xref: /linux/drivers/char/hw_random/n2-drv.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* n2-drv.c: Niagara-2 RNG driver.
2  *
3  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
14 
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 
18 #include <asm/hypervisor.h>
19 
20 #include "n2rng.h"
21 
22 #define DRV_MODULE_NAME		"n2rng"
23 #define PFX DRV_MODULE_NAME	": "
24 #define DRV_MODULE_VERSION	"0.2"
25 #define DRV_MODULE_RELDATE	"July 27, 2011"
26 
27 static char version[] =
28 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29 
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
34 
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36  * register, plus a control register.  Access to the RNG is
37  * virtualized through the hypervisor so that both guests and control
38  * nodes can access the device.
39  *
40  * The entropy source consists of raw entropy sources, each
41  * constructed from a voltage controlled oscillator whose phase is
42  * jittered by thermal noise sources.
43  *
44  * The oscillator in each of the three raw entropy sources run at
45  * different frequencies.  Normally, all three generator outputs are
46  * gathered, xored together, and fed into a CRC circuit, the output of
47  * which is the 64-bit read-only register.
48  *
49  * Some time is necessary for all the necessary entropy to build up
50  * such that a full 64-bits of entropy are available in the register.
51  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52  * an interlock which blocks register reads until sufficient entropy
53  * is available.
54  *
55  * A control register is provided for adjusting various aspects of RNG
56  * operation, and to enable diagnostic modes.  Each of the three raw
57  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
58  * provided are fields for controlling the minimum time in cycles
59  * between read accesses to the register (RNG_CTL_WAIT, this controls
60  * the interlock described in the previous paragraph).
61  *
62  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63  * all three entropy sources enabled, and the interlock time set
64  * appropriately.
65  *
66  * The CRC polynomial used by the chip is:
67  *
68  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71  *
72  * The RNG_CTL_VCO value of each noise cell must be programmed
73  * separately.  This is why 4 control register values must be provided
74  * to the hypervisor.  During a write, the hypervisor writes them all,
75  * one at a time, to the actual RNG_CTL register.  The first three
76  * values are used to setup the desired RNG_CTL_VCO for each entropy
77  * source, for example:
78  *
79  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82  *
83  * And then the fourth value sets the final chip state and enables
84  * desired.
85  */
86 
87 static int n2rng_hv_err_trans(unsigned long hv_err)
88 {
89 	switch (hv_err) {
90 	case HV_EOK:
91 		return 0;
92 	case HV_EWOULDBLOCK:
93 		return -EAGAIN;
94 	case HV_ENOACCESS:
95 		return -EPERM;
96 	case HV_EIO:
97 		return -EIO;
98 	case HV_EBUSY:
99 		return -EBUSY;
100 	case HV_EBADALIGN:
101 	case HV_ENORADDR:
102 		return -EFAULT;
103 	default:
104 		return -EINVAL;
105 	}
106 }
107 
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 						   unsigned long unit)
110 {
111 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 	int block = 0, busy = 0;
113 
114 	while (1) {
115 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 					       &ticks,
117 					       &watchdog_delta,
118 					       &watchdog_status);
119 		if (hv_err == HV_EOK)
120 			break;
121 
122 		if (hv_err == HV_EBUSY) {
123 			if (++busy >= N2RNG_BUSY_LIMIT)
124 				break;
125 
126 			udelay(1);
127 		} else if (hv_err == HV_EWOULDBLOCK) {
128 			if (++block >= N2RNG_BLOCK_LIMIT)
129 				break;
130 
131 			__delay(ticks);
132 		} else
133 			break;
134 	}
135 
136 	return hv_err;
137 }
138 
139 /* In multi-socket situations, the hypervisor might need to
140  * queue up the RNG control register write if it's for a unit
141  * that is on a cpu socket other than the one we are executing on.
142  *
143  * We poll here waiting for a successful read of that control
144  * register to make sure the write has been actually performed.
145  */
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147 {
148 	unsigned long ra = __pa(&np->scratch_control[0]);
149 
150 	return n2rng_generic_read_control_v2(ra, unit);
151 }
152 
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 					 unsigned long state,
155 					 unsigned long control_ra,
156 					 unsigned long watchdog_timeout,
157 					 unsigned long *ticks)
158 {
159 	unsigned long hv_err;
160 
161 	if (np->hvapi_major == 1) {
162 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 						watchdog_timeout, ticks);
164 	} else {
165 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 						watchdog_timeout, unit);
167 		if (hv_err == HV_EOK)
168 			hv_err = n2rng_control_settle_v2(np, unit);
169 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170 	}
171 
172 	return hv_err;
173 }
174 
175 static int n2rng_generic_read_data(unsigned long data_ra)
176 {
177 	unsigned long ticks, hv_err;
178 	int block = 0, hcheck = 0;
179 
180 	while (1) {
181 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 		if (hv_err == HV_EOK)
183 			return 0;
184 
185 		if (hv_err == HV_EWOULDBLOCK) {
186 			if (++block >= N2RNG_BLOCK_LIMIT)
187 				return -EWOULDBLOCK;
188 			__delay(ticks);
189 		} else if (hv_err == HV_ENOACCESS) {
190 			return -EPERM;
191 		} else if (hv_err == HV_EIO) {
192 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 				return -EIO;
194 			udelay(10000);
195 		} else
196 			return -ENODEV;
197 	}
198 }
199 
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 					      unsigned long unit,
202 					      unsigned long data_ra,
203 					      unsigned long data_len,
204 					      unsigned long *ticks)
205 {
206 	unsigned long hv_err;
207 
208 	if (np->hvapi_major == 1) {
209 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 	} else {
211 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 						     unit, ticks);
213 		if (!*ticks)
214 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215 	}
216 	return hv_err;
217 }
218 
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220 					unsigned long unit,
221 					unsigned long data_ra,
222 					unsigned long data_len)
223 {
224 	unsigned long ticks, hv_err;
225 	int block = 0;
226 
227 	while (1) {
228 		hv_err = n2rng_read_diag_data_one(np, unit,
229 						  data_ra, data_len,
230 						  &ticks);
231 		if (hv_err == HV_EOK)
232 			return 0;
233 
234 		if (hv_err == HV_EWOULDBLOCK) {
235 			if (++block >= N2RNG_BLOCK_LIMIT)
236 				return -EWOULDBLOCK;
237 			__delay(ticks);
238 		} else if (hv_err == HV_ENOACCESS) {
239 			return -EPERM;
240 		} else if (hv_err == HV_EIO) {
241 			return -EIO;
242 		} else
243 			return -ENODEV;
244 	}
245 }
246 
247 
248 static int n2rng_generic_write_control(struct n2rng *np,
249 				       unsigned long control_ra,
250 				       unsigned long unit,
251 				       unsigned long state)
252 {
253 	unsigned long hv_err, ticks;
254 	int block = 0, busy = 0;
255 
256 	while (1) {
257 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 					     np->wd_timeo, &ticks);
259 		if (hv_err == HV_EOK)
260 			return 0;
261 
262 		if (hv_err == HV_EWOULDBLOCK) {
263 			if (++block >= N2RNG_BLOCK_LIMIT)
264 				return -EWOULDBLOCK;
265 			__delay(ticks);
266 		} else if (hv_err == HV_EBUSY) {
267 			if (++busy >= N2RNG_BUSY_LIMIT)
268 				return -EBUSY;
269 			udelay(1);
270 		} else
271 			return -ENODEV;
272 	}
273 }
274 
275 /* Just try to see if we can successfully access the control register
276  * of the RNG on the domain on which we are currently executing.
277  */
278 static int n2rng_try_read_ctl(struct n2rng *np)
279 {
280 	unsigned long hv_err;
281 	unsigned long x;
282 
283 	if (np->hvapi_major == 1) {
284 		hv_err = sun4v_rng_get_diag_ctl();
285 	} else {
286 		/* We purposefully give invalid arguments, HV_NOACCESS
287 		 * is higher priority than the errors we'd get from
288 		 * these other cases, and that's the error we are
289 		 * truly interested in.
290 		 */
291 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 		switch (hv_err) {
293 		case HV_EWOULDBLOCK:
294 		case HV_ENOACCESS:
295 			break;
296 		default:
297 			hv_err = HV_EOK;
298 			break;
299 		}
300 	}
301 
302 	return n2rng_hv_err_trans(hv_err);
303 }
304 
305 #define CONTROL_DEFAULT_BASE		\
306 	((2 << RNG_CTL_ASEL_SHIFT) |	\
307 	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
308 	 RNG_CTL_LFSR)
309 
310 #define CONTROL_DEFAULT_0		\
311 	(CONTROL_DEFAULT_BASE |		\
312 	 (1 << RNG_CTL_VCO_SHIFT) |	\
313 	 RNG_CTL_ES1)
314 #define CONTROL_DEFAULT_1		\
315 	(CONTROL_DEFAULT_BASE |		\
316 	 (2 << RNG_CTL_VCO_SHIFT) |	\
317 	 RNG_CTL_ES2)
318 #define CONTROL_DEFAULT_2		\
319 	(CONTROL_DEFAULT_BASE |		\
320 	 (3 << RNG_CTL_VCO_SHIFT) |	\
321 	 RNG_CTL_ES3)
322 #define CONTROL_DEFAULT_3		\
323 	(CONTROL_DEFAULT_BASE |		\
324 	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
325 
326 static void n2rng_control_swstate_init(struct n2rng *np)
327 {
328 	int i;
329 
330 	np->flags |= N2RNG_FLAG_CONTROL;
331 
332 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335 
336 	for (i = 0; i < np->num_units; i++) {
337 		struct n2rng_unit *up = &np->units[i];
338 
339 		up->control[0] = CONTROL_DEFAULT_0;
340 		up->control[1] = CONTROL_DEFAULT_1;
341 		up->control[2] = CONTROL_DEFAULT_2;
342 		up->control[3] = CONTROL_DEFAULT_3;
343 	}
344 
345 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346 }
347 
348 static int n2rng_grab_diag_control(struct n2rng *np)
349 {
350 	int i, busy_count, err = -ENODEV;
351 
352 	busy_count = 0;
353 	for (i = 0; i < 100; i++) {
354 		err = n2rng_try_read_ctl(np);
355 		if (err != -EAGAIN)
356 			break;
357 
358 		if (++busy_count > 100) {
359 			dev_err(&np->op->dev,
360 				"Grab diag control timeout.\n");
361 			return -ENODEV;
362 		}
363 
364 		udelay(1);
365 	}
366 
367 	return err;
368 }
369 
370 static int n2rng_init_control(struct n2rng *np)
371 {
372 	int err = n2rng_grab_diag_control(np);
373 
374 	/* Not in the control domain, that's OK we are only a consumer
375 	 * of the RNG data, we don't setup and program it.
376 	 */
377 	if (err == -EPERM)
378 		return 0;
379 	if (err)
380 		return err;
381 
382 	n2rng_control_swstate_init(np);
383 
384 	return 0;
385 }
386 
387 static int n2rng_data_read(struct hwrng *rng, u32 *data)
388 {
389 	struct n2rng *np = (struct n2rng *) rng->priv;
390 	unsigned long ra = __pa(&np->test_data);
391 	int len;
392 
393 	if (!(np->flags & N2RNG_FLAG_READY)) {
394 		len = 0;
395 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397 		*data = np->buffer;
398 		len = 4;
399 	} else {
400 		int err = n2rng_generic_read_data(ra);
401 		if (!err) {
402 			np->buffer = np->test_data >> 32;
403 			*data = np->test_data & 0xffffffff;
404 			len = 4;
405 		} else {
406 			dev_err(&np->op->dev, "RNG error, restesting\n");
407 			np->flags &= ~N2RNG_FLAG_READY;
408 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409 				schedule_delayed_work(&np->work, 0);
410 			len = 0;
411 		}
412 	}
413 
414 	return len;
415 }
416 
417 /* On a guest node, just make sure we can read random data properly.
418  * If a control node reboots or reloads it's n2rng driver, this won't
419  * work during that time.  So we have to keep probing until the device
420  * becomes usable.
421  */
422 static int n2rng_guest_check(struct n2rng *np)
423 {
424 	unsigned long ra = __pa(&np->test_data);
425 
426 	return n2rng_generic_read_data(ra);
427 }
428 
429 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430 				   u64 *pre_control, u64 pre_state,
431 				   u64 *buffer, unsigned long buf_len,
432 				   u64 *post_control, u64 post_state)
433 {
434 	unsigned long post_ctl_ra = __pa(post_control);
435 	unsigned long pre_ctl_ra = __pa(pre_control);
436 	unsigned long buffer_ra = __pa(buffer);
437 	int err;
438 
439 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440 	if (err)
441 		return err;
442 
443 	err = n2rng_generic_read_diag_data(np, unit,
444 					   buffer_ra, buf_len);
445 
446 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447 					   post_state);
448 
449 	return err;
450 }
451 
452 static u64 advance_polynomial(u64 poly, u64 val, int count)
453 {
454 	int i;
455 
456 	for (i = 0; i < count; i++) {
457 		int highbit_set = ((s64)val < 0);
458 
459 		val <<= 1;
460 		if (highbit_set)
461 			val ^= poly;
462 	}
463 
464 	return val;
465 }
466 
467 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468 {
469 	int i, count = 0;
470 
471 	/* Purposefully skip over the first word.  */
472 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473 		if (np->test_buffer[i] == val)
474 			count++;
475 	}
476 	return count;
477 }
478 
479 static void n2rng_dump_test_buffer(struct n2rng *np)
480 {
481 	int i;
482 
483 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485 			i, np->test_buffer[i]);
486 }
487 
488 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489 {
490 	u64 val = SELFTEST_VAL;
491 	int err, matches, limit;
492 
493 	matches = 0;
494 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495 		matches += n2rng_test_buffer_find(np, val);
496 		if (matches >= SELFTEST_MATCH_GOAL)
497 			break;
498 		val = advance_polynomial(SELFTEST_POLY, val, 1);
499 	}
500 
501 	err = 0;
502 	if (limit >= SELFTEST_LOOPS_MAX) {
503 		err = -ENODEV;
504 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505 		n2rng_dump_test_buffer(np);
506 	} else
507 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508 
509 	return err;
510 }
511 
512 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513 {
514 	int err;
515 
516 	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517 	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520 			       RNG_CTL_LFSR |
521 			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
522 
523 
524 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
525 				      HV_RNG_STATE_HEALTHCHECK,
526 				      np->test_buffer,
527 				      sizeof(np->test_buffer),
528 				      &np->units[unit].control[0],
529 				      np->hv_state);
530 	if (err)
531 		return err;
532 
533 	return n2rng_check_selftest_buffer(np, unit);
534 }
535 
536 static int n2rng_control_check(struct n2rng *np)
537 {
538 	int i;
539 
540 	for (i = 0; i < np->num_units; i++) {
541 		int err = n2rng_control_selftest(np, i);
542 		if (err)
543 			return err;
544 	}
545 	return 0;
546 }
547 
548 /* The sanity checks passed, install the final configuration into the
549  * chip, it's ready to use.
550  */
551 static int n2rng_control_configure_units(struct n2rng *np)
552 {
553 	int unit, err;
554 
555 	err = 0;
556 	for (unit = 0; unit < np->num_units; unit++) {
557 		struct n2rng_unit *up = &np->units[unit];
558 		unsigned long ctl_ra = __pa(&up->control[0]);
559 		int esrc;
560 		u64 base;
561 
562 		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563 			(2 << RNG_CTL_ASEL_SHIFT) |
564 			RNG_CTL_LFSR);
565 
566 		/* XXX This isn't the best.  We should fetch a bunch
567 		 * XXX of words using each entropy source combined XXX
568 		 * with each VCO setting, and see which combinations
569 		 * XXX give the best random data.
570 		 */
571 		for (esrc = 0; esrc < 3; esrc++)
572 			up->control[esrc] = base |
573 				(esrc << RNG_CTL_VCO_SHIFT) |
574 				(RNG_CTL_ES1 << esrc);
575 
576 		up->control[3] = base |
577 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578 
579 		err = n2rng_generic_write_control(np, ctl_ra, unit,
580 						  HV_RNG_STATE_CONFIGURED);
581 		if (err)
582 			break;
583 	}
584 
585 	return err;
586 }
587 
588 static void n2rng_work(struct work_struct *work)
589 {
590 	struct n2rng *np = container_of(work, struct n2rng, work.work);
591 	int err = 0;
592 
593 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594 		err = n2rng_guest_check(np);
595 	} else {
596 		preempt_disable();
597 		err = n2rng_control_check(np);
598 		preempt_enable();
599 
600 		if (!err)
601 			err = n2rng_control_configure_units(np);
602 	}
603 
604 	if (!err) {
605 		np->flags |= N2RNG_FLAG_READY;
606 		dev_info(&np->op->dev, "RNG ready\n");
607 	}
608 
609 	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610 		schedule_delayed_work(&np->work, HZ * 2);
611 }
612 
613 static void n2rng_driver_version(void)
614 {
615 	static int n2rng_version_printed;
616 
617 	if (n2rng_version_printed++ == 0)
618 		pr_info("%s", version);
619 }
620 
621 static const struct of_device_id n2rng_match[];
622 static int n2rng_probe(struct platform_device *op)
623 {
624 	const struct of_device_id *match;
625 	int multi_capable;
626 	int err = -ENOMEM;
627 	struct n2rng *np;
628 
629 	match = of_match_device(n2rng_match, &op->dev);
630 	if (!match)
631 		return -EINVAL;
632 	multi_capable = (match->data != NULL);
633 
634 	n2rng_driver_version();
635 	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636 	if (!np)
637 		goto out;
638 	np->op = op;
639 
640 	INIT_DELAYED_WORK(&np->work, n2rng_work);
641 
642 	if (multi_capable)
643 		np->flags |= N2RNG_FLAG_MULTI;
644 
645 	err = -ENODEV;
646 	np->hvapi_major = 2;
647 	if (sun4v_hvapi_register(HV_GRP_RNG,
648 				 np->hvapi_major,
649 				 &np->hvapi_minor)) {
650 		np->hvapi_major = 1;
651 		if (sun4v_hvapi_register(HV_GRP_RNG,
652 					 np->hvapi_major,
653 					 &np->hvapi_minor)) {
654 			dev_err(&op->dev, "Cannot register suitable "
655 				"HVAPI version.\n");
656 			goto out;
657 		}
658 	}
659 
660 	if (np->flags & N2RNG_FLAG_MULTI) {
661 		if (np->hvapi_major < 2) {
662 			dev_err(&op->dev, "multi-unit-capable RNG requires "
663 				"HVAPI major version 2 or later, got %lu\n",
664 				np->hvapi_major);
665 			goto out_hvapi_unregister;
666 		}
667 		np->num_units = of_getintprop_default(op->dev.of_node,
668 						      "rng-#units", 0);
669 		if (!np->num_units) {
670 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671 			goto out_hvapi_unregister;
672 		}
673 	} else
674 		np->num_units = 1;
675 
676 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677 		 np->hvapi_major, np->hvapi_minor);
678 
679 	np->units = devm_kzalloc(&op->dev,
680 				 sizeof(struct n2rng_unit) * np->num_units,
681 				 GFP_KERNEL);
682 	err = -ENOMEM;
683 	if (!np->units)
684 		goto out_hvapi_unregister;
685 
686 	err = n2rng_init_control(np);
687 	if (err)
688 		goto out_hvapi_unregister;
689 
690 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 		 ((np->flags & N2RNG_FLAG_MULTI) ?
692 		  "multi-unit-capable" : "single-unit"),
693 		 np->num_units);
694 
695 	np->hwrng.name = "n2rng";
696 	np->hwrng.data_read = n2rng_data_read;
697 	np->hwrng.priv = (unsigned long) np;
698 
699 	err = hwrng_register(&np->hwrng);
700 	if (err)
701 		goto out_hvapi_unregister;
702 
703 	platform_set_drvdata(op, np);
704 
705 	schedule_delayed_work(&np->work, 0);
706 
707 	return 0;
708 
709 out_hvapi_unregister:
710 	sun4v_hvapi_unregister(HV_GRP_RNG);
711 
712 out:
713 	return err;
714 }
715 
716 static int n2rng_remove(struct platform_device *op)
717 {
718 	struct n2rng *np = platform_get_drvdata(op);
719 
720 	np->flags |= N2RNG_FLAG_SHUTDOWN;
721 
722 	cancel_delayed_work_sync(&np->work);
723 
724 	hwrng_unregister(&np->hwrng);
725 
726 	sun4v_hvapi_unregister(HV_GRP_RNG);
727 
728 	return 0;
729 }
730 
731 static const struct of_device_id n2rng_match[] = {
732 	{
733 		.name		= "random-number-generator",
734 		.compatible	= "SUNW,n2-rng",
735 	},
736 	{
737 		.name		= "random-number-generator",
738 		.compatible	= "SUNW,vf-rng",
739 		.data		= (void *) 1,
740 	},
741 	{
742 		.name		= "random-number-generator",
743 		.compatible	= "SUNW,kt-rng",
744 		.data		= (void *) 1,
745 	},
746 	{
747 		.name		= "random-number-generator",
748 		.compatible	= "ORCL,m4-rng",
749 		.data		= (void *) 1,
750 	},
751 	{
752 		.name		= "random-number-generator",
753 		.compatible	= "ORCL,m7-rng",
754 		.data		= (void *) 1,
755 	},
756 	{},
757 };
758 MODULE_DEVICE_TABLE(of, n2rng_match);
759 
760 static struct platform_driver n2rng_driver = {
761 	.driver = {
762 		.name = "n2rng",
763 		.of_match_table = n2rng_match,
764 	},
765 	.probe		= n2rng_probe,
766 	.remove		= n2rng_remove,
767 };
768 
769 module_platform_driver(n2rng_driver);
770