xref: /linux/drivers/char/hpet.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40 
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define	HPET_USER_FREQ	(64)
47 #define	HPET_DRIFT	(500)
48 
49 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
50 
51 
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define	write_counter(V, MC)	writeq(V, MC)
58 #define	read_counter(MC)	readq(MC)
59 #else
60 #define	write_counter(V, MC)	writel(V, MC)
61 #define	read_counter(MC)	readl(MC)
62 #endif
63 
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66 
67 /* A lock for concurrent access by app and isr hpet activity. */
68 static DEFINE_SPINLOCK(hpet_lock);
69 
70 #define	HPET_DEV_NAME	(7)
71 
72 struct hpet_dev {
73 	struct hpets *hd_hpets;
74 	struct hpet __iomem *hd_hpet;
75 	struct hpet_timer __iomem *hd_timer;
76 	unsigned long hd_ireqfreq;
77 	unsigned long hd_irqdata;
78 	wait_queue_head_t hd_waitqueue;
79 	struct fasync_struct *hd_async_queue;
80 	unsigned int hd_flags;
81 	unsigned int hd_irq;
82 	unsigned int hd_hdwirq;
83 	char hd_name[HPET_DEV_NAME];
84 };
85 
86 struct hpets {
87 	struct hpets *hp_next;
88 	struct hpet __iomem *hp_hpet;
89 	unsigned long hp_hpet_phys;
90 	unsigned long long hp_tick_freq;
91 	unsigned long hp_delta;
92 	unsigned int hp_ntimer;
93 	unsigned int hp_which;
94 	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
95 };
96 
97 static struct hpets *hpets;
98 
99 #define	HPET_OPEN		0x0001
100 #define	HPET_IE			0x0002	/* interrupt enabled */
101 #define	HPET_PERIODIC		0x0004
102 #define	HPET_SHARED_IRQ		0x0008
103 
104 static irqreturn_t hpet_interrupt(int irq, void *data)
105 {
106 	struct hpet_dev *devp;
107 	unsigned long isr;
108 
109 	devp = data;
110 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
111 
112 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
113 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
114 		return IRQ_NONE;
115 
116 	spin_lock(&hpet_lock);
117 	devp->hd_irqdata++;
118 
119 	/*
120 	 * For non-periodic timers, increment the accumulator.
121 	 * This has the effect of treating non-periodic like periodic.
122 	 */
123 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
124 		unsigned long t, mc, base, k;
125 		struct hpet __iomem *hpet = devp->hd_hpet;
126 		struct hpets *hpetp = devp->hd_hpets;
127 
128 		t = devp->hd_ireqfreq;
129 		read_counter(&devp->hd_timer->hpet_compare);
130 		mc = read_counter(&hpet->hpet_mc);
131 		/* The time for the next interrupt would logically be t + m,
132 		 * however, if we are very unlucky and the interrupt is delayed
133 		 * for longer than t then we will completely miss the next
134 		 * interrupt if we set t + m and an application will hang.
135 		 * Therefore we need to make a more complex computation assuming
136 		 * that there exists a k for which the following is true:
137 		 * k * t + base < mc + delta
138 		 * (k + 1) * t + base > mc + delta
139 		 * where t is the interval in hpet ticks for the given freq,
140 		 * base is the theoretical start value 0 < base < t,
141 		 * mc is the main counter value at the time of the interrupt,
142 		 * delta is the time it takes to write the a value to the
143 		 * comparator.
144 		 * k may then be computed as (mc - base + delta) / t .
145 		 */
146 		base = mc % t;
147 		k = (mc - base + hpetp->hp_delta) / t;
148 		write_counter(t * (k + 1) + base,
149 			      &devp->hd_timer->hpet_compare);
150 	}
151 
152 	if (devp->hd_flags & HPET_SHARED_IRQ)
153 		writel(isr, &devp->hd_hpet->hpet_isr);
154 	spin_unlock(&hpet_lock);
155 
156 	wake_up_interruptible(&devp->hd_waitqueue);
157 
158 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
159 
160 	return IRQ_HANDLED;
161 }
162 
163 static void hpet_timer_set_irq(struct hpet_dev *devp)
164 {
165 	const unsigned int nr_irqs = irq_get_nr_irqs();
166 	unsigned long v;
167 	int irq, gsi;
168 	struct hpet_timer __iomem *timer;
169 
170 	spin_lock_irq(&hpet_lock);
171 	if (devp->hd_hdwirq) {
172 		spin_unlock_irq(&hpet_lock);
173 		return;
174 	}
175 
176 	timer = devp->hd_timer;
177 
178 	/* we prefer level triggered mode */
179 	v = readl(&timer->hpet_config);
180 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
181 		v |= Tn_INT_TYPE_CNF_MASK;
182 		writel(v, &timer->hpet_config);
183 	}
184 	spin_unlock_irq(&hpet_lock);
185 
186 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
187 				 Tn_INT_ROUTE_CAP_SHIFT;
188 
189 	/*
190 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
191 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
192 	 */
193 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
194 		v &= ~0xf3df;
195 	else
196 		v &= ~0xffff;
197 
198 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
199 		if (irq >= nr_irqs) {
200 			irq = HPET_MAX_IRQ;
201 			break;
202 		}
203 
204 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
205 					ACPI_ACTIVE_LOW);
206 		if (gsi > 0)
207 			break;
208 
209 		/* FIXME: Setup interrupt source table */
210 	}
211 
212 	if (irq < HPET_MAX_IRQ) {
213 		spin_lock_irq(&hpet_lock);
214 		v = readl(&timer->hpet_config);
215 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
216 		writel(v, &timer->hpet_config);
217 		devp->hd_hdwirq = gsi;
218 		spin_unlock_irq(&hpet_lock);
219 	}
220 	return;
221 }
222 
223 static int hpet_open(struct inode *inode, struct file *file)
224 {
225 	struct hpet_dev *devp;
226 	struct hpets *hpetp;
227 	int i;
228 
229 	if (file->f_mode & FMODE_WRITE)
230 		return -EINVAL;
231 
232 	mutex_lock(&hpet_mutex);
233 	spin_lock_irq(&hpet_lock);
234 
235 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
236 		for (i = 0; i < hpetp->hp_ntimer; i++)
237 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
238 				continue;
239 			} else {
240 				devp = &hpetp->hp_dev[i];
241 				break;
242 			}
243 
244 	if (!devp) {
245 		spin_unlock_irq(&hpet_lock);
246 		mutex_unlock(&hpet_mutex);
247 		return -EBUSY;
248 	}
249 
250 	file->private_data = devp;
251 	devp->hd_irqdata = 0;
252 	devp->hd_flags |= HPET_OPEN;
253 	spin_unlock_irq(&hpet_lock);
254 	mutex_unlock(&hpet_mutex);
255 
256 	hpet_timer_set_irq(devp);
257 
258 	return 0;
259 }
260 
261 static ssize_t
262 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
263 {
264 	DECLARE_WAITQUEUE(wait, current);
265 	unsigned long data;
266 	ssize_t retval;
267 	struct hpet_dev *devp;
268 
269 	devp = file->private_data;
270 	if (!devp->hd_ireqfreq)
271 		return -EIO;
272 
273 	if (in_compat_syscall()) {
274 		if (count < sizeof(compat_ulong_t))
275 			return -EINVAL;
276 	} else {
277 		if (count < sizeof(unsigned long))
278 			return -EINVAL;
279 	}
280 
281 	add_wait_queue(&devp->hd_waitqueue, &wait);
282 
283 	for ( ; ; ) {
284 		set_current_state(TASK_INTERRUPTIBLE);
285 
286 		spin_lock_irq(&hpet_lock);
287 		data = devp->hd_irqdata;
288 		devp->hd_irqdata = 0;
289 		spin_unlock_irq(&hpet_lock);
290 
291 		if (data) {
292 			break;
293 		} else if (file->f_flags & O_NONBLOCK) {
294 			retval = -EAGAIN;
295 			goto out;
296 		} else if (signal_pending(current)) {
297 			retval = -ERESTARTSYS;
298 			goto out;
299 		}
300 		schedule();
301 	}
302 
303 	if (in_compat_syscall()) {
304 		retval = put_user(data, (compat_ulong_t __user *)buf);
305 		if (!retval)
306 			retval = sizeof(compat_ulong_t);
307 	} else {
308 		retval = put_user(data, (unsigned long __user *)buf);
309 		if (!retval)
310 			retval = sizeof(unsigned long);
311 	}
312 
313 out:
314 	__set_current_state(TASK_RUNNING);
315 	remove_wait_queue(&devp->hd_waitqueue, &wait);
316 
317 	return retval;
318 }
319 
320 static __poll_t hpet_poll(struct file *file, poll_table * wait)
321 {
322 	unsigned long v;
323 	struct hpet_dev *devp;
324 
325 	devp = file->private_data;
326 
327 	if (!devp->hd_ireqfreq)
328 		return 0;
329 
330 	poll_wait(file, &devp->hd_waitqueue, wait);
331 
332 	spin_lock_irq(&hpet_lock);
333 	v = devp->hd_irqdata;
334 	spin_unlock_irq(&hpet_lock);
335 
336 	if (v != 0)
337 		return EPOLLIN | EPOLLRDNORM;
338 
339 	return 0;
340 }
341 
342 #ifdef CONFIG_HPET_MMAP
343 #ifdef CONFIG_HPET_MMAP_DEFAULT
344 static int hpet_mmap_enabled = 1;
345 #else
346 static int hpet_mmap_enabled = 0;
347 #endif
348 
349 static __init int hpet_mmap_enable(char *str)
350 {
351 	get_option(&str, &hpet_mmap_enabled);
352 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
353 	return 1;
354 }
355 __setup("hpet_mmap=", hpet_mmap_enable);
356 
357 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 	struct hpet_dev *devp;
360 	unsigned long addr;
361 
362 	if (!hpet_mmap_enabled)
363 		return -EACCES;
364 
365 	devp = file->private_data;
366 	addr = devp->hd_hpets->hp_hpet_phys;
367 
368 	if (addr & (PAGE_SIZE - 1))
369 		return -ENOSYS;
370 
371 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
372 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
373 }
374 #else
375 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
376 {
377 	return -ENOSYS;
378 }
379 #endif
380 
381 static int hpet_fasync(int fd, struct file *file, int on)
382 {
383 	struct hpet_dev *devp;
384 
385 	devp = file->private_data;
386 
387 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
388 		return 0;
389 	else
390 		return -EIO;
391 }
392 
393 static int hpet_release(struct inode *inode, struct file *file)
394 {
395 	struct hpet_dev *devp;
396 	struct hpet_timer __iomem *timer;
397 	int irq = 0;
398 
399 	devp = file->private_data;
400 	timer = devp->hd_timer;
401 
402 	spin_lock_irq(&hpet_lock);
403 
404 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
405 	       &timer->hpet_config);
406 
407 	irq = devp->hd_irq;
408 	devp->hd_irq = 0;
409 
410 	devp->hd_ireqfreq = 0;
411 
412 	if (devp->hd_flags & HPET_PERIODIC
413 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
414 		unsigned long v;
415 
416 		v = readq(&timer->hpet_config);
417 		v ^= Tn_TYPE_CNF_MASK;
418 		writeq(v, &timer->hpet_config);
419 	}
420 
421 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
422 	spin_unlock_irq(&hpet_lock);
423 
424 	if (irq)
425 		free_irq(irq, devp);
426 
427 	file->private_data = NULL;
428 	return 0;
429 }
430 
431 static int hpet_ioctl_ieon(struct hpet_dev *devp)
432 {
433 	struct hpet_timer __iomem *timer;
434 	struct hpet __iomem *hpet;
435 	struct hpets *hpetp;
436 	int irq;
437 	unsigned long g, v, t, m;
438 	unsigned long flags, isr;
439 
440 	timer = devp->hd_timer;
441 	hpet = devp->hd_hpet;
442 	hpetp = devp->hd_hpets;
443 
444 	if (!devp->hd_ireqfreq)
445 		return -EIO;
446 
447 	spin_lock_irq(&hpet_lock);
448 
449 	if (devp->hd_flags & HPET_IE) {
450 		spin_unlock_irq(&hpet_lock);
451 		return -EBUSY;
452 	}
453 
454 	devp->hd_flags |= HPET_IE;
455 
456 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
457 		devp->hd_flags |= HPET_SHARED_IRQ;
458 	spin_unlock_irq(&hpet_lock);
459 
460 	irq = devp->hd_hdwirq;
461 
462 	if (irq) {
463 		unsigned long irq_flags;
464 
465 		if (devp->hd_flags & HPET_SHARED_IRQ) {
466 			/*
467 			 * To prevent the interrupt handler from seeing an
468 			 * unwanted interrupt status bit, program the timer
469 			 * so that it will not fire in the near future ...
470 			 */
471 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
472 			       &timer->hpet_config);
473 			write_counter(read_counter(&hpet->hpet_mc),
474 				      &timer->hpet_compare);
475 			/* ... and clear any left-over status. */
476 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
477 			writel(isr, &hpet->hpet_isr);
478 		}
479 
480 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
481 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
482 		if (request_irq(irq, hpet_interrupt, irq_flags,
483 				devp->hd_name, (void *)devp)) {
484 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
485 			irq = 0;
486 		}
487 	}
488 
489 	if (irq == 0) {
490 		spin_lock_irq(&hpet_lock);
491 		devp->hd_flags ^= HPET_IE;
492 		spin_unlock_irq(&hpet_lock);
493 		return -EIO;
494 	}
495 
496 	devp->hd_irq = irq;
497 	t = devp->hd_ireqfreq;
498 	v = readq(&timer->hpet_config);
499 
500 	/* 64-bit comparators are not yet supported through the ioctls,
501 	 * so force this into 32-bit mode if it supports both modes
502 	 */
503 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
504 
505 	if (devp->hd_flags & HPET_PERIODIC) {
506 		g |= Tn_TYPE_CNF_MASK;
507 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
508 		writeq(v, &timer->hpet_config);
509 		local_irq_save(flags);
510 
511 		/*
512 		 * NOTE: First we modify the hidden accumulator
513 		 * register supported by periodic-capable comparators.
514 		 * We never want to modify the (single) counter; that
515 		 * would affect all the comparators. The value written
516 		 * is the counter value when the first interrupt is due.
517 		 */
518 		m = read_counter(&hpet->hpet_mc);
519 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
520 		/*
521 		 * Then we modify the comparator, indicating the period
522 		 * for subsequent interrupt.
523 		 */
524 		write_counter(t, &timer->hpet_compare);
525 	} else {
526 		local_irq_save(flags);
527 		m = read_counter(&hpet->hpet_mc);
528 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
529 	}
530 
531 	if (devp->hd_flags & HPET_SHARED_IRQ) {
532 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
533 		writel(isr, &hpet->hpet_isr);
534 	}
535 	writeq(g, &timer->hpet_config);
536 	local_irq_restore(flags);
537 
538 	return 0;
539 }
540 
541 /* converts Hz to number of timer ticks */
542 static inline unsigned long hpet_time_div(struct hpets *hpets,
543 					  unsigned long dis)
544 {
545 	unsigned long long m;
546 
547 	m = hpets->hp_tick_freq + (dis >> 1);
548 	return div64_ul(m, dis);
549 }
550 
551 static int
552 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
553 		  struct hpet_info *info)
554 {
555 	struct hpet_timer __iomem *timer;
556 	struct hpets *hpetp;
557 	int err;
558 	unsigned long v;
559 
560 	switch (cmd) {
561 	case HPET_IE_OFF:
562 	case HPET_INFO:
563 	case HPET_EPI:
564 	case HPET_DPI:
565 	case HPET_IRQFREQ:
566 		timer = devp->hd_timer;
567 		hpetp = devp->hd_hpets;
568 		break;
569 	case HPET_IE_ON:
570 		return hpet_ioctl_ieon(devp);
571 	default:
572 		return -EINVAL;
573 	}
574 
575 	err = 0;
576 
577 	switch (cmd) {
578 	case HPET_IE_OFF:
579 		if ((devp->hd_flags & HPET_IE) == 0)
580 			break;
581 		v = readq(&timer->hpet_config);
582 		v &= ~Tn_INT_ENB_CNF_MASK;
583 		writeq(v, &timer->hpet_config);
584 		if (devp->hd_irq) {
585 			free_irq(devp->hd_irq, devp);
586 			devp->hd_irq = 0;
587 		}
588 		devp->hd_flags ^= HPET_IE;
589 		break;
590 	case HPET_INFO:
591 		{
592 			memset(info, 0, sizeof(*info));
593 			if (devp->hd_ireqfreq)
594 				info->hi_ireqfreq =
595 					hpet_time_div(hpetp, devp->hd_ireqfreq);
596 			info->hi_flags =
597 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
598 			info->hi_hpet = hpetp->hp_which;
599 			info->hi_timer = devp - hpetp->hp_dev;
600 			break;
601 		}
602 	case HPET_EPI:
603 		v = readq(&timer->hpet_config);
604 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
605 			err = -ENXIO;
606 			break;
607 		}
608 		devp->hd_flags |= HPET_PERIODIC;
609 		break;
610 	case HPET_DPI:
611 		v = readq(&timer->hpet_config);
612 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
613 			err = -ENXIO;
614 			break;
615 		}
616 		if (devp->hd_flags & HPET_PERIODIC &&
617 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
618 			v = readq(&timer->hpet_config);
619 			v ^= Tn_TYPE_CNF_MASK;
620 			writeq(v, &timer->hpet_config);
621 		}
622 		devp->hd_flags &= ~HPET_PERIODIC;
623 		break;
624 	case HPET_IRQFREQ:
625 		if ((arg > hpet_max_freq) &&
626 		    !capable(CAP_SYS_RESOURCE)) {
627 			err = -EACCES;
628 			break;
629 		}
630 
631 		if (!arg) {
632 			err = -EINVAL;
633 			break;
634 		}
635 
636 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
637 	}
638 
639 	return err;
640 }
641 
642 static long
643 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
644 {
645 	struct hpet_info info;
646 	int err;
647 
648 	mutex_lock(&hpet_mutex);
649 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
650 	mutex_unlock(&hpet_mutex);
651 
652 	if ((cmd == HPET_INFO) && !err &&
653 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
654 		err = -EFAULT;
655 
656 	return err;
657 }
658 
659 #ifdef CONFIG_COMPAT
660 struct compat_hpet_info {
661 	compat_ulong_t hi_ireqfreq;	/* Hz */
662 	compat_ulong_t hi_flags;	/* information */
663 	unsigned short hi_hpet;
664 	unsigned short hi_timer;
665 };
666 
667 /* 32-bit types would lead to different command codes which should be
668  * translated into 64-bit ones before passed to hpet_ioctl_common
669  */
670 #define COMPAT_HPET_INFO       _IOR('h', 0x03, struct compat_hpet_info)
671 #define COMPAT_HPET_IRQFREQ    _IOW('h', 0x6, compat_ulong_t)
672 
673 static long
674 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
675 {
676 	struct hpet_info info;
677 	int err;
678 
679 	if (cmd == COMPAT_HPET_INFO)
680 		cmd = HPET_INFO;
681 
682 	if (cmd == COMPAT_HPET_IRQFREQ)
683 		cmd = HPET_IRQFREQ;
684 
685 	mutex_lock(&hpet_mutex);
686 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
687 	mutex_unlock(&hpet_mutex);
688 
689 	if ((cmd == HPET_INFO) && !err) {
690 		struct compat_hpet_info __user *u = compat_ptr(arg);
691 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
692 		    put_user(info.hi_flags, &u->hi_flags) ||
693 		    put_user(info.hi_hpet, &u->hi_hpet) ||
694 		    put_user(info.hi_timer, &u->hi_timer))
695 			err = -EFAULT;
696 	}
697 
698 	return err;
699 }
700 #endif
701 
702 static const struct file_operations hpet_fops = {
703 	.owner = THIS_MODULE,
704 	.read = hpet_read,
705 	.poll = hpet_poll,
706 	.unlocked_ioctl = hpet_ioctl,
707 #ifdef CONFIG_COMPAT
708 	.compat_ioctl = hpet_compat_ioctl,
709 #endif
710 	.open = hpet_open,
711 	.release = hpet_release,
712 	.fasync = hpet_fasync,
713 	.mmap = hpet_mmap,
714 };
715 
716 static int hpet_is_known(struct hpet_data *hdp)
717 {
718 	struct hpets *hpetp;
719 
720 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
721 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
722 			return 1;
723 
724 	return 0;
725 }
726 
727 static struct ctl_table hpet_table[] = {
728 	{
729 	 .procname = "max-user-freq",
730 	 .data = &hpet_max_freq,
731 	 .maxlen = sizeof(int),
732 	 .mode = 0644,
733 	 .proc_handler = proc_dointvec,
734 	 },
735 };
736 
737 static struct ctl_table_header *sysctl_header;
738 
739 /*
740  * Adjustment for when arming the timer with
741  * initial conditions.  That is, main counter
742  * ticks expired before interrupts are enabled.
743  */
744 #define	TICK_CALIBRATE	(1000UL)
745 
746 static unsigned long __hpet_calibrate(struct hpets *hpetp)
747 {
748 	struct hpet_timer __iomem *timer = NULL;
749 	unsigned long t, m, count, i, flags, start;
750 	struct hpet_dev *devp;
751 	int j;
752 	struct hpet __iomem *hpet;
753 
754 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
755 		if ((devp->hd_flags & HPET_OPEN) == 0) {
756 			timer = devp->hd_timer;
757 			break;
758 		}
759 
760 	if (!timer)
761 		return 0;
762 
763 	hpet = hpetp->hp_hpet;
764 	t = read_counter(&timer->hpet_compare);
765 
766 	i = 0;
767 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
768 
769 	local_irq_save(flags);
770 
771 	start = read_counter(&hpet->hpet_mc);
772 
773 	do {
774 		m = read_counter(&hpet->hpet_mc);
775 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
776 	} while (i++, (m - start) < count);
777 
778 	local_irq_restore(flags);
779 
780 	return (m - start) / i;
781 }
782 
783 static unsigned long hpet_calibrate(struct hpets *hpetp)
784 {
785 	unsigned long ret = ~0UL;
786 	unsigned long tmp;
787 
788 	/*
789 	 * Try to calibrate until return value becomes stable small value.
790 	 * If SMI interruption occurs in calibration loop, the return value
791 	 * will be big. This avoids its impact.
792 	 */
793 	for ( ; ; ) {
794 		tmp = __hpet_calibrate(hpetp);
795 		if (ret <= tmp)
796 			break;
797 		ret = tmp;
798 	}
799 
800 	return ret;
801 }
802 
803 int hpet_alloc(struct hpet_data *hdp)
804 {
805 	u64 cap, mcfg;
806 	struct hpet_dev *devp;
807 	u32 i, ntimer;
808 	struct hpets *hpetp;
809 	struct hpet __iomem *hpet;
810 	static struct hpets *last;
811 	u32 period;
812 	unsigned long long temp;
813 	u32 remainder;
814 
815 	/*
816 	 * hpet_alloc can be called by platform dependent code.
817 	 * If platform dependent code has allocated the hpet that
818 	 * ACPI has also reported, then we catch it here.
819 	 */
820 	if (hpet_is_known(hdp)) {
821 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
822 			__func__);
823 		return 0;
824 	}
825 
826 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
827 			GFP_KERNEL);
828 
829 	if (!hpetp)
830 		return -ENOMEM;
831 
832 	hpetp->hp_which = hpet_nhpet++;
833 	hpetp->hp_hpet = hdp->hd_address;
834 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
835 
836 	hpetp->hp_ntimer = hdp->hd_nirqs;
837 
838 	for (i = 0; i < hdp->hd_nirqs; i++)
839 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
840 
841 	hpet = hpetp->hp_hpet;
842 
843 	cap = readq(&hpet->hpet_cap);
844 
845 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
846 
847 	if (hpetp->hp_ntimer != ntimer) {
848 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
849 		       " with number of timers\n");
850 		kfree(hpetp);
851 		return -ENODEV;
852 	}
853 
854 	if (last)
855 		last->hp_next = hpetp;
856 	else
857 		hpets = hpetp;
858 
859 	last = hpetp;
860 
861 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
862 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
863 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
864 	temp += period >> 1; /* round */
865 	do_div(temp, period);
866 	hpetp->hp_tick_freq = temp; /* ticks per second */
867 
868 	printk(KERN_INFO "hpet%u: at MMIO 0x%lx, IRQ%s",
869 		hpetp->hp_which, hdp->hd_phys_address,
870 		hpetp->hp_ntimer > 1 ? "s" : "");
871 	for (i = 0; i < hpetp->hp_ntimer; i++)
872 		printk(KERN_CONT "%s %u", i > 0 ? "," : "", hdp->hd_irq[i]);
873 	printk(KERN_CONT "\n");
874 
875 	temp = hpetp->hp_tick_freq;
876 	remainder = do_div(temp, 1000000);
877 	printk(KERN_INFO
878 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
879 		hpetp->hp_which, hpetp->hp_ntimer,
880 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
881 		(unsigned) temp, remainder);
882 
883 	mcfg = readq(&hpet->hpet_config);
884 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
885 		write_counter(0L, &hpet->hpet_mc);
886 		mcfg |= HPET_ENABLE_CNF_MASK;
887 		writeq(mcfg, &hpet->hpet_config);
888 	}
889 
890 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
891 		struct hpet_timer __iomem *timer;
892 
893 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
894 
895 		devp->hd_hpets = hpetp;
896 		devp->hd_hpet = hpet;
897 		devp->hd_timer = timer;
898 
899 		/*
900 		 * If the timer was reserved by platform code,
901 		 * then make timer unavailable for opens.
902 		 */
903 		if (hdp->hd_state & (1 << i)) {
904 			devp->hd_flags = HPET_OPEN;
905 			continue;
906 		}
907 
908 		init_waitqueue_head(&devp->hd_waitqueue);
909 	}
910 
911 	hpetp->hp_delta = hpet_calibrate(hpetp);
912 
913 	return 0;
914 }
915 
916 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
917 {
918 	struct hpet_data *hdp;
919 	acpi_status status;
920 	struct acpi_resource_address64 addr;
921 
922 	hdp = data;
923 
924 	status = acpi_resource_to_address64(res, &addr);
925 
926 	if (ACPI_SUCCESS(status)) {
927 		hdp->hd_phys_address = addr.address.minimum;
928 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
929 		if (!hdp->hd_address)
930 			return AE_ERROR;
931 
932 		if (hpet_is_known(hdp)) {
933 			iounmap(hdp->hd_address);
934 			return AE_ALREADY_EXISTS;
935 		}
936 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
937 		struct acpi_resource_fixed_memory32 *fixmem32;
938 
939 		fixmem32 = &res->data.fixed_memory32;
940 
941 		hdp->hd_phys_address = fixmem32->address;
942 		hdp->hd_address = ioremap(fixmem32->address,
943 						HPET_RANGE_SIZE);
944 		if (!hdp->hd_address)
945 			return AE_ERROR;
946 
947 		if (hpet_is_known(hdp)) {
948 			iounmap(hdp->hd_address);
949 			return AE_ALREADY_EXISTS;
950 		}
951 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
952 		struct acpi_resource_extended_irq *irqp;
953 		int i, irq;
954 
955 		irqp = &res->data.extended_irq;
956 
957 		for (i = 0; i < irqp->interrupt_count; i++) {
958 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
959 				break;
960 
961 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
962 						irqp->triggering,
963 						irqp->polarity);
964 			if (irq < 0)
965 				return AE_ERROR;
966 
967 			hdp->hd_irq[hdp->hd_nirqs] = irq;
968 			hdp->hd_nirqs++;
969 		}
970 	}
971 
972 	return AE_OK;
973 }
974 
975 static int hpet_acpi_add(struct acpi_device *device)
976 {
977 	acpi_status result;
978 	struct hpet_data data;
979 
980 	memset(&data, 0, sizeof(data));
981 
982 	result =
983 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
984 				hpet_resources, &data);
985 
986 	if (ACPI_FAILURE(result))
987 		return -ENODEV;
988 
989 	if (!data.hd_address || !data.hd_nirqs) {
990 		if (data.hd_address)
991 			iounmap(data.hd_address);
992 		printk("%s: no address or irqs in _CRS\n", __func__);
993 		return -ENODEV;
994 	}
995 
996 	return hpet_alloc(&data);
997 }
998 
999 static const struct acpi_device_id hpet_device_ids[] = {
1000 	{"PNP0103", 0},
1001 	{"", 0},
1002 };
1003 
1004 static struct acpi_driver hpet_acpi_driver = {
1005 	.name = "hpet",
1006 	.ids = hpet_device_ids,
1007 	.ops = {
1008 		.add = hpet_acpi_add,
1009 		},
1010 };
1011 
1012 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1013 
1014 static int __init hpet_init(void)
1015 {
1016 	int result;
1017 
1018 	result = misc_register(&hpet_misc);
1019 	if (result < 0)
1020 		return -ENODEV;
1021 
1022 	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1023 
1024 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1025 	if (result < 0) {
1026 		if (sysctl_header)
1027 			unregister_sysctl_table(sysctl_header);
1028 		misc_deregister(&hpet_misc);
1029 		return result;
1030 	}
1031 
1032 	return 0;
1033 }
1034 device_initcall(hpet_init);
1035 
1036 /*
1037 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1038 MODULE_LICENSE("GPL");
1039 */
1040