xref: /linux/drivers/bus/mhi/host/pm.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 #include "trace.h"
19 
20 /*
21  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
22  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
23  * transition to a new state only if we're allowed to.
24  *
25  * Priority increases as we go down. For instance, from any state in L0, the
26  * transition can be made to states in L1, L2 and L3. A notable exception to
27  * this rule is state DISABLE.  From DISABLE state we can only transition to
28  * POR state. Also, while in L2 state, user cannot jump back to previous
29  * L1 or L0 states.
30  *
31  * Valid transitions:
32  * L0: DISABLE <--> POR
33  *     POR <--> POR
34  *     POR -> M0 -> M2 --> M0
35  *     POR -> FW_DL_ERR
36  *     FW_DL_ERR <--> FW_DL_ERR
37  *     M0 <--> M0
38  *     M0 -> FW_DL_ERR
39  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
40  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS
41  *     SYS_ERR_PROCESS -> SYS_ERR_FAIL
42  *     SYS_ERR_FAIL -> SYS_ERR_DETECT
43  *     SYS_ERR_PROCESS --> POR
44  * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
45  *     SHUTDOWN_PROCESS -> DISABLE
46  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
47  *     LD_ERR_FATAL_DETECT -> DISABLE
48  */
49 static const struct mhi_pm_transitions dev_state_transitions[] = {
50 	/* L0 States */
51 	{
52 		MHI_PM_DISABLE,
53 		MHI_PM_POR
54 	},
55 	{
56 		MHI_PM_POR,
57 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
58 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
59 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
60 	},
61 	{
62 		MHI_PM_M0,
63 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
64 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
65 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
66 	},
67 	{
68 		MHI_PM_M2,
69 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
70 		MHI_PM_LD_ERR_FATAL_DETECT
71 	},
72 	{
73 		MHI_PM_M3_ENTER,
74 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
75 		MHI_PM_LD_ERR_FATAL_DETECT
76 	},
77 	{
78 		MHI_PM_M3,
79 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
80 		MHI_PM_LD_ERR_FATAL_DETECT
81 	},
82 	{
83 		MHI_PM_M3_EXIT,
84 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
85 		MHI_PM_LD_ERR_FATAL_DETECT
86 	},
87 	{
88 		MHI_PM_FW_DL_ERR,
89 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
90 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
91 	},
92 	/* L1 States */
93 	{
94 		MHI_PM_SYS_ERR_DETECT,
95 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
96 		MHI_PM_LD_ERR_FATAL_DETECT
97 	},
98 	{
99 		MHI_PM_SYS_ERR_PROCESS,
100 		MHI_PM_POR | MHI_PM_SYS_ERR_FAIL | MHI_PM_SHUTDOWN_PROCESS |
101 		MHI_PM_LD_ERR_FATAL_DETECT
102 	},
103 	{
104 		MHI_PM_SYS_ERR_FAIL,
105 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
106 		MHI_PM_LD_ERR_FATAL_DETECT
107 	},
108 	/* L2 States */
109 	{
110 		MHI_PM_SHUTDOWN_PROCESS,
111 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
112 	},
113 	/* L3 States */
114 	{
115 		MHI_PM_LD_ERR_FATAL_DETECT,
116 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
117 	},
118 };
119 
120 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
121 						   enum mhi_pm_state state)
122 {
123 	unsigned long cur_state = mhi_cntrl->pm_state;
124 	int index = find_last_bit(&cur_state, 32);
125 
126 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
127 		return cur_state;
128 
129 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
130 		return cur_state;
131 
132 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
133 		return cur_state;
134 
135 	trace_mhi_tryset_pm_state(mhi_cntrl, state);
136 	mhi_cntrl->pm_state = state;
137 	return mhi_cntrl->pm_state;
138 }
139 
140 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
141 {
142 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
143 	int ret;
144 
145 	if (state == MHI_STATE_RESET) {
146 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
147 					  MHICTRL_RESET_MASK, 1);
148 	} else {
149 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
150 					  MHICTRL_MHISTATE_MASK, state);
151 	}
152 
153 	if (ret)
154 		dev_err(dev, "Failed to set MHI state to: %s\n",
155 			mhi_state_str(state));
156 }
157 
158 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
159 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
160 {
161 }
162 
163 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
164 {
165 	mhi_cntrl->wake_get(mhi_cntrl, false);
166 	mhi_cntrl->wake_put(mhi_cntrl, true);
167 }
168 
169 /* Handle device ready state transition */
170 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
171 {
172 	struct mhi_event *mhi_event;
173 	enum mhi_pm_state cur_state;
174 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
175 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
176 	u32 timeout_ms;
177 	int ret, i;
178 
179 	/* Check if device entered error state */
180 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
181 		dev_err(dev, "Device link is not accessible\n");
182 		return -EIO;
183 	}
184 
185 	/* Wait for RESET to be cleared and READY bit to be set by the device */
186 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
187 				 MHICTRL_RESET_MASK, 0, interval_us,
188 				 mhi_cntrl->timeout_ms);
189 	if (ret) {
190 		dev_err(dev, "Device failed to clear MHI Reset\n");
191 		return ret;
192 	}
193 
194 	timeout_ms = mhi_cntrl->ready_timeout_ms ?
195 		mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms;
196 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
197 				 MHISTATUS_READY_MASK, 1, interval_us,
198 				 timeout_ms);
199 	if (ret) {
200 		dev_err(dev, "Device failed to enter MHI Ready\n");
201 		return ret;
202 	}
203 
204 	dev_dbg(dev, "Device in READY State\n");
205 	write_lock_irq(&mhi_cntrl->pm_lock);
206 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
207 	mhi_cntrl->dev_state = MHI_STATE_READY;
208 	write_unlock_irq(&mhi_cntrl->pm_lock);
209 
210 	if (cur_state != MHI_PM_POR) {
211 		dev_err(dev, "Error moving to state %s from %s\n",
212 			to_mhi_pm_state_str(MHI_PM_POR),
213 			to_mhi_pm_state_str(cur_state));
214 		return -EIO;
215 	}
216 
217 	read_lock_bh(&mhi_cntrl->pm_lock);
218 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
219 		dev_err(dev, "Device registers not accessible\n");
220 		goto error_mmio;
221 	}
222 
223 	/* Configure MMIO registers */
224 	ret = mhi_init_mmio(mhi_cntrl);
225 	if (ret) {
226 		dev_err(dev, "Error configuring MMIO registers\n");
227 		goto error_mmio;
228 	}
229 
230 	/* Add elements to all SW event rings */
231 	mhi_event = mhi_cntrl->mhi_event;
232 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
233 		struct mhi_ring *ring = &mhi_event->ring;
234 
235 		/* Skip if this is an offload or HW event */
236 		if (mhi_event->offload_ev || mhi_event->hw_ring)
237 			continue;
238 
239 		ring->wp = ring->base + ring->len - ring->el_size;
240 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
241 		/* Update all cores */
242 		smp_wmb();
243 
244 		/* Ring the event ring db */
245 		spin_lock_irq(&mhi_event->lock);
246 		mhi_ring_er_db(mhi_event);
247 		spin_unlock_irq(&mhi_event->lock);
248 	}
249 
250 	/* Set MHI to M0 state */
251 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
252 	read_unlock_bh(&mhi_cntrl->pm_lock);
253 
254 	return 0;
255 
256 error_mmio:
257 	read_unlock_bh(&mhi_cntrl->pm_lock);
258 
259 	return -EIO;
260 }
261 
262 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
263 {
264 	enum mhi_pm_state cur_state;
265 	struct mhi_chan *mhi_chan;
266 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
267 	int i;
268 
269 	write_lock_irq(&mhi_cntrl->pm_lock);
270 	mhi_cntrl->dev_state = MHI_STATE_M0;
271 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
272 	write_unlock_irq(&mhi_cntrl->pm_lock);
273 	if (unlikely(cur_state != MHI_PM_M0)) {
274 		dev_err(dev, "Unable to transition to M0 state\n");
275 		return -EIO;
276 	}
277 	mhi_cntrl->M0++;
278 
279 	/* Wake up the device */
280 	read_lock_bh(&mhi_cntrl->pm_lock);
281 	mhi_cntrl->wake_get(mhi_cntrl, true);
282 
283 	/* Ring all event rings and CMD ring only if we're in mission mode */
284 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
285 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
286 		struct mhi_cmd *mhi_cmd =
287 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
288 
289 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
290 			if (mhi_event->offload_ev)
291 				continue;
292 
293 			spin_lock_irq(&mhi_event->lock);
294 			mhi_ring_er_db(mhi_event);
295 			spin_unlock_irq(&mhi_event->lock);
296 		}
297 
298 		/* Only ring primary cmd ring if ring is not empty */
299 		spin_lock_irq(&mhi_cmd->lock);
300 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
301 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
302 		spin_unlock_irq(&mhi_cmd->lock);
303 	}
304 
305 	/* Ring channel DB registers */
306 	mhi_chan = mhi_cntrl->mhi_chan;
307 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
308 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
309 
310 		if (mhi_chan->db_cfg.reset_req) {
311 			write_lock_irq(&mhi_chan->lock);
312 			mhi_chan->db_cfg.db_mode = true;
313 			write_unlock_irq(&mhi_chan->lock);
314 		}
315 
316 		read_lock_irq(&mhi_chan->lock);
317 
318 		/* Only ring DB if ring is not empty */
319 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp &&
320 		    mhi_chan->ch_state == MHI_CH_STATE_ENABLED)
321 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
322 		read_unlock_irq(&mhi_chan->lock);
323 	}
324 
325 	mhi_cntrl->wake_put(mhi_cntrl, false);
326 	read_unlock_bh(&mhi_cntrl->pm_lock);
327 	wake_up_all(&mhi_cntrl->state_event);
328 
329 	return 0;
330 }
331 
332 /*
333  * After receiving the MHI state change event from the device indicating the
334  * transition to M1 state, the host can transition the device to M2 state
335  * for keeping it in low power state.
336  */
337 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
338 {
339 	enum mhi_pm_state state;
340 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
341 
342 	write_lock_irq(&mhi_cntrl->pm_lock);
343 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
344 	if (state == MHI_PM_M2) {
345 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
346 		mhi_cntrl->dev_state = MHI_STATE_M2;
347 
348 		write_unlock_irq(&mhi_cntrl->pm_lock);
349 
350 		mhi_cntrl->M2++;
351 		wake_up_all(&mhi_cntrl->state_event);
352 
353 		/* If there are any pending resources, exit M2 immediately */
354 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
355 			     atomic_read(&mhi_cntrl->dev_wake))) {
356 			dev_dbg(dev,
357 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
358 				atomic_read(&mhi_cntrl->pending_pkts),
359 				atomic_read(&mhi_cntrl->dev_wake));
360 			read_lock_bh(&mhi_cntrl->pm_lock);
361 			mhi_cntrl->wake_get(mhi_cntrl, true);
362 			mhi_cntrl->wake_put(mhi_cntrl, true);
363 			read_unlock_bh(&mhi_cntrl->pm_lock);
364 		} else {
365 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
366 		}
367 	} else {
368 		write_unlock_irq(&mhi_cntrl->pm_lock);
369 	}
370 }
371 
372 /* MHI M3 completion handler */
373 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
374 {
375 	enum mhi_pm_state state;
376 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
377 
378 	write_lock_irq(&mhi_cntrl->pm_lock);
379 	mhi_cntrl->dev_state = MHI_STATE_M3;
380 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
381 	write_unlock_irq(&mhi_cntrl->pm_lock);
382 	if (state != MHI_PM_M3) {
383 		dev_err(dev, "Unable to transition to M3 state\n");
384 		return -EIO;
385 	}
386 
387 	mhi_cntrl->M3++;
388 	wake_up_all(&mhi_cntrl->state_event);
389 
390 	return 0;
391 }
392 
393 /* Handle device Mission Mode transition */
394 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
395 {
396 	struct mhi_event *mhi_event;
397 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
398 	enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
399 	int i, ret;
400 
401 	dev_dbg(dev, "Processing Mission Mode transition\n");
402 
403 	write_lock_irq(&mhi_cntrl->pm_lock);
404 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
405 		ee = mhi_get_exec_env(mhi_cntrl);
406 
407 	if (!MHI_IN_MISSION_MODE(ee)) {
408 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
409 		write_unlock_irq(&mhi_cntrl->pm_lock);
410 		wake_up_all(&mhi_cntrl->state_event);
411 		return -EIO;
412 	}
413 	mhi_cntrl->ee = ee;
414 	write_unlock_irq(&mhi_cntrl->pm_lock);
415 
416 	wake_up_all(&mhi_cntrl->state_event);
417 
418 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
419 			      mhi_destroy_device);
420 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
421 	mhi_uevent_notify(mhi_cntrl, mhi_cntrl->ee);
422 
423 	/* Force MHI to be in M0 state before continuing */
424 	ret = __mhi_device_get_sync(mhi_cntrl);
425 	if (ret)
426 		return ret;
427 
428 	read_lock_bh(&mhi_cntrl->pm_lock);
429 
430 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
431 		ret = -EIO;
432 		goto error_mission_mode;
433 	}
434 
435 	/* Add elements to all HW event rings */
436 	mhi_event = mhi_cntrl->mhi_event;
437 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
438 		struct mhi_ring *ring = &mhi_event->ring;
439 
440 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
441 			continue;
442 
443 		ring->wp = ring->base + ring->len - ring->el_size;
444 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
445 		/* Update to all cores */
446 		smp_wmb();
447 
448 		spin_lock_irq(&mhi_event->lock);
449 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
450 			mhi_ring_er_db(mhi_event);
451 		spin_unlock_irq(&mhi_event->lock);
452 	}
453 
454 	read_unlock_bh(&mhi_cntrl->pm_lock);
455 
456 	/*
457 	 * The MHI devices are only created when the client device switches its
458 	 * Execution Environment (EE) to either SBL or AMSS states
459 	 */
460 	mhi_create_devices(mhi_cntrl);
461 
462 	read_lock_bh(&mhi_cntrl->pm_lock);
463 
464 error_mission_mode:
465 	mhi_cntrl->wake_put(mhi_cntrl, false);
466 	read_unlock_bh(&mhi_cntrl->pm_lock);
467 
468 	return ret;
469 }
470 
471 /* Handle shutdown transitions */
472 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl,
473 				      bool destroy_device)
474 {
475 	enum mhi_pm_state cur_state;
476 	struct mhi_event *mhi_event;
477 	struct mhi_cmd_ctxt *cmd_ctxt;
478 	struct mhi_cmd *mhi_cmd;
479 	struct mhi_event_ctxt *er_ctxt;
480 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
481 	int ret, i;
482 
483 	dev_dbg(dev, "Processing disable transition with PM state: %s\n",
484 		to_mhi_pm_state_str(mhi_cntrl->pm_state));
485 
486 	mutex_lock(&mhi_cntrl->pm_mutex);
487 
488 	/* Trigger MHI RESET so that the device will not access host memory */
489 	if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
490 		/* Skip MHI RESET if in RDDM state */
491 		if (mhi_cntrl->rddm_image && mhi_get_exec_env(mhi_cntrl) == MHI_EE_RDDM)
492 			goto skip_mhi_reset;
493 
494 		dev_dbg(dev, "Triggering MHI Reset in device\n");
495 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
496 
497 		/* Wait for the reset bit to be cleared by the device */
498 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
499 				 MHICTRL_RESET_MASK, 0, 25000, mhi_cntrl->timeout_ms);
500 		if (ret)
501 			dev_err(dev, "Device failed to clear MHI Reset\n");
502 
503 		/*
504 		 * Device will clear BHI_INTVEC as a part of RESET processing,
505 		 * hence re-program it
506 		 */
507 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
508 
509 		if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
510 			/* wait for ready to be set */
511 			ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
512 						 MHISTATUS, MHISTATUS_READY_MASK,
513 						 1, 25000, mhi_cntrl->timeout_ms);
514 			if (ret)
515 				dev_err(dev, "Device failed to enter READY state\n");
516 		}
517 	}
518 
519 skip_mhi_reset:
520 	dev_dbg(dev,
521 		 "Waiting for all pending event ring processing to complete\n");
522 	mhi_event = mhi_cntrl->mhi_event;
523 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
524 		if (mhi_event->offload_ev)
525 			continue;
526 		disable_irq(mhi_cntrl->irq[mhi_event->irq]);
527 		tasklet_kill(&mhi_event->task);
528 	}
529 
530 	/* Release lock and wait for all pending threads to complete */
531 	mutex_unlock(&mhi_cntrl->pm_mutex);
532 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
533 	wake_up_all(&mhi_cntrl->state_event);
534 
535 	/*
536 	 * Only destroy the 'struct device' for channels if indicated by the
537 	 * 'destroy_device' flag. Because, during system suspend or hibernation
538 	 * state, there is no need to destroy the 'struct device' as the endpoint
539 	 * device would still be physically attached to the machine.
540 	 */
541 	if (destroy_device) {
542 		dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
543 		device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
544 	}
545 
546 	mutex_lock(&mhi_cntrl->pm_mutex);
547 
548 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
549 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
550 
551 	/* Reset the ev rings and cmd rings */
552 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
553 	mhi_cmd = mhi_cntrl->mhi_cmd;
554 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
555 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
556 		struct mhi_ring *ring = &mhi_cmd->ring;
557 
558 		ring->rp = ring->base;
559 		ring->wp = ring->base;
560 		cmd_ctxt->rp = cmd_ctxt->rbase;
561 		cmd_ctxt->wp = cmd_ctxt->rbase;
562 	}
563 
564 	mhi_event = mhi_cntrl->mhi_event;
565 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
566 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
567 		     mhi_event++) {
568 		struct mhi_ring *ring = &mhi_event->ring;
569 
570 		/* Skip offload events */
571 		if (mhi_event->offload_ev)
572 			continue;
573 
574 		ring->rp = ring->base;
575 		ring->wp = ring->base;
576 		er_ctxt->rp = er_ctxt->rbase;
577 		er_ctxt->wp = er_ctxt->rbase;
578 	}
579 
580 	/* Move to disable state */
581 	write_lock_irq(&mhi_cntrl->pm_lock);
582 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
583 	write_unlock_irq(&mhi_cntrl->pm_lock);
584 	if (unlikely(cur_state != MHI_PM_DISABLE))
585 		dev_err(dev, "Error moving from PM state: %s to: %s\n",
586 			to_mhi_pm_state_str(cur_state),
587 			to_mhi_pm_state_str(MHI_PM_DISABLE));
588 
589 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
590 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
591 		mhi_state_str(mhi_cntrl->dev_state));
592 
593 	mutex_unlock(&mhi_cntrl->pm_mutex);
594 }
595 
596 /* Handle system error transitions */
597 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
598 {
599 	enum mhi_pm_state cur_state, prev_state;
600 	enum dev_st_transition next_state;
601 	struct mhi_event *mhi_event;
602 	struct mhi_cmd_ctxt *cmd_ctxt;
603 	struct mhi_cmd *mhi_cmd;
604 	struct mhi_event_ctxt *er_ctxt;
605 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
606 	bool reset_device = false;
607 	int ret, i;
608 
609 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
610 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
611 		to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
612 
613 	/* We must notify MHI control driver so it can clean up first */
614 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
615 
616 	mutex_lock(&mhi_cntrl->pm_mutex);
617 	write_lock_irq(&mhi_cntrl->pm_lock);
618 	prev_state = mhi_cntrl->pm_state;
619 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
620 	write_unlock_irq(&mhi_cntrl->pm_lock);
621 
622 	if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
623 		dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
624 			to_mhi_pm_state_str(cur_state),
625 			to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
626 		goto exit_sys_error_transition;
627 	}
628 
629 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
630 	mhi_cntrl->dev_state = MHI_STATE_RESET;
631 
632 	/* Wake up threads waiting for state transition */
633 	wake_up_all(&mhi_cntrl->state_event);
634 
635 	mhi_uevent_notify(mhi_cntrl, mhi_cntrl->ee);
636 
637 	if (MHI_REG_ACCESS_VALID(prev_state)) {
638 		/*
639 		 * If the device is in PBL or SBL, it will only respond to
640 		 * RESET if the device is in SYSERR state. SYSERR might
641 		 * already be cleared at this point.
642 		 */
643 		enum mhi_state cur_state = mhi_get_mhi_state(mhi_cntrl);
644 		enum mhi_ee_type cur_ee = mhi_get_exec_env(mhi_cntrl);
645 
646 		if (cur_state == MHI_STATE_SYS_ERR)
647 			reset_device = true;
648 		else if (cur_ee != MHI_EE_PBL && cur_ee != MHI_EE_SBL)
649 			reset_device = true;
650 	}
651 
652 	/* Trigger MHI RESET so that the device will not access host memory */
653 	if (reset_device) {
654 		u32 in_reset = -1;
655 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
656 
657 		dev_dbg(dev, "Triggering MHI Reset in device\n");
658 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
659 
660 		/* Wait for the reset bit to be cleared by the device */
661 		ret = wait_event_timeout(mhi_cntrl->state_event,
662 					 mhi_read_reg_field(mhi_cntrl,
663 							    mhi_cntrl->regs,
664 							    MHICTRL,
665 							    MHICTRL_RESET_MASK,
666 							    &in_reset) ||
667 					!in_reset, timeout);
668 		if (!ret || in_reset) {
669 			dev_err(dev, "Device failed to exit MHI Reset state\n");
670 			write_lock_irq(&mhi_cntrl->pm_lock);
671 			cur_state = mhi_tryset_pm_state(mhi_cntrl,
672 							MHI_PM_SYS_ERR_FAIL);
673 			write_unlock_irq(&mhi_cntrl->pm_lock);
674 			/* Shutdown may have occurred, otherwise cleanup now */
675 			if (cur_state != MHI_PM_SYS_ERR_FAIL)
676 				goto exit_sys_error_transition;
677 		}
678 
679 		/*
680 		 * Device will clear BHI_INTVEC as a part of RESET processing,
681 		 * hence re-program it
682 		 */
683 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
684 	}
685 
686 	dev_dbg(dev,
687 		"Waiting for all pending event ring processing to complete\n");
688 	mhi_event = mhi_cntrl->mhi_event;
689 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
690 		if (mhi_event->offload_ev)
691 			continue;
692 		tasklet_kill(&mhi_event->task);
693 	}
694 
695 	/* Release lock and wait for all pending threads to complete */
696 	mutex_unlock(&mhi_cntrl->pm_mutex);
697 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
698 	wake_up_all(&mhi_cntrl->state_event);
699 
700 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
701 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
702 
703 	mutex_lock(&mhi_cntrl->pm_mutex);
704 
705 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
706 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
707 
708 	/* Reset the ev rings and cmd rings */
709 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
710 	mhi_cmd = mhi_cntrl->mhi_cmd;
711 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
712 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
713 		struct mhi_ring *ring = &mhi_cmd->ring;
714 
715 		ring->rp = ring->base;
716 		ring->wp = ring->base;
717 		cmd_ctxt->rp = cmd_ctxt->rbase;
718 		cmd_ctxt->wp = cmd_ctxt->rbase;
719 	}
720 
721 	mhi_event = mhi_cntrl->mhi_event;
722 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
723 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
724 	     mhi_event++) {
725 		struct mhi_ring *ring = &mhi_event->ring;
726 
727 		/* Skip offload events */
728 		if (mhi_event->offload_ev)
729 			continue;
730 
731 		ring->rp = ring->base;
732 		ring->wp = ring->base;
733 		er_ctxt->rp = er_ctxt->rbase;
734 		er_ctxt->wp = er_ctxt->rbase;
735 	}
736 
737 	/* Transition to next state */
738 	if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
739 		write_lock_irq(&mhi_cntrl->pm_lock);
740 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
741 		write_unlock_irq(&mhi_cntrl->pm_lock);
742 		if (cur_state != MHI_PM_POR) {
743 			dev_err(dev, "Error moving to state %s from %s\n",
744 				to_mhi_pm_state_str(MHI_PM_POR),
745 				to_mhi_pm_state_str(cur_state));
746 			goto exit_sys_error_transition;
747 		}
748 		next_state = DEV_ST_TRANSITION_PBL;
749 	} else {
750 		next_state = DEV_ST_TRANSITION_READY;
751 	}
752 
753 	mhi_queue_state_transition(mhi_cntrl, next_state);
754 
755 exit_sys_error_transition:
756 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
757 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
758 		mhi_state_str(mhi_cntrl->dev_state));
759 
760 	mutex_unlock(&mhi_cntrl->pm_mutex);
761 }
762 
763 /* Queue a new work item and schedule work */
764 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
765 			       enum dev_st_transition state)
766 {
767 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
768 	unsigned long flags;
769 
770 	if (!item)
771 		return -ENOMEM;
772 
773 	item->state = state;
774 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
775 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
776 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
777 
778 	queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
779 
780 	return 0;
781 }
782 
783 /* SYS_ERR worker */
784 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
785 {
786 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
787 
788 	/* skip if controller supports RDDM */
789 	if (mhi_cntrl->rddm_image) {
790 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
791 		return;
792 	}
793 
794 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
795 }
796 
797 /* Device State Transition worker */
798 void mhi_pm_st_worker(struct work_struct *work)
799 {
800 	struct state_transition *itr, *tmp;
801 	LIST_HEAD(head);
802 	struct mhi_controller *mhi_cntrl = container_of(work,
803 							struct mhi_controller,
804 							st_worker);
805 
806 	spin_lock_irq(&mhi_cntrl->transition_lock);
807 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
808 	spin_unlock_irq(&mhi_cntrl->transition_lock);
809 
810 	list_for_each_entry_safe(itr, tmp, &head, node) {
811 		list_del(&itr->node);
812 
813 		trace_mhi_pm_st_transition(mhi_cntrl, itr->state);
814 
815 		switch (itr->state) {
816 		case DEV_ST_TRANSITION_PBL:
817 			write_lock_irq(&mhi_cntrl->pm_lock);
818 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
819 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
820 			write_unlock_irq(&mhi_cntrl->pm_lock);
821 			mhi_fw_load_handler(mhi_cntrl);
822 			break;
823 		case DEV_ST_TRANSITION_SBL:
824 			write_lock_irq(&mhi_cntrl->pm_lock);
825 			mhi_cntrl->ee = MHI_EE_SBL;
826 			write_unlock_irq(&mhi_cntrl->pm_lock);
827 			/*
828 			 * The MHI devices are only created when the client
829 			 * device switches its Execution Environment (EE) to
830 			 * either SBL or AMSS states
831 			 */
832 			mhi_create_devices(mhi_cntrl);
833 			if (mhi_cntrl->fbc_download)
834 				mhi_download_amss_image(mhi_cntrl);
835 
836 			mhi_uevent_notify(mhi_cntrl, mhi_cntrl->ee);
837 			break;
838 		case DEV_ST_TRANSITION_MISSION_MODE:
839 			mhi_pm_mission_mode_transition(mhi_cntrl);
840 			break;
841 		case DEV_ST_TRANSITION_FP:
842 			write_lock_irq(&mhi_cntrl->pm_lock);
843 			mhi_cntrl->ee = MHI_EE_FP;
844 			write_unlock_irq(&mhi_cntrl->pm_lock);
845 			mhi_create_devices(mhi_cntrl);
846 			mhi_uevent_notify(mhi_cntrl, mhi_cntrl->ee);
847 			break;
848 		case DEV_ST_TRANSITION_READY:
849 			mhi_ready_state_transition(mhi_cntrl);
850 			break;
851 		case DEV_ST_TRANSITION_SYS_ERR:
852 			mhi_pm_sys_error_transition(mhi_cntrl);
853 			break;
854 		case DEV_ST_TRANSITION_DISABLE:
855 			mhi_pm_disable_transition(mhi_cntrl, false);
856 			break;
857 		case DEV_ST_TRANSITION_DISABLE_DESTROY_DEVICE:
858 			mhi_pm_disable_transition(mhi_cntrl, true);
859 			break;
860 		default:
861 			break;
862 		}
863 		kfree(itr);
864 	}
865 }
866 
867 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
868 {
869 	struct mhi_chan *itr, *tmp;
870 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
871 	enum mhi_pm_state new_state;
872 	int ret;
873 
874 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
875 		return -EINVAL;
876 
877 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
878 		return -EIO;
879 
880 	/* Return busy if there are any pending resources */
881 	if (atomic_read(&mhi_cntrl->dev_wake) ||
882 	    atomic_read(&mhi_cntrl->pending_pkts))
883 		return -EBUSY;
884 
885 	/* Take MHI out of M2 state */
886 	read_lock_bh(&mhi_cntrl->pm_lock);
887 	mhi_cntrl->wake_get(mhi_cntrl, false);
888 	read_unlock_bh(&mhi_cntrl->pm_lock);
889 
890 	ret = wait_event_timeout(mhi_cntrl->state_event,
891 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
892 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
893 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
894 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
895 
896 	read_lock_bh(&mhi_cntrl->pm_lock);
897 	mhi_cntrl->wake_put(mhi_cntrl, false);
898 	read_unlock_bh(&mhi_cntrl->pm_lock);
899 
900 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
901 		dev_err(dev,
902 			"Could not enter M0/M1 state");
903 		return -EIO;
904 	}
905 
906 	write_lock_irq(&mhi_cntrl->pm_lock);
907 
908 	if (atomic_read(&mhi_cntrl->dev_wake) ||
909 	    atomic_read(&mhi_cntrl->pending_pkts)) {
910 		write_unlock_irq(&mhi_cntrl->pm_lock);
911 		return -EBUSY;
912 	}
913 
914 	dev_dbg(dev, "Allowing M3 transition\n");
915 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
916 	if (new_state != MHI_PM_M3_ENTER) {
917 		write_unlock_irq(&mhi_cntrl->pm_lock);
918 		dev_err(dev,
919 			"Error setting to PM state: %s from: %s\n",
920 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
921 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
922 		return -EIO;
923 	}
924 
925 	/* Set MHI to M3 and wait for completion */
926 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
927 	write_unlock_irq(&mhi_cntrl->pm_lock);
928 	dev_dbg(dev, "Waiting for M3 completion\n");
929 
930 	ret = wait_event_timeout(mhi_cntrl->state_event,
931 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
932 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
933 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
934 
935 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
936 		dev_err(dev,
937 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
938 			mhi_state_str(mhi_cntrl->dev_state),
939 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
940 		return -EIO;
941 	}
942 
943 	/* Notify clients about entering LPM */
944 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
945 		mutex_lock(&itr->mutex);
946 		if (itr->mhi_dev)
947 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
948 		mutex_unlock(&itr->mutex);
949 	}
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
954 
955 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
956 {
957 	struct mhi_chan *itr, *tmp;
958 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
959 	enum mhi_pm_state cur_state;
960 	int ret;
961 
962 	dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
963 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
964 		mhi_state_str(mhi_cntrl->dev_state));
965 
966 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
967 		return 0;
968 
969 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
970 		return -EIO;
971 
972 	if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
973 		dev_warn(dev, "Resuming from non M3 state (%s)\n",
974 			 mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
975 		if (!force)
976 			return -EINVAL;
977 	}
978 
979 	/* Notify clients about exiting LPM */
980 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
981 		mutex_lock(&itr->mutex);
982 		if (itr->mhi_dev)
983 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
984 		mutex_unlock(&itr->mutex);
985 	}
986 
987 	write_lock_irq(&mhi_cntrl->pm_lock);
988 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
989 	if (cur_state != MHI_PM_M3_EXIT) {
990 		write_unlock_irq(&mhi_cntrl->pm_lock);
991 		dev_info(dev,
992 			 "Error setting to PM state: %s from: %s\n",
993 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
994 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
995 		return -EIO;
996 	}
997 
998 	/* Set MHI to M0 and wait for completion */
999 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
1000 	write_unlock_irq(&mhi_cntrl->pm_lock);
1001 
1002 	ret = wait_event_timeout(mhi_cntrl->state_event,
1003 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
1004 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
1005 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1006 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1007 
1008 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1009 		dev_err(dev,
1010 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
1011 			mhi_state_str(mhi_cntrl->dev_state),
1012 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1013 		return -EIO;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
1020 {
1021 	return __mhi_pm_resume(mhi_cntrl, false);
1022 }
1023 EXPORT_SYMBOL_GPL(mhi_pm_resume);
1024 
1025 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
1026 {
1027 	return __mhi_pm_resume(mhi_cntrl, true);
1028 }
1029 EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
1030 
1031 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
1032 {
1033 	int ret;
1034 
1035 	/* Wake up the device */
1036 	read_lock_bh(&mhi_cntrl->pm_lock);
1037 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1038 		read_unlock_bh(&mhi_cntrl->pm_lock);
1039 		return -EIO;
1040 	}
1041 	mhi_cntrl->wake_get(mhi_cntrl, true);
1042 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1043 		mhi_trigger_resume(mhi_cntrl);
1044 	read_unlock_bh(&mhi_cntrl->pm_lock);
1045 
1046 	ret = wait_event_timeout(mhi_cntrl->state_event,
1047 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
1048 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1049 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1050 
1051 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
1052 		read_lock_bh(&mhi_cntrl->pm_lock);
1053 		mhi_cntrl->wake_put(mhi_cntrl, false);
1054 		read_unlock_bh(&mhi_cntrl->pm_lock);
1055 		return -EIO;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /* Assert device wake db */
1062 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
1063 {
1064 	unsigned long flags;
1065 
1066 	/*
1067 	 * If force flag is set, then increment the wake count value and
1068 	 * ring wake db
1069 	 */
1070 	if (unlikely(force)) {
1071 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1072 		atomic_inc(&mhi_cntrl->dev_wake);
1073 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
1074 		    !mhi_cntrl->wake_set) {
1075 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1076 			mhi_cntrl->wake_set = true;
1077 		}
1078 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1079 	} else {
1080 		/*
1081 		 * If resources are already requested, then just increment
1082 		 * the wake count value and return
1083 		 */
1084 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
1085 			return;
1086 
1087 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1088 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
1089 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
1090 		    !mhi_cntrl->wake_set) {
1091 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1092 			mhi_cntrl->wake_set = true;
1093 		}
1094 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1095 	}
1096 }
1097 
1098 /* De-assert device wake db */
1099 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
1100 				  bool override)
1101 {
1102 	unsigned long flags;
1103 
1104 	/*
1105 	 * Only continue if there is a single resource, else just decrement
1106 	 * and return
1107 	 */
1108 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
1109 		return;
1110 
1111 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1112 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
1113 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
1114 	    mhi_cntrl->wake_set) {
1115 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
1116 		mhi_cntrl->wake_set = false;
1117 	}
1118 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1119 }
1120 
1121 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
1122 {
1123 	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
1124 	enum mhi_state state;
1125 	enum mhi_ee_type current_ee;
1126 	enum dev_st_transition next_state;
1127 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1128 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
1129 	int ret, i;
1130 
1131 	dev_info(dev, "Requested to power ON\n");
1132 
1133 	/* Supply default wake routines if not provided by controller driver */
1134 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
1135 	    !mhi_cntrl->wake_toggle) {
1136 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
1137 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
1138 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
1139 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
1140 	}
1141 
1142 	mutex_lock(&mhi_cntrl->pm_mutex);
1143 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1144 
1145 	/* Setup BHI INTVEC */
1146 	write_lock_irq(&mhi_cntrl->pm_lock);
1147 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1148 	mhi_cntrl->pm_state = MHI_PM_POR;
1149 	mhi_cntrl->ee = MHI_EE_MAX;
1150 	current_ee = mhi_get_exec_env(mhi_cntrl);
1151 	write_unlock_irq(&mhi_cntrl->pm_lock);
1152 
1153 	/* Confirm that the device is in valid exec env */
1154 	if (!MHI_POWER_UP_CAPABLE(current_ee)) {
1155 		dev_err(dev, "%s is not a valid EE for power on\n",
1156 			TO_MHI_EXEC_STR(current_ee));
1157 		ret = -EIO;
1158 		goto error_exit;
1159 	}
1160 
1161 	state = mhi_get_mhi_state(mhi_cntrl);
1162 	dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
1163 		TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
1164 
1165 	if (state == MHI_STATE_SYS_ERR) {
1166 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
1167 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
1168 				 MHICTRL_RESET_MASK, 0, interval_us,
1169 				 mhi_cntrl->timeout_ms);
1170 		if (ret) {
1171 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1172 			goto error_exit;
1173 		}
1174 
1175 		/*
1176 		 * device cleares INTVEC as part of RESET processing,
1177 		 * re-program it
1178 		 */
1179 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1180 	}
1181 
1182 	/* IRQs have been requested during probe, so we just need to enable them. */
1183 	enable_irq(mhi_cntrl->irq[0]);
1184 
1185 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
1186 		if (mhi_event->offload_ev)
1187 			continue;
1188 
1189 		enable_irq(mhi_cntrl->irq[mhi_event->irq]);
1190 	}
1191 
1192 	/* Transition to next state */
1193 	next_state = MHI_IN_PBL(current_ee) ?
1194 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1195 
1196 	mhi_queue_state_transition(mhi_cntrl, next_state);
1197 
1198 	mutex_unlock(&mhi_cntrl->pm_mutex);
1199 
1200 	dev_info(dev, "Power on setup success\n");
1201 
1202 	return 0;
1203 
1204 error_exit:
1205 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1206 	mutex_unlock(&mhi_cntrl->pm_mutex);
1207 
1208 	return ret;
1209 }
1210 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1211 
1212 static void __mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful,
1213 			     bool destroy_device)
1214 {
1215 	enum mhi_pm_state cur_state, transition_state;
1216 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1217 
1218 	mutex_lock(&mhi_cntrl->pm_mutex);
1219 	write_lock_irq(&mhi_cntrl->pm_lock);
1220 	cur_state = mhi_cntrl->pm_state;
1221 	if (cur_state == MHI_PM_DISABLE) {
1222 		write_unlock_irq(&mhi_cntrl->pm_lock);
1223 		mutex_unlock(&mhi_cntrl->pm_mutex);
1224 		return; /* Already powered down */
1225 	}
1226 
1227 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1228 	transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
1229 			   MHI_PM_LD_ERR_FATAL_DETECT;
1230 
1231 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
1232 	if (cur_state != transition_state) {
1233 		dev_err(dev, "Failed to move to state: %s from: %s\n",
1234 			to_mhi_pm_state_str(transition_state),
1235 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1236 		/* Force link down or error fatal detected state */
1237 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
1238 	}
1239 
1240 	/* mark device inactive to avoid any further host processing */
1241 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
1242 	mhi_cntrl->dev_state = MHI_STATE_RESET;
1243 
1244 	wake_up_all(&mhi_cntrl->state_event);
1245 
1246 	write_unlock_irq(&mhi_cntrl->pm_lock);
1247 	mutex_unlock(&mhi_cntrl->pm_mutex);
1248 
1249 	mhi_uevent_notify(mhi_cntrl, mhi_cntrl->ee);
1250 
1251 	if (destroy_device)
1252 		mhi_queue_state_transition(mhi_cntrl,
1253 					   DEV_ST_TRANSITION_DISABLE_DESTROY_DEVICE);
1254 	else
1255 		mhi_queue_state_transition(mhi_cntrl,
1256 					   DEV_ST_TRANSITION_DISABLE);
1257 
1258 	/* Wait for shutdown to complete */
1259 	flush_work(&mhi_cntrl->st_worker);
1260 
1261 	disable_irq(mhi_cntrl->irq[0]);
1262 }
1263 
1264 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1265 {
1266 	__mhi_power_down(mhi_cntrl, graceful, true);
1267 }
1268 EXPORT_SYMBOL_GPL(mhi_power_down);
1269 
1270 void mhi_power_down_keep_dev(struct mhi_controller *mhi_cntrl,
1271 			       bool graceful)
1272 {
1273 	__mhi_power_down(mhi_cntrl, graceful, false);
1274 }
1275 EXPORT_SYMBOL_GPL(mhi_power_down_keep_dev);
1276 
1277 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1278 {
1279 	int ret = mhi_async_power_up(mhi_cntrl);
1280 	u32 timeout_ms;
1281 
1282 	if (ret)
1283 		return ret;
1284 
1285 	/* Some devices need more time to set ready during power up */
1286 	timeout_ms = mhi_cntrl->ready_timeout_ms ?
1287 		mhi_cntrl->ready_timeout_ms : mhi_cntrl->timeout_ms;
1288 	wait_event_timeout(mhi_cntrl->state_event,
1289 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1290 			   MHI_PM_FATAL_ERROR(mhi_cntrl->pm_state),
1291 			   msecs_to_jiffies(timeout_ms));
1292 
1293 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1294 	if (ret)
1295 		mhi_power_down(mhi_cntrl, false);
1296 
1297 	return ret;
1298 }
1299 EXPORT_SYMBOL(mhi_sync_power_up);
1300 
1301 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1302 {
1303 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1304 	int ret;
1305 
1306 	/* Check if device is already in RDDM */
1307 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1308 		return 0;
1309 
1310 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1311 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1312 
1313 	/* Wait for RDDM event */
1314 	ret = wait_event_timeout(mhi_cntrl->state_event,
1315 				 mhi_cntrl->ee == MHI_EE_RDDM,
1316 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1317 	ret = ret ? 0 : -EIO;
1318 
1319 	return ret;
1320 }
1321 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1322 
1323 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1324 {
1325 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1326 	int ret;
1327 
1328 	ret = __mhi_device_get_sync(mhi_cntrl);
1329 	if (!ret)
1330 		mhi_dev->dev_wake++;
1331 
1332 	return ret;
1333 }
1334 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1335 
1336 void mhi_device_put(struct mhi_device *mhi_dev)
1337 {
1338 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1339 
1340 	mhi_dev->dev_wake--;
1341 	read_lock_bh(&mhi_cntrl->pm_lock);
1342 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1343 		mhi_trigger_resume(mhi_cntrl);
1344 
1345 	mhi_cntrl->wake_put(mhi_cntrl, false);
1346 	read_unlock_bh(&mhi_cntrl->pm_lock);
1347 }
1348 EXPORT_SYMBOL_GPL(mhi_device_put);
1349 
1350 void mhi_uevent_notify(struct mhi_controller *mhi_cntrl, enum mhi_ee_type ee)
1351 {
1352 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1353 	char *buf[2];
1354 	int ret;
1355 
1356 	buf[0] = kasprintf(GFP_KERNEL, "EXEC_ENV=%s", TO_MHI_EXEC_STR(ee));
1357 	buf[1] = NULL;
1358 
1359 	if (!buf[0])
1360 		return;
1361 
1362 	ret = kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, buf);
1363 	if (ret)
1364 		dev_err(dev, "Failed to send %s uevent\n", TO_MHI_EXEC_STR(ee));
1365 
1366 	kfree(buf[0]);
1367 }
1368