xref: /linux/drivers/char/agp/isoch.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Setup routines for AGP 3.5 compliant bridges.
4  */
5 
6 #include <linux/list.h>
7 #include <linux/pci.h>
8 #include <linux/agp_backend.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 
12 #include "agp.h"
13 
14 /* Generic AGP 3.5 enabling routines */
15 
16 struct agp_3_5_dev {
17 	struct list_head list;
18 	u8 capndx;
19 	u32 maxbw;
20 	struct pci_dev *dev;
21 };
22 
23 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24 {
25 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 	struct list_head *pos;
27 
28 	list_for_each(pos, head) {
29 		cur = list_entry(pos, struct agp_3_5_dev, list);
30 		if (cur->maxbw > n->maxbw)
31 			break;
32 	}
33 	list_add_tail(new, pos);
34 }
35 
36 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37 {
38 	struct agp_3_5_dev *cur;
39 	struct pci_dev *dev;
40 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 	u32 nistat;
42 
43 	INIT_LIST_HEAD(head);
44 
45 	for (pos=start; pos!=head; ) {
46 		cur = list_entry(pos, struct agp_3_5_dev, list);
47 		dev = cur->dev;
48 
49 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 		cur->maxbw = (nistat >> 16) & 0xff;
51 
52 		tmp = pos;
53 		pos = pos->next;
54 		agp_3_5_dev_list_insert(head, tmp);
55 	}
56 }
57 
58 /*
59  * Initialize all isochronous transfer parameters for an AGP 3.0
60  * node (i.e. a host bridge in combination with the adapters
61  * lying behind it...)
62  */
63 
64 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
66 {
67 	/*
68 	 * Convenience structure to make the calculations clearer
69 	 * here.  The field names come straight from the AGP 3.0 spec.
70 	 */
71 	struct isoch_data {
72 		u32 maxbw;
73 		u32 n;
74 		u32 y;
75 		u32 l;
76 		u32 rq;
77 		struct agp_3_5_dev *dev;
78 	};
79 
80 	struct pci_dev *td = bridge->dev, *dev;
81 	struct list_head *head = &dev_list->list, *pos;
82 	struct agp_3_5_dev *cur;
83 	struct isoch_data *master, target;
84 	unsigned int cdev = 0;
85 	u32 mnistat, tnistat, tstatus, mcmd;
86 	u16 tnicmd, mnicmd;
87 	u8 mcapndx;
88 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
89 	u32 step, rem, rem_isoch, rem_async;
90 	int ret = 0;
91 
92 	/*
93 	 * We'll work with an array of isoch_data's (one for each
94 	 * device in dev_list) throughout this function.
95 	 */
96 	if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
97 		ret = -ENOMEM;
98 		goto get_out;
99 	}
100 
101 	/*
102 	 * Sort the device list by maxbw.  We need to do this because the
103 	 * spec suggests that the devices with the smallest requirements
104 	 * have their resources allocated first, with all remaining resources
105 	 * falling to the device with the largest requirement.
106 	 *
107 	 * We don't exactly do this, we divide target resources by ndevs
108 	 * and split them amongst the AGP 3.0 devices.  The remainder of such
109 	 * division operations are dropped on the last device, sort of like
110 	 * the spec mentions it should be done.
111 	 *
112 	 * We can't do this sort when we initially construct the dev_list
113 	 * because we don't know until this function whether isochronous
114 	 * transfers are enabled and consequently whether maxbw will mean
115 	 * anything.
116 	 */
117 	agp_3_5_dev_list_sort(dev_list, ndevs);
118 
119 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121 
122 	/* Extract power-on defaults from the target */
123 	target.maxbw = (tnistat >> 16) & 0xff;
124 	target.n     = (tnistat >> 8)  & 0xff;
125 	target.y     = (tnistat >> 6)  & 0x3;
126 	target.l     = (tnistat >> 3)  & 0x7;
127 	target.rq    = (tstatus >> 24) & 0xff;
128 
129 	y_max = target.y;
130 
131 	/*
132 	 * Extract power-on defaults for each device in dev_list.  Along
133 	 * the way, calculate the total isochronous bandwidth required
134 	 * by these devices and the largest requested payload size.
135 	 */
136 	list_for_each(pos, head) {
137 		cur = list_entry(pos, struct agp_3_5_dev, list);
138 		dev = cur->dev;
139 
140 		mcapndx = cur->capndx;
141 
142 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
143 
144 		master[cdev].maxbw = (mnistat >> 16) & 0xff;
145 		master[cdev].n     = (mnistat >> 8)  & 0xff;
146 		master[cdev].y     = (mnistat >> 6)  & 0x3;
147 		master[cdev].dev   = cur;
148 
149 		tot_bw += master[cdev].maxbw;
150 		y_max = max(y_max, master[cdev].y);
151 
152 		cdev++;
153 	}
154 
155 	/* Check if this configuration has any chance of working */
156 	if (tot_bw > target.maxbw) {
157 		dev_err(&td->dev, "isochronous bandwidth required "
158 			"by AGP 3.0 devices exceeds that which is supported by "
159 			"the AGP 3.0 bridge!\n");
160 		ret = -ENODEV;
161 		goto free_and_exit;
162 	}
163 
164 	target.y = y_max;
165 
166 	/*
167 	 * Write the calculated payload size into the target's NICMD
168 	 * register.  Doing this directly effects the ISOCH_N value
169 	 * in the target's NISTAT register, so we need to do this now
170 	 * to get an accurate value for ISOCH_N later.
171 	 */
172 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
173 	tnicmd &= ~(0x3 << 6);
174 	tnicmd |= target.y << 6;
175 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
176 
177 	/* Reread the target's ISOCH_N */
178 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
179 	target.n = (tnistat >> 8) & 0xff;
180 
181 	/* Calculate the minimum ISOCH_N needed by each master */
182 	for (cdev=0; cdev<ndevs; cdev++) {
183 		master[cdev].y = target.y;
184 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
185 
186 		tot_n += master[cdev].n;
187 	}
188 
189 	/* Exit if the minimal ISOCH_N allocation among the masters is more
190 	 * than the target can handle. */
191 	if (tot_n > target.n) {
192 		dev_err(&td->dev, "number of isochronous "
193 			"transactions per period required by AGP 3.0 devices "
194 			"exceeds that which is supported by the AGP 3.0 "
195 			"bridge!\n");
196 		ret = -ENODEV;
197 		goto free_and_exit;
198 	}
199 
200 	/* Calculate left over ISOCH_N capability in the target.  We'll give
201 	 * this to the hungriest device (as per the spec) */
202 	rem  = target.n - tot_n;
203 
204 	/*
205 	 * Calculate the minimum isochronous RQ depth needed by each master.
206 	 * Along the way, distribute the extra ISOCH_N capability calculated
207 	 * above.
208 	 */
209 	for (cdev=0; cdev<ndevs; cdev++) {
210 		/*
211 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
212 		 * byte isochronous writes will be broken into 64B pieces.
213 		 * This means we need to budget more RQ depth to account for
214 		 * these kind of writes (each isochronous write is actually
215 		 * many writes on the AGP bus).
216 		 */
217 		master[cdev].rq = master[cdev].n;
218 		if (master[cdev].y > 0x1)
219 			master[cdev].rq *= (1 << (master[cdev].y - 1));
220 
221 		tot_rq += master[cdev].rq;
222 	}
223 	master[ndevs-1].n += rem;
224 
225 	/* Figure the number of isochronous and asynchronous RQ slots the
226 	 * target is providing. */
227 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
228 	rq_async = target.rq - rq_isoch;
229 
230 	/* Exit if the minimal RQ needs of the masters exceeds what the target
231 	 * can provide. */
232 	if (tot_rq > rq_isoch) {
233 		dev_err(&td->dev, "number of request queue slots "
234 			"required by the isochronous bandwidth requested by "
235 			"AGP 3.0 devices exceeds the number provided by the "
236 			"AGP 3.0 bridge!\n");
237 		ret = -ENODEV;
238 		goto free_and_exit;
239 	}
240 
241 	/* Calculate asynchronous RQ capability in the target (per master) as
242 	 * well as the total number of leftover isochronous RQ slots. */
243 	step      = rq_async / ndevs;
244 	rem_async = step + (rq_async % ndevs);
245 	rem_isoch = rq_isoch - tot_rq;
246 
247 	/* Distribute the extra RQ slots calculated above and write our
248 	 * isochronous settings out to the actual devices. */
249 	for (cdev=0; cdev<ndevs; cdev++) {
250 		cur = master[cdev].dev;
251 		dev = cur->dev;
252 
253 		mcapndx = cur->capndx;
254 
255 		master[cdev].rq += (cdev == ndevs - 1)
256 		              ? (rem_async + rem_isoch) : step;
257 
258 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
259 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
260 
261 		mnicmd &= ~(0xff << 8);
262 		mnicmd &= ~(0x3  << 6);
263 		mcmd   &= ~(0xff << 24);
264 
265 		mnicmd |= master[cdev].n  << 8;
266 		mnicmd |= master[cdev].y  << 6;
267 		mcmd   |= master[cdev].rq << 24;
268 
269 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
270 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
271 	}
272 
273 free_and_exit:
274 	kfree(master);
275 
276 get_out:
277 	return ret;
278 }
279 
280 /*
281  * This function basically allocates request queue slots among the
282  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
283  * pretty stupid, divide the total number of RQ slots provided by the
284  * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
285  * giving any left over slots to the last device in dev_list.
286  */
287 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
288 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
289 {
290 	struct agp_3_5_dev *cur;
291 	struct list_head *head = &dev_list->list, *pos;
292 	u32 tstatus, mcmd;
293 	u32 trq, mrq, rem;
294 	unsigned int cdev = 0;
295 
296 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
297 
298 	trq = (tstatus >> 24) & 0xff;
299 	mrq = trq / ndevs;
300 
301 	rem = mrq + (trq % ndevs);
302 
303 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
304 		cur = list_entry(pos, struct agp_3_5_dev, list);
305 
306 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
307 		mcmd &= ~(0xff << 24);
308 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
309 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
310 	}
311 }
312 
313 /*
314  * Fully configure and enable an AGP 3.0 host bridge and all the devices
315  * lying behind it.
316  */
317 int agp_3_5_enable(struct agp_bridge_data *bridge)
318 {
319 	struct pci_dev *td = bridge->dev, *dev = NULL;
320 	u8 mcapndx;
321 	u32 isoch, arqsz;
322 	u32 tstatus, mstatus, ncapid;
323 	u32 mmajor;
324 	u16 mpstat;
325 	struct agp_3_5_dev *dev_list, *cur;
326 	struct list_head *head, *pos;
327 	unsigned int ndevs = 0;
328 	int ret = 0;
329 
330 	/* Extract some power-on defaults from the target */
331 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
332 	isoch     = (tstatus >> 17) & 0x1;
333 	if (isoch == 0)	/* isoch xfers not available, bail out. */
334 		return -ENODEV;
335 
336 	arqsz     = (tstatus >> 13) & 0x7;
337 
338 	/*
339 	 * Allocate a head for our AGP 3.5 device list
340 	 * (multiple AGP v3 devices are allowed behind a single bridge).
341 	 */
342 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
343 		ret = -ENOMEM;
344 		goto get_out;
345 	}
346 	head = &dev_list->list;
347 	INIT_LIST_HEAD(head);
348 
349 	/* Find all AGP devices, and add them to dev_list. */
350 	for_each_pci_dev(dev) {
351 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
352 		if (mcapndx == 0)
353 			continue;
354 
355 		switch ((dev->class >>8) & 0xff00) {
356 			case 0x0600:    /* Bridge */
357 				/* Skip bridges. We should call this function for each one. */
358 				continue;
359 
360 			case 0x0001:    /* Unclassified device */
361 				/* Don't know what this is, but log it for investigation. */
362 				if (mcapndx != 0) {
363 					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
364 						 pci_name(dev),
365 						 dev->vendor, dev->device);
366 				}
367 				continue;
368 
369 			case 0x0300:    /* Display controller */
370 			case 0x0400:    /* Multimedia controller */
371 				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
372 					ret = -ENOMEM;
373 					goto free_and_exit;
374 				}
375 				cur->dev = dev;
376 
377 				pos = &cur->list;
378 				list_add(pos, head);
379 				ndevs++;
380 				continue;
381 
382 			default:
383 				continue;
384 		}
385 	}
386 
387 	/*
388 	 * Take an initial pass through the devices lying behind our host
389 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
390 	 * exit with an error message.  Along the way store the AGP 3.0
391 	 * cap_ptr for each device
392 	 */
393 	list_for_each(pos, head) {
394 		cur = list_entry(pos, struct agp_3_5_dev, list);
395 		dev = cur->dev;
396 
397 		pci_read_config_word(dev, PCI_STATUS, &mpstat);
398 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
399 			continue;
400 
401 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
402 		if (mcapndx != 0) {
403 			do {
404 				pci_read_config_dword(dev, mcapndx, &ncapid);
405 				if ((ncapid & 0xff) != 2)
406 					mcapndx = (ncapid >> 8) & 0xff;
407 			}
408 			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
409 		}
410 
411 		if (mcapndx == 0) {
412 			dev_err(&td->dev, "woah!  Non-AGP device %s on "
413 				"secondary bus of AGP 3.5 bridge!\n",
414 				pci_name(dev));
415 			ret = -ENODEV;
416 			goto free_and_exit;
417 		}
418 
419 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
420 		if (mmajor < 3) {
421 			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
422 				"secondary bus of AGP 3.5 bridge operating "
423 				"with AGP 3.0 electricals!\n", pci_name(dev));
424 			ret = -ENODEV;
425 			goto free_and_exit;
426 		}
427 
428 		cur->capndx = mcapndx;
429 
430 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
431 
432 		if (((mstatus >> 3) & 0x1) == 0) {
433 			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
434 				"operating in AGP 3.x mode on secondary bus "
435 				"of AGP 3.5 bridge operating with AGP 3.0 "
436 				"electricals!\n", pci_name(dev));
437 			ret = -ENODEV;
438 			goto free_and_exit;
439 		}
440 	}
441 
442 	/*
443 	 * Call functions to divide target resources amongst the AGP 3.0
444 	 * masters.  This process is dramatically different depending on
445 	 * whether isochronous transfers are supported.
446 	 */
447 	if (isoch) {
448 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
449 		if (ret) {
450 			dev_info(&td->dev, "something bad happened setting "
451 				 "up isochronous xfers; falling back to "
452 				 "non-isochronous xfer mode\n");
453 		} else {
454 			goto free_and_exit;
455 		}
456 	}
457 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
458 
459 free_and_exit:
460 	/* Be sure to free the dev_list */
461 	for (pos=head->next; pos!=head; ) {
462 		cur = list_entry(pos, struct agp_3_5_dev, list);
463 
464 		pos = pos->next;
465 		kfree(cur);
466 	}
467 	kfree(dev_list);
468 
469 get_out:
470 	return ret;
471 }
472