xref: /linux/drivers/char/agp/isoch.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Setup routines for AGP 3.5 compliant bridges.
3  */
4 
5 #include <linux/list.h>
6 #include <linux/pci.h>
7 #include <linux/agp_backend.h>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 
11 #include "agp.h"
12 
13 /* Generic AGP 3.5 enabling routines */
14 
15 struct agp_3_5_dev {
16 	struct list_head list;
17 	u8 capndx;
18 	u32 maxbw;
19 	struct pci_dev *dev;
20 };
21 
22 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
23 {
24 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
25 	struct list_head *pos;
26 
27 	list_for_each(pos, head) {
28 		cur = list_entry(pos, struct agp_3_5_dev, list);
29 		if (cur->maxbw > n->maxbw)
30 			break;
31 	}
32 	list_add_tail(new, pos);
33 }
34 
35 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
36 {
37 	struct agp_3_5_dev *cur;
38 	struct pci_dev *dev;
39 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
40 	u32 nistat;
41 
42 	INIT_LIST_HEAD(head);
43 
44 	for (pos=start; pos!=head; ) {
45 		cur = list_entry(pos, struct agp_3_5_dev, list);
46 		dev = cur->dev;
47 
48 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
49 		cur->maxbw = (nistat >> 16) & 0xff;
50 
51 		tmp = pos;
52 		pos = pos->next;
53 		agp_3_5_dev_list_insert(head, tmp);
54 	}
55 }
56 
57 /*
58  * Initialize all isochronous transfer parameters for an AGP 3.0
59  * node (i.e. a host bridge in combination with the adapters
60  * lying behind it...)
61  */
62 
63 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
64 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
65 {
66 	/*
67 	 * Convenience structure to make the calculations clearer
68 	 * here.  The field names come straight from the AGP 3.0 spec.
69 	 */
70 	struct isoch_data {
71 		u32 maxbw;
72 		u32 n;
73 		u32 y;
74 		u32 l;
75 		u32 rq;
76 		struct agp_3_5_dev *dev;
77 	};
78 
79 	struct pci_dev *td = bridge->dev, *dev;
80 	struct list_head *head = &dev_list->list, *pos;
81 	struct agp_3_5_dev *cur;
82 	struct isoch_data *master, target;
83 	unsigned int cdev = 0;
84 	u32 mnistat, tnistat, tstatus, mcmd;
85 	u16 tnicmd, mnicmd;
86 	u8 mcapndx;
87 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88 	u32 step, rem, rem_isoch, rem_async;
89 	int ret = 0;
90 
91 	/*
92 	 * We'll work with an array of isoch_data's (one for each
93 	 * device in dev_list) throughout this function.
94 	 */
95 	if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
96 		ret = -ENOMEM;
97 		goto get_out;
98 	}
99 
100 	/*
101 	 * Sort the device list by maxbw.  We need to do this because the
102 	 * spec suggests that the devices with the smallest requirements
103 	 * have their resources allocated first, with all remaining resources
104 	 * falling to the device with the largest requirement.
105 	 *
106 	 * We don't exactly do this, we divide target resources by ndevs
107 	 * and split them amongst the AGP 3.0 devices.  The remainder of such
108 	 * division operations are dropped on the last device, sort of like
109 	 * the spec mentions it should be done.
110 	 *
111 	 * We can't do this sort when we initially construct the dev_list
112 	 * because we don't know until this function whether isochronous
113 	 * transfers are enabled and consequently whether maxbw will mean
114 	 * anything.
115 	 */
116 	agp_3_5_dev_list_sort(dev_list, ndevs);
117 
118 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
119 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
120 
121 	/* Extract power-on defaults from the target */
122 	target.maxbw = (tnistat >> 16) & 0xff;
123 	target.n     = (tnistat >> 8)  & 0xff;
124 	target.y     = (tnistat >> 6)  & 0x3;
125 	target.l     = (tnistat >> 3)  & 0x7;
126 	target.rq    = (tstatus >> 24) & 0xff;
127 
128 	y_max = target.y;
129 
130 	/*
131 	 * Extract power-on defaults for each device in dev_list.  Along
132 	 * the way, calculate the total isochronous bandwidth required
133 	 * by these devices and the largest requested payload size.
134 	 */
135 	list_for_each(pos, head) {
136 		cur = list_entry(pos, struct agp_3_5_dev, list);
137 		dev = cur->dev;
138 
139 		mcapndx = cur->capndx;
140 
141 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
142 
143 		master[cdev].maxbw = (mnistat >> 16) & 0xff;
144 		master[cdev].n     = (mnistat >> 8)  & 0xff;
145 		master[cdev].y     = (mnistat >> 6)  & 0x3;
146 		master[cdev].dev   = cur;
147 
148 		tot_bw += master[cdev].maxbw;
149 		y_max = max(y_max, master[cdev].y);
150 
151 		cdev++;
152 	}
153 
154 	/* Check if this configuration has any chance of working */
155 	if (tot_bw > target.maxbw) {
156 		dev_err(&td->dev, "isochronous bandwidth required "
157 			"by AGP 3.0 devices exceeds that which is supported by "
158 			"the AGP 3.0 bridge!\n");
159 		ret = -ENODEV;
160 		goto free_and_exit;
161 	}
162 
163 	target.y = y_max;
164 
165 	/*
166 	 * Write the calculated payload size into the target's NICMD
167 	 * register.  Doing this directly effects the ISOCH_N value
168 	 * in the target's NISTAT register, so we need to do this now
169 	 * to get an accurate value for ISOCH_N later.
170 	 */
171 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
172 	tnicmd &= ~(0x3 << 6);
173 	tnicmd |= target.y << 6;
174 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
175 
176 	/* Reread the target's ISOCH_N */
177 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
178 	target.n = (tnistat >> 8) & 0xff;
179 
180 	/* Calculate the minimum ISOCH_N needed by each master */
181 	for (cdev=0; cdev<ndevs; cdev++) {
182 		master[cdev].y = target.y;
183 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
184 
185 		tot_n += master[cdev].n;
186 	}
187 
188 	/* Exit if the minimal ISOCH_N allocation among the masters is more
189 	 * than the target can handle. */
190 	if (tot_n > target.n) {
191 		dev_err(&td->dev, "number of isochronous "
192 			"transactions per period required by AGP 3.0 devices "
193 			"exceeds that which is supported by the AGP 3.0 "
194 			"bridge!\n");
195 		ret = -ENODEV;
196 		goto free_and_exit;
197 	}
198 
199 	/* Calculate left over ISOCH_N capability in the target.  We'll give
200 	 * this to the hungriest device (as per the spec) */
201 	rem  = target.n - tot_n;
202 
203 	/*
204 	 * Calculate the minimum isochronous RQ depth needed by each master.
205 	 * Along the way, distribute the extra ISOCH_N capability calculated
206 	 * above.
207 	 */
208 	for (cdev=0; cdev<ndevs; cdev++) {
209 		/*
210 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
211 		 * byte isochronous writes will be broken into 64B pieces.
212 		 * This means we need to budget more RQ depth to account for
213 		 * these kind of writes (each isochronous write is actually
214 		 * many writes on the AGP bus).
215 		 */
216 		master[cdev].rq = master[cdev].n;
217 		if (master[cdev].y > 0x1)
218 			master[cdev].rq *= (1 << (master[cdev].y - 1));
219 
220 		tot_rq += master[cdev].rq;
221 	}
222 	master[ndevs-1].n += rem;
223 
224 	/* Figure the number of isochronous and asynchronous RQ slots the
225 	 * target is providing. */
226 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
227 	rq_async = target.rq - rq_isoch;
228 
229 	/* Exit if the minimal RQ needs of the masters exceeds what the target
230 	 * can provide. */
231 	if (tot_rq > rq_isoch) {
232 		dev_err(&td->dev, "number of request queue slots "
233 			"required by the isochronous bandwidth requested by "
234 			"AGP 3.0 devices exceeds the number provided by the "
235 			"AGP 3.0 bridge!\n");
236 		ret = -ENODEV;
237 		goto free_and_exit;
238 	}
239 
240 	/* Calculate asynchronous RQ capability in the target (per master) as
241 	 * well as the total number of leftover isochronous RQ slots. */
242 	step      = rq_async / ndevs;
243 	rem_async = step + (rq_async % ndevs);
244 	rem_isoch = rq_isoch - tot_rq;
245 
246 	/* Distribute the extra RQ slots calculated above and write our
247 	 * isochronous settings out to the actual devices. */
248 	for (cdev=0; cdev<ndevs; cdev++) {
249 		cur = master[cdev].dev;
250 		dev = cur->dev;
251 
252 		mcapndx = cur->capndx;
253 
254 		master[cdev].rq += (cdev == ndevs - 1)
255 		              ? (rem_async + rem_isoch) : step;
256 
257 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
258 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
259 
260 		mnicmd &= ~(0xff << 8);
261 		mnicmd &= ~(0x3  << 6);
262 		mcmd   &= ~(0xff << 24);
263 
264 		mnicmd |= master[cdev].n  << 8;
265 		mnicmd |= master[cdev].y  << 6;
266 		mcmd   |= master[cdev].rq << 24;
267 
268 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
269 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
270 	}
271 
272 free_and_exit:
273 	kfree(master);
274 
275 get_out:
276 	return ret;
277 }
278 
279 /*
280  * This function basically allocates request queue slots among the
281  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
282  * pretty stupid, divide the total number of RQ slots provided by the
283  * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
284  * giving any left over slots to the last device in dev_list.
285  */
286 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
287 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
288 {
289 	struct agp_3_5_dev *cur;
290 	struct list_head *head = &dev_list->list, *pos;
291 	u32 tstatus, mcmd;
292 	u32 trq, mrq, rem;
293 	unsigned int cdev = 0;
294 
295 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
296 
297 	trq = (tstatus >> 24) & 0xff;
298 	mrq = trq / ndevs;
299 
300 	rem = mrq + (trq % ndevs);
301 
302 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
303 		cur = list_entry(pos, struct agp_3_5_dev, list);
304 
305 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
306 		mcmd &= ~(0xff << 24);
307 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
308 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
309 	}
310 }
311 
312 /*
313  * Fully configure and enable an AGP 3.0 host bridge and all the devices
314  * lying behind it.
315  */
316 int agp_3_5_enable(struct agp_bridge_data *bridge)
317 {
318 	struct pci_dev *td = bridge->dev, *dev = NULL;
319 	u8 mcapndx;
320 	u32 isoch, arqsz;
321 	u32 tstatus, mstatus, ncapid;
322 	u32 mmajor;
323 	u16 mpstat;
324 	struct agp_3_5_dev *dev_list, *cur;
325 	struct list_head *head, *pos;
326 	unsigned int ndevs = 0;
327 	int ret = 0;
328 
329 	/* Extract some power-on defaults from the target */
330 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
331 	isoch     = (tstatus >> 17) & 0x1;
332 	if (isoch == 0)	/* isoch xfers not available, bail out. */
333 		return -ENODEV;
334 
335 	arqsz     = (tstatus >> 13) & 0x7;
336 
337 	/*
338 	 * Allocate a head for our AGP 3.5 device list
339 	 * (multiple AGP v3 devices are allowed behind a single bridge).
340 	 */
341 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
342 		ret = -ENOMEM;
343 		goto get_out;
344 	}
345 	head = &dev_list->list;
346 	INIT_LIST_HEAD(head);
347 
348 	/* Find all AGP devices, and add them to dev_list. */
349 	for_each_pci_dev(dev) {
350 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
351 		if (mcapndx == 0)
352 			continue;
353 
354 		switch ((dev->class >>8) & 0xff00) {
355 			case 0x0600:    /* Bridge */
356 				/* Skip bridges. We should call this function for each one. */
357 				continue;
358 
359 			case 0x0001:    /* Unclassified device */
360 				/* Don't know what this is, but log it for investigation. */
361 				if (mcapndx != 0) {
362 					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
363 						 pci_name(dev),
364 						 dev->vendor, dev->device);
365 				}
366 				continue;
367 
368 			case 0x0300:    /* Display controller */
369 			case 0x0400:    /* Multimedia controller */
370 				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
371 					ret = -ENOMEM;
372 					goto free_and_exit;
373 				}
374 				cur->dev = dev;
375 
376 				pos = &cur->list;
377 				list_add(pos, head);
378 				ndevs++;
379 				continue;
380 
381 			default:
382 				continue;
383 		}
384 	}
385 
386 	/*
387 	 * Take an initial pass through the devices lying behind our host
388 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
389 	 * exit with an error message.  Along the way store the AGP 3.0
390 	 * cap_ptr for each device
391 	 */
392 	list_for_each(pos, head) {
393 		cur = list_entry(pos, struct agp_3_5_dev, list);
394 		dev = cur->dev;
395 
396 		pci_read_config_word(dev, PCI_STATUS, &mpstat);
397 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
398 			continue;
399 
400 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
401 		if (mcapndx != 0) {
402 			do {
403 				pci_read_config_dword(dev, mcapndx, &ncapid);
404 				if ((ncapid & 0xff) != 2)
405 					mcapndx = (ncapid >> 8) & 0xff;
406 			}
407 			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
408 		}
409 
410 		if (mcapndx == 0) {
411 			dev_err(&td->dev, "woah!  Non-AGP device %s on "
412 				"secondary bus of AGP 3.5 bridge!\n",
413 				pci_name(dev));
414 			ret = -ENODEV;
415 			goto free_and_exit;
416 		}
417 
418 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
419 		if (mmajor < 3) {
420 			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
421 				"secondary bus of AGP 3.5 bridge operating "
422 				"with AGP 3.0 electricals!\n", pci_name(dev));
423 			ret = -ENODEV;
424 			goto free_and_exit;
425 		}
426 
427 		cur->capndx = mcapndx;
428 
429 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
430 
431 		if (((mstatus >> 3) & 0x1) == 0) {
432 			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
433 				"operating in AGP 3.x mode on secondary bus "
434 				"of AGP 3.5 bridge operating with AGP 3.0 "
435 				"electricals!\n", pci_name(dev));
436 			ret = -ENODEV;
437 			goto free_and_exit;
438 		}
439 	}
440 
441 	/*
442 	 * Call functions to divide target resources amongst the AGP 3.0
443 	 * masters.  This process is dramatically different depending on
444 	 * whether isochronous transfers are supported.
445 	 */
446 	if (isoch) {
447 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
448 		if (ret) {
449 			dev_info(&td->dev, "something bad happened setting "
450 				 "up isochronous xfers; falling back to "
451 				 "non-isochronous xfer mode\n");
452 		} else {
453 			goto free_and_exit;
454 		}
455 	}
456 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
457 
458 free_and_exit:
459 	/* Be sure to free the dev_list */
460 	for (pos=head->next; pos!=head; ) {
461 		cur = list_entry(pos, struct agp_3_5_dev, list);
462 
463 		pos = pos->next;
464 		kfree(cur);
465 	}
466 	kfree(dev_list);
467 
468 get_out:
469 	return ret;
470 }
471