xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 	do {								\
165 		seq = ((msgid >> 26) & 0x3f);				\
166 		seqid = (msgid & 0x3fffff);				\
167 	} while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172 	unsigned char medium;
173 	unsigned char protocol;
174 
175 	/*
176 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177 	 * but may be changed by the user.
178 	 */
179 	unsigned char address;
180 
181 	/*
182 	 * My LUN.  This should generally stay the SMS LUN, but just in
183 	 * case...
184 	 */
185 	unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 	char                   *name;
191 	struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196 	struct platform_device pdev;
197 	struct ipmi_device_id  id;
198 	unsigned char          guid[16];
199 	int                    guid_set;
200 	char                   name[16];
201 	struct kref	       usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204 
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210 	/* Commands we got from the user that were invalid. */
211 	IPMI_STAT_sent_invalid_commands = 0,
212 
213 	/* Commands we sent to the MC. */
214 	IPMI_STAT_sent_local_commands,
215 
216 	/* Responses from the MC that were delivered to a user. */
217 	IPMI_STAT_handled_local_responses,
218 
219 	/* Responses from the MC that were not delivered to a user. */
220 	IPMI_STAT_unhandled_local_responses,
221 
222 	/* Commands we sent out to the IPMB bus. */
223 	IPMI_STAT_sent_ipmb_commands,
224 
225 	/* Commands sent on the IPMB that had errors on the SEND CMD */
226 	IPMI_STAT_sent_ipmb_command_errs,
227 
228 	/* Each retransmit increments this count. */
229 	IPMI_STAT_retransmitted_ipmb_commands,
230 
231 	/*
232 	 * When a message times out (runs out of retransmits) this is
233 	 * incremented.
234 	 */
235 	IPMI_STAT_timed_out_ipmb_commands,
236 
237 	/*
238 	 * This is like above, but for broadcasts.  Broadcasts are
239 	 * *not* included in the above count (they are expected to
240 	 * time out).
241 	 */
242 	IPMI_STAT_timed_out_ipmb_broadcasts,
243 
244 	/* Responses I have sent to the IPMB bus. */
245 	IPMI_STAT_sent_ipmb_responses,
246 
247 	/* The response was delivered to the user. */
248 	IPMI_STAT_handled_ipmb_responses,
249 
250 	/* The response had invalid data in it. */
251 	IPMI_STAT_invalid_ipmb_responses,
252 
253 	/* The response didn't have anyone waiting for it. */
254 	IPMI_STAT_unhandled_ipmb_responses,
255 
256 	/* Commands we sent out to the IPMB bus. */
257 	IPMI_STAT_sent_lan_commands,
258 
259 	/* Commands sent on the IPMB that had errors on the SEND CMD */
260 	IPMI_STAT_sent_lan_command_errs,
261 
262 	/* Each retransmit increments this count. */
263 	IPMI_STAT_retransmitted_lan_commands,
264 
265 	/*
266 	 * When a message times out (runs out of retransmits) this is
267 	 * incremented.
268 	 */
269 	IPMI_STAT_timed_out_lan_commands,
270 
271 	/* Responses I have sent to the IPMB bus. */
272 	IPMI_STAT_sent_lan_responses,
273 
274 	/* The response was delivered to the user. */
275 	IPMI_STAT_handled_lan_responses,
276 
277 	/* The response had invalid data in it. */
278 	IPMI_STAT_invalid_lan_responses,
279 
280 	/* The response didn't have anyone waiting for it. */
281 	IPMI_STAT_unhandled_lan_responses,
282 
283 	/* The command was delivered to the user. */
284 	IPMI_STAT_handled_commands,
285 
286 	/* The command had invalid data in it. */
287 	IPMI_STAT_invalid_commands,
288 
289 	/* The command didn't have anyone waiting for it. */
290 	IPMI_STAT_unhandled_commands,
291 
292 	/* Invalid data in an event. */
293 	IPMI_STAT_invalid_events,
294 
295 	/* Events that were received with the proper format. */
296 	IPMI_STAT_events,
297 
298 	/* Retransmissions on IPMB that failed. */
299 	IPMI_STAT_dropped_rexmit_ipmb_commands,
300 
301 	/* Retransmissions on LAN that failed. */
302 	IPMI_STAT_dropped_rexmit_lan_commands,
303 
304 	/* This *must* remain last, add new values above this. */
305 	IPMI_NUM_STATS
306 };
307 
308 
309 #define IPMI_IPMB_NUM_SEQ	64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312 	/* What interface number are we? */
313 	int intf_num;
314 
315 	struct kref refcount;
316 
317 	/* Set when the interface is being unregistered. */
318 	bool in_shutdown;
319 
320 	/* Used for a list of interfaces. */
321 	struct list_head link;
322 
323 	/*
324 	 * The list of upper layers that are using me.  seq_lock
325 	 * protects this.
326 	 */
327 	struct list_head users;
328 
329 	/* Information to supply to users. */
330 	unsigned char ipmi_version_major;
331 	unsigned char ipmi_version_minor;
332 
333 	/* Used for wake ups at startup. */
334 	wait_queue_head_t waitq;
335 
336 	struct bmc_device *bmc;
337 	char *my_dev_name;
338 
339 	/*
340 	 * This is the lower-layer's sender routine.  Note that you
341 	 * must either be holding the ipmi_interfaces_mutex or be in
342 	 * an umpreemptible region to use this.  You must fetch the
343 	 * value into a local variable and make sure it is not NULL.
344 	 */
345 	const struct ipmi_smi_handlers *handlers;
346 	void                     *send_info;
347 
348 #ifdef CONFIG_PROC_FS
349 	/* A list of proc entries for this interface. */
350 	struct mutex           proc_entry_lock;
351 	struct ipmi_proc_entry *proc_entries;
352 #endif
353 
354 	/* Driver-model device for the system interface. */
355 	struct device          *si_dev;
356 
357 	/*
358 	 * A table of sequence numbers for this interface.  We use the
359 	 * sequence numbers for IPMB messages that go out of the
360 	 * interface to match them up with their responses.  A routine
361 	 * is called periodically to time the items in this list.
362 	 */
363 	spinlock_t       seq_lock;
364 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 	int curr_seq;
366 
367 	/*
368 	 * Messages queued for delivery.  If delivery fails (out of memory
369 	 * for instance), They will stay in here to be processed later in a
370 	 * periodic timer interrupt.  The tasklet is for handling received
371 	 * messages directly from the handler.
372 	 */
373 	spinlock_t       waiting_rcv_msgs_lock;
374 	struct list_head waiting_rcv_msgs;
375 	atomic_t	 watchdog_pretimeouts_to_deliver;
376 	struct tasklet_struct recv_tasklet;
377 
378 	spinlock_t             xmit_msgs_lock;
379 	struct list_head       xmit_msgs;
380 	struct ipmi_smi_msg    *curr_msg;
381 	struct list_head       hp_xmit_msgs;
382 
383 	/*
384 	 * The list of command receivers that are registered for commands
385 	 * on this interface.
386 	 */
387 	struct mutex     cmd_rcvrs_mutex;
388 	struct list_head cmd_rcvrs;
389 
390 	/*
391 	 * Events that were queues because no one was there to receive
392 	 * them.
393 	 */
394 	spinlock_t       events_lock; /* For dealing with event stuff. */
395 	struct list_head waiting_events;
396 	unsigned int     waiting_events_count; /* How many events in queue? */
397 	char             delivering_events;
398 	char             event_msg_printed;
399 	atomic_t         event_waiters;
400 	unsigned int     ticks_to_req_ev;
401 	int              last_needs_timer;
402 
403 	/*
404 	 * The event receiver for my BMC, only really used at panic
405 	 * shutdown as a place to store this.
406 	 */
407 	unsigned char event_receiver;
408 	unsigned char event_receiver_lun;
409 	unsigned char local_sel_device;
410 	unsigned char local_event_generator;
411 
412 	/* For handling of maintenance mode. */
413 	int maintenance_mode;
414 	bool maintenance_mode_enable;
415 	int auto_maintenance_timeout;
416 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417 
418 	/*
419 	 * A cheap hack, if this is non-null and a message to an
420 	 * interface comes in with a NULL user, call this routine with
421 	 * it.  Note that the message will still be freed by the
422 	 * caller.  This only works on the system interface.
423 	 */
424 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425 
426 	/*
427 	 * When we are scanning the channels for an SMI, this will
428 	 * tell which channel we are scanning.
429 	 */
430 	int curr_channel;
431 
432 	/* Channel information */
433 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434 
435 	/* Proc FS stuff. */
436 	struct proc_dir_entry *proc_dir;
437 	char                  proc_dir_name[10];
438 
439 	atomic_t stats[IPMI_NUM_STATS];
440 
441 	/*
442 	 * run_to_completion duplicate of smb_info, smi_info
443 	 * and ipmi_serial_info structures. Used to decrease numbers of
444 	 * parameters passed by "low" level IPMI code.
445 	 */
446 	int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449 
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454 	.driver = {
455 		.name = "ipmi",
456 		.bus = &platform_bus_type
457 	}
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460 
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463 
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469 
470 #define ipmi_inc_stat(intf, stat) \
471 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474 
475 static const char * const addr_src_to_str[] = {
476 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
477 	"device-tree"
478 };
479 
480 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
481 {
482 	if (src >= SI_LAST)
483 		src = 0; /* Invalid */
484 	return addr_src_to_str[src];
485 }
486 EXPORT_SYMBOL(ipmi_addr_src_to_str);
487 
488 static int is_lan_addr(struct ipmi_addr *addr)
489 {
490 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
491 }
492 
493 static int is_ipmb_addr(struct ipmi_addr *addr)
494 {
495 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
496 }
497 
498 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
499 {
500 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
501 }
502 
503 static void free_recv_msg_list(struct list_head *q)
504 {
505 	struct ipmi_recv_msg *msg, *msg2;
506 
507 	list_for_each_entry_safe(msg, msg2, q, link) {
508 		list_del(&msg->link);
509 		ipmi_free_recv_msg(msg);
510 	}
511 }
512 
513 static void free_smi_msg_list(struct list_head *q)
514 {
515 	struct ipmi_smi_msg *msg, *msg2;
516 
517 	list_for_each_entry_safe(msg, msg2, q, link) {
518 		list_del(&msg->link);
519 		ipmi_free_smi_msg(msg);
520 	}
521 }
522 
523 static void clean_up_interface_data(ipmi_smi_t intf)
524 {
525 	int              i;
526 	struct cmd_rcvr  *rcvr, *rcvr2;
527 	struct list_head list;
528 
529 	tasklet_kill(&intf->recv_tasklet);
530 
531 	free_smi_msg_list(&intf->waiting_rcv_msgs);
532 	free_recv_msg_list(&intf->waiting_events);
533 
534 	/*
535 	 * Wholesale remove all the entries from the list in the
536 	 * interface and wait for RCU to know that none are in use.
537 	 */
538 	mutex_lock(&intf->cmd_rcvrs_mutex);
539 	INIT_LIST_HEAD(&list);
540 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
541 	mutex_unlock(&intf->cmd_rcvrs_mutex);
542 
543 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
544 		kfree(rcvr);
545 
546 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
547 		if ((intf->seq_table[i].inuse)
548 					&& (intf->seq_table[i].recv_msg))
549 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
550 	}
551 }
552 
553 static void intf_free(struct kref *ref)
554 {
555 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
556 
557 	clean_up_interface_data(intf);
558 	kfree(intf);
559 }
560 
561 struct watcher_entry {
562 	int              intf_num;
563 	ipmi_smi_t       intf;
564 	struct list_head link;
565 };
566 
567 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
568 {
569 	ipmi_smi_t intf;
570 	LIST_HEAD(to_deliver);
571 	struct watcher_entry *e, *e2;
572 
573 	mutex_lock(&smi_watchers_mutex);
574 
575 	mutex_lock(&ipmi_interfaces_mutex);
576 
577 	/* Build a list of things to deliver. */
578 	list_for_each_entry(intf, &ipmi_interfaces, link) {
579 		if (intf->intf_num == -1)
580 			continue;
581 		e = kmalloc(sizeof(*e), GFP_KERNEL);
582 		if (!e)
583 			goto out_err;
584 		kref_get(&intf->refcount);
585 		e->intf = intf;
586 		e->intf_num = intf->intf_num;
587 		list_add_tail(&e->link, &to_deliver);
588 	}
589 
590 	/* We will succeed, so add it to the list. */
591 	list_add(&watcher->link, &smi_watchers);
592 
593 	mutex_unlock(&ipmi_interfaces_mutex);
594 
595 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
596 		list_del(&e->link);
597 		watcher->new_smi(e->intf_num, e->intf->si_dev);
598 		kref_put(&e->intf->refcount, intf_free);
599 		kfree(e);
600 	}
601 
602 	mutex_unlock(&smi_watchers_mutex);
603 
604 	return 0;
605 
606  out_err:
607 	mutex_unlock(&ipmi_interfaces_mutex);
608 	mutex_unlock(&smi_watchers_mutex);
609 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
610 		list_del(&e->link);
611 		kref_put(&e->intf->refcount, intf_free);
612 		kfree(e);
613 	}
614 	return -ENOMEM;
615 }
616 EXPORT_SYMBOL(ipmi_smi_watcher_register);
617 
618 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
619 {
620 	mutex_lock(&smi_watchers_mutex);
621 	list_del(&(watcher->link));
622 	mutex_unlock(&smi_watchers_mutex);
623 	return 0;
624 }
625 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
626 
627 /*
628  * Must be called with smi_watchers_mutex held.
629  */
630 static void
631 call_smi_watchers(int i, struct device *dev)
632 {
633 	struct ipmi_smi_watcher *w;
634 
635 	list_for_each_entry(w, &smi_watchers, link) {
636 		if (try_module_get(w->owner)) {
637 			w->new_smi(i, dev);
638 			module_put(w->owner);
639 		}
640 	}
641 }
642 
643 static int
644 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
645 {
646 	if (addr1->addr_type != addr2->addr_type)
647 		return 0;
648 
649 	if (addr1->channel != addr2->channel)
650 		return 0;
651 
652 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
653 		struct ipmi_system_interface_addr *smi_addr1
654 		    = (struct ipmi_system_interface_addr *) addr1;
655 		struct ipmi_system_interface_addr *smi_addr2
656 		    = (struct ipmi_system_interface_addr *) addr2;
657 		return (smi_addr1->lun == smi_addr2->lun);
658 	}
659 
660 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
661 		struct ipmi_ipmb_addr *ipmb_addr1
662 		    = (struct ipmi_ipmb_addr *) addr1;
663 		struct ipmi_ipmb_addr *ipmb_addr2
664 		    = (struct ipmi_ipmb_addr *) addr2;
665 
666 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
667 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
668 	}
669 
670 	if (is_lan_addr(addr1)) {
671 		struct ipmi_lan_addr *lan_addr1
672 			= (struct ipmi_lan_addr *) addr1;
673 		struct ipmi_lan_addr *lan_addr2
674 		    = (struct ipmi_lan_addr *) addr2;
675 
676 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
677 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
678 			&& (lan_addr1->session_handle
679 			    == lan_addr2->session_handle)
680 			&& (lan_addr1->lun == lan_addr2->lun));
681 	}
682 
683 	return 1;
684 }
685 
686 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
687 {
688 	if (len < sizeof(struct ipmi_system_interface_addr))
689 		return -EINVAL;
690 
691 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
692 		if (addr->channel != IPMI_BMC_CHANNEL)
693 			return -EINVAL;
694 		return 0;
695 	}
696 
697 	if ((addr->channel == IPMI_BMC_CHANNEL)
698 	    || (addr->channel >= IPMI_MAX_CHANNELS)
699 	    || (addr->channel < 0))
700 		return -EINVAL;
701 
702 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
703 		if (len < sizeof(struct ipmi_ipmb_addr))
704 			return -EINVAL;
705 		return 0;
706 	}
707 
708 	if (is_lan_addr(addr)) {
709 		if (len < sizeof(struct ipmi_lan_addr))
710 			return -EINVAL;
711 		return 0;
712 	}
713 
714 	return -EINVAL;
715 }
716 EXPORT_SYMBOL(ipmi_validate_addr);
717 
718 unsigned int ipmi_addr_length(int addr_type)
719 {
720 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
721 		return sizeof(struct ipmi_system_interface_addr);
722 
723 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
724 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
725 		return sizeof(struct ipmi_ipmb_addr);
726 
727 	if (addr_type == IPMI_LAN_ADDR_TYPE)
728 		return sizeof(struct ipmi_lan_addr);
729 
730 	return 0;
731 }
732 EXPORT_SYMBOL(ipmi_addr_length);
733 
734 static void deliver_response(struct ipmi_recv_msg *msg)
735 {
736 	if (!msg->user) {
737 		ipmi_smi_t    intf = msg->user_msg_data;
738 
739 		/* Special handling for NULL users. */
740 		if (intf->null_user_handler) {
741 			intf->null_user_handler(intf, msg);
742 			ipmi_inc_stat(intf, handled_local_responses);
743 		} else {
744 			/* No handler, so give up. */
745 			ipmi_inc_stat(intf, unhandled_local_responses);
746 		}
747 		ipmi_free_recv_msg(msg);
748 	} else if (!oops_in_progress) {
749 		/*
750 		 * If we are running in the panic context, calling the
751 		 * receive handler doesn't much meaning and has a deadlock
752 		 * risk.  At this moment, simply skip it in that case.
753 		 */
754 
755 		ipmi_user_t user = msg->user;
756 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
757 	}
758 }
759 
760 static void
761 deliver_err_response(struct ipmi_recv_msg *msg, int err)
762 {
763 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
764 	msg->msg_data[0] = err;
765 	msg->msg.netfn |= 1; /* Convert to a response. */
766 	msg->msg.data_len = 1;
767 	msg->msg.data = msg->msg_data;
768 	deliver_response(msg);
769 }
770 
771 /*
772  * Find the next sequence number not being used and add the given
773  * message with the given timeout to the sequence table.  This must be
774  * called with the interface's seq_lock held.
775  */
776 static int intf_next_seq(ipmi_smi_t           intf,
777 			 struct ipmi_recv_msg *recv_msg,
778 			 unsigned long        timeout,
779 			 int                  retries,
780 			 int                  broadcast,
781 			 unsigned char        *seq,
782 			 long                 *seqid)
783 {
784 	int          rv = 0;
785 	unsigned int i;
786 
787 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
788 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
789 		if (!intf->seq_table[i].inuse)
790 			break;
791 	}
792 
793 	if (!intf->seq_table[i].inuse) {
794 		intf->seq_table[i].recv_msg = recv_msg;
795 
796 		/*
797 		 * Start with the maximum timeout, when the send response
798 		 * comes in we will start the real timer.
799 		 */
800 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
801 		intf->seq_table[i].orig_timeout = timeout;
802 		intf->seq_table[i].retries_left = retries;
803 		intf->seq_table[i].broadcast = broadcast;
804 		intf->seq_table[i].inuse = 1;
805 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
806 		*seq = i;
807 		*seqid = intf->seq_table[i].seqid;
808 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
809 		need_waiter(intf);
810 	} else {
811 		rv = -EAGAIN;
812 	}
813 
814 	return rv;
815 }
816 
817 /*
818  * Return the receive message for the given sequence number and
819  * release the sequence number so it can be reused.  Some other data
820  * is passed in to be sure the message matches up correctly (to help
821  * guard against message coming in after their timeout and the
822  * sequence number being reused).
823  */
824 static int intf_find_seq(ipmi_smi_t           intf,
825 			 unsigned char        seq,
826 			 short                channel,
827 			 unsigned char        cmd,
828 			 unsigned char        netfn,
829 			 struct ipmi_addr     *addr,
830 			 struct ipmi_recv_msg **recv_msg)
831 {
832 	int           rv = -ENODEV;
833 	unsigned long flags;
834 
835 	if (seq >= IPMI_IPMB_NUM_SEQ)
836 		return -EINVAL;
837 
838 	spin_lock_irqsave(&(intf->seq_lock), flags);
839 	if (intf->seq_table[seq].inuse) {
840 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
841 
842 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
843 				&& (msg->msg.netfn == netfn)
844 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
845 			*recv_msg = msg;
846 			intf->seq_table[seq].inuse = 0;
847 			rv = 0;
848 		}
849 	}
850 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
851 
852 	return rv;
853 }
854 
855 
856 /* Start the timer for a specific sequence table entry. */
857 static int intf_start_seq_timer(ipmi_smi_t intf,
858 				long       msgid)
859 {
860 	int           rv = -ENODEV;
861 	unsigned long flags;
862 	unsigned char seq;
863 	unsigned long seqid;
864 
865 
866 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
867 
868 	spin_lock_irqsave(&(intf->seq_lock), flags);
869 	/*
870 	 * We do this verification because the user can be deleted
871 	 * while a message is outstanding.
872 	 */
873 	if ((intf->seq_table[seq].inuse)
874 				&& (intf->seq_table[seq].seqid == seqid)) {
875 		struct seq_table *ent = &(intf->seq_table[seq]);
876 		ent->timeout = ent->orig_timeout;
877 		rv = 0;
878 	}
879 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
880 
881 	return rv;
882 }
883 
884 /* Got an error for the send message for a specific sequence number. */
885 static int intf_err_seq(ipmi_smi_t   intf,
886 			long         msgid,
887 			unsigned int err)
888 {
889 	int                  rv = -ENODEV;
890 	unsigned long        flags;
891 	unsigned char        seq;
892 	unsigned long        seqid;
893 	struct ipmi_recv_msg *msg = NULL;
894 
895 
896 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
897 
898 	spin_lock_irqsave(&(intf->seq_lock), flags);
899 	/*
900 	 * We do this verification because the user can be deleted
901 	 * while a message is outstanding.
902 	 */
903 	if ((intf->seq_table[seq].inuse)
904 				&& (intf->seq_table[seq].seqid == seqid)) {
905 		struct seq_table *ent = &(intf->seq_table[seq]);
906 
907 		ent->inuse = 0;
908 		msg = ent->recv_msg;
909 		rv = 0;
910 	}
911 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
912 
913 	if (msg)
914 		deliver_err_response(msg, err);
915 
916 	return rv;
917 }
918 
919 
920 int ipmi_create_user(unsigned int          if_num,
921 		     struct ipmi_user_hndl *handler,
922 		     void                  *handler_data,
923 		     ipmi_user_t           *user)
924 {
925 	unsigned long flags;
926 	ipmi_user_t   new_user;
927 	int           rv = 0;
928 	ipmi_smi_t    intf;
929 
930 	/*
931 	 * There is no module usecount here, because it's not
932 	 * required.  Since this can only be used by and called from
933 	 * other modules, they will implicitly use this module, and
934 	 * thus this can't be removed unless the other modules are
935 	 * removed.
936 	 */
937 
938 	if (handler == NULL)
939 		return -EINVAL;
940 
941 	/*
942 	 * Make sure the driver is actually initialized, this handles
943 	 * problems with initialization order.
944 	 */
945 	if (!initialized) {
946 		rv = ipmi_init_msghandler();
947 		if (rv)
948 			return rv;
949 
950 		/*
951 		 * The init code doesn't return an error if it was turned
952 		 * off, but it won't initialize.  Check that.
953 		 */
954 		if (!initialized)
955 			return -ENODEV;
956 	}
957 
958 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
959 	if (!new_user)
960 		return -ENOMEM;
961 
962 	mutex_lock(&ipmi_interfaces_mutex);
963 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
964 		if (intf->intf_num == if_num)
965 			goto found;
966 	}
967 	/* Not found, return an error */
968 	rv = -EINVAL;
969 	goto out_kfree;
970 
971  found:
972 	/* Note that each existing user holds a refcount to the interface. */
973 	kref_get(&intf->refcount);
974 
975 	kref_init(&new_user->refcount);
976 	new_user->handler = handler;
977 	new_user->handler_data = handler_data;
978 	new_user->intf = intf;
979 	new_user->gets_events = false;
980 
981 	if (!try_module_get(intf->handlers->owner)) {
982 		rv = -ENODEV;
983 		goto out_kref;
984 	}
985 
986 	if (intf->handlers->inc_usecount) {
987 		rv = intf->handlers->inc_usecount(intf->send_info);
988 		if (rv) {
989 			module_put(intf->handlers->owner);
990 			goto out_kref;
991 		}
992 	}
993 
994 	/*
995 	 * Hold the lock so intf->handlers is guaranteed to be good
996 	 * until now
997 	 */
998 	mutex_unlock(&ipmi_interfaces_mutex);
999 
1000 	new_user->valid = true;
1001 	spin_lock_irqsave(&intf->seq_lock, flags);
1002 	list_add_rcu(&new_user->link, &intf->users);
1003 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1004 	if (handler->ipmi_watchdog_pretimeout) {
1005 		/* User wants pretimeouts, so make sure to watch for them. */
1006 		if (atomic_inc_return(&intf->event_waiters) == 1)
1007 			need_waiter(intf);
1008 	}
1009 	*user = new_user;
1010 	return 0;
1011 
1012 out_kref:
1013 	kref_put(&intf->refcount, intf_free);
1014 out_kfree:
1015 	mutex_unlock(&ipmi_interfaces_mutex);
1016 	kfree(new_user);
1017 	return rv;
1018 }
1019 EXPORT_SYMBOL(ipmi_create_user);
1020 
1021 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1022 {
1023 	int           rv = 0;
1024 	ipmi_smi_t    intf;
1025 	const struct ipmi_smi_handlers *handlers;
1026 
1027 	mutex_lock(&ipmi_interfaces_mutex);
1028 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1029 		if (intf->intf_num == if_num)
1030 			goto found;
1031 	}
1032 	/* Not found, return an error */
1033 	rv = -EINVAL;
1034 	mutex_unlock(&ipmi_interfaces_mutex);
1035 	return rv;
1036 
1037 found:
1038 	handlers = intf->handlers;
1039 	rv = -ENOSYS;
1040 	if (handlers->get_smi_info)
1041 		rv = handlers->get_smi_info(intf->send_info, data);
1042 	mutex_unlock(&ipmi_interfaces_mutex);
1043 
1044 	return rv;
1045 }
1046 EXPORT_SYMBOL(ipmi_get_smi_info);
1047 
1048 static void free_user(struct kref *ref)
1049 {
1050 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1051 	kfree(user);
1052 }
1053 
1054 int ipmi_destroy_user(ipmi_user_t user)
1055 {
1056 	ipmi_smi_t       intf = user->intf;
1057 	int              i;
1058 	unsigned long    flags;
1059 	struct cmd_rcvr  *rcvr;
1060 	struct cmd_rcvr  *rcvrs = NULL;
1061 
1062 	user->valid = false;
1063 
1064 	if (user->handler->ipmi_watchdog_pretimeout)
1065 		atomic_dec(&intf->event_waiters);
1066 
1067 	if (user->gets_events)
1068 		atomic_dec(&intf->event_waiters);
1069 
1070 	/* Remove the user from the interface's sequence table. */
1071 	spin_lock_irqsave(&intf->seq_lock, flags);
1072 	list_del_rcu(&user->link);
1073 
1074 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1075 		if (intf->seq_table[i].inuse
1076 		    && (intf->seq_table[i].recv_msg->user == user)) {
1077 			intf->seq_table[i].inuse = 0;
1078 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1079 		}
1080 	}
1081 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1082 
1083 	/*
1084 	 * Remove the user from the command receiver's table.  First
1085 	 * we build a list of everything (not using the standard link,
1086 	 * since other things may be using it till we do
1087 	 * synchronize_rcu()) then free everything in that list.
1088 	 */
1089 	mutex_lock(&intf->cmd_rcvrs_mutex);
1090 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1091 		if (rcvr->user == user) {
1092 			list_del_rcu(&rcvr->link);
1093 			rcvr->next = rcvrs;
1094 			rcvrs = rcvr;
1095 		}
1096 	}
1097 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1098 	synchronize_rcu();
1099 	while (rcvrs) {
1100 		rcvr = rcvrs;
1101 		rcvrs = rcvr->next;
1102 		kfree(rcvr);
1103 	}
1104 
1105 	mutex_lock(&ipmi_interfaces_mutex);
1106 	if (intf->handlers) {
1107 		module_put(intf->handlers->owner);
1108 		if (intf->handlers->dec_usecount)
1109 			intf->handlers->dec_usecount(intf->send_info);
1110 	}
1111 	mutex_unlock(&ipmi_interfaces_mutex);
1112 
1113 	kref_put(&intf->refcount, intf_free);
1114 
1115 	kref_put(&user->refcount, free_user);
1116 
1117 	return 0;
1118 }
1119 EXPORT_SYMBOL(ipmi_destroy_user);
1120 
1121 void ipmi_get_version(ipmi_user_t   user,
1122 		      unsigned char *major,
1123 		      unsigned char *minor)
1124 {
1125 	*major = user->intf->ipmi_version_major;
1126 	*minor = user->intf->ipmi_version_minor;
1127 }
1128 EXPORT_SYMBOL(ipmi_get_version);
1129 
1130 int ipmi_set_my_address(ipmi_user_t   user,
1131 			unsigned int  channel,
1132 			unsigned char address)
1133 {
1134 	if (channel >= IPMI_MAX_CHANNELS)
1135 		return -EINVAL;
1136 	user->intf->channels[channel].address = address;
1137 	return 0;
1138 }
1139 EXPORT_SYMBOL(ipmi_set_my_address);
1140 
1141 int ipmi_get_my_address(ipmi_user_t   user,
1142 			unsigned int  channel,
1143 			unsigned char *address)
1144 {
1145 	if (channel >= IPMI_MAX_CHANNELS)
1146 		return -EINVAL;
1147 	*address = user->intf->channels[channel].address;
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL(ipmi_get_my_address);
1151 
1152 int ipmi_set_my_LUN(ipmi_user_t   user,
1153 		    unsigned int  channel,
1154 		    unsigned char LUN)
1155 {
1156 	if (channel >= IPMI_MAX_CHANNELS)
1157 		return -EINVAL;
1158 	user->intf->channels[channel].lun = LUN & 0x3;
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(ipmi_set_my_LUN);
1162 
1163 int ipmi_get_my_LUN(ipmi_user_t   user,
1164 		    unsigned int  channel,
1165 		    unsigned char *address)
1166 {
1167 	if (channel >= IPMI_MAX_CHANNELS)
1168 		return -EINVAL;
1169 	*address = user->intf->channels[channel].lun;
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL(ipmi_get_my_LUN);
1173 
1174 int ipmi_get_maintenance_mode(ipmi_user_t user)
1175 {
1176 	int           mode;
1177 	unsigned long flags;
1178 
1179 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1180 	mode = user->intf->maintenance_mode;
1181 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1182 
1183 	return mode;
1184 }
1185 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1186 
1187 static void maintenance_mode_update(ipmi_smi_t intf)
1188 {
1189 	if (intf->handlers->set_maintenance_mode)
1190 		intf->handlers->set_maintenance_mode(
1191 			intf->send_info, intf->maintenance_mode_enable);
1192 }
1193 
1194 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1195 {
1196 	int           rv = 0;
1197 	unsigned long flags;
1198 	ipmi_smi_t    intf = user->intf;
1199 
1200 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1201 	if (intf->maintenance_mode != mode) {
1202 		switch (mode) {
1203 		case IPMI_MAINTENANCE_MODE_AUTO:
1204 			intf->maintenance_mode_enable
1205 				= (intf->auto_maintenance_timeout > 0);
1206 			break;
1207 
1208 		case IPMI_MAINTENANCE_MODE_OFF:
1209 			intf->maintenance_mode_enable = false;
1210 			break;
1211 
1212 		case IPMI_MAINTENANCE_MODE_ON:
1213 			intf->maintenance_mode_enable = true;
1214 			break;
1215 
1216 		default:
1217 			rv = -EINVAL;
1218 			goto out_unlock;
1219 		}
1220 		intf->maintenance_mode = mode;
1221 
1222 		maintenance_mode_update(intf);
1223 	}
1224  out_unlock:
1225 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1226 
1227 	return rv;
1228 }
1229 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1230 
1231 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1232 {
1233 	unsigned long        flags;
1234 	ipmi_smi_t           intf = user->intf;
1235 	struct ipmi_recv_msg *msg, *msg2;
1236 	struct list_head     msgs;
1237 
1238 	INIT_LIST_HEAD(&msgs);
1239 
1240 	spin_lock_irqsave(&intf->events_lock, flags);
1241 	if (user->gets_events == val)
1242 		goto out;
1243 
1244 	user->gets_events = val;
1245 
1246 	if (val) {
1247 		if (atomic_inc_return(&intf->event_waiters) == 1)
1248 			need_waiter(intf);
1249 	} else {
1250 		atomic_dec(&intf->event_waiters);
1251 	}
1252 
1253 	if (intf->delivering_events)
1254 		/*
1255 		 * Another thread is delivering events for this, so
1256 		 * let it handle any new events.
1257 		 */
1258 		goto out;
1259 
1260 	/* Deliver any queued events. */
1261 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1262 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1263 			list_move_tail(&msg->link, &msgs);
1264 		intf->waiting_events_count = 0;
1265 		if (intf->event_msg_printed) {
1266 			printk(KERN_WARNING PFX "Event queue no longer"
1267 			       " full\n");
1268 			intf->event_msg_printed = 0;
1269 		}
1270 
1271 		intf->delivering_events = 1;
1272 		spin_unlock_irqrestore(&intf->events_lock, flags);
1273 
1274 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1275 			msg->user = user;
1276 			kref_get(&user->refcount);
1277 			deliver_response(msg);
1278 		}
1279 
1280 		spin_lock_irqsave(&intf->events_lock, flags);
1281 		intf->delivering_events = 0;
1282 	}
1283 
1284  out:
1285 	spin_unlock_irqrestore(&intf->events_lock, flags);
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(ipmi_set_gets_events);
1290 
1291 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1292 				      unsigned char netfn,
1293 				      unsigned char cmd,
1294 				      unsigned char chan)
1295 {
1296 	struct cmd_rcvr *rcvr;
1297 
1298 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1299 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1300 					&& (rcvr->chans & (1 << chan)))
1301 			return rcvr;
1302 	}
1303 	return NULL;
1304 }
1305 
1306 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1307 				 unsigned char netfn,
1308 				 unsigned char cmd,
1309 				 unsigned int  chans)
1310 {
1311 	struct cmd_rcvr *rcvr;
1312 
1313 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1314 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1315 					&& (rcvr->chans & chans))
1316 			return 0;
1317 	}
1318 	return 1;
1319 }
1320 
1321 int ipmi_register_for_cmd(ipmi_user_t   user,
1322 			  unsigned char netfn,
1323 			  unsigned char cmd,
1324 			  unsigned int  chans)
1325 {
1326 	ipmi_smi_t      intf = user->intf;
1327 	struct cmd_rcvr *rcvr;
1328 	int             rv = 0;
1329 
1330 
1331 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1332 	if (!rcvr)
1333 		return -ENOMEM;
1334 	rcvr->cmd = cmd;
1335 	rcvr->netfn = netfn;
1336 	rcvr->chans = chans;
1337 	rcvr->user = user;
1338 
1339 	mutex_lock(&intf->cmd_rcvrs_mutex);
1340 	/* Make sure the command/netfn is not already registered. */
1341 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1342 		rv = -EBUSY;
1343 		goto out_unlock;
1344 	}
1345 
1346 	if (atomic_inc_return(&intf->event_waiters) == 1)
1347 		need_waiter(intf);
1348 
1349 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1350 
1351  out_unlock:
1352 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1353 	if (rv)
1354 		kfree(rcvr);
1355 
1356 	return rv;
1357 }
1358 EXPORT_SYMBOL(ipmi_register_for_cmd);
1359 
1360 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1361 			    unsigned char netfn,
1362 			    unsigned char cmd,
1363 			    unsigned int  chans)
1364 {
1365 	ipmi_smi_t      intf = user->intf;
1366 	struct cmd_rcvr *rcvr;
1367 	struct cmd_rcvr *rcvrs = NULL;
1368 	int i, rv = -ENOENT;
1369 
1370 	mutex_lock(&intf->cmd_rcvrs_mutex);
1371 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1372 		if (((1 << i) & chans) == 0)
1373 			continue;
1374 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1375 		if (rcvr == NULL)
1376 			continue;
1377 		if (rcvr->user == user) {
1378 			rv = 0;
1379 			rcvr->chans &= ~chans;
1380 			if (rcvr->chans == 0) {
1381 				list_del_rcu(&rcvr->link);
1382 				rcvr->next = rcvrs;
1383 				rcvrs = rcvr;
1384 			}
1385 		}
1386 	}
1387 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1388 	synchronize_rcu();
1389 	while (rcvrs) {
1390 		atomic_dec(&intf->event_waiters);
1391 		rcvr = rcvrs;
1392 		rcvrs = rcvr->next;
1393 		kfree(rcvr);
1394 	}
1395 	return rv;
1396 }
1397 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1398 
1399 static unsigned char
1400 ipmb_checksum(unsigned char *data, int size)
1401 {
1402 	unsigned char csum = 0;
1403 
1404 	for (; size > 0; size--, data++)
1405 		csum += *data;
1406 
1407 	return -csum;
1408 }
1409 
1410 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1411 				   struct kernel_ipmi_msg *msg,
1412 				   struct ipmi_ipmb_addr *ipmb_addr,
1413 				   long                  msgid,
1414 				   unsigned char         ipmb_seq,
1415 				   int                   broadcast,
1416 				   unsigned char         source_address,
1417 				   unsigned char         source_lun)
1418 {
1419 	int i = broadcast;
1420 
1421 	/* Format the IPMB header data. */
1422 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1423 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1424 	smi_msg->data[2] = ipmb_addr->channel;
1425 	if (broadcast)
1426 		smi_msg->data[3] = 0;
1427 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1428 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1429 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1430 	smi_msg->data[i+6] = source_address;
1431 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1432 	smi_msg->data[i+8] = msg->cmd;
1433 
1434 	/* Now tack on the data to the message. */
1435 	if (msg->data_len > 0)
1436 		memcpy(&(smi_msg->data[i+9]), msg->data,
1437 		       msg->data_len);
1438 	smi_msg->data_size = msg->data_len + 9;
1439 
1440 	/* Now calculate the checksum and tack it on. */
1441 	smi_msg->data[i+smi_msg->data_size]
1442 		= ipmb_checksum(&(smi_msg->data[i+6]),
1443 				smi_msg->data_size-6);
1444 
1445 	/*
1446 	 * Add on the checksum size and the offset from the
1447 	 * broadcast.
1448 	 */
1449 	smi_msg->data_size += 1 + i;
1450 
1451 	smi_msg->msgid = msgid;
1452 }
1453 
1454 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1455 				  struct kernel_ipmi_msg *msg,
1456 				  struct ipmi_lan_addr  *lan_addr,
1457 				  long                  msgid,
1458 				  unsigned char         ipmb_seq,
1459 				  unsigned char         source_lun)
1460 {
1461 	/* Format the IPMB header data. */
1462 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1463 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1464 	smi_msg->data[2] = lan_addr->channel;
1465 	smi_msg->data[3] = lan_addr->session_handle;
1466 	smi_msg->data[4] = lan_addr->remote_SWID;
1467 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1468 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1469 	smi_msg->data[7] = lan_addr->local_SWID;
1470 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1471 	smi_msg->data[9] = msg->cmd;
1472 
1473 	/* Now tack on the data to the message. */
1474 	if (msg->data_len > 0)
1475 		memcpy(&(smi_msg->data[10]), msg->data,
1476 		       msg->data_len);
1477 	smi_msg->data_size = msg->data_len + 10;
1478 
1479 	/* Now calculate the checksum and tack it on. */
1480 	smi_msg->data[smi_msg->data_size]
1481 		= ipmb_checksum(&(smi_msg->data[7]),
1482 				smi_msg->data_size-7);
1483 
1484 	/*
1485 	 * Add on the checksum size and the offset from the
1486 	 * broadcast.
1487 	 */
1488 	smi_msg->data_size += 1;
1489 
1490 	smi_msg->msgid = msgid;
1491 }
1492 
1493 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1494 					     struct ipmi_smi_msg *smi_msg,
1495 					     int priority)
1496 {
1497 	if (intf->curr_msg) {
1498 		if (priority > 0)
1499 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1500 		else
1501 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1502 		smi_msg = NULL;
1503 	} else {
1504 		intf->curr_msg = smi_msg;
1505 	}
1506 
1507 	return smi_msg;
1508 }
1509 
1510 
1511 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1512 		     struct ipmi_smi_msg *smi_msg, int priority)
1513 {
1514 	int run_to_completion = intf->run_to_completion;
1515 
1516 	if (run_to_completion) {
1517 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1518 	} else {
1519 		unsigned long flags;
1520 
1521 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1522 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1523 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1524 	}
1525 
1526 	if (smi_msg)
1527 		handlers->sender(intf->send_info, smi_msg);
1528 }
1529 
1530 /*
1531  * Separate from ipmi_request so that the user does not have to be
1532  * supplied in certain circumstances (mainly at panic time).  If
1533  * messages are supplied, they will be freed, even if an error
1534  * occurs.
1535  */
1536 static int i_ipmi_request(ipmi_user_t          user,
1537 			  ipmi_smi_t           intf,
1538 			  struct ipmi_addr     *addr,
1539 			  long                 msgid,
1540 			  struct kernel_ipmi_msg *msg,
1541 			  void                 *user_msg_data,
1542 			  void                 *supplied_smi,
1543 			  struct ipmi_recv_msg *supplied_recv,
1544 			  int                  priority,
1545 			  unsigned char        source_address,
1546 			  unsigned char        source_lun,
1547 			  int                  retries,
1548 			  unsigned int         retry_time_ms)
1549 {
1550 	int                      rv = 0;
1551 	struct ipmi_smi_msg      *smi_msg;
1552 	struct ipmi_recv_msg     *recv_msg;
1553 	unsigned long            flags;
1554 
1555 
1556 	if (supplied_recv)
1557 		recv_msg = supplied_recv;
1558 	else {
1559 		recv_msg = ipmi_alloc_recv_msg();
1560 		if (recv_msg == NULL)
1561 			return -ENOMEM;
1562 	}
1563 	recv_msg->user_msg_data = user_msg_data;
1564 
1565 	if (supplied_smi)
1566 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1567 	else {
1568 		smi_msg = ipmi_alloc_smi_msg();
1569 		if (smi_msg == NULL) {
1570 			ipmi_free_recv_msg(recv_msg);
1571 			return -ENOMEM;
1572 		}
1573 	}
1574 
1575 	rcu_read_lock();
1576 	if (intf->in_shutdown) {
1577 		rv = -ENODEV;
1578 		goto out_err;
1579 	}
1580 
1581 	recv_msg->user = user;
1582 	if (user)
1583 		kref_get(&user->refcount);
1584 	recv_msg->msgid = msgid;
1585 	/*
1586 	 * Store the message to send in the receive message so timeout
1587 	 * responses can get the proper response data.
1588 	 */
1589 	recv_msg->msg = *msg;
1590 
1591 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1592 		struct ipmi_system_interface_addr *smi_addr;
1593 
1594 		if (msg->netfn & 1) {
1595 			/* Responses are not allowed to the SMI. */
1596 			rv = -EINVAL;
1597 			goto out_err;
1598 		}
1599 
1600 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1601 		if (smi_addr->lun > 3) {
1602 			ipmi_inc_stat(intf, sent_invalid_commands);
1603 			rv = -EINVAL;
1604 			goto out_err;
1605 		}
1606 
1607 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1608 
1609 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1610 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1611 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1612 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1613 			/*
1614 			 * We don't let the user do these, since we manage
1615 			 * the sequence numbers.
1616 			 */
1617 			ipmi_inc_stat(intf, sent_invalid_commands);
1618 			rv = -EINVAL;
1619 			goto out_err;
1620 		}
1621 
1622 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1623 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1624 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1625 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1626 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1627 			intf->auto_maintenance_timeout
1628 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1629 			if (!intf->maintenance_mode
1630 			    && !intf->maintenance_mode_enable) {
1631 				intf->maintenance_mode_enable = true;
1632 				maintenance_mode_update(intf);
1633 			}
1634 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1635 					       flags);
1636 		}
1637 
1638 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1639 			ipmi_inc_stat(intf, sent_invalid_commands);
1640 			rv = -EMSGSIZE;
1641 			goto out_err;
1642 		}
1643 
1644 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1645 		smi_msg->data[1] = msg->cmd;
1646 		smi_msg->msgid = msgid;
1647 		smi_msg->user_data = recv_msg;
1648 		if (msg->data_len > 0)
1649 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1650 		smi_msg->data_size = msg->data_len + 2;
1651 		ipmi_inc_stat(intf, sent_local_commands);
1652 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1653 		struct ipmi_ipmb_addr *ipmb_addr;
1654 		unsigned char         ipmb_seq;
1655 		long                  seqid;
1656 		int                   broadcast = 0;
1657 
1658 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1659 			ipmi_inc_stat(intf, sent_invalid_commands);
1660 			rv = -EINVAL;
1661 			goto out_err;
1662 		}
1663 
1664 		if (intf->channels[addr->channel].medium
1665 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1666 			ipmi_inc_stat(intf, sent_invalid_commands);
1667 			rv = -EINVAL;
1668 			goto out_err;
1669 		}
1670 
1671 		if (retries < 0) {
1672 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1673 			retries = 0; /* Don't retry broadcasts. */
1674 		    else
1675 			retries = 4;
1676 		}
1677 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1678 		    /*
1679 		     * Broadcasts add a zero at the beginning of the
1680 		     * message, but otherwise is the same as an IPMB
1681 		     * address.
1682 		     */
1683 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1684 		    broadcast = 1;
1685 		}
1686 
1687 
1688 		/* Default to 1 second retries. */
1689 		if (retry_time_ms == 0)
1690 		    retry_time_ms = 1000;
1691 
1692 		/*
1693 		 * 9 for the header and 1 for the checksum, plus
1694 		 * possibly one for the broadcast.
1695 		 */
1696 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1697 			ipmi_inc_stat(intf, sent_invalid_commands);
1698 			rv = -EMSGSIZE;
1699 			goto out_err;
1700 		}
1701 
1702 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1703 		if (ipmb_addr->lun > 3) {
1704 			ipmi_inc_stat(intf, sent_invalid_commands);
1705 			rv = -EINVAL;
1706 			goto out_err;
1707 		}
1708 
1709 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1710 
1711 		if (recv_msg->msg.netfn & 0x1) {
1712 			/*
1713 			 * It's a response, so use the user's sequence
1714 			 * from msgid.
1715 			 */
1716 			ipmi_inc_stat(intf, sent_ipmb_responses);
1717 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1718 					msgid, broadcast,
1719 					source_address, source_lun);
1720 
1721 			/*
1722 			 * Save the receive message so we can use it
1723 			 * to deliver the response.
1724 			 */
1725 			smi_msg->user_data = recv_msg;
1726 		} else {
1727 			/* It's a command, so get a sequence for it. */
1728 
1729 			spin_lock_irqsave(&(intf->seq_lock), flags);
1730 
1731 			/*
1732 			 * Create a sequence number with a 1 second
1733 			 * timeout and 4 retries.
1734 			 */
1735 			rv = intf_next_seq(intf,
1736 					   recv_msg,
1737 					   retry_time_ms,
1738 					   retries,
1739 					   broadcast,
1740 					   &ipmb_seq,
1741 					   &seqid);
1742 			if (rv) {
1743 				/*
1744 				 * We have used up all the sequence numbers,
1745 				 * probably, so abort.
1746 				 */
1747 				spin_unlock_irqrestore(&(intf->seq_lock),
1748 						       flags);
1749 				goto out_err;
1750 			}
1751 
1752 			ipmi_inc_stat(intf, sent_ipmb_commands);
1753 
1754 			/*
1755 			 * Store the sequence number in the message,
1756 			 * so that when the send message response
1757 			 * comes back we can start the timer.
1758 			 */
1759 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1760 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1761 					ipmb_seq, broadcast,
1762 					source_address, source_lun);
1763 
1764 			/*
1765 			 * Copy the message into the recv message data, so we
1766 			 * can retransmit it later if necessary.
1767 			 */
1768 			memcpy(recv_msg->msg_data, smi_msg->data,
1769 			       smi_msg->data_size);
1770 			recv_msg->msg.data = recv_msg->msg_data;
1771 			recv_msg->msg.data_len = smi_msg->data_size;
1772 
1773 			/*
1774 			 * We don't unlock until here, because we need
1775 			 * to copy the completed message into the
1776 			 * recv_msg before we release the lock.
1777 			 * Otherwise, race conditions may bite us.  I
1778 			 * know that's pretty paranoid, but I prefer
1779 			 * to be correct.
1780 			 */
1781 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1782 		}
1783 	} else if (is_lan_addr(addr)) {
1784 		struct ipmi_lan_addr  *lan_addr;
1785 		unsigned char         ipmb_seq;
1786 		long                  seqid;
1787 
1788 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1789 			ipmi_inc_stat(intf, sent_invalid_commands);
1790 			rv = -EINVAL;
1791 			goto out_err;
1792 		}
1793 
1794 		if ((intf->channels[addr->channel].medium
1795 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1796 		    && (intf->channels[addr->channel].medium
1797 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1798 			ipmi_inc_stat(intf, sent_invalid_commands);
1799 			rv = -EINVAL;
1800 			goto out_err;
1801 		}
1802 
1803 		retries = 4;
1804 
1805 		/* Default to 1 second retries. */
1806 		if (retry_time_ms == 0)
1807 		    retry_time_ms = 1000;
1808 
1809 		/* 11 for the header and 1 for the checksum. */
1810 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1811 			ipmi_inc_stat(intf, sent_invalid_commands);
1812 			rv = -EMSGSIZE;
1813 			goto out_err;
1814 		}
1815 
1816 		lan_addr = (struct ipmi_lan_addr *) addr;
1817 		if (lan_addr->lun > 3) {
1818 			ipmi_inc_stat(intf, sent_invalid_commands);
1819 			rv = -EINVAL;
1820 			goto out_err;
1821 		}
1822 
1823 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1824 
1825 		if (recv_msg->msg.netfn & 0x1) {
1826 			/*
1827 			 * It's a response, so use the user's sequence
1828 			 * from msgid.
1829 			 */
1830 			ipmi_inc_stat(intf, sent_lan_responses);
1831 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1832 				       msgid, source_lun);
1833 
1834 			/*
1835 			 * Save the receive message so we can use it
1836 			 * to deliver the response.
1837 			 */
1838 			smi_msg->user_data = recv_msg;
1839 		} else {
1840 			/* It's a command, so get a sequence for it. */
1841 
1842 			spin_lock_irqsave(&(intf->seq_lock), flags);
1843 
1844 			/*
1845 			 * Create a sequence number with a 1 second
1846 			 * timeout and 4 retries.
1847 			 */
1848 			rv = intf_next_seq(intf,
1849 					   recv_msg,
1850 					   retry_time_ms,
1851 					   retries,
1852 					   0,
1853 					   &ipmb_seq,
1854 					   &seqid);
1855 			if (rv) {
1856 				/*
1857 				 * We have used up all the sequence numbers,
1858 				 * probably, so abort.
1859 				 */
1860 				spin_unlock_irqrestore(&(intf->seq_lock),
1861 						       flags);
1862 				goto out_err;
1863 			}
1864 
1865 			ipmi_inc_stat(intf, sent_lan_commands);
1866 
1867 			/*
1868 			 * Store the sequence number in the message,
1869 			 * so that when the send message response
1870 			 * comes back we can start the timer.
1871 			 */
1872 			format_lan_msg(smi_msg, msg, lan_addr,
1873 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1874 				       ipmb_seq, source_lun);
1875 
1876 			/*
1877 			 * Copy the message into the recv message data, so we
1878 			 * can retransmit it later if necessary.
1879 			 */
1880 			memcpy(recv_msg->msg_data, smi_msg->data,
1881 			       smi_msg->data_size);
1882 			recv_msg->msg.data = recv_msg->msg_data;
1883 			recv_msg->msg.data_len = smi_msg->data_size;
1884 
1885 			/*
1886 			 * We don't unlock until here, because we need
1887 			 * to copy the completed message into the
1888 			 * recv_msg before we release the lock.
1889 			 * Otherwise, race conditions may bite us.  I
1890 			 * know that's pretty paranoid, but I prefer
1891 			 * to be correct.
1892 			 */
1893 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1894 		}
1895 	} else {
1896 	    /* Unknown address type. */
1897 		ipmi_inc_stat(intf, sent_invalid_commands);
1898 		rv = -EINVAL;
1899 		goto out_err;
1900 	}
1901 
1902 #ifdef DEBUG_MSGING
1903 	{
1904 		int m;
1905 		for (m = 0; m < smi_msg->data_size; m++)
1906 			printk(" %2.2x", smi_msg->data[m]);
1907 		printk("\n");
1908 	}
1909 #endif
1910 
1911 	smi_send(intf, intf->handlers, smi_msg, priority);
1912 	rcu_read_unlock();
1913 
1914 	return 0;
1915 
1916  out_err:
1917 	rcu_read_unlock();
1918 	ipmi_free_smi_msg(smi_msg);
1919 	ipmi_free_recv_msg(recv_msg);
1920 	return rv;
1921 }
1922 
1923 static int check_addr(ipmi_smi_t       intf,
1924 		      struct ipmi_addr *addr,
1925 		      unsigned char    *saddr,
1926 		      unsigned char    *lun)
1927 {
1928 	if (addr->channel >= IPMI_MAX_CHANNELS)
1929 		return -EINVAL;
1930 	*lun = intf->channels[addr->channel].lun;
1931 	*saddr = intf->channels[addr->channel].address;
1932 	return 0;
1933 }
1934 
1935 int ipmi_request_settime(ipmi_user_t      user,
1936 			 struct ipmi_addr *addr,
1937 			 long             msgid,
1938 			 struct kernel_ipmi_msg  *msg,
1939 			 void             *user_msg_data,
1940 			 int              priority,
1941 			 int              retries,
1942 			 unsigned int     retry_time_ms)
1943 {
1944 	unsigned char saddr = 0, lun = 0;
1945 	int           rv;
1946 
1947 	if (!user)
1948 		return -EINVAL;
1949 	rv = check_addr(user->intf, addr, &saddr, &lun);
1950 	if (rv)
1951 		return rv;
1952 	return i_ipmi_request(user,
1953 			      user->intf,
1954 			      addr,
1955 			      msgid,
1956 			      msg,
1957 			      user_msg_data,
1958 			      NULL, NULL,
1959 			      priority,
1960 			      saddr,
1961 			      lun,
1962 			      retries,
1963 			      retry_time_ms);
1964 }
1965 EXPORT_SYMBOL(ipmi_request_settime);
1966 
1967 int ipmi_request_supply_msgs(ipmi_user_t          user,
1968 			     struct ipmi_addr     *addr,
1969 			     long                 msgid,
1970 			     struct kernel_ipmi_msg *msg,
1971 			     void                 *user_msg_data,
1972 			     void                 *supplied_smi,
1973 			     struct ipmi_recv_msg *supplied_recv,
1974 			     int                  priority)
1975 {
1976 	unsigned char saddr = 0, lun = 0;
1977 	int           rv;
1978 
1979 	if (!user)
1980 		return -EINVAL;
1981 	rv = check_addr(user->intf, addr, &saddr, &lun);
1982 	if (rv)
1983 		return rv;
1984 	return i_ipmi_request(user,
1985 			      user->intf,
1986 			      addr,
1987 			      msgid,
1988 			      msg,
1989 			      user_msg_data,
1990 			      supplied_smi,
1991 			      supplied_recv,
1992 			      priority,
1993 			      saddr,
1994 			      lun,
1995 			      -1, 0);
1996 }
1997 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1998 
1999 #ifdef CONFIG_PROC_FS
2000 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2001 {
2002 	ipmi_smi_t intf = m->private;
2003 	int        i;
2004 
2005 	seq_printf(m, "%x", intf->channels[0].address);
2006 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2007 		seq_printf(m, " %x", intf->channels[i].address);
2008 	seq_putc(m, '\n');
2009 
2010 	return 0;
2011 }
2012 
2013 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2014 {
2015 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2016 }
2017 
2018 static const struct file_operations smi_ipmb_proc_ops = {
2019 	.open		= smi_ipmb_proc_open,
2020 	.read		= seq_read,
2021 	.llseek		= seq_lseek,
2022 	.release	= single_release,
2023 };
2024 
2025 static int smi_version_proc_show(struct seq_file *m, void *v)
2026 {
2027 	ipmi_smi_t intf = m->private;
2028 
2029 	seq_printf(m, "%u.%u\n",
2030 		   ipmi_version_major(&intf->bmc->id),
2031 		   ipmi_version_minor(&intf->bmc->id));
2032 
2033 	return 0;
2034 }
2035 
2036 static int smi_version_proc_open(struct inode *inode, struct file *file)
2037 {
2038 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2039 }
2040 
2041 static const struct file_operations smi_version_proc_ops = {
2042 	.open		= smi_version_proc_open,
2043 	.read		= seq_read,
2044 	.llseek		= seq_lseek,
2045 	.release	= single_release,
2046 };
2047 
2048 static int smi_stats_proc_show(struct seq_file *m, void *v)
2049 {
2050 	ipmi_smi_t intf = m->private;
2051 
2052 	seq_printf(m, "sent_invalid_commands:       %u\n",
2053 		       ipmi_get_stat(intf, sent_invalid_commands));
2054 	seq_printf(m, "sent_local_commands:         %u\n",
2055 		       ipmi_get_stat(intf, sent_local_commands));
2056 	seq_printf(m, "handled_local_responses:     %u\n",
2057 		       ipmi_get_stat(intf, handled_local_responses));
2058 	seq_printf(m, "unhandled_local_responses:   %u\n",
2059 		       ipmi_get_stat(intf, unhandled_local_responses));
2060 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2061 		       ipmi_get_stat(intf, sent_ipmb_commands));
2062 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2063 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2064 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2065 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2066 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2067 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2068 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2069 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2070 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2071 		       ipmi_get_stat(intf, sent_ipmb_responses));
2072 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2073 		       ipmi_get_stat(intf, handled_ipmb_responses));
2074 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2075 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2076 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2077 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2078 	seq_printf(m, "sent_lan_commands:           %u\n",
2079 		       ipmi_get_stat(intf, sent_lan_commands));
2080 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2081 		       ipmi_get_stat(intf, sent_lan_command_errs));
2082 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2083 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2084 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2085 		       ipmi_get_stat(intf, timed_out_lan_commands));
2086 	seq_printf(m, "sent_lan_responses:          %u\n",
2087 		       ipmi_get_stat(intf, sent_lan_responses));
2088 	seq_printf(m, "handled_lan_responses:       %u\n",
2089 		       ipmi_get_stat(intf, handled_lan_responses));
2090 	seq_printf(m, "invalid_lan_responses:       %u\n",
2091 		       ipmi_get_stat(intf, invalid_lan_responses));
2092 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2093 		       ipmi_get_stat(intf, unhandled_lan_responses));
2094 	seq_printf(m, "handled_commands:            %u\n",
2095 		       ipmi_get_stat(intf, handled_commands));
2096 	seq_printf(m, "invalid_commands:            %u\n",
2097 		       ipmi_get_stat(intf, invalid_commands));
2098 	seq_printf(m, "unhandled_commands:          %u\n",
2099 		       ipmi_get_stat(intf, unhandled_commands));
2100 	seq_printf(m, "invalid_events:              %u\n",
2101 		       ipmi_get_stat(intf, invalid_events));
2102 	seq_printf(m, "events:                      %u\n",
2103 		       ipmi_get_stat(intf, events));
2104 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2105 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2106 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2107 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2108 	return 0;
2109 }
2110 
2111 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2112 {
2113 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2114 }
2115 
2116 static const struct file_operations smi_stats_proc_ops = {
2117 	.open		= smi_stats_proc_open,
2118 	.read		= seq_read,
2119 	.llseek		= seq_lseek,
2120 	.release	= single_release,
2121 };
2122 #endif /* CONFIG_PROC_FS */
2123 
2124 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2125 			    const struct file_operations *proc_ops,
2126 			    void *data)
2127 {
2128 	int                    rv = 0;
2129 #ifdef CONFIG_PROC_FS
2130 	struct proc_dir_entry  *file;
2131 	struct ipmi_proc_entry *entry;
2132 
2133 	/* Create a list element. */
2134 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2135 	if (!entry)
2136 		return -ENOMEM;
2137 	entry->name = kstrdup(name, GFP_KERNEL);
2138 	if (!entry->name) {
2139 		kfree(entry);
2140 		return -ENOMEM;
2141 	}
2142 
2143 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2144 	if (!file) {
2145 		kfree(entry->name);
2146 		kfree(entry);
2147 		rv = -ENOMEM;
2148 	} else {
2149 		mutex_lock(&smi->proc_entry_lock);
2150 		/* Stick it on the list. */
2151 		entry->next = smi->proc_entries;
2152 		smi->proc_entries = entry;
2153 		mutex_unlock(&smi->proc_entry_lock);
2154 	}
2155 #endif /* CONFIG_PROC_FS */
2156 
2157 	return rv;
2158 }
2159 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2160 
2161 static int add_proc_entries(ipmi_smi_t smi, int num)
2162 {
2163 	int rv = 0;
2164 
2165 #ifdef CONFIG_PROC_FS
2166 	sprintf(smi->proc_dir_name, "%d", num);
2167 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2168 	if (!smi->proc_dir)
2169 		rv = -ENOMEM;
2170 
2171 	if (rv == 0)
2172 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2173 					     &smi_stats_proc_ops,
2174 					     smi);
2175 
2176 	if (rv == 0)
2177 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2178 					     &smi_ipmb_proc_ops,
2179 					     smi);
2180 
2181 	if (rv == 0)
2182 		rv = ipmi_smi_add_proc_entry(smi, "version",
2183 					     &smi_version_proc_ops,
2184 					     smi);
2185 #endif /* CONFIG_PROC_FS */
2186 
2187 	return rv;
2188 }
2189 
2190 static void remove_proc_entries(ipmi_smi_t smi)
2191 {
2192 #ifdef CONFIG_PROC_FS
2193 	struct ipmi_proc_entry *entry;
2194 
2195 	mutex_lock(&smi->proc_entry_lock);
2196 	while (smi->proc_entries) {
2197 		entry = smi->proc_entries;
2198 		smi->proc_entries = entry->next;
2199 
2200 		remove_proc_entry(entry->name, smi->proc_dir);
2201 		kfree(entry->name);
2202 		kfree(entry);
2203 	}
2204 	mutex_unlock(&smi->proc_entry_lock);
2205 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2206 #endif /* CONFIG_PROC_FS */
2207 }
2208 
2209 static int __find_bmc_guid(struct device *dev, void *data)
2210 {
2211 	unsigned char *id = data;
2212 	struct bmc_device *bmc = to_bmc_device(dev);
2213 	return memcmp(bmc->guid, id, 16) == 0;
2214 }
2215 
2216 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2217 					     unsigned char *guid)
2218 {
2219 	struct device *dev;
2220 
2221 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2222 	if (dev)
2223 		return to_bmc_device(dev);
2224 	else
2225 		return NULL;
2226 }
2227 
2228 struct prod_dev_id {
2229 	unsigned int  product_id;
2230 	unsigned char device_id;
2231 };
2232 
2233 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2234 {
2235 	struct prod_dev_id *id = data;
2236 	struct bmc_device *bmc = to_bmc_device(dev);
2237 
2238 	return (bmc->id.product_id == id->product_id
2239 		&& bmc->id.device_id == id->device_id);
2240 }
2241 
2242 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2243 	struct device_driver *drv,
2244 	unsigned int product_id, unsigned char device_id)
2245 {
2246 	struct prod_dev_id id = {
2247 		.product_id = product_id,
2248 		.device_id = device_id,
2249 	};
2250 	struct device *dev;
2251 
2252 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2253 	if (dev)
2254 		return to_bmc_device(dev);
2255 	else
2256 		return NULL;
2257 }
2258 
2259 static ssize_t device_id_show(struct device *dev,
2260 			      struct device_attribute *attr,
2261 			      char *buf)
2262 {
2263 	struct bmc_device *bmc = to_bmc_device(dev);
2264 
2265 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2266 }
2267 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2268 
2269 static ssize_t provides_device_sdrs_show(struct device *dev,
2270 					 struct device_attribute *attr,
2271 					 char *buf)
2272 {
2273 	struct bmc_device *bmc = to_bmc_device(dev);
2274 
2275 	return snprintf(buf, 10, "%u\n",
2276 			(bmc->id.device_revision & 0x80) >> 7);
2277 }
2278 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2279 		   NULL);
2280 
2281 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2282 			     char *buf)
2283 {
2284 	struct bmc_device *bmc = to_bmc_device(dev);
2285 
2286 	return snprintf(buf, 20, "%u\n",
2287 			bmc->id.device_revision & 0x0F);
2288 }
2289 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2290 
2291 static ssize_t firmware_revision_show(struct device *dev,
2292 				      struct device_attribute *attr,
2293 				      char *buf)
2294 {
2295 	struct bmc_device *bmc = to_bmc_device(dev);
2296 
2297 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2298 			bmc->id.firmware_revision_2);
2299 }
2300 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2301 
2302 static ssize_t ipmi_version_show(struct device *dev,
2303 				 struct device_attribute *attr,
2304 				 char *buf)
2305 {
2306 	struct bmc_device *bmc = to_bmc_device(dev);
2307 
2308 	return snprintf(buf, 20, "%u.%u\n",
2309 			ipmi_version_major(&bmc->id),
2310 			ipmi_version_minor(&bmc->id));
2311 }
2312 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2313 
2314 static ssize_t add_dev_support_show(struct device *dev,
2315 				    struct device_attribute *attr,
2316 				    char *buf)
2317 {
2318 	struct bmc_device *bmc = to_bmc_device(dev);
2319 
2320 	return snprintf(buf, 10, "0x%02x\n",
2321 			bmc->id.additional_device_support);
2322 }
2323 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2324 		   NULL);
2325 
2326 static ssize_t manufacturer_id_show(struct device *dev,
2327 				    struct device_attribute *attr,
2328 				    char *buf)
2329 {
2330 	struct bmc_device *bmc = to_bmc_device(dev);
2331 
2332 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2333 }
2334 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2335 
2336 static ssize_t product_id_show(struct device *dev,
2337 			       struct device_attribute *attr,
2338 			       char *buf)
2339 {
2340 	struct bmc_device *bmc = to_bmc_device(dev);
2341 
2342 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2343 }
2344 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2345 
2346 static ssize_t aux_firmware_rev_show(struct device *dev,
2347 				     struct device_attribute *attr,
2348 				     char *buf)
2349 {
2350 	struct bmc_device *bmc = to_bmc_device(dev);
2351 
2352 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2353 			bmc->id.aux_firmware_revision[3],
2354 			bmc->id.aux_firmware_revision[2],
2355 			bmc->id.aux_firmware_revision[1],
2356 			bmc->id.aux_firmware_revision[0]);
2357 }
2358 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2359 
2360 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2361 			 char *buf)
2362 {
2363 	struct bmc_device *bmc = to_bmc_device(dev);
2364 
2365 	return snprintf(buf, 100, "%Lx%Lx\n",
2366 			(long long) bmc->guid[0],
2367 			(long long) bmc->guid[8]);
2368 }
2369 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2370 
2371 static struct attribute *bmc_dev_attrs[] = {
2372 	&dev_attr_device_id.attr,
2373 	&dev_attr_provides_device_sdrs.attr,
2374 	&dev_attr_revision.attr,
2375 	&dev_attr_firmware_revision.attr,
2376 	&dev_attr_ipmi_version.attr,
2377 	&dev_attr_additional_device_support.attr,
2378 	&dev_attr_manufacturer_id.attr,
2379 	&dev_attr_product_id.attr,
2380 	&dev_attr_aux_firmware_revision.attr,
2381 	&dev_attr_guid.attr,
2382 	NULL
2383 };
2384 
2385 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2386 				       struct attribute *attr, int idx)
2387 {
2388 	struct device *dev = kobj_to_dev(kobj);
2389 	struct bmc_device *bmc = to_bmc_device(dev);
2390 	umode_t mode = attr->mode;
2391 
2392 	if (attr == &dev_attr_aux_firmware_revision.attr)
2393 		return bmc->id.aux_firmware_revision_set ? mode : 0;
2394 	if (attr == &dev_attr_guid.attr)
2395 		return bmc->guid_set ? mode : 0;
2396 	return mode;
2397 }
2398 
2399 static struct attribute_group bmc_dev_attr_group = {
2400 	.attrs		= bmc_dev_attrs,
2401 	.is_visible	= bmc_dev_attr_is_visible,
2402 };
2403 
2404 static const struct attribute_group *bmc_dev_attr_groups[] = {
2405 	&bmc_dev_attr_group,
2406 	NULL
2407 };
2408 
2409 static struct device_type bmc_device_type = {
2410 	.groups		= bmc_dev_attr_groups,
2411 };
2412 
2413 static void
2414 release_bmc_device(struct device *dev)
2415 {
2416 	kfree(to_bmc_device(dev));
2417 }
2418 
2419 static void
2420 cleanup_bmc_device(struct kref *ref)
2421 {
2422 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2423 
2424 	platform_device_unregister(&bmc->pdev);
2425 }
2426 
2427 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2428 {
2429 	struct bmc_device *bmc = intf->bmc;
2430 
2431 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2432 	if (intf->my_dev_name) {
2433 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2434 		kfree(intf->my_dev_name);
2435 		intf->my_dev_name = NULL;
2436 	}
2437 
2438 	mutex_lock(&ipmidriver_mutex);
2439 	kref_put(&bmc->usecount, cleanup_bmc_device);
2440 	intf->bmc = NULL;
2441 	mutex_unlock(&ipmidriver_mutex);
2442 }
2443 
2444 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2445 {
2446 	int               rv;
2447 	struct bmc_device *bmc = intf->bmc;
2448 	struct bmc_device *old_bmc;
2449 
2450 	mutex_lock(&ipmidriver_mutex);
2451 
2452 	/*
2453 	 * Try to find if there is an bmc_device struct
2454 	 * representing the interfaced BMC already
2455 	 */
2456 	if (bmc->guid_set)
2457 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2458 	else
2459 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2460 						    bmc->id.product_id,
2461 						    bmc->id.device_id);
2462 
2463 	/*
2464 	 * If there is already an bmc_device, free the new one,
2465 	 * otherwise register the new BMC device
2466 	 */
2467 	if (old_bmc) {
2468 		kfree(bmc);
2469 		intf->bmc = old_bmc;
2470 		bmc = old_bmc;
2471 
2472 		kref_get(&bmc->usecount);
2473 		mutex_unlock(&ipmidriver_mutex);
2474 
2475 		printk(KERN_INFO
2476 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2477 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2478 		       bmc->id.manufacturer_id,
2479 		       bmc->id.product_id,
2480 		       bmc->id.device_id);
2481 	} else {
2482 		unsigned char orig_dev_id = bmc->id.device_id;
2483 		int warn_printed = 0;
2484 
2485 		snprintf(bmc->name, sizeof(bmc->name),
2486 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2487 		bmc->pdev.name = bmc->name;
2488 
2489 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2490 						 bmc->id.product_id,
2491 						 bmc->id.device_id)) {
2492 			if (!warn_printed) {
2493 				printk(KERN_WARNING PFX
2494 				       "This machine has two different BMCs"
2495 				       " with the same product id and device"
2496 				       " id.  This is an error in the"
2497 				       " firmware, but incrementing the"
2498 				       " device id to work around the problem."
2499 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2500 				       bmc->id.product_id, bmc->id.device_id);
2501 				warn_printed = 1;
2502 			}
2503 			bmc->id.device_id++; /* Wraps at 255 */
2504 			if (bmc->id.device_id == orig_dev_id) {
2505 				printk(KERN_ERR PFX
2506 				       "Out of device ids!\n");
2507 				break;
2508 			}
2509 		}
2510 
2511 		bmc->pdev.dev.driver = &ipmidriver.driver;
2512 		bmc->pdev.id = bmc->id.device_id;
2513 		bmc->pdev.dev.release = release_bmc_device;
2514 		bmc->pdev.dev.type = &bmc_device_type;
2515 		kref_init(&bmc->usecount);
2516 
2517 		rv = platform_device_register(&bmc->pdev);
2518 		mutex_unlock(&ipmidriver_mutex);
2519 		if (rv) {
2520 			put_device(&bmc->pdev.dev);
2521 			printk(KERN_ERR
2522 			       "ipmi_msghandler:"
2523 			       " Unable to register bmc device: %d\n",
2524 			       rv);
2525 			/*
2526 			 * Don't go to out_err, you can only do that if
2527 			 * the device is registered already.
2528 			 */
2529 			return rv;
2530 		}
2531 
2532 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2533 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2534 			 bmc->id.manufacturer_id,
2535 			 bmc->id.product_id,
2536 			 bmc->id.device_id);
2537 	}
2538 
2539 	/*
2540 	 * create symlink from system interface device to bmc device
2541 	 * and back.
2542 	 */
2543 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2544 	if (rv) {
2545 		printk(KERN_ERR
2546 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2547 		       rv);
2548 		goto out_err;
2549 	}
2550 
2551 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2552 	if (!intf->my_dev_name) {
2553 		rv = -ENOMEM;
2554 		printk(KERN_ERR
2555 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2556 		       rv);
2557 		goto out_err;
2558 	}
2559 
2560 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2561 			       intf->my_dev_name);
2562 	if (rv) {
2563 		kfree(intf->my_dev_name);
2564 		intf->my_dev_name = NULL;
2565 		printk(KERN_ERR
2566 		       "ipmi_msghandler:"
2567 		       " Unable to create symlink to bmc: %d\n",
2568 		       rv);
2569 		goto out_err;
2570 	}
2571 
2572 	return 0;
2573 
2574 out_err:
2575 	ipmi_bmc_unregister(intf);
2576 	return rv;
2577 }
2578 
2579 static int
2580 send_guid_cmd(ipmi_smi_t intf, int chan)
2581 {
2582 	struct kernel_ipmi_msg            msg;
2583 	struct ipmi_system_interface_addr si;
2584 
2585 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2586 	si.channel = IPMI_BMC_CHANNEL;
2587 	si.lun = 0;
2588 
2589 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2590 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2591 	msg.data = NULL;
2592 	msg.data_len = 0;
2593 	return i_ipmi_request(NULL,
2594 			      intf,
2595 			      (struct ipmi_addr *) &si,
2596 			      0,
2597 			      &msg,
2598 			      intf,
2599 			      NULL,
2600 			      NULL,
2601 			      0,
2602 			      intf->channels[0].address,
2603 			      intf->channels[0].lun,
2604 			      -1, 0);
2605 }
2606 
2607 static void
2608 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2609 {
2610 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2611 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2612 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2613 		/* Not for me */
2614 		return;
2615 
2616 	if (msg->msg.data[0] != 0) {
2617 		/* Error from getting the GUID, the BMC doesn't have one. */
2618 		intf->bmc->guid_set = 0;
2619 		goto out;
2620 	}
2621 
2622 	if (msg->msg.data_len < 17) {
2623 		intf->bmc->guid_set = 0;
2624 		printk(KERN_WARNING PFX
2625 		       "guid_handler: The GUID response from the BMC was too"
2626 		       " short, it was %d but should have been 17.  Assuming"
2627 		       " GUID is not available.\n",
2628 		       msg->msg.data_len);
2629 		goto out;
2630 	}
2631 
2632 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2633 	intf->bmc->guid_set = 1;
2634  out:
2635 	wake_up(&intf->waitq);
2636 }
2637 
2638 static void
2639 get_guid(ipmi_smi_t intf)
2640 {
2641 	int rv;
2642 
2643 	intf->bmc->guid_set = 0x2;
2644 	intf->null_user_handler = guid_handler;
2645 	rv = send_guid_cmd(intf, 0);
2646 	if (rv)
2647 		/* Send failed, no GUID available. */
2648 		intf->bmc->guid_set = 0;
2649 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2650 	intf->null_user_handler = NULL;
2651 }
2652 
2653 static int
2654 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2655 {
2656 	struct kernel_ipmi_msg            msg;
2657 	unsigned char                     data[1];
2658 	struct ipmi_system_interface_addr si;
2659 
2660 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2661 	si.channel = IPMI_BMC_CHANNEL;
2662 	si.lun = 0;
2663 
2664 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2665 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2666 	msg.data = data;
2667 	msg.data_len = 1;
2668 	data[0] = chan;
2669 	return i_ipmi_request(NULL,
2670 			      intf,
2671 			      (struct ipmi_addr *) &si,
2672 			      0,
2673 			      &msg,
2674 			      intf,
2675 			      NULL,
2676 			      NULL,
2677 			      0,
2678 			      intf->channels[0].address,
2679 			      intf->channels[0].lun,
2680 			      -1, 0);
2681 }
2682 
2683 static void
2684 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2685 {
2686 	int rv = 0;
2687 	int chan;
2688 
2689 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2690 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2691 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2692 		/* It's the one we want */
2693 		if (msg->msg.data[0] != 0) {
2694 			/* Got an error from the channel, just go on. */
2695 
2696 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2697 				/*
2698 				 * If the MC does not support this
2699 				 * command, that is legal.  We just
2700 				 * assume it has one IPMB at channel
2701 				 * zero.
2702 				 */
2703 				intf->channels[0].medium
2704 					= IPMI_CHANNEL_MEDIUM_IPMB;
2705 				intf->channels[0].protocol
2706 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2707 
2708 				intf->curr_channel = IPMI_MAX_CHANNELS;
2709 				wake_up(&intf->waitq);
2710 				goto out;
2711 			}
2712 			goto next_channel;
2713 		}
2714 		if (msg->msg.data_len < 4) {
2715 			/* Message not big enough, just go on. */
2716 			goto next_channel;
2717 		}
2718 		chan = intf->curr_channel;
2719 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2720 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2721 
2722  next_channel:
2723 		intf->curr_channel++;
2724 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2725 			wake_up(&intf->waitq);
2726 		else
2727 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2728 
2729 		if (rv) {
2730 			/* Got an error somehow, just give up. */
2731 			printk(KERN_WARNING PFX
2732 			       "Error sending channel information for channel"
2733 			       " %d: %d\n", intf->curr_channel, rv);
2734 
2735 			intf->curr_channel = IPMI_MAX_CHANNELS;
2736 			wake_up(&intf->waitq);
2737 		}
2738 	}
2739  out:
2740 	return;
2741 }
2742 
2743 static void ipmi_poll(ipmi_smi_t intf)
2744 {
2745 	if (intf->handlers->poll)
2746 		intf->handlers->poll(intf->send_info);
2747 	/* In case something came in */
2748 	handle_new_recv_msgs(intf);
2749 }
2750 
2751 void ipmi_poll_interface(ipmi_user_t user)
2752 {
2753 	ipmi_poll(user->intf);
2754 }
2755 EXPORT_SYMBOL(ipmi_poll_interface);
2756 
2757 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2758 		      void		       *send_info,
2759 		      struct ipmi_device_id    *device_id,
2760 		      struct device            *si_dev,
2761 		      unsigned char            slave_addr)
2762 {
2763 	int              i, j;
2764 	int              rv;
2765 	ipmi_smi_t       intf;
2766 	ipmi_smi_t       tintf;
2767 	struct list_head *link;
2768 
2769 	/*
2770 	 * Make sure the driver is actually initialized, this handles
2771 	 * problems with initialization order.
2772 	 */
2773 	if (!initialized) {
2774 		rv = ipmi_init_msghandler();
2775 		if (rv)
2776 			return rv;
2777 		/*
2778 		 * The init code doesn't return an error if it was turned
2779 		 * off, but it won't initialize.  Check that.
2780 		 */
2781 		if (!initialized)
2782 			return -ENODEV;
2783 	}
2784 
2785 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2786 	if (!intf)
2787 		return -ENOMEM;
2788 
2789 	intf->ipmi_version_major = ipmi_version_major(device_id);
2790 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2791 
2792 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2793 	if (!intf->bmc) {
2794 		kfree(intf);
2795 		return -ENOMEM;
2796 	}
2797 	intf->intf_num = -1; /* Mark it invalid for now. */
2798 	kref_init(&intf->refcount);
2799 	intf->bmc->id = *device_id;
2800 	intf->si_dev = si_dev;
2801 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2802 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2803 		intf->channels[j].lun = 2;
2804 	}
2805 	if (slave_addr != 0)
2806 		intf->channels[0].address = slave_addr;
2807 	INIT_LIST_HEAD(&intf->users);
2808 	intf->handlers = handlers;
2809 	intf->send_info = send_info;
2810 	spin_lock_init(&intf->seq_lock);
2811 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2812 		intf->seq_table[j].inuse = 0;
2813 		intf->seq_table[j].seqid = 0;
2814 	}
2815 	intf->curr_seq = 0;
2816 #ifdef CONFIG_PROC_FS
2817 	mutex_init(&intf->proc_entry_lock);
2818 #endif
2819 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2820 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2821 	tasklet_init(&intf->recv_tasklet,
2822 		     smi_recv_tasklet,
2823 		     (unsigned long) intf);
2824 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2825 	spin_lock_init(&intf->xmit_msgs_lock);
2826 	INIT_LIST_HEAD(&intf->xmit_msgs);
2827 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2828 	spin_lock_init(&intf->events_lock);
2829 	atomic_set(&intf->event_waiters, 0);
2830 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2831 	INIT_LIST_HEAD(&intf->waiting_events);
2832 	intf->waiting_events_count = 0;
2833 	mutex_init(&intf->cmd_rcvrs_mutex);
2834 	spin_lock_init(&intf->maintenance_mode_lock);
2835 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2836 	init_waitqueue_head(&intf->waitq);
2837 	for (i = 0; i < IPMI_NUM_STATS; i++)
2838 		atomic_set(&intf->stats[i], 0);
2839 
2840 	intf->proc_dir = NULL;
2841 
2842 	mutex_lock(&smi_watchers_mutex);
2843 	mutex_lock(&ipmi_interfaces_mutex);
2844 	/* Look for a hole in the numbers. */
2845 	i = 0;
2846 	link = &ipmi_interfaces;
2847 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2848 		if (tintf->intf_num != i) {
2849 			link = &tintf->link;
2850 			break;
2851 		}
2852 		i++;
2853 	}
2854 	/* Add the new interface in numeric order. */
2855 	if (i == 0)
2856 		list_add_rcu(&intf->link, &ipmi_interfaces);
2857 	else
2858 		list_add_tail_rcu(&intf->link, link);
2859 
2860 	rv = handlers->start_processing(send_info, intf);
2861 	if (rv)
2862 		goto out;
2863 
2864 	get_guid(intf);
2865 
2866 	if ((intf->ipmi_version_major > 1)
2867 			|| ((intf->ipmi_version_major == 1)
2868 			    && (intf->ipmi_version_minor >= 5))) {
2869 		/*
2870 		 * Start scanning the channels to see what is
2871 		 * available.
2872 		 */
2873 		intf->null_user_handler = channel_handler;
2874 		intf->curr_channel = 0;
2875 		rv = send_channel_info_cmd(intf, 0);
2876 		if (rv) {
2877 			printk(KERN_WARNING PFX
2878 			       "Error sending channel information for channel"
2879 			       " 0, %d\n", rv);
2880 			goto out;
2881 		}
2882 
2883 		/* Wait for the channel info to be read. */
2884 		wait_event(intf->waitq,
2885 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2886 		intf->null_user_handler = NULL;
2887 	} else {
2888 		/* Assume a single IPMB channel at zero. */
2889 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2890 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2891 		intf->curr_channel = IPMI_MAX_CHANNELS;
2892 	}
2893 
2894 	if (rv == 0)
2895 		rv = add_proc_entries(intf, i);
2896 
2897 	rv = ipmi_bmc_register(intf, i);
2898 
2899  out:
2900 	if (rv) {
2901 		if (intf->proc_dir)
2902 			remove_proc_entries(intf);
2903 		intf->handlers = NULL;
2904 		list_del_rcu(&intf->link);
2905 		mutex_unlock(&ipmi_interfaces_mutex);
2906 		mutex_unlock(&smi_watchers_mutex);
2907 		synchronize_rcu();
2908 		kref_put(&intf->refcount, intf_free);
2909 	} else {
2910 		/*
2911 		 * Keep memory order straight for RCU readers.  Make
2912 		 * sure everything else is committed to memory before
2913 		 * setting intf_num to mark the interface valid.
2914 		 */
2915 		smp_wmb();
2916 		intf->intf_num = i;
2917 		mutex_unlock(&ipmi_interfaces_mutex);
2918 		/* After this point the interface is legal to use. */
2919 		call_smi_watchers(i, intf->si_dev);
2920 		mutex_unlock(&smi_watchers_mutex);
2921 	}
2922 
2923 	return rv;
2924 }
2925 EXPORT_SYMBOL(ipmi_register_smi);
2926 
2927 static void deliver_smi_err_response(ipmi_smi_t intf,
2928 				     struct ipmi_smi_msg *msg,
2929 				     unsigned char err)
2930 {
2931 	msg->rsp[0] = msg->data[0] | 4;
2932 	msg->rsp[1] = msg->data[1];
2933 	msg->rsp[2] = err;
2934 	msg->rsp_size = 3;
2935 	/* It's an error, so it will never requeue, no need to check return. */
2936 	handle_one_recv_msg(intf, msg);
2937 }
2938 
2939 static void cleanup_smi_msgs(ipmi_smi_t intf)
2940 {
2941 	int              i;
2942 	struct seq_table *ent;
2943 	struct ipmi_smi_msg *msg;
2944 	struct list_head *entry;
2945 	struct list_head tmplist;
2946 
2947 	/* Clear out our transmit queues and hold the messages. */
2948 	INIT_LIST_HEAD(&tmplist);
2949 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2950 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2951 
2952 	/* Current message first, to preserve order */
2953 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2954 		/* Wait for the message to clear out. */
2955 		schedule_timeout(1);
2956 	}
2957 
2958 	/* No need for locks, the interface is down. */
2959 
2960 	/*
2961 	 * Return errors for all pending messages in queue and in the
2962 	 * tables waiting for remote responses.
2963 	 */
2964 	while (!list_empty(&tmplist)) {
2965 		entry = tmplist.next;
2966 		list_del(entry);
2967 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2968 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2969 	}
2970 
2971 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2972 		ent = &(intf->seq_table[i]);
2973 		if (!ent->inuse)
2974 			continue;
2975 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2976 	}
2977 }
2978 
2979 int ipmi_unregister_smi(ipmi_smi_t intf)
2980 {
2981 	struct ipmi_smi_watcher *w;
2982 	int intf_num = intf->intf_num;
2983 	ipmi_user_t user;
2984 
2985 	ipmi_bmc_unregister(intf);
2986 
2987 	mutex_lock(&smi_watchers_mutex);
2988 	mutex_lock(&ipmi_interfaces_mutex);
2989 	intf->intf_num = -1;
2990 	intf->in_shutdown = true;
2991 	list_del_rcu(&intf->link);
2992 	mutex_unlock(&ipmi_interfaces_mutex);
2993 	synchronize_rcu();
2994 
2995 	cleanup_smi_msgs(intf);
2996 
2997 	/* Clean up the effects of users on the lower-level software. */
2998 	mutex_lock(&ipmi_interfaces_mutex);
2999 	rcu_read_lock();
3000 	list_for_each_entry_rcu(user, &intf->users, link) {
3001 		module_put(intf->handlers->owner);
3002 		if (intf->handlers->dec_usecount)
3003 			intf->handlers->dec_usecount(intf->send_info);
3004 	}
3005 	rcu_read_unlock();
3006 	intf->handlers = NULL;
3007 	mutex_unlock(&ipmi_interfaces_mutex);
3008 
3009 	remove_proc_entries(intf);
3010 
3011 	/*
3012 	 * Call all the watcher interfaces to tell them that
3013 	 * an interface is gone.
3014 	 */
3015 	list_for_each_entry(w, &smi_watchers, link)
3016 		w->smi_gone(intf_num);
3017 	mutex_unlock(&smi_watchers_mutex);
3018 
3019 	kref_put(&intf->refcount, intf_free);
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023 
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3025 				   struct ipmi_smi_msg *msg)
3026 {
3027 	struct ipmi_ipmb_addr ipmb_addr;
3028 	struct ipmi_recv_msg  *recv_msg;
3029 
3030 	/*
3031 	 * This is 11, not 10, because the response must contain a
3032 	 * completion code.
3033 	 */
3034 	if (msg->rsp_size < 11) {
3035 		/* Message not big enough, just ignore it. */
3036 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3037 		return 0;
3038 	}
3039 
3040 	if (msg->rsp[2] != 0) {
3041 		/* An error getting the response, just ignore it. */
3042 		return 0;
3043 	}
3044 
3045 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046 	ipmb_addr.slave_addr = msg->rsp[6];
3047 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048 	ipmb_addr.lun = msg->rsp[7] & 3;
3049 
3050 	/*
3051 	 * It's a response from a remote entity.  Look up the sequence
3052 	 * number and handle the response.
3053 	 */
3054 	if (intf_find_seq(intf,
3055 			  msg->rsp[7] >> 2,
3056 			  msg->rsp[3] & 0x0f,
3057 			  msg->rsp[8],
3058 			  (msg->rsp[4] >> 2) & (~1),
3059 			  (struct ipmi_addr *) &(ipmb_addr),
3060 			  &recv_msg)) {
3061 		/*
3062 		 * We were unable to find the sequence number,
3063 		 * so just nuke the message.
3064 		 */
3065 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066 		return 0;
3067 	}
3068 
3069 	memcpy(recv_msg->msg_data,
3070 	       &(msg->rsp[9]),
3071 	       msg->rsp_size - 9);
3072 	/*
3073 	 * The other fields matched, so no need to set them, except
3074 	 * for netfn, which needs to be the response that was
3075 	 * returned, not the request value.
3076 	 */
3077 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078 	recv_msg->msg.data = recv_msg->msg_data;
3079 	recv_msg->msg.data_len = msg->rsp_size - 10;
3080 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081 	ipmi_inc_stat(intf, handled_ipmb_responses);
3082 	deliver_response(recv_msg);
3083 
3084 	return 0;
3085 }
3086 
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3088 				   struct ipmi_smi_msg *msg)
3089 {
3090 	struct cmd_rcvr          *rcvr;
3091 	int                      rv = 0;
3092 	unsigned char            netfn;
3093 	unsigned char            cmd;
3094 	unsigned char            chan;
3095 	ipmi_user_t              user = NULL;
3096 	struct ipmi_ipmb_addr    *ipmb_addr;
3097 	struct ipmi_recv_msg     *recv_msg;
3098 
3099 	if (msg->rsp_size < 10) {
3100 		/* Message not big enough, just ignore it. */
3101 		ipmi_inc_stat(intf, invalid_commands);
3102 		return 0;
3103 	}
3104 
3105 	if (msg->rsp[2] != 0) {
3106 		/* An error getting the response, just ignore it. */
3107 		return 0;
3108 	}
3109 
3110 	netfn = msg->rsp[4] >> 2;
3111 	cmd = msg->rsp[8];
3112 	chan = msg->rsp[3] & 0xf;
3113 
3114 	rcu_read_lock();
3115 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116 	if (rcvr) {
3117 		user = rcvr->user;
3118 		kref_get(&user->refcount);
3119 	} else
3120 		user = NULL;
3121 	rcu_read_unlock();
3122 
3123 	if (user == NULL) {
3124 		/* We didn't find a user, deliver an error response. */
3125 		ipmi_inc_stat(intf, unhandled_commands);
3126 
3127 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128 		msg->data[1] = IPMI_SEND_MSG_CMD;
3129 		msg->data[2] = msg->rsp[3];
3130 		msg->data[3] = msg->rsp[6];
3131 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134 		/* rqseq/lun */
3135 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136 		msg->data[8] = msg->rsp[8]; /* cmd */
3137 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139 		msg->data_size = 11;
3140 
3141 #ifdef DEBUG_MSGING
3142 	{
3143 		int m;
3144 		printk("Invalid command:");
3145 		for (m = 0; m < msg->data_size; m++)
3146 			printk(" %2.2x", msg->data[m]);
3147 		printk("\n");
3148 	}
3149 #endif
3150 		rcu_read_lock();
3151 		if (!intf->in_shutdown) {
3152 			smi_send(intf, intf->handlers, msg, 0);
3153 			/*
3154 			 * We used the message, so return the value
3155 			 * that causes it to not be freed or
3156 			 * queued.
3157 			 */
3158 			rv = -1;
3159 		}
3160 		rcu_read_unlock();
3161 	} else {
3162 		/* Deliver the message to the user. */
3163 		ipmi_inc_stat(intf, handled_commands);
3164 
3165 		recv_msg = ipmi_alloc_recv_msg();
3166 		if (!recv_msg) {
3167 			/*
3168 			 * We couldn't allocate memory for the
3169 			 * message, so requeue it for handling
3170 			 * later.
3171 			 */
3172 			rv = 1;
3173 			kref_put(&user->refcount, free_user);
3174 		} else {
3175 			/* Extract the source address from the data. */
3176 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178 			ipmb_addr->slave_addr = msg->rsp[6];
3179 			ipmb_addr->lun = msg->rsp[7] & 3;
3180 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3181 
3182 			/*
3183 			 * Extract the rest of the message information
3184 			 * from the IPMB header.
3185 			 */
3186 			recv_msg->user = user;
3187 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188 			recv_msg->msgid = msg->rsp[7] >> 2;
3189 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190 			recv_msg->msg.cmd = msg->rsp[8];
3191 			recv_msg->msg.data = recv_msg->msg_data;
3192 
3193 			/*
3194 			 * We chop off 10, not 9 bytes because the checksum
3195 			 * at the end also needs to be removed.
3196 			 */
3197 			recv_msg->msg.data_len = msg->rsp_size - 10;
3198 			memcpy(recv_msg->msg_data,
3199 			       &(msg->rsp[9]),
3200 			       msg->rsp_size - 10);
3201 			deliver_response(recv_msg);
3202 		}
3203 	}
3204 
3205 	return rv;
3206 }
3207 
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3209 				  struct ipmi_smi_msg *msg)
3210 {
3211 	struct ipmi_lan_addr  lan_addr;
3212 	struct ipmi_recv_msg  *recv_msg;
3213 
3214 
3215 	/*
3216 	 * This is 13, not 12, because the response must contain a
3217 	 * completion code.
3218 	 */
3219 	if (msg->rsp_size < 13) {
3220 		/* Message not big enough, just ignore it. */
3221 		ipmi_inc_stat(intf, invalid_lan_responses);
3222 		return 0;
3223 	}
3224 
3225 	if (msg->rsp[2] != 0) {
3226 		/* An error getting the response, just ignore it. */
3227 		return 0;
3228 	}
3229 
3230 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231 	lan_addr.session_handle = msg->rsp[4];
3232 	lan_addr.remote_SWID = msg->rsp[8];
3233 	lan_addr.local_SWID = msg->rsp[5];
3234 	lan_addr.channel = msg->rsp[3] & 0x0f;
3235 	lan_addr.privilege = msg->rsp[3] >> 4;
3236 	lan_addr.lun = msg->rsp[9] & 3;
3237 
3238 	/*
3239 	 * It's a response from a remote entity.  Look up the sequence
3240 	 * number and handle the response.
3241 	 */
3242 	if (intf_find_seq(intf,
3243 			  msg->rsp[9] >> 2,
3244 			  msg->rsp[3] & 0x0f,
3245 			  msg->rsp[10],
3246 			  (msg->rsp[6] >> 2) & (~1),
3247 			  (struct ipmi_addr *) &(lan_addr),
3248 			  &recv_msg)) {
3249 		/*
3250 		 * We were unable to find the sequence number,
3251 		 * so just nuke the message.
3252 		 */
3253 		ipmi_inc_stat(intf, unhandled_lan_responses);
3254 		return 0;
3255 	}
3256 
3257 	memcpy(recv_msg->msg_data,
3258 	       &(msg->rsp[11]),
3259 	       msg->rsp_size - 11);
3260 	/*
3261 	 * The other fields matched, so no need to set them, except
3262 	 * for netfn, which needs to be the response that was
3263 	 * returned, not the request value.
3264 	 */
3265 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266 	recv_msg->msg.data = recv_msg->msg_data;
3267 	recv_msg->msg.data_len = msg->rsp_size - 12;
3268 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269 	ipmi_inc_stat(intf, handled_lan_responses);
3270 	deliver_response(recv_msg);
3271 
3272 	return 0;
3273 }
3274 
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3276 				  struct ipmi_smi_msg *msg)
3277 {
3278 	struct cmd_rcvr          *rcvr;
3279 	int                      rv = 0;
3280 	unsigned char            netfn;
3281 	unsigned char            cmd;
3282 	unsigned char            chan;
3283 	ipmi_user_t              user = NULL;
3284 	struct ipmi_lan_addr     *lan_addr;
3285 	struct ipmi_recv_msg     *recv_msg;
3286 
3287 	if (msg->rsp_size < 12) {
3288 		/* Message not big enough, just ignore it. */
3289 		ipmi_inc_stat(intf, invalid_commands);
3290 		return 0;
3291 	}
3292 
3293 	if (msg->rsp[2] != 0) {
3294 		/* An error getting the response, just ignore it. */
3295 		return 0;
3296 	}
3297 
3298 	netfn = msg->rsp[6] >> 2;
3299 	cmd = msg->rsp[10];
3300 	chan = msg->rsp[3] & 0xf;
3301 
3302 	rcu_read_lock();
3303 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304 	if (rcvr) {
3305 		user = rcvr->user;
3306 		kref_get(&user->refcount);
3307 	} else
3308 		user = NULL;
3309 	rcu_read_unlock();
3310 
3311 	if (user == NULL) {
3312 		/* We didn't find a user, just give up. */
3313 		ipmi_inc_stat(intf, unhandled_commands);
3314 
3315 		/*
3316 		 * Don't do anything with these messages, just allow
3317 		 * them to be freed.
3318 		 */
3319 		rv = 0;
3320 	} else {
3321 		/* Deliver the message to the user. */
3322 		ipmi_inc_stat(intf, handled_commands);
3323 
3324 		recv_msg = ipmi_alloc_recv_msg();
3325 		if (!recv_msg) {
3326 			/*
3327 			 * We couldn't allocate memory for the
3328 			 * message, so requeue it for handling later.
3329 			 */
3330 			rv = 1;
3331 			kref_put(&user->refcount, free_user);
3332 		} else {
3333 			/* Extract the source address from the data. */
3334 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336 			lan_addr->session_handle = msg->rsp[4];
3337 			lan_addr->remote_SWID = msg->rsp[8];
3338 			lan_addr->local_SWID = msg->rsp[5];
3339 			lan_addr->lun = msg->rsp[9] & 3;
3340 			lan_addr->channel = msg->rsp[3] & 0xf;
3341 			lan_addr->privilege = msg->rsp[3] >> 4;
3342 
3343 			/*
3344 			 * Extract the rest of the message information
3345 			 * from the IPMB header.
3346 			 */
3347 			recv_msg->user = user;
3348 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349 			recv_msg->msgid = msg->rsp[9] >> 2;
3350 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351 			recv_msg->msg.cmd = msg->rsp[10];
3352 			recv_msg->msg.data = recv_msg->msg_data;
3353 
3354 			/*
3355 			 * We chop off 12, not 11 bytes because the checksum
3356 			 * at the end also needs to be removed.
3357 			 */
3358 			recv_msg->msg.data_len = msg->rsp_size - 12;
3359 			memcpy(recv_msg->msg_data,
3360 			       &(msg->rsp[11]),
3361 			       msg->rsp_size - 12);
3362 			deliver_response(recv_msg);
3363 		}
3364 	}
3365 
3366 	return rv;
3367 }
3368 
3369 /*
3370  * This routine will handle "Get Message" command responses with
3371  * channels that use an OEM Medium. The message format belongs to
3372  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3373  * Chapter 22, sections 22.6 and 22.24 for more details.
3374  */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3376 				  struct ipmi_smi_msg *msg)
3377 {
3378 	struct cmd_rcvr       *rcvr;
3379 	int                   rv = 0;
3380 	unsigned char         netfn;
3381 	unsigned char         cmd;
3382 	unsigned char         chan;
3383 	ipmi_user_t           user = NULL;
3384 	struct ipmi_system_interface_addr *smi_addr;
3385 	struct ipmi_recv_msg  *recv_msg;
3386 
3387 	/*
3388 	 * We expect the OEM SW to perform error checking
3389 	 * so we just do some basic sanity checks
3390 	 */
3391 	if (msg->rsp_size < 4) {
3392 		/* Message not big enough, just ignore it. */
3393 		ipmi_inc_stat(intf, invalid_commands);
3394 		return 0;
3395 	}
3396 
3397 	if (msg->rsp[2] != 0) {
3398 		/* An error getting the response, just ignore it. */
3399 		return 0;
3400 	}
3401 
3402 	/*
3403 	 * This is an OEM Message so the OEM needs to know how
3404 	 * handle the message. We do no interpretation.
3405 	 */
3406 	netfn = msg->rsp[0] >> 2;
3407 	cmd = msg->rsp[1];
3408 	chan = msg->rsp[3] & 0xf;
3409 
3410 	rcu_read_lock();
3411 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412 	if (rcvr) {
3413 		user = rcvr->user;
3414 		kref_get(&user->refcount);
3415 	} else
3416 		user = NULL;
3417 	rcu_read_unlock();
3418 
3419 	if (user == NULL) {
3420 		/* We didn't find a user, just give up. */
3421 		ipmi_inc_stat(intf, unhandled_commands);
3422 
3423 		/*
3424 		 * Don't do anything with these messages, just allow
3425 		 * them to be freed.
3426 		 */
3427 
3428 		rv = 0;
3429 	} else {
3430 		/* Deliver the message to the user. */
3431 		ipmi_inc_stat(intf, handled_commands);
3432 
3433 		recv_msg = ipmi_alloc_recv_msg();
3434 		if (!recv_msg) {
3435 			/*
3436 			 * We couldn't allocate memory for the
3437 			 * message, so requeue it for handling
3438 			 * later.
3439 			 */
3440 			rv = 1;
3441 			kref_put(&user->refcount, free_user);
3442 		} else {
3443 			/*
3444 			 * OEM Messages are expected to be delivered via
3445 			 * the system interface to SMS software.  We might
3446 			 * need to visit this again depending on OEM
3447 			 * requirements
3448 			 */
3449 			smi_addr = ((struct ipmi_system_interface_addr *)
3450 				    &(recv_msg->addr));
3451 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452 			smi_addr->channel = IPMI_BMC_CHANNEL;
3453 			smi_addr->lun = msg->rsp[0] & 3;
3454 
3455 			recv_msg->user = user;
3456 			recv_msg->user_msg_data = NULL;
3457 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459 			recv_msg->msg.cmd = msg->rsp[1];
3460 			recv_msg->msg.data = recv_msg->msg_data;
3461 
3462 			/*
3463 			 * The message starts at byte 4 which follows the
3464 			 * the Channel Byte in the "GET MESSAGE" command
3465 			 */
3466 			recv_msg->msg.data_len = msg->rsp_size - 4;
3467 			memcpy(recv_msg->msg_data,
3468 			       &(msg->rsp[4]),
3469 			       msg->rsp_size - 4);
3470 			deliver_response(recv_msg);
3471 		}
3472 	}
3473 
3474 	return rv;
3475 }
3476 
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478 				     struct ipmi_smi_msg  *msg)
3479 {
3480 	struct ipmi_system_interface_addr *smi_addr;
3481 
3482 	recv_msg->msgid = 0;
3483 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485 	smi_addr->channel = IPMI_BMC_CHANNEL;
3486 	smi_addr->lun = msg->rsp[0] & 3;
3487 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489 	recv_msg->msg.cmd = msg->rsp[1];
3490 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491 	recv_msg->msg.data = recv_msg->msg_data;
3492 	recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494 
3495 static int handle_read_event_rsp(ipmi_smi_t          intf,
3496 				 struct ipmi_smi_msg *msg)
3497 {
3498 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499 	struct list_head     msgs;
3500 	ipmi_user_t          user;
3501 	int                  rv = 0;
3502 	int                  deliver_count = 0;
3503 	unsigned long        flags;
3504 
3505 	if (msg->rsp_size < 19) {
3506 		/* Message is too small to be an IPMB event. */
3507 		ipmi_inc_stat(intf, invalid_events);
3508 		return 0;
3509 	}
3510 
3511 	if (msg->rsp[2] != 0) {
3512 		/* An error getting the event, just ignore it. */
3513 		return 0;
3514 	}
3515 
3516 	INIT_LIST_HEAD(&msgs);
3517 
3518 	spin_lock_irqsave(&intf->events_lock, flags);
3519 
3520 	ipmi_inc_stat(intf, events);
3521 
3522 	/*
3523 	 * Allocate and fill in one message for every user that is
3524 	 * getting events.
3525 	 */
3526 	rcu_read_lock();
3527 	list_for_each_entry_rcu(user, &intf->users, link) {
3528 		if (!user->gets_events)
3529 			continue;
3530 
3531 		recv_msg = ipmi_alloc_recv_msg();
3532 		if (!recv_msg) {
3533 			rcu_read_unlock();
3534 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535 						 link) {
3536 				list_del(&recv_msg->link);
3537 				ipmi_free_recv_msg(recv_msg);
3538 			}
3539 			/*
3540 			 * We couldn't allocate memory for the
3541 			 * message, so requeue it for handling
3542 			 * later.
3543 			 */
3544 			rv = 1;
3545 			goto out;
3546 		}
3547 
3548 		deliver_count++;
3549 
3550 		copy_event_into_recv_msg(recv_msg, msg);
3551 		recv_msg->user = user;
3552 		kref_get(&user->refcount);
3553 		list_add_tail(&(recv_msg->link), &msgs);
3554 	}
3555 	rcu_read_unlock();
3556 
3557 	if (deliver_count) {
3558 		/* Now deliver all the messages. */
3559 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560 			list_del(&recv_msg->link);
3561 			deliver_response(recv_msg);
3562 		}
3563 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564 		/*
3565 		 * No one to receive the message, put it in queue if there's
3566 		 * not already too many things in the queue.
3567 		 */
3568 		recv_msg = ipmi_alloc_recv_msg();
3569 		if (!recv_msg) {
3570 			/*
3571 			 * We couldn't allocate memory for the
3572 			 * message, so requeue it for handling
3573 			 * later.
3574 			 */
3575 			rv = 1;
3576 			goto out;
3577 		}
3578 
3579 		copy_event_into_recv_msg(recv_msg, msg);
3580 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581 		intf->waiting_events_count++;
3582 	} else if (!intf->event_msg_printed) {
3583 		/*
3584 		 * There's too many things in the queue, discard this
3585 		 * message.
3586 		 */
3587 		printk(KERN_WARNING PFX "Event queue full, discarding"
3588 		       " incoming events\n");
3589 		intf->event_msg_printed = 1;
3590 	}
3591 
3592  out:
3593 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3594 
3595 	return rv;
3596 }
3597 
3598 static int handle_bmc_rsp(ipmi_smi_t          intf,
3599 			  struct ipmi_smi_msg *msg)
3600 {
3601 	struct ipmi_recv_msg *recv_msg;
3602 	struct ipmi_user     *user;
3603 
3604 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605 	if (recv_msg == NULL) {
3606 		printk(KERN_WARNING
3607 		       "IPMI message received with no owner. This\n"
3608 		       "could be because of a malformed message, or\n"
3609 		       "because of a hardware error.  Contact your\n"
3610 		       "hardware vender for assistance\n");
3611 		return 0;
3612 	}
3613 
3614 	user = recv_msg->user;
3615 	/* Make sure the user still exists. */
3616 	if (user && !user->valid) {
3617 		/* The user for the message went away, so give up. */
3618 		ipmi_inc_stat(intf, unhandled_local_responses);
3619 		ipmi_free_recv_msg(recv_msg);
3620 	} else {
3621 		struct ipmi_system_interface_addr *smi_addr;
3622 
3623 		ipmi_inc_stat(intf, handled_local_responses);
3624 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625 		recv_msg->msgid = msg->msgid;
3626 		smi_addr = ((struct ipmi_system_interface_addr *)
3627 			    &(recv_msg->addr));
3628 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629 		smi_addr->channel = IPMI_BMC_CHANNEL;
3630 		smi_addr->lun = msg->rsp[0] & 3;
3631 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632 		recv_msg->msg.cmd = msg->rsp[1];
3633 		memcpy(recv_msg->msg_data,
3634 		       &(msg->rsp[2]),
3635 		       msg->rsp_size - 2);
3636 		recv_msg->msg.data = recv_msg->msg_data;
3637 		recv_msg->msg.data_len = msg->rsp_size - 2;
3638 		deliver_response(recv_msg);
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 /*
3645  * Handle a received message.  Return 1 if the message should be requeued,
3646  * 0 if the message should be freed, or -1 if the message should not
3647  * be freed or requeued.
3648  */
3649 static int handle_one_recv_msg(ipmi_smi_t          intf,
3650 			       struct ipmi_smi_msg *msg)
3651 {
3652 	int requeue;
3653 	int chan;
3654 
3655 #ifdef DEBUG_MSGING
3656 	int m;
3657 	printk("Recv:");
3658 	for (m = 0; m < msg->rsp_size; m++)
3659 		printk(" %2.2x", msg->rsp[m]);
3660 	printk("\n");
3661 #endif
3662 	if (msg->rsp_size < 2) {
3663 		/* Message is too small to be correct. */
3664 		printk(KERN_WARNING PFX "BMC returned to small a message"
3665 		       " for netfn %x cmd %x, got %d bytes\n",
3666 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667 
3668 		/* Generate an error response for the message. */
3669 		msg->rsp[0] = msg->data[0] | (1 << 2);
3670 		msg->rsp[1] = msg->data[1];
3671 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672 		msg->rsp_size = 3;
3673 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674 		   || (msg->rsp[1] != msg->data[1])) {
3675 		/*
3676 		 * The NetFN and Command in the response is not even
3677 		 * marginally correct.
3678 		 */
3679 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 		       (msg->data[0] >> 2) | 1, msg->data[1],
3682 		       msg->rsp[0] >> 2, msg->rsp[1]);
3683 
3684 		/* Generate an error response for the message. */
3685 		msg->rsp[0] = msg->data[0] | (1 << 2);
3686 		msg->rsp[1] = msg->data[1];
3687 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688 		msg->rsp_size = 3;
3689 	}
3690 
3691 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693 	    && (msg->user_data != NULL)) {
3694 		/*
3695 		 * It's a response to a response we sent.  For this we
3696 		 * deliver a send message response to the user.
3697 		 */
3698 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3699 
3700 		requeue = 0;
3701 		if (msg->rsp_size < 2)
3702 			/* Message is too small to be correct. */
3703 			goto out;
3704 
3705 		chan = msg->data[2] & 0x0f;
3706 		if (chan >= IPMI_MAX_CHANNELS)
3707 			/* Invalid channel number */
3708 			goto out;
3709 
3710 		if (!recv_msg)
3711 			goto out;
3712 
3713 		/* Make sure the user still exists. */
3714 		if (!recv_msg->user || !recv_msg->user->valid)
3715 			goto out;
3716 
3717 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718 		recv_msg->msg.data = recv_msg->msg_data;
3719 		recv_msg->msg.data_len = 1;
3720 		recv_msg->msg_data[0] = msg->rsp[2];
3721 		deliver_response(recv_msg);
3722 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724 		/* It's from the receive queue. */
3725 		chan = msg->rsp[3] & 0xf;
3726 		if (chan >= IPMI_MAX_CHANNELS) {
3727 			/* Invalid channel number */
3728 			requeue = 0;
3729 			goto out;
3730 		}
3731 
3732 		/*
3733 		 * We need to make sure the channels have been initialized.
3734 		 * The channel_handler routine will set the "curr_channel"
3735 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 		 * channels for this interface have been initialized.
3737 		 */
3738 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739 			requeue = 0; /* Throw the message away */
3740 			goto out;
3741 		}
3742 
3743 		switch (intf->channels[chan].medium) {
3744 		case IPMI_CHANNEL_MEDIUM_IPMB:
3745 			if (msg->rsp[4] & 0x04) {
3746 				/*
3747 				 * It's a response, so find the
3748 				 * requesting message and send it up.
3749 				 */
3750 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751 			} else {
3752 				/*
3753 				 * It's a command to the SMS from some other
3754 				 * entity.  Handle that.
3755 				 */
3756 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757 			}
3758 			break;
3759 
3760 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3761 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3762 			if (msg->rsp[6] & 0x04) {
3763 				/*
3764 				 * It's a response, so find the
3765 				 * requesting message and send it up.
3766 				 */
3767 				requeue = handle_lan_get_msg_rsp(intf, msg);
3768 			} else {
3769 				/*
3770 				 * It's a command to the SMS from some other
3771 				 * entity.  Handle that.
3772 				 */
3773 				requeue = handle_lan_get_msg_cmd(intf, msg);
3774 			}
3775 			break;
3776 
3777 		default:
3778 			/* Check for OEM Channels.  Clients had better
3779 			   register for these commands. */
3780 			if ((intf->channels[chan].medium
3781 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782 			    && (intf->channels[chan].medium
3783 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784 				requeue = handle_oem_get_msg_cmd(intf, msg);
3785 			} else {
3786 				/*
3787 				 * We don't handle the channel type, so just
3788 				 * free the message.
3789 				 */
3790 				requeue = 0;
3791 			}
3792 		}
3793 
3794 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796 		/* It's an asynchronous event. */
3797 		requeue = handle_read_event_rsp(intf, msg);
3798 	} else {
3799 		/* It's a response from the local BMC. */
3800 		requeue = handle_bmc_rsp(intf, msg);
3801 	}
3802 
3803  out:
3804 	return requeue;
3805 }
3806 
3807 /*
3808  * If there are messages in the queue or pretimeouts, handle them.
3809  */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812 	struct ipmi_smi_msg  *smi_msg;
3813 	unsigned long        flags = 0;
3814 	int                  rv;
3815 	int                  run_to_completion = intf->run_to_completion;
3816 
3817 	/* See if any waiting messages need to be processed. */
3818 	if (!run_to_completion)
3819 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3821 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822 				     struct ipmi_smi_msg, link);
3823 		list_del(&smi_msg->link);
3824 		if (!run_to_completion)
3825 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3826 					       flags);
3827 		rv = handle_one_recv_msg(intf, smi_msg);
3828 		if (!run_to_completion)
3829 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3830 		if (rv > 0) {
3831 			/*
3832 			 * To preserve message order, quit if we
3833 			 * can't handle a message.  Add the message
3834 			 * back at the head, this is safe because this
3835 			 * tasklet is the only thing that pulls the
3836 			 * messages.
3837 			 */
3838 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
3839 			break;
3840 		} else {
3841 			if (rv == 0)
3842 				/* Message handled */
3843 				ipmi_free_smi_msg(smi_msg);
3844 			/* If rv < 0, fatal error, del but don't free. */
3845 		}
3846 	}
3847 	if (!run_to_completion)
3848 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3849 
3850 	/*
3851 	 * If the pretimout count is non-zero, decrement one from it and
3852 	 * deliver pretimeouts to all the users.
3853 	 */
3854 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3855 		ipmi_user_t user;
3856 
3857 		rcu_read_lock();
3858 		list_for_each_entry_rcu(user, &intf->users, link) {
3859 			if (user->handler->ipmi_watchdog_pretimeout)
3860 				user->handler->ipmi_watchdog_pretimeout(
3861 					user->handler_data);
3862 		}
3863 		rcu_read_unlock();
3864 	}
3865 }
3866 
3867 static void smi_recv_tasklet(unsigned long val)
3868 {
3869 	unsigned long flags = 0; /* keep us warning-free. */
3870 	ipmi_smi_t intf = (ipmi_smi_t) val;
3871 	int run_to_completion = intf->run_to_completion;
3872 	struct ipmi_smi_msg *newmsg = NULL;
3873 
3874 	/*
3875 	 * Start the next message if available.
3876 	 *
3877 	 * Do this here, not in the actual receiver, because we may deadlock
3878 	 * because the lower layer is allowed to hold locks while calling
3879 	 * message delivery.
3880 	 */
3881 	if (!run_to_completion)
3882 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3883 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3884 		struct list_head *entry = NULL;
3885 
3886 		/* Pick the high priority queue first. */
3887 		if (!list_empty(&intf->hp_xmit_msgs))
3888 			entry = intf->hp_xmit_msgs.next;
3889 		else if (!list_empty(&intf->xmit_msgs))
3890 			entry = intf->xmit_msgs.next;
3891 
3892 		if (entry) {
3893 			list_del(entry);
3894 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3895 			intf->curr_msg = newmsg;
3896 		}
3897 	}
3898 	if (!run_to_completion)
3899 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3900 	if (newmsg)
3901 		intf->handlers->sender(intf->send_info, newmsg);
3902 
3903 	handle_new_recv_msgs(intf);
3904 }
3905 
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3908 			   struct ipmi_smi_msg *msg)
3909 {
3910 	unsigned long flags = 0; /* keep us warning-free. */
3911 	int run_to_completion = intf->run_to_completion;
3912 
3913 	if ((msg->data_size >= 2)
3914 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3915 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3916 	    && (msg->user_data == NULL)) {
3917 
3918 		if (intf->in_shutdown)
3919 			goto free_msg;
3920 
3921 		/*
3922 		 * This is the local response to a command send, start
3923 		 * the timer for these.  The user_data will not be
3924 		 * NULL if this is a response send, and we will let
3925 		 * response sends just go through.
3926 		 */
3927 
3928 		/*
3929 		 * Check for errors, if we get certain errors (ones
3930 		 * that mean basically we can try again later), we
3931 		 * ignore them and start the timer.  Otherwise we
3932 		 * report the error immediately.
3933 		 */
3934 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3935 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3936 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3937 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3938 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3939 			int chan = msg->rsp[3] & 0xf;
3940 
3941 			/* Got an error sending the message, handle it. */
3942 			if (chan >= IPMI_MAX_CHANNELS)
3943 				; /* This shouldn't happen */
3944 			else if ((intf->channels[chan].medium
3945 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3946 				 || (intf->channels[chan].medium
3947 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3948 				ipmi_inc_stat(intf, sent_lan_command_errs);
3949 			else
3950 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3951 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3952 		} else
3953 			/* The message was sent, start the timer. */
3954 			intf_start_seq_timer(intf, msg->msgid);
3955 
3956 free_msg:
3957 		ipmi_free_smi_msg(msg);
3958 	} else {
3959 		/*
3960 		 * To preserve message order, we keep a queue and deliver from
3961 		 * a tasklet.
3962 		 */
3963 		if (!run_to_completion)
3964 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3965 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3966 		if (!run_to_completion)
3967 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3968 					       flags);
3969 	}
3970 
3971 	if (!run_to_completion)
3972 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3973 	/*
3974 	 * We can get an asynchronous event or receive message in addition
3975 	 * to commands we send.
3976 	 */
3977 	if (msg == intf->curr_msg)
3978 		intf->curr_msg = NULL;
3979 	if (!run_to_completion)
3980 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3981 
3982 	if (run_to_completion)
3983 		smi_recv_tasklet((unsigned long) intf);
3984 	else
3985 		tasklet_schedule(&intf->recv_tasklet);
3986 }
3987 EXPORT_SYMBOL(ipmi_smi_msg_received);
3988 
3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3990 {
3991 	if (intf->in_shutdown)
3992 		return;
3993 
3994 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3995 	tasklet_schedule(&intf->recv_tasklet);
3996 }
3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3998 
3999 static struct ipmi_smi_msg *
4000 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4001 		  unsigned char seq, long seqid)
4002 {
4003 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4004 	if (!smi_msg)
4005 		/*
4006 		 * If we can't allocate the message, then just return, we
4007 		 * get 4 retries, so this should be ok.
4008 		 */
4009 		return NULL;
4010 
4011 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4012 	smi_msg->data_size = recv_msg->msg.data_len;
4013 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4014 
4015 #ifdef DEBUG_MSGING
4016 	{
4017 		int m;
4018 		printk("Resend: ");
4019 		for (m = 0; m < smi_msg->data_size; m++)
4020 			printk(" %2.2x", smi_msg->data[m]);
4021 		printk("\n");
4022 	}
4023 #endif
4024 	return smi_msg;
4025 }
4026 
4027 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4028 			      struct list_head *timeouts, long timeout_period,
4029 			      int slot, unsigned long *flags,
4030 			      unsigned int *waiting_msgs)
4031 {
4032 	struct ipmi_recv_msg     *msg;
4033 	const struct ipmi_smi_handlers *handlers;
4034 
4035 	if (intf->in_shutdown)
4036 		return;
4037 
4038 	if (!ent->inuse)
4039 		return;
4040 
4041 	ent->timeout -= timeout_period;
4042 	if (ent->timeout > 0) {
4043 		(*waiting_msgs)++;
4044 		return;
4045 	}
4046 
4047 	if (ent->retries_left == 0) {
4048 		/* The message has used all its retries. */
4049 		ent->inuse = 0;
4050 		msg = ent->recv_msg;
4051 		list_add_tail(&msg->link, timeouts);
4052 		if (ent->broadcast)
4053 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4054 		else if (is_lan_addr(&ent->recv_msg->addr))
4055 			ipmi_inc_stat(intf, timed_out_lan_commands);
4056 		else
4057 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4058 	} else {
4059 		struct ipmi_smi_msg *smi_msg;
4060 		/* More retries, send again. */
4061 
4062 		(*waiting_msgs)++;
4063 
4064 		/*
4065 		 * Start with the max timer, set to normal timer after
4066 		 * the message is sent.
4067 		 */
4068 		ent->timeout = MAX_MSG_TIMEOUT;
4069 		ent->retries_left--;
4070 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4071 					    ent->seqid);
4072 		if (!smi_msg) {
4073 			if (is_lan_addr(&ent->recv_msg->addr))
4074 				ipmi_inc_stat(intf,
4075 					      dropped_rexmit_lan_commands);
4076 			else
4077 				ipmi_inc_stat(intf,
4078 					      dropped_rexmit_ipmb_commands);
4079 			return;
4080 		}
4081 
4082 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4083 
4084 		/*
4085 		 * Send the new message.  We send with a zero
4086 		 * priority.  It timed out, I doubt time is that
4087 		 * critical now, and high priority messages are really
4088 		 * only for messages to the local MC, which don't get
4089 		 * resent.
4090 		 */
4091 		handlers = intf->handlers;
4092 		if (handlers) {
4093 			if (is_lan_addr(&ent->recv_msg->addr))
4094 				ipmi_inc_stat(intf,
4095 					      retransmitted_lan_commands);
4096 			else
4097 				ipmi_inc_stat(intf,
4098 					      retransmitted_ipmb_commands);
4099 
4100 			smi_send(intf, handlers, smi_msg, 0);
4101 		} else
4102 			ipmi_free_smi_msg(smi_msg);
4103 
4104 		spin_lock_irqsave(&intf->seq_lock, *flags);
4105 	}
4106 }
4107 
4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4109 {
4110 	struct list_head     timeouts;
4111 	struct ipmi_recv_msg *msg, *msg2;
4112 	unsigned long        flags;
4113 	int                  i;
4114 	unsigned int         waiting_msgs = 0;
4115 
4116 	/*
4117 	 * Go through the seq table and find any messages that
4118 	 * have timed out, putting them in the timeouts
4119 	 * list.
4120 	 */
4121 	INIT_LIST_HEAD(&timeouts);
4122 	spin_lock_irqsave(&intf->seq_lock, flags);
4123 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4124 		check_msg_timeout(intf, &(intf->seq_table[i]),
4125 				  &timeouts, timeout_period, i,
4126 				  &flags, &waiting_msgs);
4127 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4128 
4129 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4130 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4131 
4132 	/*
4133 	 * Maintenance mode handling.  Check the timeout
4134 	 * optimistically before we claim the lock.  It may
4135 	 * mean a timeout gets missed occasionally, but that
4136 	 * only means the timeout gets extended by one period
4137 	 * in that case.  No big deal, and it avoids the lock
4138 	 * most of the time.
4139 	 */
4140 	if (intf->auto_maintenance_timeout > 0) {
4141 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4142 		if (intf->auto_maintenance_timeout > 0) {
4143 			intf->auto_maintenance_timeout
4144 				-= timeout_period;
4145 			if (!intf->maintenance_mode
4146 			    && (intf->auto_maintenance_timeout <= 0)) {
4147 				intf->maintenance_mode_enable = false;
4148 				maintenance_mode_update(intf);
4149 			}
4150 		}
4151 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4152 				       flags);
4153 	}
4154 
4155 	tasklet_schedule(&intf->recv_tasklet);
4156 
4157 	return waiting_msgs;
4158 }
4159 
4160 static void ipmi_request_event(ipmi_smi_t intf)
4161 {
4162 	/* No event requests when in maintenance mode. */
4163 	if (intf->maintenance_mode_enable)
4164 		return;
4165 
4166 	if (!intf->in_shutdown)
4167 		intf->handlers->request_events(intf->send_info);
4168 }
4169 
4170 static struct timer_list ipmi_timer;
4171 
4172 static atomic_t stop_operation;
4173 
4174 static void ipmi_timeout(unsigned long data)
4175 {
4176 	ipmi_smi_t intf;
4177 	int nt = 0;
4178 
4179 	if (atomic_read(&stop_operation))
4180 		return;
4181 
4182 	rcu_read_lock();
4183 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4184 		int lnt = 0;
4185 
4186 		if (atomic_read(&intf->event_waiters)) {
4187 			intf->ticks_to_req_ev--;
4188 			if (intf->ticks_to_req_ev == 0) {
4189 				ipmi_request_event(intf);
4190 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4191 			}
4192 			lnt++;
4193 		}
4194 
4195 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4196 
4197 		lnt = !!lnt;
4198 		if (lnt != intf->last_needs_timer &&
4199 					intf->handlers->set_need_watch)
4200 			intf->handlers->set_need_watch(intf->send_info, lnt);
4201 		intf->last_needs_timer = lnt;
4202 
4203 		nt += lnt;
4204 	}
4205 	rcu_read_unlock();
4206 
4207 	if (nt)
4208 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4209 }
4210 
4211 static void need_waiter(ipmi_smi_t intf)
4212 {
4213 	/* Racy, but worst case we start the timer twice. */
4214 	if (!timer_pending(&ipmi_timer))
4215 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4216 }
4217 
4218 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4219 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4220 
4221 static void free_smi_msg(struct ipmi_smi_msg *msg)
4222 {
4223 	atomic_dec(&smi_msg_inuse_count);
4224 	kfree(msg);
4225 }
4226 
4227 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4228 {
4229 	struct ipmi_smi_msg *rv;
4230 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4231 	if (rv) {
4232 		rv->done = free_smi_msg;
4233 		rv->user_data = NULL;
4234 		atomic_inc(&smi_msg_inuse_count);
4235 	}
4236 	return rv;
4237 }
4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4239 
4240 static void free_recv_msg(struct ipmi_recv_msg *msg)
4241 {
4242 	atomic_dec(&recv_msg_inuse_count);
4243 	kfree(msg);
4244 }
4245 
4246 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4247 {
4248 	struct ipmi_recv_msg *rv;
4249 
4250 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4251 	if (rv) {
4252 		rv->user = NULL;
4253 		rv->done = free_recv_msg;
4254 		atomic_inc(&recv_msg_inuse_count);
4255 	}
4256 	return rv;
4257 }
4258 
4259 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4260 {
4261 	if (msg->user)
4262 		kref_put(&msg->user->refcount, free_user);
4263 	msg->done(msg);
4264 }
4265 EXPORT_SYMBOL(ipmi_free_recv_msg);
4266 
4267 #ifdef CONFIG_IPMI_PANIC_EVENT
4268 
4269 static atomic_t panic_done_count = ATOMIC_INIT(0);
4270 
4271 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4272 {
4273 	atomic_dec(&panic_done_count);
4274 }
4275 
4276 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4277 {
4278 	atomic_dec(&panic_done_count);
4279 }
4280 
4281 /*
4282  * Inside a panic, send a message and wait for a response.
4283  */
4284 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4285 					struct ipmi_addr     *addr,
4286 					struct kernel_ipmi_msg *msg)
4287 {
4288 	struct ipmi_smi_msg  smi_msg;
4289 	struct ipmi_recv_msg recv_msg;
4290 	int rv;
4291 
4292 	smi_msg.done = dummy_smi_done_handler;
4293 	recv_msg.done = dummy_recv_done_handler;
4294 	atomic_add(2, &panic_done_count);
4295 	rv = i_ipmi_request(NULL,
4296 			    intf,
4297 			    addr,
4298 			    0,
4299 			    msg,
4300 			    intf,
4301 			    &smi_msg,
4302 			    &recv_msg,
4303 			    0,
4304 			    intf->channels[0].address,
4305 			    intf->channels[0].lun,
4306 			    0, 1); /* Don't retry, and don't wait. */
4307 	if (rv)
4308 		atomic_sub(2, &panic_done_count);
4309 	else if (intf->handlers->flush_messages)
4310 		intf->handlers->flush_messages(intf->send_info);
4311 
4312 	while (atomic_read(&panic_done_count) != 0)
4313 		ipmi_poll(intf);
4314 }
4315 
4316 #ifdef CONFIG_IPMI_PANIC_STRING
4317 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4318 {
4319 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4320 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4321 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4322 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4323 		/* A get event receiver command, save it. */
4324 		intf->event_receiver = msg->msg.data[1];
4325 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4326 	}
4327 }
4328 
4329 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4330 {
4331 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4332 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4333 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4334 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4335 		/*
4336 		 * A get device id command, save if we are an event
4337 		 * receiver or generator.
4338 		 */
4339 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4340 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4341 	}
4342 }
4343 #endif
4344 
4345 static void send_panic_events(char *str)
4346 {
4347 	struct kernel_ipmi_msg            msg;
4348 	ipmi_smi_t                        intf;
4349 	unsigned char                     data[16];
4350 	struct ipmi_system_interface_addr *si;
4351 	struct ipmi_addr                  addr;
4352 
4353 	si = (struct ipmi_system_interface_addr *) &addr;
4354 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4355 	si->channel = IPMI_BMC_CHANNEL;
4356 	si->lun = 0;
4357 
4358 	/* Fill in an event telling that we have failed. */
4359 	msg.netfn = 0x04; /* Sensor or Event. */
4360 	msg.cmd = 2; /* Platform event command. */
4361 	msg.data = data;
4362 	msg.data_len = 8;
4363 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4364 	data[1] = 0x03; /* This is for IPMI 1.0. */
4365 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4366 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4367 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4368 
4369 	/*
4370 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4371 	 * to make the panic events more useful.
4372 	 */
4373 	if (str) {
4374 		data[3] = str[0];
4375 		data[6] = str[1];
4376 		data[7] = str[2];
4377 	}
4378 
4379 	/* For every registered interface, send the event. */
4380 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4381 		if (!intf->handlers)
4382 			/* Interface is not ready. */
4383 			continue;
4384 
4385 		/* Send the event announcing the panic. */
4386 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4387 	}
4388 
4389 #ifdef CONFIG_IPMI_PANIC_STRING
4390 	/*
4391 	 * On every interface, dump a bunch of OEM event holding the
4392 	 * string.
4393 	 */
4394 	if (!str)
4395 		return;
4396 
4397 	/* For every registered interface, send the event. */
4398 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4399 		char                  *p = str;
4400 		struct ipmi_ipmb_addr *ipmb;
4401 		int                   j;
4402 
4403 		if (intf->intf_num == -1)
4404 			/* Interface was not ready yet. */
4405 			continue;
4406 
4407 		/*
4408 		 * intf_num is used as an marker to tell if the
4409 		 * interface is valid.  Thus we need a read barrier to
4410 		 * make sure data fetched before checking intf_num
4411 		 * won't be used.
4412 		 */
4413 		smp_rmb();
4414 
4415 		/*
4416 		 * First job here is to figure out where to send the
4417 		 * OEM events.  There's no way in IPMI to send OEM
4418 		 * events using an event send command, so we have to
4419 		 * find the SEL to put them in and stick them in
4420 		 * there.
4421 		 */
4422 
4423 		/* Get capabilities from the get device id. */
4424 		intf->local_sel_device = 0;
4425 		intf->local_event_generator = 0;
4426 		intf->event_receiver = 0;
4427 
4428 		/* Request the device info from the local MC. */
4429 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4430 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4431 		msg.data = NULL;
4432 		msg.data_len = 0;
4433 		intf->null_user_handler = device_id_fetcher;
4434 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4435 
4436 		if (intf->local_event_generator) {
4437 			/* Request the event receiver from the local MC. */
4438 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4439 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4440 			msg.data = NULL;
4441 			msg.data_len = 0;
4442 			intf->null_user_handler = event_receiver_fetcher;
4443 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4444 		}
4445 		intf->null_user_handler = NULL;
4446 
4447 		/*
4448 		 * Validate the event receiver.  The low bit must not
4449 		 * be 1 (it must be a valid IPMB address), it cannot
4450 		 * be zero, and it must not be my address.
4451 		 */
4452 		if (((intf->event_receiver & 1) == 0)
4453 		    && (intf->event_receiver != 0)
4454 		    && (intf->event_receiver != intf->channels[0].address)) {
4455 			/*
4456 			 * The event receiver is valid, send an IPMB
4457 			 * message.
4458 			 */
4459 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4460 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4461 			ipmb->channel = 0; /* FIXME - is this right? */
4462 			ipmb->lun = intf->event_receiver_lun;
4463 			ipmb->slave_addr = intf->event_receiver;
4464 		} else if (intf->local_sel_device) {
4465 			/*
4466 			 * The event receiver was not valid (or was
4467 			 * me), but I am an SEL device, just dump it
4468 			 * in my SEL.
4469 			 */
4470 			si = (struct ipmi_system_interface_addr *) &addr;
4471 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4472 			si->channel = IPMI_BMC_CHANNEL;
4473 			si->lun = 0;
4474 		} else
4475 			continue; /* No where to send the event. */
4476 
4477 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4478 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4479 		msg.data = data;
4480 		msg.data_len = 16;
4481 
4482 		j = 0;
4483 		while (*p) {
4484 			int size = strlen(p);
4485 
4486 			if (size > 11)
4487 				size = 11;
4488 			data[0] = 0;
4489 			data[1] = 0;
4490 			data[2] = 0xf0; /* OEM event without timestamp. */
4491 			data[3] = intf->channels[0].address;
4492 			data[4] = j++; /* sequence # */
4493 			/*
4494 			 * Always give 11 bytes, so strncpy will fill
4495 			 * it with zeroes for me.
4496 			 */
4497 			strncpy(data+5, p, 11);
4498 			p += size;
4499 
4500 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4501 		}
4502 	}
4503 #endif /* CONFIG_IPMI_PANIC_STRING */
4504 }
4505 #endif /* CONFIG_IPMI_PANIC_EVENT */
4506 
4507 static int has_panicked;
4508 
4509 static int panic_event(struct notifier_block *this,
4510 		       unsigned long         event,
4511 		       void                  *ptr)
4512 {
4513 	ipmi_smi_t intf;
4514 
4515 	if (has_panicked)
4516 		return NOTIFY_DONE;
4517 	has_panicked = 1;
4518 
4519 	/* For every registered interface, set it to run to completion. */
4520 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4521 		if (!intf->handlers)
4522 			/* Interface is not ready. */
4523 			continue;
4524 
4525 		/*
4526 		 * If we were interrupted while locking xmit_msgs_lock or
4527 		 * waiting_rcv_msgs_lock, the corresponding list may be
4528 		 * corrupted.  In this case, drop items on the list for
4529 		 * the safety.
4530 		 */
4531 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4532 			INIT_LIST_HEAD(&intf->xmit_msgs);
4533 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4534 		} else
4535 			spin_unlock(&intf->xmit_msgs_lock);
4536 
4537 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4538 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4539 		else
4540 			spin_unlock(&intf->waiting_rcv_msgs_lock);
4541 
4542 		intf->run_to_completion = 1;
4543 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4544 	}
4545 
4546 #ifdef CONFIG_IPMI_PANIC_EVENT
4547 	send_panic_events(ptr);
4548 #endif
4549 
4550 	return NOTIFY_DONE;
4551 }
4552 
4553 static struct notifier_block panic_block = {
4554 	.notifier_call	= panic_event,
4555 	.next		= NULL,
4556 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4557 };
4558 
4559 static int ipmi_init_msghandler(void)
4560 {
4561 	int rv;
4562 
4563 	if (initialized)
4564 		return 0;
4565 
4566 	rv = driver_register(&ipmidriver.driver);
4567 	if (rv) {
4568 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4569 		return rv;
4570 	}
4571 
4572 	printk(KERN_INFO "ipmi message handler version "
4573 	       IPMI_DRIVER_VERSION "\n");
4574 
4575 #ifdef CONFIG_PROC_FS
4576 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4577 	if (!proc_ipmi_root) {
4578 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4579 	    driver_unregister(&ipmidriver.driver);
4580 	    return -ENOMEM;
4581 	}
4582 
4583 #endif /* CONFIG_PROC_FS */
4584 
4585 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4586 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4587 
4588 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4589 
4590 	initialized = 1;
4591 
4592 	return 0;
4593 }
4594 
4595 static int __init ipmi_init_msghandler_mod(void)
4596 {
4597 	ipmi_init_msghandler();
4598 	return 0;
4599 }
4600 
4601 static void __exit cleanup_ipmi(void)
4602 {
4603 	int count;
4604 
4605 	if (!initialized)
4606 		return;
4607 
4608 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4609 
4610 	/*
4611 	 * This can't be called if any interfaces exist, so no worry
4612 	 * about shutting down the interfaces.
4613 	 */
4614 
4615 	/*
4616 	 * Tell the timer to stop, then wait for it to stop.  This
4617 	 * avoids problems with race conditions removing the timer
4618 	 * here.
4619 	 */
4620 	atomic_inc(&stop_operation);
4621 	del_timer_sync(&ipmi_timer);
4622 
4623 #ifdef CONFIG_PROC_FS
4624 	proc_remove(proc_ipmi_root);
4625 #endif /* CONFIG_PROC_FS */
4626 
4627 	driver_unregister(&ipmidriver.driver);
4628 
4629 	initialized = 0;
4630 
4631 	/* Check for buffer leaks. */
4632 	count = atomic_read(&smi_msg_inuse_count);
4633 	if (count != 0)
4634 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4635 		       count);
4636 	count = atomic_read(&recv_msg_inuse_count);
4637 	if (count != 0)
4638 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4639 		       count);
4640 }
4641 module_exit(cleanup_ipmi);
4642 
4643 module_init(ipmi_init_msghandler_mod);
4644 MODULE_LICENSE("GPL");
4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4647 		   " interface.");
4648 MODULE_VERSION(IPMI_DRIVER_VERSION);
4649