xref: /linux/drivers/char/hw_random/n2-drv.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2-drv.c: Niagara-2 RNG driver.
3  *
4  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15 
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/property.h>
19 
20 #include <asm/hypervisor.h>
21 
22 #include "n2rng.h"
23 
24 #define DRV_MODULE_NAME		"n2rng"
25 #define PFX DRV_MODULE_NAME	": "
26 #define DRV_MODULE_VERSION	"0.3"
27 #define DRV_MODULE_RELDATE	"Jan 7, 2017"
28 
29 static char version[] =
30 	DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
31 
32 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
33 MODULE_DESCRIPTION("Niagara2 RNG driver");
34 MODULE_LICENSE("GPL");
35 MODULE_VERSION(DRV_MODULE_VERSION);
36 
37 /* The Niagara2 RNG provides a 64-bit read-only random number
38  * register, plus a control register.  Access to the RNG is
39  * virtualized through the hypervisor so that both guests and control
40  * nodes can access the device.
41  *
42  * The entropy source consists of raw entropy sources, each
43  * constructed from a voltage controlled oscillator whose phase is
44  * jittered by thermal noise sources.
45  *
46  * The oscillator in each of the three raw entropy sources run at
47  * different frequencies.  Normally, all three generator outputs are
48  * gathered, xored together, and fed into a CRC circuit, the output of
49  * which is the 64-bit read-only register.
50  *
51  * Some time is necessary for all the necessary entropy to build up
52  * such that a full 64-bits of entropy are available in the register.
53  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
54  * an interlock which blocks register reads until sufficient entropy
55  * is available.
56  *
57  * A control register is provided for adjusting various aspects of RNG
58  * operation, and to enable diagnostic modes.  Each of the three raw
59  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
60  * provided are fields for controlling the minimum time in cycles
61  * between read accesses to the register (RNG_CTL_WAIT, this controls
62  * the interlock described in the previous paragraph).
63  *
64  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
65  * all three entropy sources enabled, and the interlock time set
66  * appropriately.
67  *
68  * The CRC polynomial used by the chip is:
69  *
70  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
71  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
72  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
73  *
74  * The RNG_CTL_VCO value of each noise cell must be programmed
75  * separately.  This is why 4 control register values must be provided
76  * to the hypervisor.  During a write, the hypervisor writes them all,
77  * one at a time, to the actual RNG_CTL register.  The first three
78  * values are used to setup the desired RNG_CTL_VCO for each entropy
79  * source, for example:
80  *
81  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
82  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
83  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
84  *
85  * And then the fourth value sets the final chip state and enables
86  * desired.
87  */
88 
89 static int n2rng_hv_err_trans(unsigned long hv_err)
90 {
91 	switch (hv_err) {
92 	case HV_EOK:
93 		return 0;
94 	case HV_EWOULDBLOCK:
95 		return -EAGAIN;
96 	case HV_ENOACCESS:
97 		return -EPERM;
98 	case HV_EIO:
99 		return -EIO;
100 	case HV_EBUSY:
101 		return -EBUSY;
102 	case HV_EBADALIGN:
103 	case HV_ENORADDR:
104 		return -EFAULT;
105 	default:
106 		return -EINVAL;
107 	}
108 }
109 
110 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
111 						   unsigned long unit)
112 {
113 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
114 	int block = 0, busy = 0;
115 
116 	while (1) {
117 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
118 					       &ticks,
119 					       &watchdog_delta,
120 					       &watchdog_status);
121 		if (hv_err == HV_EOK)
122 			break;
123 
124 		if (hv_err == HV_EBUSY) {
125 			if (++busy >= N2RNG_BUSY_LIMIT)
126 				break;
127 
128 			udelay(1);
129 		} else if (hv_err == HV_EWOULDBLOCK) {
130 			if (++block >= N2RNG_BLOCK_LIMIT)
131 				break;
132 
133 			__delay(ticks);
134 		} else
135 			break;
136 	}
137 
138 	return hv_err;
139 }
140 
141 /* In multi-socket situations, the hypervisor might need to
142  * queue up the RNG control register write if it's for a unit
143  * that is on a cpu socket other than the one we are executing on.
144  *
145  * We poll here waiting for a successful read of that control
146  * register to make sure the write has been actually performed.
147  */
148 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
149 {
150 	unsigned long ra = __pa(&np->scratch_control[0]);
151 
152 	return n2rng_generic_read_control_v2(ra, unit);
153 }
154 
155 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
156 					 unsigned long state,
157 					 unsigned long control_ra,
158 					 unsigned long watchdog_timeout,
159 					 unsigned long *ticks)
160 {
161 	unsigned long hv_err;
162 
163 	if (np->hvapi_major == 1) {
164 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
165 						watchdog_timeout, ticks);
166 	} else {
167 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
168 						watchdog_timeout, unit);
169 		if (hv_err == HV_EOK)
170 			hv_err = n2rng_control_settle_v2(np, unit);
171 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172 	}
173 
174 	return hv_err;
175 }
176 
177 static int n2rng_generic_read_data(unsigned long data_ra)
178 {
179 	unsigned long ticks, hv_err;
180 	int block = 0, hcheck = 0;
181 
182 	while (1) {
183 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
184 		if (hv_err == HV_EOK)
185 			return 0;
186 
187 		if (hv_err == HV_EWOULDBLOCK) {
188 			if (++block >= N2RNG_BLOCK_LIMIT)
189 				return -EWOULDBLOCK;
190 			__delay(ticks);
191 		} else if (hv_err == HV_ENOACCESS) {
192 			return -EPERM;
193 		} else if (hv_err == HV_EIO) {
194 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
195 				return -EIO;
196 			udelay(10000);
197 		} else
198 			return -ENODEV;
199 	}
200 }
201 
202 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
203 					      unsigned long unit,
204 					      unsigned long data_ra,
205 					      unsigned long data_len,
206 					      unsigned long *ticks)
207 {
208 	unsigned long hv_err;
209 
210 	if (np->hvapi_major == 1) {
211 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
212 	} else {
213 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
214 						     unit, ticks);
215 		if (!*ticks)
216 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
217 	}
218 	return hv_err;
219 }
220 
221 static int n2rng_generic_read_diag_data(struct n2rng *np,
222 					unsigned long unit,
223 					unsigned long data_ra,
224 					unsigned long data_len)
225 {
226 	unsigned long ticks, hv_err;
227 	int block = 0;
228 
229 	while (1) {
230 		hv_err = n2rng_read_diag_data_one(np, unit,
231 						  data_ra, data_len,
232 						  &ticks);
233 		if (hv_err == HV_EOK)
234 			return 0;
235 
236 		if (hv_err == HV_EWOULDBLOCK) {
237 			if (++block >= N2RNG_BLOCK_LIMIT)
238 				return -EWOULDBLOCK;
239 			__delay(ticks);
240 		} else if (hv_err == HV_ENOACCESS) {
241 			return -EPERM;
242 		} else if (hv_err == HV_EIO) {
243 			return -EIO;
244 		} else
245 			return -ENODEV;
246 	}
247 }
248 
249 
250 static int n2rng_generic_write_control(struct n2rng *np,
251 				       unsigned long control_ra,
252 				       unsigned long unit,
253 				       unsigned long state)
254 {
255 	unsigned long hv_err, ticks;
256 	int block = 0, busy = 0;
257 
258 	while (1) {
259 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
260 					     np->wd_timeo, &ticks);
261 		if (hv_err == HV_EOK)
262 			return 0;
263 
264 		if (hv_err == HV_EWOULDBLOCK) {
265 			if (++block >= N2RNG_BLOCK_LIMIT)
266 				return -EWOULDBLOCK;
267 			__delay(ticks);
268 		} else if (hv_err == HV_EBUSY) {
269 			if (++busy >= N2RNG_BUSY_LIMIT)
270 				return -EBUSY;
271 			udelay(1);
272 		} else
273 			return -ENODEV;
274 	}
275 }
276 
277 /* Just try to see if we can successfully access the control register
278  * of the RNG on the domain on which we are currently executing.
279  */
280 static int n2rng_try_read_ctl(struct n2rng *np)
281 {
282 	unsigned long hv_err;
283 	unsigned long x;
284 
285 	if (np->hvapi_major == 1) {
286 		hv_err = sun4v_rng_get_diag_ctl();
287 	} else {
288 		/* We purposefully give invalid arguments, HV_NOACCESS
289 		 * is higher priority than the errors we'd get from
290 		 * these other cases, and that's the error we are
291 		 * truly interested in.
292 		 */
293 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
294 		switch (hv_err) {
295 		case HV_EWOULDBLOCK:
296 		case HV_ENOACCESS:
297 			break;
298 		default:
299 			hv_err = HV_EOK;
300 			break;
301 		}
302 	}
303 
304 	return n2rng_hv_err_trans(hv_err);
305 }
306 
307 static u64 n2rng_control_default(struct n2rng *np, int ctl)
308 {
309 	u64 val = 0;
310 
311 	if (np->data->chip_version == 1) {
312 		val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
313 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
314 			 RNG_CTL_LFSR);
315 
316 		switch (ctl) {
317 		case 0:
318 			val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
319 			break;
320 		case 1:
321 			val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
322 			break;
323 		case 2:
324 			val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
325 			break;
326 		case 3:
327 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
328 			break;
329 		default:
330 			break;
331 		}
332 
333 	} else {
334 		val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
335 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
336 			 RNG_CTL_LFSR);
337 
338 		switch (ctl) {
339 		case 0:
340 			val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
341 			break;
342 		case 1:
343 			val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
344 			break;
345 		case 2:
346 			val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
347 			break;
348 		case 3:
349 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
350 			break;
351 		default:
352 			break;
353 		}
354 	}
355 
356 	return val;
357 }
358 
359 static void n2rng_control_swstate_init(struct n2rng *np)
360 {
361 	int i;
362 
363 	np->flags |= N2RNG_FLAG_CONTROL;
364 
365 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
366 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
367 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
368 
369 	for (i = 0; i < np->num_units; i++) {
370 		struct n2rng_unit *up = &np->units[i];
371 
372 		up->control[0] = n2rng_control_default(np, 0);
373 		up->control[1] = n2rng_control_default(np, 1);
374 		up->control[2] = n2rng_control_default(np, 2);
375 		up->control[3] = n2rng_control_default(np, 3);
376 	}
377 
378 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
379 }
380 
381 static int n2rng_grab_diag_control(struct n2rng *np)
382 {
383 	int i, busy_count, err = -ENODEV;
384 
385 	busy_count = 0;
386 	for (i = 0; i < 100; i++) {
387 		err = n2rng_try_read_ctl(np);
388 		if (err != -EAGAIN)
389 			break;
390 
391 		if (++busy_count > 100) {
392 			dev_err(&np->op->dev,
393 				"Grab diag control timeout.\n");
394 			return -ENODEV;
395 		}
396 
397 		udelay(1);
398 	}
399 
400 	return err;
401 }
402 
403 static int n2rng_init_control(struct n2rng *np)
404 {
405 	int err = n2rng_grab_diag_control(np);
406 
407 	/* Not in the control domain, that's OK we are only a consumer
408 	 * of the RNG data, we don't setup and program it.
409 	 */
410 	if (err == -EPERM)
411 		return 0;
412 	if (err)
413 		return err;
414 
415 	n2rng_control_swstate_init(np);
416 
417 	return 0;
418 }
419 
420 static int n2rng_data_read(struct hwrng *rng, u32 *data)
421 {
422 	struct n2rng *np = (struct n2rng *) rng->priv;
423 	unsigned long ra = __pa(&np->test_data);
424 	int len;
425 
426 	if (!(np->flags & N2RNG_FLAG_READY)) {
427 		len = 0;
428 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
429 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
430 		*data = np->buffer;
431 		len = 4;
432 	} else {
433 		int err = n2rng_generic_read_data(ra);
434 		if (!err) {
435 			np->flags |= N2RNG_FLAG_BUFFER_VALID;
436 			np->buffer = np->test_data >> 32;
437 			*data = np->test_data & 0xffffffff;
438 			len = 4;
439 		} else {
440 			dev_err(&np->op->dev, "RNG error, retesting\n");
441 			np->flags &= ~N2RNG_FLAG_READY;
442 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
443 				schedule_delayed_work(&np->work, 0);
444 			len = 0;
445 		}
446 	}
447 
448 	return len;
449 }
450 
451 /* On a guest node, just make sure we can read random data properly.
452  * If a control node reboots or reloads it's n2rng driver, this won't
453  * work during that time.  So we have to keep probing until the device
454  * becomes usable.
455  */
456 static int n2rng_guest_check(struct n2rng *np)
457 {
458 	unsigned long ra = __pa(&np->test_data);
459 
460 	return n2rng_generic_read_data(ra);
461 }
462 
463 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
464 				   u64 *pre_control, u64 pre_state,
465 				   u64 *buffer, unsigned long buf_len,
466 				   u64 *post_control, u64 post_state)
467 {
468 	unsigned long post_ctl_ra = __pa(post_control);
469 	unsigned long pre_ctl_ra = __pa(pre_control);
470 	unsigned long buffer_ra = __pa(buffer);
471 	int err;
472 
473 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
474 	if (err)
475 		return err;
476 
477 	err = n2rng_generic_read_diag_data(np, unit,
478 					   buffer_ra, buf_len);
479 
480 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
481 					   post_state);
482 
483 	return err;
484 }
485 
486 static u64 advance_polynomial(u64 poly, u64 val, int count)
487 {
488 	int i;
489 
490 	for (i = 0; i < count; i++) {
491 		int highbit_set = ((s64)val < 0);
492 
493 		val <<= 1;
494 		if (highbit_set)
495 			val ^= poly;
496 	}
497 
498 	return val;
499 }
500 
501 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
502 {
503 	int i, count = 0;
504 
505 	/* Purposefully skip over the first word.  */
506 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
507 		if (np->test_buffer[i] == val)
508 			count++;
509 	}
510 	return count;
511 }
512 
513 static void n2rng_dump_test_buffer(struct n2rng *np)
514 {
515 	int i;
516 
517 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
518 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
519 			i, np->test_buffer[i]);
520 }
521 
522 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
523 {
524 	u64 val;
525 	int err, matches, limit;
526 
527 	switch (np->data->id) {
528 	case N2_n2_rng:
529 	case N2_vf_rng:
530 	case N2_kt_rng:
531 	case N2_m4_rng:  /* yes, m4 uses the old value */
532 		val = RNG_v1_SELFTEST_VAL;
533 		break;
534 	default:
535 		val = RNG_v2_SELFTEST_VAL;
536 		break;
537 	}
538 
539 	matches = 0;
540 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
541 		matches += n2rng_test_buffer_find(np, val);
542 		if (matches >= SELFTEST_MATCH_GOAL)
543 			break;
544 		val = advance_polynomial(SELFTEST_POLY, val, 1);
545 	}
546 
547 	err = 0;
548 	if (limit >= SELFTEST_LOOPS_MAX) {
549 		err = -ENODEV;
550 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
551 		n2rng_dump_test_buffer(np);
552 	} else
553 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
554 
555 	return err;
556 }
557 
558 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
559 {
560 	int err;
561 	u64 base, base3;
562 
563 	switch (np->data->id) {
564 	case N2_n2_rng:
565 	case N2_vf_rng:
566 	case N2_kt_rng:
567 		base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
568 		base3 = base | RNG_CTL_LFSR |
569 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
570 		break;
571 	case N2_m4_rng:
572 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
573 		base3 = base | RNG_CTL_LFSR |
574 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
575 		break;
576 	default:
577 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
578 		base3 = base | RNG_CTL_LFSR |
579 			(RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
580 		break;
581 	}
582 
583 	np->test_control[0] = base;
584 	np->test_control[1] = base;
585 	np->test_control[2] = base;
586 	np->test_control[3] = base3;
587 
588 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
589 				      HV_RNG_STATE_HEALTHCHECK,
590 				      np->test_buffer,
591 				      sizeof(np->test_buffer),
592 				      &np->units[unit].control[0],
593 				      np->hv_state);
594 	if (err)
595 		return err;
596 
597 	return n2rng_check_selftest_buffer(np, unit);
598 }
599 
600 static int n2rng_control_check(struct n2rng *np)
601 {
602 	int i;
603 
604 	for (i = 0; i < np->num_units; i++) {
605 		int err = n2rng_control_selftest(np, i);
606 		if (err)
607 			return err;
608 	}
609 	return 0;
610 }
611 
612 /* The sanity checks passed, install the final configuration into the
613  * chip, it's ready to use.
614  */
615 static int n2rng_control_configure_units(struct n2rng *np)
616 {
617 	int unit, err;
618 
619 	err = 0;
620 	for (unit = 0; unit < np->num_units; unit++) {
621 		struct n2rng_unit *up = &np->units[unit];
622 		unsigned long ctl_ra = __pa(&up->control[0]);
623 		int esrc;
624 		u64 base, shift;
625 
626 		if (np->data->chip_version == 1) {
627 			base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
628 			      (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
629 			      RNG_CTL_LFSR);
630 			shift = RNG_v1_CTL_VCO_SHIFT;
631 		} else {
632 			base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
633 			      (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
634 			      RNG_CTL_LFSR);
635 			shift = RNG_v2_CTL_VCO_SHIFT;
636 		}
637 
638 		/* XXX This isn't the best.  We should fetch a bunch
639 		 * XXX of words using each entropy source combined XXX
640 		 * with each VCO setting, and see which combinations
641 		 * XXX give the best random data.
642 		 */
643 		for (esrc = 0; esrc < 3; esrc++)
644 			up->control[esrc] = base |
645 				(esrc << shift) |
646 				(RNG_CTL_ES1 << esrc);
647 
648 		up->control[3] = base |
649 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
650 
651 		err = n2rng_generic_write_control(np, ctl_ra, unit,
652 						  HV_RNG_STATE_CONFIGURED);
653 		if (err)
654 			break;
655 	}
656 
657 	return err;
658 }
659 
660 static void n2rng_work(struct work_struct *work)
661 {
662 	struct n2rng *np = container_of(work, struct n2rng, work.work);
663 	int err = 0;
664 	static int retries = 4;
665 
666 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
667 		err = n2rng_guest_check(np);
668 	} else {
669 		preempt_disable();
670 		err = n2rng_control_check(np);
671 		preempt_enable();
672 
673 		if (!err)
674 			err = n2rng_control_configure_units(np);
675 	}
676 
677 	if (!err) {
678 		np->flags |= N2RNG_FLAG_READY;
679 		dev_info(&np->op->dev, "RNG ready\n");
680 	}
681 
682 	if (--retries == 0)
683 		dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
684 	else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
685 		schedule_delayed_work(&np->work, HZ * 2);
686 }
687 
688 static void n2rng_driver_version(void)
689 {
690 	static int n2rng_version_printed;
691 
692 	if (n2rng_version_printed++ == 0)
693 		pr_info("%s", version);
694 }
695 
696 static const struct of_device_id n2rng_match[];
697 static int n2rng_probe(struct platform_device *op)
698 {
699 	int err = -ENOMEM;
700 	struct n2rng *np;
701 
702 	n2rng_driver_version();
703 	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
704 	if (!np)
705 		goto out;
706 	np->op = op;
707 	np->data = (struct n2rng_template *)device_get_match_data(&op->dev);
708 
709 	INIT_DELAYED_WORK(&np->work, n2rng_work);
710 
711 	if (np->data->multi_capable)
712 		np->flags |= N2RNG_FLAG_MULTI;
713 
714 	err = -ENODEV;
715 	np->hvapi_major = 2;
716 	if (sun4v_hvapi_register(HV_GRP_RNG,
717 				 np->hvapi_major,
718 				 &np->hvapi_minor)) {
719 		np->hvapi_major = 1;
720 		if (sun4v_hvapi_register(HV_GRP_RNG,
721 					 np->hvapi_major,
722 					 &np->hvapi_minor)) {
723 			dev_err(&op->dev, "Cannot register suitable "
724 				"HVAPI version.\n");
725 			goto out;
726 		}
727 	}
728 
729 	if (np->flags & N2RNG_FLAG_MULTI) {
730 		if (np->hvapi_major < 2) {
731 			dev_err(&op->dev, "multi-unit-capable RNG requires "
732 				"HVAPI major version 2 or later, got %lu\n",
733 				np->hvapi_major);
734 			goto out_hvapi_unregister;
735 		}
736 		np->num_units = of_getintprop_default(op->dev.of_node,
737 						      "rng-#units", 0);
738 		if (!np->num_units) {
739 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
740 			goto out_hvapi_unregister;
741 		}
742 	} else {
743 		np->num_units = 1;
744 	}
745 
746 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
747 		 np->hvapi_major, np->hvapi_minor);
748 	np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
749 				 GFP_KERNEL);
750 	err = -ENOMEM;
751 	if (!np->units)
752 		goto out_hvapi_unregister;
753 
754 	err = n2rng_init_control(np);
755 	if (err)
756 		goto out_hvapi_unregister;
757 
758 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
759 		 ((np->flags & N2RNG_FLAG_MULTI) ?
760 		  "multi-unit-capable" : "single-unit"),
761 		 np->num_units);
762 
763 	np->hwrng.name = DRV_MODULE_NAME;
764 	np->hwrng.data_read = n2rng_data_read;
765 	np->hwrng.priv = (unsigned long) np;
766 
767 	err = devm_hwrng_register(&op->dev, &np->hwrng);
768 	if (err)
769 		goto out_hvapi_unregister;
770 
771 	platform_set_drvdata(op, np);
772 
773 	schedule_delayed_work(&np->work, 0);
774 
775 	return 0;
776 
777 out_hvapi_unregister:
778 	sun4v_hvapi_unregister(HV_GRP_RNG);
779 
780 out:
781 	return err;
782 }
783 
784 static void n2rng_remove(struct platform_device *op)
785 {
786 	struct n2rng *np = platform_get_drvdata(op);
787 
788 	np->flags |= N2RNG_FLAG_SHUTDOWN;
789 
790 	cancel_delayed_work_sync(&np->work);
791 
792 	sun4v_hvapi_unregister(HV_GRP_RNG);
793 }
794 
795 static struct n2rng_template n2_template = {
796 	.id = N2_n2_rng,
797 	.multi_capable = 0,
798 	.chip_version = 1,
799 };
800 
801 static struct n2rng_template vf_template = {
802 	.id = N2_vf_rng,
803 	.multi_capable = 1,
804 	.chip_version = 1,
805 };
806 
807 static struct n2rng_template kt_template = {
808 	.id = N2_kt_rng,
809 	.multi_capable = 1,
810 	.chip_version = 1,
811 };
812 
813 static struct n2rng_template m4_template = {
814 	.id = N2_m4_rng,
815 	.multi_capable = 1,
816 	.chip_version = 2,
817 };
818 
819 static struct n2rng_template m7_template = {
820 	.id = N2_m7_rng,
821 	.multi_capable = 1,
822 	.chip_version = 2,
823 };
824 
825 static const struct of_device_id n2rng_match[] = {
826 	{
827 		.name		= "random-number-generator",
828 		.compatible	= "SUNW,n2-rng",
829 		.data		= &n2_template,
830 	},
831 	{
832 		.name		= "random-number-generator",
833 		.compatible	= "SUNW,vf-rng",
834 		.data		= &vf_template,
835 	},
836 	{
837 		.name		= "random-number-generator",
838 		.compatible	= "SUNW,kt-rng",
839 		.data		= &kt_template,
840 	},
841 	{
842 		.name		= "random-number-generator",
843 		.compatible	= "ORCL,m4-rng",
844 		.data		= &m4_template,
845 	},
846 	{
847 		.name		= "random-number-generator",
848 		.compatible	= "ORCL,m7-rng",
849 		.data		= &m7_template,
850 	},
851 	{},
852 };
853 MODULE_DEVICE_TABLE(of, n2rng_match);
854 
855 static struct platform_driver n2rng_driver = {
856 	.driver = {
857 		.name = "n2rng",
858 		.of_match_table = n2rng_match,
859 	},
860 	.probe		= n2rng_probe,
861 	.remove		= n2rng_remove,
862 };
863 
864 module_platform_driver(n2rng_driver);
865