handled_commands);
3892 		}
3893 	}
3894 
3895 	return rv;
3896 }
3897 
3898 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3899 				      struct ipmi_smi_msg *msg)
3900 {
3901 	struct cmd_rcvr          *rcvr;
3902 	int                      rv = 0;
3903 	struct ipmi_user         *user = NULL;
3904 	struct ipmi_ipmb_direct_addr *daddr;
3905 	struct ipmi_recv_msg     *recv_msg;
3906 	unsigned char netfn = msg->rsp[0] >> 2;
3907 	unsigned char cmd = msg->rsp[3];
3908 
3909 	rcu_read_lock();
3910 	/* We always use channel 0 for direct messages. */
3911 	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
3912 	if (rcvr) {
3913 		user = rcvr->user;
3914 		kref_get(&user->refcount);
3915 	} else
3916 		user = NULL;
3917 	rcu_read_unlock();
3918 
3919 	if (user == NULL) {
3920 		/* We didn't find a user, deliver an error response. */
3921 		ipmi_inc_stat(intf, unhandled_commands);
3922 
3923 		msg->data[0] = (netfn + 1) << 2;
3924 		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
3925 		msg->data[1] = msg->rsp[1]; /* Addr */
3926 		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
3927 		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
3928 		msg->data[3] = cmd;
3929 		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
3930 		msg->data_size = 5;
3931 
3932 		rcu_read_lock();
3933 		if (!intf->in_shutdown) {
3934 			smi_send(intf, intf->handlers, msg, 0);
3935 			/*
3936 			 * We used the message, so return the value
3937 			 * that causes it to not be freed or
3938 			 * queued.
3939 			 */
3940 			rv = -1;
3941 		}
3942 		rcu_read_unlock();
3943 	} else {
3944 		recv_msg = ipmi_alloc_recv_msg();
3945 		if (!recv_msg) {
3946 			/*
3947 			 * We couldn't allocate memory for the
3948 			 * message, so requeue it for handling
3949 			 * later.
3950 			 */
3951 			rv = 1;
3952 			kref_put(&user->refcount, free_user);
3953 		} else {
3954 			/* Extract the source address from the data. */
3955 			daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
3956 			daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
3957 			daddr->channel = 0;
3958 			daddr->slave_addr = msg->rsp[1];
3959 			daddr->rs_lun = msg->rsp[0] & 3;
3960 			daddr->rq_lun = msg->rsp[2] & 3;
3961 
3962 			/*
3963 			 * Extract the rest of the message information
3964 			 * from the IPMB header.
3965 			 */
3966 			recv_msg->user = user;
3967 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3968 			recv_msg->msgid = (msg->rsp[2] >> 2);
3969 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3970 			recv_msg->msg.cmd = msg->rsp[3];
3971 			recv_msg->msg.data = recv_msg->msg_data;
3972 
3973 			recv_msg->msg.data_len = msg->rsp_size - 4;
3974 			memcpy(recv_msg->msg_data, msg->rsp + 4,
3975 			       msg->rsp_size - 4);
3976 			if (deliver_response(intf, recv_msg))
3977 				ipmi_inc_stat(intf, unhandled_commands);
3978 			else
3979 				ipmi_inc_stat(intf, handled_commands);
3980 		}
3981 	}
3982 
3983 	return rv;
3984 }
3985 
3986 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
3987 				      struct ipmi_smi_msg *msg)
3988 {
3989 	struct ipmi_recv_msg *recv_msg;
3990 	struct ipmi_ipmb_direct_addr *daddr;
3991 
3992 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3993 	if (recv_msg == NULL) {
3994 		dev_warn(intf->si_dev,
3995 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
3996 		return 0;
3997 	}
3998 
3999 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4000 	recv_msg->msgid = msg->msgid;
4001 	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4002 	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4003 	daddr->channel = 0;
4004 	daddr->slave_addr = msg->rsp[1];
4005 	daddr->rq_lun = msg->rsp[0] & 3;
4006 	daddr->rs_lun = msg->rsp[2] & 3;
4007 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4008 	recv_msg->msg.cmd = msg->rsp[3];
4009 	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4010 	recv_msg->msg.data = recv_msg->msg_data;
4011 	recv_msg->msg.data_len = msg->rsp_size - 4;
4012 	deliver_local_response(intf, recv_msg);
4013 
4014 	return 0;
4015 }
4016 
4017 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4018 				  struct ipmi_smi_msg *msg)
4019 {
4020 	struct ipmi_lan_addr  lan_addr;
4021 	struct ipmi_recv_msg  *recv_msg;
4022 
4023 
4024 	/*
4025 	 * This is 13, not 12, because the response must contain a
4026 	 * completion code.
4027 	 */
4028 	if (msg->rsp_size < 13) {
4029 		/* Message not big enough, just ignore it. */
4030 		ipmi_inc_stat(intf, invalid_lan_responses);
4031 		return 0;
4032 	}
4033 
4034 	if (msg->rsp[2] != 0) {
4035 		/* An error getting the response, just ignore it. */
4036 		return 0;
4037 	}
4038 
4039 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4040 	lan_addr.session_handle = msg->rsp[4];
4041 	lan_addr.remote_SWID = msg->rsp[8];
4042 	lan_addr.local_SWID = msg->rsp[5];
4043 	lan_addr.channel = msg->rsp[3] & 0x0f;
4044 	lan_addr.privilege = msg->rsp[3] >> 4;
4045 	lan_addr.lun = msg->rsp[9] & 3;
4046 
4047 	/*
4048 	 * It's a response from a remote entity.  Look up the sequence
4049 	 * number and handle the response.
4050 	 */
4051 	if (intf_find_seq(intf,
4052 			  msg->rsp[9] >> 2,
4053 			  msg->rsp[3] & 0x0f,
4054 			  msg->rsp[10],
4055 			  (msg->rsp[6] >> 2) & (~1),
4056 			  (struct ipmi_addr *) &lan_addr,
4057 			  &recv_msg)) {
4058 		/*
4059 		 * We were unable to find the sequence number,
4060 		 * so just nuke the message.
4061 		 */
4062 		ipmi_inc_stat(intf, unhandled_lan_responses);
4063 		return 0;
4064 	}
4065 
4066 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4067 	/*
4068 	 * The other fields matched, so no need to set them, except
4069 	 * for netfn, which needs to be the response that was
4070 	 * returned, not the request value.
4071 	 */
4072 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
4073 	recv_msg->msg.data = recv_msg->msg_data;
4074 	recv_msg->msg.data_len = msg->rsp_size - 12;
4075 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4076 	if (deliver_response(intf, recv_msg))
4077 		ipmi_inc_stat(intf, unhandled_lan_responses);
4078 	else
4079 		ipmi_inc_stat(intf, handled_lan_responses);
4080 
4081 	return 0;
4082 }
4083 
4084 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4085 				  struct ipmi_smi_msg *msg)
4086 {
4087 	struct cmd_rcvr          *rcvr;
4088 	int                      rv = 0;
4089 	unsigned char            netfn;
4090 	unsigned char            cmd;
4091 	unsigned char            chan;
4092 	struct ipmi_user         *user = NULL;
4093 	struct ipmi_lan_addr     *lan_addr;
4094 	struct ipmi_recv_msg     *recv_msg;
4095 
4096 	if (msg->rsp_size < 12) {
4097 		/* Message not big enough, just ignore it. */
4098 		ipmi_inc_stat(intf, invalid_commands);
4099 		return 0;
4100 	}
4101 
4102 	if (msg->rsp[2] != 0) {
4103 		/* An error getting the response, just ignore it. */
4104 		return 0;
4105 	}
4106 
4107 	netfn = msg->rsp[6] >> 2;
4108 	cmd = msg->rsp[10];
4109 	chan = msg->rsp[3] & 0xf;
4110 
4111 	rcu_read_lock();
4112 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4113 	if (rcvr) {
4114 		user = rcvr->user;
4115 		kref_get(&user->refcount);
4116 	} else
4117 		user = NULL;
4118 	rcu_read_unlock();
4119 
4120 	if (user == NULL) {
4121 		/* We didn't find a user, just give up. */
4122 		ipmi_inc_stat(intf, unhandled_commands);
4123 
4124 		/*
4125 		 * Don't do anything with these messages, just allow
4126 		 * them to be freed.
4127 		 */
4128 		rv = 0;
4129 	} else {
4130 		recv_msg = ipmi_alloc_recv_msg();
4131 		if (!recv_msg) {
4132 			/*
4133 			 * We couldn't allocate memory for the
4134 			 * message, so requeue it for handling later.
4135 			 */
4136 			rv = 1;
4137 			kref_put(&user->refcount, free_user);
4138 		} else {
4139 			/* Extract the source address from the data. */
4140 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4141 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4142 			lan_addr->session_handle = msg->rsp[4];
4143 			lan_addr->remote_SWID = msg->rsp[8];
4144 			lan_addr->local_SWID = msg->rsp[5];
4145 			lan_addr->lun = msg->rsp[9] & 3;
4146 			lan_addr->channel = msg->rsp[3] & 0xf;
4147 			lan_addr->privilege = msg->rsp[3] >> 4;
4148 
4149 			/*
4150 			 * Extract the rest of the message information
4151 			 * from the IPMB header.
4152 			 */
4153 			recv_msg->user = user;
4154 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4155 			recv_msg->msgid = msg->rsp[9] >> 2;
4156 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
4157 			recv_msg->msg.cmd = msg->rsp[10];
4158 			recv_msg->msg.data = recv_msg->msg_data;
4159 
4160 			/*
4161 			 * We chop off 12, not 11 bytes because the checksum
4162 			 * at the end also needs to be removed.
4163 			 */
4164 			recv_msg->msg.data_len = msg->rsp_size - 12;
4165 			memcpy(recv_msg->msg_data, &msg->rsp[11],
4166 			       msg->rsp_size - 12);
4167 			if (deliver_response(intf, recv_msg))
4168 				ipmi_inc_stat(intf, unhandled_commands);
4169 			else
4170 				ipmi_inc_stat(intf, handled_commands);
4171 		}
4172 	}
4173 
4174 	return rv;
4175 }
4176 
4177 /*
4178  * This routine will handle "Get Message" command responses with
4179  * channels that use an OEM Medium. The message format belongs to
4180  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4181  * Chapter 22, sections 22.6 and 22.24 for more details.
4182  */
4183 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4184 				  struct ipmi_smi_msg *msg)
4185 {
4186 	struct cmd_rcvr       *rcvr;
4187 	int                   rv = 0;
4188 	unsigned char         netfn;
4189 	unsigned char         cmd;
4190 	unsigned char         chan;
4191 	struct ipmi_user *user = NULL;
4192 	struct ipmi_system_interface_addr *smi_addr;
4193 	struct ipmi_recv_msg  *recv_msg;
4194 
4195 	/*
4196 	 * We expect the OEM SW to perform error checking
4197 	 * so we just do some basic sanity checks
4198 	 */
4199 	if (msg->rsp_size < 4) {
4200 		/* Message not big enough, just ignore it. */
4201 		ipmi_inc_stat(intf, invalid_commands);
4202 		return 0;
4203 	}
4204 
4205 	if (msg->rsp[2] != 0) {
4206 		/* An error getting the response, just ignore it. */
4207 		return 0;
4208 	}
4209 
4210 	/*
4211 	 * This is an OEM Message so the OEM needs to know how
4212 	 * handle the message. We do no interpretation.
4213 	 */
4214 	netfn = msg->rsp[0] >> 2;
4215 	cmd = msg->rsp[1];
4216 	chan = msg->rsp[3] & 0xf;
4217 
4218 	rcu_read_lock();
4219 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4220 	if (rcvr) {
4221 		user = rcvr->user;
4222 		kref_get(&user->refcount);
4223 	} else
4224 		user = NULL;
4225 	rcu_read_unlock();
4226 
4227 	if (user == NULL) {
4228 		/* We didn't find a user, just give up. */
4229 		ipmi_inc_stat(intf, unhandled_commands);
4230 
4231 		/*
4232 		 * Don't do anything with these messages, just allow
4233 		 * them to be freed.
4234 		 */
4235 
4236 		rv = 0;
4237 	} else {
4238 		recv_msg = ipmi_alloc_recv_msg();
4239 		if (!recv_msg) {
4240 			/*
4241 			 * We couldn't allocate memory for the
4242 			 * message, so requeue it for handling
4243 			 * later.
4244 			 */
4245 			rv = 1;
4246 			kref_put(&user->refcount, free_user);
4247 		} else {
4248 			/*
4249 			 * OEM Messages are expected to be delivered via
4250 			 * the system interface to SMS software.  We might
4251 			 * need to visit this again depending on OEM
4252 			 * requirements
4253 			 */
4254 			smi_addr = ((struct ipmi_system_interface_addr *)
4255 				    &recv_msg->addr);
4256 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4257 			smi_addr->channel = IPMI_BMC_CHANNEL;
4258 			smi_addr->lun = msg->rsp[0] & 3;
4259 
4260 			recv_msg->user = user;
4261 			recv_msg->user_msg_data = NULL;
4262 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4263 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4264 			recv_msg->msg.cmd = msg->rsp[1];
4265 			recv_msg->msg.data = recv_msg->msg_data;
4266 
4267 			/*
4268 			 * The message starts at byte 4 which follows the
4269 			 * the Channel Byte in the "GET MESSAGE" command
4270 			 */
4271 			recv_msg->msg.data_len = msg->rsp_size - 4;
4272 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4273 			       msg->rsp_size - 4);
4274 			if (deliver_response(intf, recv_msg))
4275 				ipmi_inc_stat(intf, unhandled_commands);
4276 			else
4277 				ipmi_inc_stat(intf, handled_commands);
4278 		}
4279 	}
4280 
4281 	return rv;
4282 }
4283 
4284 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4285 				     struct ipmi_smi_msg  *msg)
4286 {
4287 	struct ipmi_system_interface_addr *smi_addr;
4288 
4289 	recv_msg->msgid = 0;
4290 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4291 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4292 	smi_addr->channel = IPMI_BMC_CHANNEL;
4293 	smi_addr->lun = msg->rsp[0] & 3;
4294 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4295 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4296 	recv_msg->msg.cmd = msg->rsp[1];
4297 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4298 	recv_msg->msg.data = recv_msg->msg_data;
4299 	recv_msg->msg.data_len = msg->rsp_size - 3;
4300 }
4301 
4302 static int handle_read_event_rsp(struct ipmi_smi *intf,
4303 				 struct ipmi_smi_msg *msg)
4304 {
4305 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4306 	struct list_head     msgs;
4307 	struct ipmi_user     *user;
4308 	int rv = 0, deliver_count = 0, index;
4309 	unsigned long        flags;
4310 
4311 	if (msg->rsp_size < 19) {
4312 		/* Message is too small to be an IPMB event. */
4313 		ipmi_inc_stat(intf, invalid_events);
4314 		return 0;
4315 	}
4316 
4317 	if (msg->rsp[2] != 0) {
4318 		/* An error getting the event, just ignore it. */
4319 		return 0;
4320 	}
4321 
4322 	INIT_LIST_HEAD(&msgs);
4323 
4324 	spin_lock_irqsave(&intf->events_lock, flags);
4325 
4326 	ipmi_inc_stat(intf, events);
4327 
4328 	/*
4329 	 * Allocate and fill in one message for every user that is
4330 	 * getting events.
4331 	 */
4332 	index = srcu_read_lock(&intf->users_srcu);
4333 	list_for_each_entry_rcu(user, &intf->users, link) {
4334 		if (!user->gets_events)
4335 			continue;
4336 
4337 		recv_msg = ipmi_alloc_recv_msg();
4338 		if (!recv_msg) {
4339 			rcu_read_unlock();
4340 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4341 						 link) {
4342 				list_del(&recv_msg->link);
4343 				ipmi_free_recv_msg(recv_msg);
4344 			}
4345 			/*
4346 			 * We couldn't allocate memory for the
4347 			 * message, so requeue it for handling
4348 			 * later.
4349 			 */
4350 			rv = 1;
4351 			goto out;
4352 		}
4353 
4354 		deliver_count++;
4355 
4356 		copy_event_into_recv_msg(recv_msg, msg);
4357 		recv_msg->user = user;
4358 		kref_get(&user->refcount);
4359 		list_add_tail(&recv_msg->link, &msgs);
4360 	}
4361 	srcu_read_unlock(&intf->users_srcu, index);
4362 
4363 	if (deliver_count) {
4364 		/* Now deliver all the messages. */
4365 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4366 			list_del(&recv_msg->link);
4367 			deliver_local_response(intf, recv_msg);
4368 		}
4369 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4370 		/*
4371 		 * No one to receive the message, put it in queue if there's
4372 		 * not already too many things in the queue.
4373 		 */
4374 		recv_msg = ipmi_alloc_recv_msg();
4375 		if (!recv_msg) {
4376 			/*
4377 			 * We couldn't allocate memory for the
4378 			 * message, so requeue it for handling
4379 			 * later.
4380 			 */
4381 			rv = 1;
4382 			goto out;
4383 		}
4384 
4385 		copy_event_into_recv_msg(recv_msg, msg);
4386 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4387 		intf->waiting_events_count++;
4388 	} else if (!intf->event_msg_printed) {
4389 		/*
4390 		 * There's too many things in the queue, discard this
4391 		 * message.
4392 		 */
4393 		dev_warn(intf->si_dev,
4394 			 "Event queue full, discarding incoming events\n");
4395 		intf->event_msg_printed = 1;
4396 	}
4397 
4398  out:
4399 	spin_unlock_irqrestore(&intf->events_lock, flags);
4400 
4401 	return rv;
4402 }
4403 
4404 static int handle_bmc_rsp(struct ipmi_smi *intf,
4405 			  struct ipmi_smi_msg *msg)
4406 {
4407 	struct ipmi_recv_msg *recv_msg;
4408 	struct ipmi_system_interface_addr *smi_addr;
4409 
4410 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4411 	if (recv_msg == NULL) {
4412 		dev_warn(intf->si_dev,
4413 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4414 		return 0;
4415 	}
4416 
4417 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4418 	recv_msg->msgid = msg->msgid;
4419 	smi_addr = ((struct ipmi_system_interface_addr *)
4420 		    &recv_msg->addr);
4421 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4422 	smi_addr->channel = IPMI_BMC_CHANNEL;
4423 	smi_addr->lun = msg->rsp[0] & 3;
4424 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4425 	recv_msg->msg.cmd = msg->rsp[1];
4426 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4427 	recv_msg->msg.data = recv_msg->msg_data;
4428 	recv_msg->msg.data_len = msg->rsp_size - 2;
4429 	deliver_local_response(intf, recv_msg);
4430 
4431 	return 0;
4432 }
4433 
4434 /*
4435  * Handle a received message.  Return 1 if the message should be requeued,
4436  * 0 if the message should be freed, or -1 if the message should not
4437  * be freed or requeued.
4438  */
4439 static int handle_one_recv_msg(struct ipmi_smi *intf,
4440 			       struct ipmi_smi_msg *msg)
4441 {
4442 	int requeue = 0;
4443 	int chan;
4444 	unsigned char cc;
4445 	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4446 
4447 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4448 
4449 	if (msg->rsp_size < 2) {
4450 		/* Message is too small to be correct. */
4451 		dev_warn(intf->si_dev,
4452 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4453 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4454 
4455 return_unspecified:
4456 		/* Generate an error response for the message. */
4457 		msg->rsp[0] = msg->data[0] | (1 << 2);
4458 		msg->rsp[1] = msg->data[1];
4459 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4460 		msg->rsp_size = 3;
4461 	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4462 		/* commands must have at least 4 bytes, responses 5. */
4463 		if (is_cmd && (msg->rsp_size < 4)) {
4464 			ipmi_inc_stat(intf, invalid_commands);
4465 			goto out;
4466 		}
4467 		if (!is_cmd && (msg->rsp_size < 5)) {
4468 			ipmi_inc_stat(intf, invalid_ipmb_responses);
4469 			/* Construct a valid error response. */
4470 			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4471 			msg->rsp[0] |= (1 << 2); /* Make it a response */
4472 			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4473 			msg->rsp[1] = msg->data[1]; /* Addr */
4474 			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4475 			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4476 			msg->rsp[3] = msg->data[3]; /* Cmd */
4477 			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4478 			msg->rsp_size = 5;
4479 		}
4480 	} else if ((msg->data_size >= 2)
4481 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4482 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4483 	    && (msg->user_data == NULL)) {
4484 
4485 		if (intf->in_shutdown)
4486 			goto out;
4487 
4488 		/*
4489 		 * This is the local response to a command send, start
4490 		 * the timer for these.  The user_data will not be
4491 		 * NULL if this is a response send, and we will let
4492 		 * response sends just go through.
4493 		 */
4494 
4495 		/*
4496 		 * Check for errors, if we get certain errors (ones
4497 		 * that mean basically we can try again later), we
4498 		 * ignore them and start the timer.  Otherwise we
4499 		 * report the error immediately.
4500 		 */
4501 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4502 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4503 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4504 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4505 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4506 			int ch = msg->rsp[3] & 0xf;
4507 			struct ipmi_channel *chans;
4508 
4509 			/* Got an error sending the message, handle it. */
4510 
4511 			chans = READ_ONCE(intf->channel_list)->c;
4512 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4513 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4514 				ipmi_inc_stat(intf, sent_lan_command_errs);
4515 			else
4516 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4517 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4518 		} else
4519 			/* The message was sent, start the timer. */
4520 			intf_start_seq_timer(intf, msg->msgid);
4521 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4522 		   || (msg->rsp[1] != msg->data[1])) {
4523 		/*
4524 		 * The NetFN and Command in the response is not even
4525 		 * marginally correct.
4526 		 */
4527 		dev_warn(intf->si_dev,
4528 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4529 			 (msg->data[0] >> 2) | 1, msg->data[1],
4530 			 msg->rsp[0] >> 2, msg->rsp[1]);
4531 
4532 		goto return_unspecified;
4533 	}
4534 
4535 	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4536 		if ((msg->data[0] >> 2) & 1) {
4537 			/* It's a response to a sent response. */
4538 			chan = 0;
4539 			cc = msg->rsp[4];
4540 			goto process_response_response;
4541 		}
4542 		if (is_cmd)
4543 			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4544 		else
4545 			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4546 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4547 		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4548 		   && (msg->user_data != NULL)) {
4549 		/*
4550 		 * It's a response to a response we sent.  For this we
4551 		 * deliver a send message response to the user.
4552 		 */
4553 		struct ipmi_recv_msg *recv_msg;
4554 
4555 		chan = msg->data[2] & 0x0f;
4556 		if (chan >= IPMI_MAX_CHANNELS)
4557 			/* Invalid channel number */
4558 			goto out;
4559 		cc = msg->rsp[2];
4560 
4561 process_response_response:
4562 		recv_msg = msg->user_data;
4563 
4564 		requeue = 0;
4565 		if (!recv_msg)
4566 			goto out;
4567 
4568 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4569 		recv_msg->msg.data = recv_msg->msg_data;
4570 		recv_msg->msg_data[0] = cc;
4571 		recv_msg->msg.data_len = 1;
4572 		deliver_local_response(intf, recv_msg);
4573 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4574 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4575 		struct ipmi_channel   *chans;
4576 
4577 		/* It's from the receive queue. */
4578 		chan = msg->rsp[3] & 0xf;
4579 		if (chan >= IPMI_MAX_CHANNELS) {
4580 			/* Invalid channel number */
4581 			requeue = 0;
4582 			goto out;
4583 		}
4584 
4585 		/*
4586 		 * We need to make sure the channels have been initialized.
4587 		 * The channel_handler routine will set the "curr_channel"
4588 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4589 		 * channels for this interface have been initialized.
4590 		 */
4591 		if (!intf->channels_ready) {
4592 			requeue = 0; /* Throw the message away */
4593 			goto out;
4594 		}
4595 
4596 		chans = READ_ONCE(intf->channel_list)->c;
4597 
4598 		switch (chans[chan].medium) {
4599 		case IPMI_CHANNEL_MEDIUM_IPMB:
4600 			if (msg->rsp[4] & 0x04) {
4601 				/*
4602 				 * It's a response, so find the
4603 				 * requesting message and send it up.
4604 				 */
4605 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4606 			} else {
4607 				/*
4608 				 * It's a command to the SMS from some other
4609 				 * entity.  Handle that.
4610 				 */
4611 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4612 			}
4613 			break;
4614 
4615 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4616 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4617 			if (msg->rsp[6] & 0x04) {
4618 				/*
4619 				 * It's a response, so find the
4620 				 * requesting message and send it up.
4621 				 */
4622 				requeue = handle_lan_get_msg_rsp(intf, msg);
4623 			} else {
4624 				/*
4625 				 * It's a command to the SMS from some other
4626 				 * entity.  Handle that.
4627 				 */
4628 				requeue = handle_lan_get_msg_cmd(intf, msg);
4629 			}
4630 			break;
4631 
4632 		default:
4633 			/* Check for OEM Channels.  Clients had better
4634 			   register for these commands. */
4635 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4636 			    && (chans[chan].medium
4637 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4638 				requeue = handle_oem_get_msg_cmd(intf, msg);
4639 			} else {
4640 				/*
4641 				 * We don't handle the channel type, so just
4642 				 * free the message.
4643 				 */
4644 				requeue = 0;
4645 			}
4646 		}
4647 
4648 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4649 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4650 		/* It's an asynchronous event. */
4651 		requeue = handle_read_event_rsp(intf, msg);
4652 	} else {
4653 		/* It's a response from the local BMC. */
4654 		requeue = handle_bmc_rsp(intf, msg);
4655 	}
4656 
4657  out:
4658 	return requeue;
4659 }
4660 
4661 /*
4662  * If there are messages in the queue or pretimeouts, handle them.
4663  */
4664 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4665 {
4666 	struct ipmi_smi_msg  *smi_msg;
4667 	unsigned long        flags = 0;
4668 	int                  rv;
4669 	int                  run_to_completion = intf->run_to_completion;
4670 
4671 	/* See if any waiting messages need to be processed. */
4672 	if (!run_to_completion)
4673 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4674 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4675 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4676 				     struct ipmi_smi_msg, link);
4677 		list_del(&smi_msg->link);
4678 		if (!run_to_completion)
4679 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4680 					       flags);
4681 		rv = handle_one_recv_msg(intf, smi_msg);
4682 		if (!run_to_completion)
4683 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4684 		if (rv > 0) {
4685 			/*
4686 			 * To preserve message order, quit if we
4687 			 * can't handle a message.  Add the message
4688 			 * back at the head, this is safe because this
4689 			 * tasklet is the only thing that pulls the
4690 			 * messages.
4691 			 */
4692 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4693 			break;
4694 		} else {
4695 			if (rv == 0)
4696 				/* Message handled */
4697 				ipmi_free_smi_msg(smi_msg);
4698 			/* If rv < 0, fatal error, del but don't free. */
4699 		}
4700 	}
4701 	if (!run_to_completion)
4702 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4703 
4704 	/*
4705 	 * If the pretimout count is non-zero, decrement one from it and
4706 	 * deliver pretimeouts to all the users.
4707 	 */
4708 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4709 		struct ipmi_user *user;
4710 		int index;
4711 
4712 		index = srcu_read_lock(&intf->users_srcu);
4713 		list_for_each_entry_rcu(user, &intf->users, link) {
4714 			if (user->handler->ipmi_watchdog_pretimeout)
4715 				user->handler->ipmi_watchdog_pretimeout(
4716 					user->handler_data);
4717 		}
4718 		srcu_read_unlock(&intf->users_srcu, index);
4719 	}
4720 }
4721 
4722 static void smi_recv_tasklet(struct tasklet_struct *t)
4723 {
4724 	unsigned long flags = 0; /* keep us warning-free. */
4725 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4726 	int run_to_completion = intf->run_to_completion;
4727 	struct ipmi_smi_msg *newmsg = NULL;
4728 
4729 	/*
4730 	 * Start the next message if available.
4731 	 *
4732 	 * Do this here, not in the actual receiver, because we may deadlock
4733 	 * because the lower layer is allowed to hold locks while calling
4734 	 * message delivery.
4735 	 */
4736 
4737 	rcu_read_lock();
4738 
4739 	if (!run_to_completion)
4740 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4741 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4742 		struct list_head *entry = NULL;
4743 
4744 		/* Pick the high priority queue first. */
4745 		if (!list_empty(&intf->hp_xmit_msgs))
4746 			entry = intf->hp_xmit_msgs.next;
4747 		else if (!list_empty(&intf->xmit_msgs))
4748 			entry = intf->xmit_msgs.next;
4749 
4750 		if (entry) {
4751 			list_del(entry);
4752 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4753 			intf->curr_msg = newmsg;
4754 		}
4755 	}
4756 
4757 	if (!run_to_completion)
4758 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4759 	if (newmsg)
4760 		intf->handlers->sender(intf->send_info, newmsg);
4761 
4762 	rcu_read_unlock();
4763 
4764 	handle_new_recv_msgs(intf);
4765 }
4766 
4767 /* Handle a new message from the lower layer. */
4768 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4769 			   struct ipmi_smi_msg *msg)
4770 {
4771 	unsigned long flags = 0; /* keep us warning-free. */
4772 	int run_to_completion = intf->run_to_completion;
4773 
4774 	/*
4775 	 * To preserve message order, we keep a queue and deliver from
4776 	 * a tasklet.
4777 	 */
4778 	if (!run_to_completion)
4779 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4780 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4781 	if (!run_to_completion)
4782 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4783 				       flags);
4784 
4785 	if (!run_to_completion)
4786 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4787 	/*
4788 	 * We can get an asynchronous event or receive message in addition
4789 	 * to commands we send.
4790 	 */
4791 	if (msg == intf->curr_msg)
4792 		intf->curr_msg = NULL;
4793 	if (!run_to_completion)
4794 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4795 
4796 	if (run_to_completion)
4797 		smi_recv_tasklet(&intf->recv_tasklet);
4798 	else
4799 		tasklet_schedule(&intf->recv_tasklet);
4800 }
4801 EXPORT_SYMBOL(ipmi_smi_msg_received);
4802 
4803 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4804 {
4805 	if (intf->in_shutdown)
4806 		return;
4807 
4808 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4809 	tasklet_schedule(&intf->recv_tasklet);
4810 }
4811 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4812 
4813 static struct ipmi_smi_msg *
4814 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4815 		  unsigned char seq, long seqid)
4816 {
4817 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4818 	if (!smi_msg)
4819 		/*
4820 		 * If we can't allocate the message, then just return, we
4821 		 * get 4 retries, so this should be ok.
4822 		 */
4823 		return NULL;
4824 
4825 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4826 	smi_msg->data_size = recv_msg->msg.data_len;
4827 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4828 
4829 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4830 
4831 	return smi_msg;
4832 }
4833 
4834 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4835 			      struct list_head *timeouts,
4836 			      unsigned long timeout_period,
4837 			      int slot, unsigned long *flags,
4838 			      bool *need_timer)
4839 {
4840 	struct ipmi_recv_msg *msg;
4841 
4842 	if (intf->in_shutdown)
4843 		return;
4844 
4845 	if (!ent->inuse)
4846 		return;
4847 
4848 	if (timeout_period < ent->timeout) {
4849 		ent->timeout -= timeout_period;
4850 		*need_timer = true;
4851 		return;
4852 	}
4853 
4854 	if (ent->retries_left == 0) {
4855 		/* The message has used all its retries. */
4856 		ent->inuse = 0;
4857 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4858 		msg = ent->recv_msg;
4859 		list_add_tail(&msg->link, timeouts);
4860 		if (ent->broadcast)
4861 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4862 		else if (is_lan_addr(&ent->recv_msg->addr))
4863 			ipmi_inc_stat(intf, timed_out_lan_commands);
4864 		else
4865 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4866 	} else {
4867 		struct ipmi_smi_msg *smi_msg;
4868 		/* More retries, send again. */
4869 
4870 		*need_timer = true;
4871 
4872 		/*
4873 		 * Start with the max timer, set to normal timer after
4874 		 * the message is sent.
4875 		 */
4876 		ent->timeout = MAX_MSG_TIMEOUT;
4877 		ent->retries_left--;
4878 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4879 					    ent->seqid);
4880 		if (!smi_msg) {
4881 			if (is_lan_addr(&ent->recv_msg->addr))
4882 				ipmi_inc_stat(intf,
4883 					      dropped_rexmit_lan_commands);
4884 			else
4885 				ipmi_inc_stat(intf,
4886 					      dropped_rexmit_ipmb_commands);
4887 			return;
4888 		}
4889 
4890 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4891 
4892 		/*
4893 		 * Send the new message.  We send with a zero
4894 		 * priority.  It timed out, I doubt time is that
4895 		 * critical now, and high priority messages are really
4896 		 * only for messages to the local MC, which don't get
4897 		 * resent.
4898 		 */
4899 		if (intf->handlers) {
4900 			if (is_lan_addr(&ent->recv_msg->addr))
4901 				ipmi_inc_stat(intf,
4902 					      retransmitted_lan_commands);
4903 			else
4904 				ipmi_inc_stat(intf,
4905 					      retransmitted_ipmb_commands);
4906 
4907 			smi_send(intf, intf->handlers, smi_msg, 0);
4908 		} else
4909 			ipmi_free_smi_msg(smi_msg);
4910 
4911 		spin_lock_irqsave(&intf->seq_lock, *flags);
4912 	}
4913 }
4914 
4915 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4916 				 unsigned long timeout_period)
4917 {
4918 	struct list_head     timeouts;
4919 	struct ipmi_recv_msg *msg, *msg2;
4920 	unsigned long        flags;
4921 	int                  i;
4922 	bool                 need_timer = false;
4923 
4924 	if (!intf->bmc_registered) {
4925 		kref_get(&intf->refcount);
4926 		if (!schedule_work(&intf->bmc_reg_work)) {
4927 			kref_put(&intf->refcount, intf_free);
4928 			need_timer = true;
4929 		}
4930 	}
4931 
4932 	/*
4933 	 * Go through the seq table and find any messages that
4934 	 * have timed out, putting them in the timeouts
4935 	 * list.
4936 	 */
4937 	INIT_LIST_HEAD(&timeouts);
4938 	spin_lock_irqsave(&intf->seq_lock, flags);
4939 	if (intf->ipmb_maintenance_mode_timeout) {
4940 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4941 			intf->ipmb_maintenance_mode_timeout = 0;
4942 		else
4943 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4944 	}
4945 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4946 		check_msg_timeout(intf, &intf->seq_table[i],
4947 				  &timeouts, timeout_period, i,
4948 				  &flags, &need_timer);
4949 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4950 
4951 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4952 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4953 
4954 	/*
4955 	 * Maintenance mode handling.  Check the timeout
4956 	 * optimistically before we claim the lock.  It may
4957 	 * mean a timeout gets missed occasionally, but that
4958 	 * only means the timeout gets extended by one period
4959 	 * in that case.  No big deal, and it avoids the lock
4960 	 * most of the time.
4961 	 */
4962 	if (intf->auto_maintenance_timeout > 0) {
4963 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4964 		if (intf->auto_maintenance_timeout > 0) {
4965 			intf->auto_maintenance_timeout
4966 				-= timeout_period;
4967 			if (!intf->maintenance_mode
4968 			    && (intf->auto_maintenance_timeout <= 0)) {
4969 				intf->maintenance_mode_enable = false;
4970 				maintenance_mode_update(intf);
4971 			}
4972 		}
4973 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4974 				       flags);
4975 	}
4976 
4977 	tasklet_schedule(&intf->recv_tasklet);
4978 
4979 	return need_timer;
4980 }
4981 
4982 static void ipmi_request_event(struct ipmi_smi *intf)
4983 {
4984 	/* No event requests when in maintenance mode. */
4985 	if (intf->maintenance_mode_enable)
4986 		return;
4987 
4988 	if (!intf->in_shutdown)
4989 		intf->handlers->request_events(intf->send_info);
4990 }
4991 
4992 static struct timer_list ipmi_timer;
4993 
4994 static atomic_t stop_operation;
4995 
4996 static void ipmi_timeout(struct timer_list *unused)
4997 {
4998 	struct ipmi_smi *intf;
4999 	bool need_timer = false;
5000 	int index;
5001 
5002 	if (atomic_read(&stop_operation))
5003 		return;
5004 
5005 	index = srcu_read_lock(&ipmi_interfaces_srcu);
5006 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5007 		if (atomic_read(&intf->event_waiters)) {
5008 			intf->ticks_to_req_ev--;
5009 			if (intf->ticks_to_req_ev == 0) {
5010 				ipmi_request_event(intf);
5011 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5012 			}
5013 			need_timer = true;
5014 		}
5015 
5016 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5017 	}
5018 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
5019 
5020 	if (need_timer)
5021 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5022 }
5023 
5024 static void need_waiter(struct ipmi_smi *intf)
5025 {
5026 	/* Racy, but worst case we start the timer twice. */
5027 	if (!timer_pending(&ipmi_timer))
5028 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5029 }
5030 
5031 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5032 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5033 
5034 static void free_smi_msg(struct ipmi_smi_msg *msg)
5035 {
5036 	atomic_dec(&smi_msg_inuse_count);
5037 	/* Try to keep as much stuff out of the panic path as possible. */
5038 	if (!oops_in_progress)
5039 		kfree(msg);
5040 }
5041 
5042 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5043 {
5044 	struct ipmi_smi_msg *rv;
5045 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5046 	if (rv) {
5047 		rv->done = free_smi_msg;
5048 		rv->user_data = NULL;
5049 		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5050 		atomic_inc(&smi_msg_inuse_count);
5051 	}
5052 	return rv;
5053 }
5054 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5055 
5056 static void free_recv_msg(struct ipmi_recv_msg *msg)
5057 {
5058 	atomic_dec(&recv_msg_inuse_count);
5059 	/* Try to keep as much stuff out of the panic path as possible. */
5060 	if (!oops_in_progress)
5061 		kfree(msg);
5062 }
5063 
5064 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5065 {
5066 	struct ipmi_recv_msg *rv;
5067 
5068 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5069 	if (rv) {
5070 		rv->user = NULL;
5071 		rv->done = free_recv_msg;
5072 		atomic_inc(&recv_msg_inuse_count);
5073 	}
5074 	return rv;
5075 }
5076 
5077 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5078 {
5079 	if (msg->user && !oops_in_progress)
5080 		kref_put(&msg->user->refcount, free_user);
5081 	msg->done(msg);
5082 }
5083 EXPORT_SYMBOL(ipmi_free_recv_msg);
5084 
5085 static atomic_t panic_done_count = ATOMIC_INIT(0);
5086 
5087 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5088 {
5089 	atomic_dec(&panic_done_count);
5090 }
5091 
5092 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5093 {
5094 	atomic_dec(&panic_done_count);
5095 }
5096 
5097 /*
5098  * Inside a panic, send a message and wait for a response.
5099  */
5100 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5101 					struct ipmi_addr *addr,
5102 					struct kernel_ipmi_msg *msg)
5103 {
5104 	struct ipmi_smi_msg  smi_msg;
5105 	struct ipmi_recv_msg recv_msg;
5106 	int rv;
5107 
5108 	smi_msg.done = dummy_smi_done_handler;
5109 	recv_msg.done = dummy_recv_done_handler;
5110 	atomic_add(2, &panic_done_count);
5111 	rv = i_ipmi_request(NULL,
5112 			    intf,
5113 			    addr,
5114 			    0,
5115 			    msg,
5116 			    intf,
5117 			    &smi_msg,
5118 			    &recv_msg,
5119 			    0,
5120 			    intf->addrinfo[0].address,
5121 			    intf->addrinfo[0].lun,
5122 			    0, 1); /* Don't retry, and don't wait. */
5123 	if (rv)
5124 		atomic_sub(2, &panic_done_count);
5125 	else if (intf->handlers->flush_messages)
5126 		intf->handlers->flush_messages(intf->send_info);
5127 
5128 	while (atomic_read(&panic_done_count) != 0)
5129 		ipmi_poll(intf);
5130 }
5131 
5132 static void event_receiver_fetcher(struct ipmi_smi *intf,
5133 				   struct ipmi_recv_msg *msg)
5134 {
5135 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5136 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5137 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5138 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5139 		/* A get event receiver command, save it. */
5140 		intf->event_receiver = msg->msg.data[1];
5141 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5142 	}
5143 }
5144 
5145 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5146 {
5147 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5148 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5149 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5150 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5151 		/*
5152 		 * A get device id command, save if we are an event
5153 		 * receiver or generator.
5154 		 */
5155 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5156 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5157 	}
5158 }
5159 
5160 static void send_panic_events(struct ipmi_smi *intf, char *str)
5161 {
5162 	struct kernel_ipmi_msg msg;
5163 	unsigned char data[16];
5164 	struct ipmi_system_interface_addr *si;
5165 	struct ipmi_addr addr;
5166 	char *p = str;
5167 	struct ipmi_ipmb_addr *ipmb;
5168 	int j;
5169 
5170 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5171 		return;
5172 
5173 	si = (struct ipmi_system_interface_addr *) &addr;
5174 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5175 	si->channel = IPMI_BMC_CHANNEL;
5176 	si->lun = 0;
5177 
5178 	/* Fill in an event telling that we have failed. */
5179 	msg.netfn = 0x04; /* Sensor or Event. */
5180 	msg.cmd = 2; /* Platform event command. */
5181 	msg.data = data;
5182 	msg.data_len = 8;
5183 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5184 	data[1] = 0x03; /* This is for IPMI 1.0. */
5185 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5186 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5187 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5188 
5189 	/*
5190 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
5191 	 * to make the panic events more useful.
5192 	 */
5193 	if (str) {
5194 		data[3] = str[0];
5195 		data[6] = str[1];
5196 		data[7] = str[2];
5197 	}
5198 
5199 	/* Send the event announcing the panic. */
5200 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5201 
5202 	/*
5203 	 * On every interface, dump a bunch of OEM event holding the
5204 	 * string.
5205 	 */
5206 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5207 		return;
5208 
5209 	/*
5210 	 * intf_num is used as an marker to tell if the
5211 	 * interface is valid.  Thus we need a read barrier to
5212 	 * make sure data fetched before checking intf_num
5213 	 * won't be used.
5214 	 */
5215 	smp_rmb();
5216 
5217 	/*
5218 	 * First job here is to figure out where to send the
5219 	 * OEM events.  There's no way in IPMI to send OEM
5220 	 * events using an event send command, so we have to
5221 	 * find the SEL to put them in and stick them in
5222 	 * there.
5223 	 */
5224 
5225 	/* Get capabilities from the get device id. */
5226 	intf->local_sel_device = 0;
5227 	intf->local_event_generator = 0;
5228 	intf->event_receiver = 0;
5229 
5230 	/* Request the device info from the local MC. */
5231 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5232 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5233 	msg.data = NULL;
5234 	msg.data_len = 0;
5235 	intf->null_user_handler = device_id_fetcher;
5236 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5237 
5238 	if (intf->local_event_generator) {
5239 		/* Request the event receiver from the local MC. */
5240 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5241 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5242 		msg.data = NULL;
5243 		msg.data_len = 0;
5244 		intf->null_user_handler = event_receiver_fetcher;
5245 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5246 	}
5247 	intf->null_user_handler = NULL;
5248 
5249 	/*
5250 	 * Validate the event receiver.  The low bit must not
5251 	 * be 1 (it must be a valid IPMB address), it cannot
5252 	 * be zero, and it must not be my address.
5253 	 */
5254 	if (((intf->event_receiver & 1) == 0)
5255 	    && (intf->event_receiver != 0)
5256 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5257 		/*
5258 		 * The event receiver is valid, send an IPMB
5259 		 * message.
5260 		 */
5261 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5262 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5263 		ipmb->channel = 0; /* FIXME - is this right? */
5264 		ipmb->lun = intf->event_receiver_lun;
5265 		ipmb->slave_addr = intf->event_receiver;
5266 	} else if (intf->local_sel_device) {
5267 		/*
5268 		 * The event receiver was not valid (or was
5269 		 * me), but I am an SEL device, just dump it
5270 		 * in my SEL.
5271 		 */
5272 		si = (struct ipmi_system_interface_addr *) &addr;
5273 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5274 		si->channel = IPMI_BMC_CHANNEL;
5275 		si->lun = 0;
5276 	} else
5277 		return; /* No where to send the event. */
5278 
5279 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5280 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5281 	msg.data = data;
5282 	msg.data_len = 16;
5283 
5284 	j = 0;
5285 	while (*p) {
5286 		int size = strlen(p);
5287 
5288 		if (size > 11)
5289 			size = 11;
5290 		data[0] = 0;
5291 		data[1] = 0;
5292 		data[2] = 0xf0; /* OEM event without timestamp. */
5293 		data[3] = intf->addrinfo[0].address;
5294 		data[4] = j++; /* sequence # */
5295 		/*
5296 		 * Always give 11 bytes, so strncpy will fill
5297 		 * it with zeroes for me.
5298 		 */
5299 		strncpy(data+5, p, 11);
5300 		p += size;
5301 
5302 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5303 	}
5304 }
5305 
5306 static int has_panicked;
5307 
5308 static int panic_event(struct notifier_block *this,
5309 		       unsigned long         event,
5310 		       void                  *ptr)
5311 {
5312 	struct ipmi_smi *intf;
5313 	struct ipmi_user *user;
5314 
5315 	if (has_panicked)
5316 		return NOTIFY_DONE;
5317 	has_panicked = 1;
5318 
5319 	/* For every registered interface, set it to run to completion. */
5320 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5321 		if (!intf->handlers || intf->intf_num == -1)
5322 			/* Interface is not ready. */
5323 			continue;
5324 
5325 		if (!intf->handlers->poll)
5326 			continue;
5327 
5328 		/*
5329 		 * If we were interrupted while locking xmit_msgs_lock or
5330 		 * waiting_rcv_msgs_lock, the corresponding list may be
5331 		 * corrupted.  In this case, drop items on the list for
5332 		 * the safety.
5333 		 */
5334 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5335 			INIT_LIST_HEAD(&intf->xmit_msgs);
5336 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5337 		} else
5338 			spin_unlock(&intf->xmit_msgs_lock);
5339 
5340 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5341 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5342 		else
5343 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5344 
5345 		intf->run_to_completion = 1;
5346 		if (intf->handlers->set_run_to_completion)
5347 			intf->handlers->set_run_to_completion(intf->send_info,
5348 							      1);
5349 
5350 		list_for_each_entry_rcu(user, &intf->users, link) {
5351 			if (user->handler->ipmi_panic_handler)
5352 				user->handler->ipmi_panic_handler(
5353 					user->handler_data);
5354 		}
5355 
5356 		send_panic_events(intf, ptr);
5357 	}
5358 
5359 	return NOTIFY_DONE;
5360 }
5361 
5362 /* Must be called with ipmi_interfaces_mutex held. */
5363 static int ipmi_register_driver(void)
5364 {
5365 	int rv;
5366 
5367 	if (drvregistered)
5368 		return 0;
5369 
5370 	rv = driver_register(&ipmidriver.driver);
5371 	if (rv)
5372 		pr_err("Could not register IPMI driver\n");
5373 	else
5374 		drvregistered = true;
5375 	return rv;
5376 }
5377 
5378 static struct notifier_block panic_block = {
5379 	.notifier_call	= panic_event,
5380 	.next		= NULL,
5381 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5382 };
5383 
5384 static int ipmi_init_msghandler(void)
5385 {
5386 	int rv;
5387 
5388 	mutex_lock(&ipmi_interfaces_mutex);
5389 	rv = ipmi_register_driver();
5390 	if (rv)
5391 		goto out;
5392 	if (initialized)
5393 		goto out;
5394 
5395 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5396 	if (rv)
5397 		goto out;
5398 
5399 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5400 	if (!remove_work_wq) {
5401 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5402 		rv = -ENOMEM;
5403 		goto out_wq;
5404 	}
5405 
5406 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5407 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5408 
5409 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5410 
5411 	initialized = true;
5412 
5413 out_wq:
5414 	if (rv)
5415 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5416 out:
5417 	mutex_unlock(&ipmi_interfaces_mutex);
5418 	return rv;
5419 }
5420 
5421 static int __init ipmi_init_msghandler_mod(void)
5422 {
5423 	int rv;
5424 
5425 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5426 
5427 	mutex_lock(&ipmi_interfaces_mutex);
5428 	rv = ipmi_register_driver();
5429 	mutex_unlock(&ipmi_interfaces_mutex);
5430 
5431 	return rv;
5432 }
5433 
5434 static void __exit cleanup_ipmi(void)
5435 {
5436 	int count;
5437 
5438 	if (initialized) {
5439 		destroy_workqueue(remove_work_wq);
5440 
5441 		atomic_notifier_chain_unregister(&panic_notifier_list,
5442 						 &panic_block);
5443 
5444 		/*
5445 		 * This can't be called if any interfaces exist, so no worry
5446 		 * about shutting down the interfaces.
5447 		 */
5448 
5449 		/*
5450 		 * Tell the timer to stop, then wait for it to stop.  This
5451 		 * avoids problems with race conditions removing the timer
5452 		 * here.
5453 		 */
5454 		atomic_set(&stop_operation, 1);
5455 		del_timer_sync(&ipmi_timer);
5456 
5457 		initialized = false;
5458 
5459 		/* Check for buffer leaks. */
5460 		count = atomic_read(&smi_msg_inuse_count);
5461 		if (count != 0)
5462 			pr_warn("SMI message count %d at exit\n", count);
5463 		count = atomic_read(&recv_msg_inuse_count);
5464 		if (count != 0)
5465 			pr_warn("recv message count %d at exit\n", count);
5466 
5467 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5468 	}
5469 	if (drvregistered)
5470 		driver_unregister(&ipmidriver.driver);
5471 }
5472 module_exit(cleanup_ipmi);
5473 
5474 module_init(ipmi_init_msghandler_mod);
5475 MODULE_LICENSE("GPL");
5476 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5477 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5478 MODULE_VERSION(IPMI_DRIVER_VERSION);
5479 MODULE_SOFTDEP("post: ipmi_devintf");
5480