xref: /linux/drivers/char/ipmi/ipmi_kcs_sm.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_kcs_sm.c
4  *
5  * State machine for handling IPMI KCS interfaces.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 /*
15  * This state machine is taken from the state machine in the IPMI spec,
16  * pretty much verbatim.  If you have questions about the states, see
17  * that document.
18  */
19 
20 #include <linux/kernel.h> /* For printk. */
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/string.h>
24 #include <linux/jiffies.h>
25 #include <linux/ipmi_msgdefs.h>		/* for completion codes */
26 #include "ipmi_si_sm.h"
27 
28 /* kcs_debug is a bit-field
29  *	KCS_DEBUG_ENABLE -	turned on for now
30  *	KCS_DEBUG_MSG    -	commands and their responses
31  *	KCS_DEBUG_STATES -	state machine
32  */
33 #define KCS_DEBUG_STATES	4
34 #define KCS_DEBUG_MSG		2
35 #define	KCS_DEBUG_ENABLE	1
36 
37 static int kcs_debug;
38 module_param(kcs_debug, int, 0644);
39 MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
40 
41 /* The states the KCS driver may be in. */
42 enum kcs_states {
43 	/* The KCS interface is currently doing nothing. */
44 	KCS_IDLE,
45 
46 	/*
47 	 * We are starting an operation.  The data is in the output
48 	 * buffer, but nothing has been done to the interface yet.  This
49 	 * was added to the state machine in the spec to wait for the
50 	 * initial IBF.
51 	 */
52 	KCS_START_OP,
53 
54 	/* We have written a write cmd to the interface. */
55 	KCS_WAIT_WRITE_START,
56 
57 	/* We are writing bytes to the interface. */
58 	KCS_WAIT_WRITE,
59 
60 	/*
61 	 * We have written the write end cmd to the interface, and
62 	 * still need to write the last byte.
63 	 */
64 	KCS_WAIT_WRITE_END,
65 
66 	/* We are waiting to read data from the interface. */
67 	KCS_WAIT_READ,
68 
69 	/*
70 	 * State to transition to the error handler, this was added to
71 	 * the state machine in the spec to be sure IBF was there.
72 	 */
73 	KCS_ERROR0,
74 
75 	/*
76 	 * First stage error handler, wait for the interface to
77 	 * respond.
78 	 */
79 	KCS_ERROR1,
80 
81 	/*
82 	 * The abort cmd has been written, wait for the interface to
83 	 * respond.
84 	 */
85 	KCS_ERROR2,
86 
87 	/*
88 	 * We wrote some data to the interface, wait for it to switch
89 	 * to read mode.
90 	 */
91 	KCS_ERROR3,
92 
93 	/* The hardware failed to follow the state machine. */
94 	KCS_HOSED
95 };
96 
97 #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
98 #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
99 
100 /* Timeouts in microseconds. */
101 #define IBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
102 #define OBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
103 #define MAX_ERROR_RETRIES 10
104 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
105 
106 struct si_sm_data {
107 	enum kcs_states  state;
108 	struct si_sm_io *io;
109 	unsigned char    write_data[MAX_KCS_WRITE_SIZE];
110 	int              write_pos;
111 	int              write_count;
112 	int              orig_write_count;
113 	unsigned char    read_data[MAX_KCS_READ_SIZE];
114 	int              read_pos;
115 	int	         truncated;
116 
117 	unsigned int  error_retries;
118 	long          ibf_timeout;
119 	long          obf_timeout;
120 	unsigned long  error0_timeout;
121 };
122 
123 static unsigned int init_kcs_data(struct si_sm_data *kcs,
124 				  struct si_sm_io *io)
125 {
126 	kcs->state = KCS_IDLE;
127 	kcs->io = io;
128 	kcs->write_pos = 0;
129 	kcs->write_count = 0;
130 	kcs->orig_write_count = 0;
131 	kcs->read_pos = 0;
132 	kcs->error_retries = 0;
133 	kcs->truncated = 0;
134 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
135 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
136 
137 	/* Reserve 2 I/O bytes. */
138 	return 2;
139 }
140 
141 static inline unsigned char read_status(struct si_sm_data *kcs)
142 {
143 	return kcs->io->inputb(kcs->io, 1);
144 }
145 
146 static inline unsigned char read_data(struct si_sm_data *kcs)
147 {
148 	return kcs->io->inputb(kcs->io, 0);
149 }
150 
151 static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
152 {
153 	kcs->io->outputb(kcs->io, 1, data);
154 }
155 
156 static inline void write_data(struct si_sm_data *kcs, unsigned char data)
157 {
158 	kcs->io->outputb(kcs->io, 0, data);
159 }
160 
161 /* Control codes. */
162 #define KCS_GET_STATUS_ABORT	0x60
163 #define KCS_WRITE_START		0x61
164 #define KCS_WRITE_END		0x62
165 #define KCS_READ_BYTE		0x68
166 
167 /* Status bits. */
168 #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
169 #define KCS_IDLE_STATE	0
170 #define KCS_READ_STATE	1
171 #define KCS_WRITE_STATE	2
172 #define KCS_ERROR_STATE	3
173 #define GET_STATUS_ATN(status) ((status) & 0x04)
174 #define GET_STATUS_IBF(status) ((status) & 0x02)
175 #define GET_STATUS_OBF(status) ((status) & 0x01)
176 
177 
178 static inline void write_next_byte(struct si_sm_data *kcs)
179 {
180 	write_data(kcs, kcs->write_data[kcs->write_pos]);
181 	(kcs->write_pos)++;
182 	(kcs->write_count)--;
183 }
184 
185 static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
186 {
187 	(kcs->error_retries)++;
188 	if (kcs->error_retries > MAX_ERROR_RETRIES) {
189 		if (kcs_debug & KCS_DEBUG_ENABLE)
190 			printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n",
191 			       reason);
192 		kcs->state = KCS_HOSED;
193 	} else {
194 		kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
195 		kcs->state = KCS_ERROR0;
196 	}
197 }
198 
199 static inline void read_next_byte(struct si_sm_data *kcs)
200 {
201 	if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
202 		/* Throw the data away and mark it truncated. */
203 		read_data(kcs);
204 		kcs->truncated = 1;
205 	} else {
206 		kcs->read_data[kcs->read_pos] = read_data(kcs);
207 		(kcs->read_pos)++;
208 	}
209 	write_data(kcs, KCS_READ_BYTE);
210 }
211 
212 static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
213 			    long time)
214 {
215 	if (GET_STATUS_IBF(status)) {
216 		kcs->ibf_timeout -= time;
217 		if (kcs->ibf_timeout < 0) {
218 			start_error_recovery(kcs, "IBF not ready in time");
219 			kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
220 			return 1;
221 		}
222 		return 0;
223 	}
224 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
225 	return 1;
226 }
227 
228 static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
229 			    long time)
230 {
231 	if (!GET_STATUS_OBF(status)) {
232 		kcs->obf_timeout -= time;
233 		if (kcs->obf_timeout < 0) {
234 			kcs->obf_timeout = OBF_RETRY_TIMEOUT;
235 			start_error_recovery(kcs, "OBF not ready in time");
236 			return 1;
237 		}
238 		return 0;
239 	}
240 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
241 	return 1;
242 }
243 
244 static void clear_obf(struct si_sm_data *kcs, unsigned char status)
245 {
246 	if (GET_STATUS_OBF(status))
247 		read_data(kcs);
248 }
249 
250 static void restart_kcs_transaction(struct si_sm_data *kcs)
251 {
252 	kcs->write_count = kcs->orig_write_count;
253 	kcs->write_pos = 0;
254 	kcs->read_pos = 0;
255 	kcs->state = KCS_WAIT_WRITE_START;
256 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
257 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
258 	write_cmd(kcs, KCS_WRITE_START);
259 }
260 
261 static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
262 				 unsigned int size)
263 {
264 	unsigned int i;
265 
266 	if (size < 2)
267 		return IPMI_REQ_LEN_INVALID_ERR;
268 	if (size > MAX_KCS_WRITE_SIZE)
269 		return IPMI_REQ_LEN_EXCEEDED_ERR;
270 
271 	if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED))
272 		return IPMI_NOT_IN_MY_STATE_ERR;
273 
274 	if (kcs_debug & KCS_DEBUG_MSG) {
275 		printk(KERN_DEBUG "start_kcs_transaction -");
276 		for (i = 0; i < size; i++)
277 			printk(" %02x", (unsigned char) (data [i]));
278 		printk("\n");
279 	}
280 	kcs->error_retries = 0;
281 	memcpy(kcs->write_data, data, size);
282 	kcs->write_count = size;
283 	kcs->orig_write_count = size;
284 	kcs->write_pos = 0;
285 	kcs->read_pos = 0;
286 	kcs->state = KCS_START_OP;
287 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
288 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
289 	return 0;
290 }
291 
292 static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
293 			  unsigned int length)
294 {
295 	if (length < kcs->read_pos) {
296 		kcs->read_pos = length;
297 		kcs->truncated = 1;
298 	}
299 
300 	memcpy(data, kcs->read_data, kcs->read_pos);
301 
302 	if ((length >= 3) && (kcs->read_pos < 3)) {
303 		/* Guarantee that we return at least 3 bytes, with an
304 		   error in the third byte if it is too short. */
305 		data[2] = IPMI_ERR_UNSPECIFIED;
306 		kcs->read_pos = 3;
307 	}
308 	if (kcs->truncated) {
309 		/*
310 		 * Report a truncated error.  We might overwrite
311 		 * another error, but that's too bad, the user needs
312 		 * to know it was truncated.
313 		 */
314 		data[2] = IPMI_ERR_MSG_TRUNCATED;
315 		kcs->truncated = 0;
316 	}
317 
318 	return kcs->read_pos;
319 }
320 
321 /*
322  * This implements the state machine defined in the IPMI manual, see
323  * that for details on how this works.  Divide that flowchart into
324  * sections delimited by "Wait for IBF" and this will become clear.
325  */
326 static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
327 {
328 	unsigned char status;
329 	unsigned char state;
330 
331 	status = read_status(kcs);
332 
333 	if (kcs_debug & KCS_DEBUG_STATES)
334 		printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status);
335 
336 	/* All states wait for ibf, so just do it here. */
337 	if (!check_ibf(kcs, status, time))
338 		return SI_SM_CALL_WITH_DELAY;
339 
340 	/* Just about everything looks at the KCS state, so grab that, too. */
341 	state = GET_STATUS_STATE(status);
342 
343 	switch (kcs->state) {
344 	case KCS_IDLE:
345 		/* If there's and interrupt source, turn it off. */
346 		clear_obf(kcs, status);
347 
348 		if (GET_STATUS_ATN(status))
349 			return SI_SM_ATTN;
350 		else
351 			return SI_SM_IDLE;
352 
353 	case KCS_START_OP:
354 		if (state != KCS_IDLE_STATE) {
355 			start_error_recovery(kcs,
356 					     "State machine not idle at start");
357 			break;
358 		}
359 
360 		clear_obf(kcs, status);
361 		write_cmd(kcs, KCS_WRITE_START);
362 		kcs->state = KCS_WAIT_WRITE_START;
363 		break;
364 
365 	case KCS_WAIT_WRITE_START:
366 		if (state != KCS_WRITE_STATE) {
367 			start_error_recovery(
368 				kcs,
369 				"Not in write state at write start");
370 			break;
371 		}
372 		read_data(kcs);
373 		if (kcs->write_count == 1) {
374 			write_cmd(kcs, KCS_WRITE_END);
375 			kcs->state = KCS_WAIT_WRITE_END;
376 		} else {
377 			write_next_byte(kcs);
378 			kcs->state = KCS_WAIT_WRITE;
379 		}
380 		break;
381 
382 	case KCS_WAIT_WRITE:
383 		if (state != KCS_WRITE_STATE) {
384 			start_error_recovery(kcs,
385 					     "Not in write state for write");
386 			break;
387 		}
388 		clear_obf(kcs, status);
389 		if (kcs->write_count == 1) {
390 			write_cmd(kcs, KCS_WRITE_END);
391 			kcs->state = KCS_WAIT_WRITE_END;
392 		} else {
393 			write_next_byte(kcs);
394 		}
395 		break;
396 
397 	case KCS_WAIT_WRITE_END:
398 		if (state != KCS_WRITE_STATE) {
399 			start_error_recovery(kcs,
400 					     "Not in write state"
401 					     " for write end");
402 			break;
403 		}
404 		clear_obf(kcs, status);
405 		write_next_byte(kcs);
406 		kcs->state = KCS_WAIT_READ;
407 		break;
408 
409 	case KCS_WAIT_READ:
410 		if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
411 			start_error_recovery(
412 				kcs,
413 				"Not in read or idle in read state");
414 			break;
415 		}
416 
417 		if (state == KCS_READ_STATE) {
418 			if (!check_obf(kcs, status, time))
419 				return SI_SM_CALL_WITH_DELAY;
420 			read_next_byte(kcs);
421 		} else {
422 			/*
423 			 * We don't implement this exactly like the state
424 			 * machine in the spec.  Some broken hardware
425 			 * does not write the final dummy byte to the
426 			 * read register.  Thus obf will never go high
427 			 * here.  We just go straight to idle, and we
428 			 * handle clearing out obf in idle state if it
429 			 * happens to come in.
430 			 */
431 			clear_obf(kcs, status);
432 			kcs->orig_write_count = 0;
433 			kcs->state = KCS_IDLE;
434 			return SI_SM_TRANSACTION_COMPLETE;
435 		}
436 		break;
437 
438 	case KCS_ERROR0:
439 		clear_obf(kcs, status);
440 		status = read_status(kcs);
441 		if (GET_STATUS_OBF(status))
442 			/* controller isn't responding */
443 			if (time_before(jiffies, kcs->error0_timeout))
444 				return SI_SM_CALL_WITH_TICK_DELAY;
445 		write_cmd(kcs, KCS_GET_STATUS_ABORT);
446 		kcs->state = KCS_ERROR1;
447 		break;
448 
449 	case KCS_ERROR1:
450 		clear_obf(kcs, status);
451 		write_data(kcs, 0);
452 		kcs->state = KCS_ERROR2;
453 		break;
454 
455 	case KCS_ERROR2:
456 		if (state != KCS_READ_STATE) {
457 			start_error_recovery(kcs,
458 					     "Not in read state for error2");
459 			break;
460 		}
461 		if (!check_obf(kcs, status, time))
462 			return SI_SM_CALL_WITH_DELAY;
463 
464 		clear_obf(kcs, status);
465 		write_data(kcs, KCS_READ_BYTE);
466 		kcs->state = KCS_ERROR3;
467 		break;
468 
469 	case KCS_ERROR3:
470 		if (state != KCS_IDLE_STATE) {
471 			start_error_recovery(kcs,
472 					     "Not in idle state for error3");
473 			break;
474 		}
475 
476 		if (!check_obf(kcs, status, time))
477 			return SI_SM_CALL_WITH_DELAY;
478 
479 		clear_obf(kcs, status);
480 		if (kcs->orig_write_count) {
481 			restart_kcs_transaction(kcs);
482 		} else {
483 			kcs->state = KCS_IDLE;
484 			return SI_SM_TRANSACTION_COMPLETE;
485 		}
486 		break;
487 
488 	case KCS_HOSED:
489 		break;
490 	}
491 
492 	if (kcs->state == KCS_HOSED) {
493 		init_kcs_data(kcs, kcs->io);
494 		return SI_SM_HOSED;
495 	}
496 
497 	return SI_SM_CALL_WITHOUT_DELAY;
498 }
499 
500 static int kcs_size(void)
501 {
502 	return sizeof(struct si_sm_data);
503 }
504 
505 static int kcs_detect(struct si_sm_data *kcs)
506 {
507 	/*
508 	 * It's impossible for the KCS status register to be all 1's,
509 	 * (assuming a properly functioning, self-initialized BMC)
510 	 * but that's what you get from reading a bogus address, so we
511 	 * test that first.
512 	 */
513 	if (read_status(kcs) == 0xff)
514 		return 1;
515 
516 	return 0;
517 }
518 
519 static void kcs_cleanup(struct si_sm_data *kcs)
520 {
521 }
522 
523 const struct si_sm_handlers kcs_smi_handlers = {
524 	.init_data         = init_kcs_data,
525 	.start_transaction = start_kcs_transaction,
526 	.get_result        = get_kcs_result,
527 	.event             = kcs_event,
528 	.detect            = kcs_detect,
529 	.cleanup           = kcs_cleanup,
530 	.size              = kcs_size,
531 };
532