1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. 4 * 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/debugfs.h> 9 #include <linux/device.h> 10 #include <linux/dma-direction.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/idr.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/mhi.h> 16 #include <linux/mod_devicetable.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/wait.h> 21 #include "internal.h" 22 23 #define CREATE_TRACE_POINTS 24 #include "trace.h" 25 26 static DEFINE_IDA(mhi_controller_ida); 27 28 #undef mhi_ee 29 #undef mhi_ee_end 30 31 #define mhi_ee(a, b) [MHI_EE_##a] = b, 32 #define mhi_ee_end(a, b) [MHI_EE_##a] = b, 33 34 const char * const mhi_ee_str[MHI_EE_MAX] = { 35 MHI_EE_LIST 36 }; 37 38 #undef dev_st_trans 39 #undef dev_st_trans_end 40 41 #define dev_st_trans(a, b) [DEV_ST_TRANSITION_##a] = b, 42 #define dev_st_trans_end(a, b) [DEV_ST_TRANSITION_##a] = b, 43 44 const char * const dev_state_tran_str[DEV_ST_TRANSITION_MAX] = { 45 DEV_ST_TRANSITION_LIST 46 }; 47 48 #undef ch_state_type 49 #undef ch_state_type_end 50 51 #define ch_state_type(a, b) [MHI_CH_STATE_TYPE_##a] = b, 52 #define ch_state_type_end(a, b) [MHI_CH_STATE_TYPE_##a] = b, 53 54 const char * const mhi_ch_state_type_str[MHI_CH_STATE_TYPE_MAX] = { 55 MHI_CH_STATE_TYPE_LIST 56 }; 57 58 #undef mhi_pm_state 59 #undef mhi_pm_state_end 60 61 #define mhi_pm_state(a, b) [MHI_PM_STATE_##a] = b, 62 #define mhi_pm_state_end(a, b) [MHI_PM_STATE_##a] = b, 63 64 static const char * const mhi_pm_state_str[] = { 65 MHI_PM_STATE_LIST 66 }; 67 68 const char *to_mhi_pm_state_str(u32 state) 69 { 70 int index; 71 72 if (state) 73 index = __fls(state); 74 75 if (!state || index >= ARRAY_SIZE(mhi_pm_state_str)) 76 return "Invalid State"; 77 78 return mhi_pm_state_str[index]; 79 } 80 81 static ssize_t serial_number_show(struct device *dev, 82 struct device_attribute *attr, 83 char *buf) 84 { 85 struct mhi_device *mhi_dev = to_mhi_device(dev); 86 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 87 88 return sysfs_emit(buf, "Serial Number: %u\n", 89 mhi_cntrl->serial_number); 90 } 91 static DEVICE_ATTR_RO(serial_number); 92 93 static ssize_t oem_pk_hash_show(struct device *dev, 94 struct device_attribute *attr, 95 char *buf) 96 { 97 struct mhi_device *mhi_dev = to_mhi_device(dev); 98 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 99 u32 hash_segment[MHI_MAX_OEM_PK_HASH_SEGMENTS]; 100 int i, cnt = 0, ret; 101 102 for (i = 0; i < MHI_MAX_OEM_PK_HASH_SEGMENTS; i++) { 103 ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_OEMPKHASH(i), &hash_segment[i]); 104 if (ret) { 105 dev_err(dev, "Could not capture OEM PK HASH\n"); 106 return ret; 107 } 108 } 109 110 for (i = 0; i < MHI_MAX_OEM_PK_HASH_SEGMENTS; i++) 111 cnt += sysfs_emit_at(buf, cnt, "OEMPKHASH[%d]: 0x%x\n", i, hash_segment[i]); 112 113 return cnt; 114 } 115 static DEVICE_ATTR_RO(oem_pk_hash); 116 117 static ssize_t soc_reset_store(struct device *dev, 118 struct device_attribute *attr, 119 const char *buf, 120 size_t count) 121 { 122 struct mhi_device *mhi_dev = to_mhi_device(dev); 123 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 124 125 mhi_soc_reset(mhi_cntrl); 126 return count; 127 } 128 static DEVICE_ATTR_WO(soc_reset); 129 130 static ssize_t trigger_edl_store(struct device *dev, 131 struct device_attribute *attr, 132 const char *buf, size_t count) 133 { 134 struct mhi_device *mhi_dev = to_mhi_device(dev); 135 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 136 unsigned long val; 137 int ret; 138 139 ret = kstrtoul(buf, 10, &val); 140 if (ret < 0) 141 return ret; 142 143 if (!val) 144 return -EINVAL; 145 146 ret = mhi_cntrl->edl_trigger(mhi_cntrl); 147 if (ret) 148 return ret; 149 150 return count; 151 } 152 static DEVICE_ATTR_WO(trigger_edl); 153 154 static struct attribute *mhi_dev_attrs[] = { 155 &dev_attr_serial_number.attr, 156 &dev_attr_oem_pk_hash.attr, 157 &dev_attr_soc_reset.attr, 158 NULL, 159 }; 160 ATTRIBUTE_GROUPS(mhi_dev); 161 162 /* MHI protocol requires the transfer ring to be aligned with ring length */ 163 static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl, 164 struct mhi_ring *ring, 165 u64 len) 166 { 167 ring->alloc_size = len + (len - 1); 168 ring->pre_aligned = dma_alloc_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, 169 &ring->dma_handle, GFP_KERNEL); 170 if (!ring->pre_aligned) 171 return -ENOMEM; 172 173 ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1); 174 ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle); 175 176 return 0; 177 } 178 179 void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl) 180 { 181 int i; 182 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 183 184 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 185 if (mhi_event->offload_ev) 186 continue; 187 188 free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event); 189 } 190 191 free_irq(mhi_cntrl->irq[0], mhi_cntrl); 192 } 193 194 int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl) 195 { 196 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 197 struct device *dev = &mhi_cntrl->mhi_dev->dev; 198 unsigned long irq_flags = IRQF_SHARED | IRQF_NO_SUSPEND; 199 int i, ret; 200 201 /* if controller driver has set irq_flags, use it */ 202 if (mhi_cntrl->irq_flags) 203 irq_flags = mhi_cntrl->irq_flags; 204 205 /* Setup BHI_INTVEC IRQ */ 206 ret = request_threaded_irq(mhi_cntrl->irq[0], mhi_intvec_handler, 207 mhi_intvec_threaded_handler, 208 irq_flags, 209 "bhi", mhi_cntrl); 210 if (ret) 211 return ret; 212 /* 213 * IRQs should be enabled during mhi_async_power_up(), so disable them explicitly here. 214 * Due to the use of IRQF_SHARED flag as default while requesting IRQs, we assume that 215 * IRQ_NOAUTOEN is not applicable. 216 */ 217 disable_irq(mhi_cntrl->irq[0]); 218 219 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 220 if (mhi_event->offload_ev) 221 continue; 222 223 if (mhi_event->irq >= mhi_cntrl->nr_irqs) { 224 dev_err(dev, "irq %d not available for event ring\n", 225 mhi_event->irq); 226 ret = -EINVAL; 227 goto error_request; 228 } 229 230 ret = request_irq(mhi_cntrl->irq[mhi_event->irq], 231 mhi_irq_handler, 232 irq_flags, 233 "mhi", mhi_event); 234 if (ret) { 235 dev_err(dev, "Error requesting irq:%d for ev:%d\n", 236 mhi_cntrl->irq[mhi_event->irq], i); 237 goto error_request; 238 } 239 240 disable_irq(mhi_cntrl->irq[mhi_event->irq]); 241 } 242 243 return 0; 244 245 error_request: 246 for (--i, --mhi_event; i >= 0; i--, mhi_event--) { 247 if (mhi_event->offload_ev) 248 continue; 249 250 free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event); 251 } 252 free_irq(mhi_cntrl->irq[0], mhi_cntrl); 253 254 return ret; 255 } 256 257 void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl) 258 { 259 int i; 260 struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt; 261 struct mhi_cmd *mhi_cmd; 262 struct mhi_event *mhi_event; 263 struct mhi_ring *ring; 264 265 mhi_cmd = mhi_cntrl->mhi_cmd; 266 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) { 267 ring = &mhi_cmd->ring; 268 dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, 269 ring->pre_aligned, ring->dma_handle); 270 ring->base = NULL; 271 ring->iommu_base = 0; 272 } 273 274 dma_free_coherent(mhi_cntrl->cntrl_dev, 275 sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, 276 mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); 277 278 mhi_event = mhi_cntrl->mhi_event; 279 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 280 if (mhi_event->offload_ev) 281 continue; 282 283 ring = &mhi_event->ring; 284 dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, 285 ring->pre_aligned, ring->dma_handle); 286 ring->base = NULL; 287 ring->iommu_base = 0; 288 } 289 290 dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) * 291 mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, 292 mhi_ctxt->er_ctxt_addr); 293 294 dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) * 295 mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, 296 mhi_ctxt->chan_ctxt_addr); 297 298 kfree(mhi_ctxt); 299 mhi_cntrl->mhi_ctxt = NULL; 300 } 301 302 int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl) 303 { 304 struct mhi_ctxt *mhi_ctxt; 305 struct mhi_chan_ctxt *chan_ctxt; 306 struct mhi_event_ctxt *er_ctxt; 307 struct mhi_cmd_ctxt *cmd_ctxt; 308 struct mhi_chan *mhi_chan; 309 struct mhi_event *mhi_event; 310 struct mhi_cmd *mhi_cmd; 311 u32 tmp; 312 int ret = -ENOMEM, i; 313 314 atomic_set(&mhi_cntrl->dev_wake, 0); 315 atomic_set(&mhi_cntrl->pending_pkts, 0); 316 317 mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL); 318 if (!mhi_ctxt) 319 return -ENOMEM; 320 321 /* Setup channel ctxt */ 322 mhi_ctxt->chan_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, 323 sizeof(*mhi_ctxt->chan_ctxt) * 324 mhi_cntrl->max_chan, 325 &mhi_ctxt->chan_ctxt_addr, 326 GFP_KERNEL); 327 if (!mhi_ctxt->chan_ctxt) 328 goto error_alloc_chan_ctxt; 329 330 mhi_chan = mhi_cntrl->mhi_chan; 331 chan_ctxt = mhi_ctxt->chan_ctxt; 332 for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) { 333 /* Skip if it is an offload channel */ 334 if (mhi_chan->offload_ch) 335 continue; 336 337 tmp = le32_to_cpu(chan_ctxt->chcfg); 338 tmp &= ~CHAN_CTX_CHSTATE_MASK; 339 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); 340 tmp &= ~CHAN_CTX_BRSTMODE_MASK; 341 tmp |= FIELD_PREP(CHAN_CTX_BRSTMODE_MASK, mhi_chan->db_cfg.brstmode); 342 tmp &= ~CHAN_CTX_POLLCFG_MASK; 343 tmp |= FIELD_PREP(CHAN_CTX_POLLCFG_MASK, mhi_chan->db_cfg.pollcfg); 344 chan_ctxt->chcfg = cpu_to_le32(tmp); 345 346 chan_ctxt->chtype = cpu_to_le32(mhi_chan->type); 347 chan_ctxt->erindex = cpu_to_le32(mhi_chan->er_index); 348 349 mhi_chan->ch_state = MHI_CH_STATE_DISABLED; 350 mhi_chan->tre_ring.db_addr = (void __iomem *)&chan_ctxt->wp; 351 } 352 353 /* Setup event context */ 354 mhi_ctxt->er_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, 355 sizeof(*mhi_ctxt->er_ctxt) * 356 mhi_cntrl->total_ev_rings, 357 &mhi_ctxt->er_ctxt_addr, 358 GFP_KERNEL); 359 if (!mhi_ctxt->er_ctxt) 360 goto error_alloc_er_ctxt; 361 362 er_ctxt = mhi_ctxt->er_ctxt; 363 mhi_event = mhi_cntrl->mhi_event; 364 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, 365 mhi_event++) { 366 struct mhi_ring *ring = &mhi_event->ring; 367 368 /* Skip if it is an offload event */ 369 if (mhi_event->offload_ev) 370 continue; 371 372 tmp = le32_to_cpu(er_ctxt->intmod); 373 tmp &= ~EV_CTX_INTMODC_MASK; 374 tmp &= ~EV_CTX_INTMODT_MASK; 375 tmp |= FIELD_PREP(EV_CTX_INTMODT_MASK, mhi_event->intmod); 376 er_ctxt->intmod = cpu_to_le32(tmp); 377 378 er_ctxt->ertype = cpu_to_le32(MHI_ER_TYPE_VALID); 379 er_ctxt->msivec = cpu_to_le32(mhi_event->irq); 380 mhi_event->db_cfg.db_mode = true; 381 382 ring->el_size = sizeof(struct mhi_ring_element); 383 ring->len = ring->el_size * ring->elements; 384 ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); 385 if (ret) 386 goto error_alloc_er; 387 388 /* 389 * If the read pointer equals to the write pointer, then the 390 * ring is empty 391 */ 392 ring->rp = ring->wp = ring->base; 393 er_ctxt->rbase = cpu_to_le64(ring->iommu_base); 394 er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase; 395 er_ctxt->rlen = cpu_to_le64(ring->len); 396 ring->ctxt_wp = &er_ctxt->wp; 397 } 398 399 /* Setup cmd context */ 400 ret = -ENOMEM; 401 mhi_ctxt->cmd_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, 402 sizeof(*mhi_ctxt->cmd_ctxt) * 403 NR_OF_CMD_RINGS, 404 &mhi_ctxt->cmd_ctxt_addr, 405 GFP_KERNEL); 406 if (!mhi_ctxt->cmd_ctxt) 407 goto error_alloc_er; 408 409 mhi_cmd = mhi_cntrl->mhi_cmd; 410 cmd_ctxt = mhi_ctxt->cmd_ctxt; 411 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { 412 struct mhi_ring *ring = &mhi_cmd->ring; 413 414 ring->el_size = sizeof(struct mhi_ring_element); 415 ring->elements = CMD_EL_PER_RING; 416 ring->len = ring->el_size * ring->elements; 417 ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); 418 if (ret) 419 goto error_alloc_cmd; 420 421 ring->rp = ring->wp = ring->base; 422 cmd_ctxt->rbase = cpu_to_le64(ring->iommu_base); 423 cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase; 424 cmd_ctxt->rlen = cpu_to_le64(ring->len); 425 ring->ctxt_wp = &cmd_ctxt->wp; 426 } 427 428 mhi_cntrl->mhi_ctxt = mhi_ctxt; 429 430 return 0; 431 432 error_alloc_cmd: 433 for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) { 434 struct mhi_ring *ring = &mhi_cmd->ring; 435 436 dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, 437 ring->pre_aligned, ring->dma_handle); 438 } 439 dma_free_coherent(mhi_cntrl->cntrl_dev, 440 sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, 441 mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); 442 i = mhi_cntrl->total_ev_rings; 443 mhi_event = mhi_cntrl->mhi_event + i; 444 445 error_alloc_er: 446 for (--i, --mhi_event; i >= 0; i--, mhi_event--) { 447 struct mhi_ring *ring = &mhi_event->ring; 448 449 if (mhi_event->offload_ev) 450 continue; 451 452 dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, 453 ring->pre_aligned, ring->dma_handle); 454 } 455 dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) * 456 mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, 457 mhi_ctxt->er_ctxt_addr); 458 459 error_alloc_er_ctxt: 460 dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) * 461 mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, 462 mhi_ctxt->chan_ctxt_addr); 463 464 error_alloc_chan_ctxt: 465 kfree(mhi_ctxt); 466 467 return ret; 468 } 469 470 int mhi_init_mmio(struct mhi_controller *mhi_cntrl) 471 { 472 u32 val; 473 int i, ret; 474 struct mhi_chan *mhi_chan; 475 struct mhi_event *mhi_event; 476 void __iomem *base = mhi_cntrl->regs; 477 struct device *dev = &mhi_cntrl->mhi_dev->dev; 478 struct { 479 u32 offset; 480 u32 val; 481 } reg_info[] = { 482 { 483 CCABAP_HIGHER, 484 upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), 485 }, 486 { 487 CCABAP_LOWER, 488 lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), 489 }, 490 { 491 ECABAP_HIGHER, 492 upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), 493 }, 494 { 495 ECABAP_LOWER, 496 lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), 497 }, 498 { 499 CRCBAP_HIGHER, 500 upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), 501 }, 502 { 503 CRCBAP_LOWER, 504 lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), 505 }, 506 { 507 MHICTRLBASE_HIGHER, 508 upper_32_bits(mhi_cntrl->iova_start), 509 }, 510 { 511 MHICTRLBASE_LOWER, 512 lower_32_bits(mhi_cntrl->iova_start), 513 }, 514 { 515 MHIDATABASE_HIGHER, 516 upper_32_bits(mhi_cntrl->iova_start), 517 }, 518 { 519 MHIDATABASE_LOWER, 520 lower_32_bits(mhi_cntrl->iova_start), 521 }, 522 { 523 MHICTRLLIMIT_HIGHER, 524 upper_32_bits(mhi_cntrl->iova_stop), 525 }, 526 { 527 MHICTRLLIMIT_LOWER, 528 lower_32_bits(mhi_cntrl->iova_stop), 529 }, 530 { 531 MHIDATALIMIT_HIGHER, 532 upper_32_bits(mhi_cntrl->iova_stop), 533 }, 534 { 535 MHIDATALIMIT_LOWER, 536 lower_32_bits(mhi_cntrl->iova_stop), 537 }, 538 {0, 0} 539 }; 540 541 dev_dbg(dev, "Initializing MHI registers\n"); 542 543 /* Read channel db offset */ 544 ret = mhi_get_channel_doorbell_offset(mhi_cntrl, &val); 545 if (ret) 546 return ret; 547 548 if (val >= mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB)) { 549 dev_err(dev, "CHDB offset: 0x%x is out of range: 0x%zx\n", 550 val, mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB)); 551 return -ERANGE; 552 } 553 554 /* Setup wake db */ 555 mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB); 556 mhi_cntrl->wake_set = false; 557 558 /* Setup channel db address for each channel in tre_ring */ 559 mhi_chan = mhi_cntrl->mhi_chan; 560 for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++) 561 mhi_chan->tre_ring.db_addr = base + val; 562 563 /* Read event ring db offset */ 564 ret = mhi_read_reg(mhi_cntrl, base, ERDBOFF, &val); 565 if (ret) { 566 dev_err(dev, "Unable to read ERDBOFF register\n"); 567 return -EIO; 568 } 569 570 if (val >= mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings)) { 571 dev_err(dev, "ERDB offset: 0x%x is out of range: 0x%zx\n", 572 val, mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings)); 573 return -ERANGE; 574 } 575 576 /* Setup event db address for each ev_ring */ 577 mhi_event = mhi_cntrl->mhi_event; 578 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) { 579 if (mhi_event->offload_ev) 580 continue; 581 582 mhi_event->ring.db_addr = base + val; 583 } 584 585 /* Setup DB register for primary CMD rings */ 586 mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER; 587 588 /* Write to MMIO registers */ 589 for (i = 0; reg_info[i].offset; i++) 590 mhi_write_reg(mhi_cntrl, base, reg_info[i].offset, 591 reg_info[i].val); 592 593 ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NER_MASK, 594 mhi_cntrl->total_ev_rings); 595 if (ret) { 596 dev_err(dev, "Unable to write MHICFG register\n"); 597 return ret; 598 } 599 600 ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NHWER_MASK, 601 mhi_cntrl->hw_ev_rings); 602 if (ret) { 603 dev_err(dev, "Unable to write MHICFG register\n"); 604 return ret; 605 } 606 607 return 0; 608 } 609 610 void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl, 611 struct mhi_chan *mhi_chan) 612 { 613 struct mhi_ring *buf_ring; 614 struct mhi_ring *tre_ring; 615 struct mhi_chan_ctxt *chan_ctxt; 616 u32 tmp; 617 618 buf_ring = &mhi_chan->buf_ring; 619 tre_ring = &mhi_chan->tre_ring; 620 chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; 621 622 if (!chan_ctxt->rbase) /* Already uninitialized */ 623 return; 624 625 dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size, 626 tre_ring->pre_aligned, tre_ring->dma_handle); 627 vfree(buf_ring->base); 628 629 buf_ring->base = tre_ring->base = NULL; 630 tre_ring->ctxt_wp = NULL; 631 chan_ctxt->rbase = 0; 632 chan_ctxt->rlen = 0; 633 chan_ctxt->rp = 0; 634 chan_ctxt->wp = 0; 635 636 tmp = le32_to_cpu(chan_ctxt->chcfg); 637 tmp &= ~CHAN_CTX_CHSTATE_MASK; 638 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); 639 chan_ctxt->chcfg = cpu_to_le32(tmp); 640 641 /* Update to all cores */ 642 smp_wmb(); 643 } 644 645 int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl, 646 struct mhi_chan *mhi_chan) 647 { 648 struct mhi_ring *buf_ring; 649 struct mhi_ring *tre_ring; 650 struct mhi_chan_ctxt *chan_ctxt; 651 u32 tmp; 652 int ret; 653 654 buf_ring = &mhi_chan->buf_ring; 655 tre_ring = &mhi_chan->tre_ring; 656 tre_ring->el_size = sizeof(struct mhi_ring_element); 657 tre_ring->len = tre_ring->el_size * tre_ring->elements; 658 chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; 659 ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len); 660 if (ret) 661 return -ENOMEM; 662 663 buf_ring->el_size = sizeof(struct mhi_buf_info); 664 buf_ring->len = buf_ring->el_size * buf_ring->elements; 665 buf_ring->base = vzalloc(buf_ring->len); 666 667 if (!buf_ring->base) { 668 dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size, 669 tre_ring->pre_aligned, tre_ring->dma_handle); 670 return -ENOMEM; 671 } 672 673 tmp = le32_to_cpu(chan_ctxt->chcfg); 674 tmp &= ~CHAN_CTX_CHSTATE_MASK; 675 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_ENABLED); 676 chan_ctxt->chcfg = cpu_to_le32(tmp); 677 678 chan_ctxt->rbase = cpu_to_le64(tre_ring->iommu_base); 679 chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase; 680 chan_ctxt->rlen = cpu_to_le64(tre_ring->len); 681 tre_ring->ctxt_wp = &chan_ctxt->wp; 682 683 tre_ring->rp = tre_ring->wp = tre_ring->base; 684 buf_ring->rp = buf_ring->wp = buf_ring->base; 685 mhi_chan->db_cfg.db_mode = 1; 686 687 /* Update to all cores */ 688 smp_wmb(); 689 690 return 0; 691 } 692 693 static int parse_ev_cfg(struct mhi_controller *mhi_cntrl, 694 const struct mhi_controller_config *config) 695 { 696 struct mhi_event *mhi_event; 697 const struct mhi_event_config *event_cfg; 698 struct device *dev = mhi_cntrl->cntrl_dev; 699 int i, num; 700 701 num = config->num_events; 702 mhi_cntrl->total_ev_rings = num; 703 mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event), 704 GFP_KERNEL); 705 if (!mhi_cntrl->mhi_event) 706 return -ENOMEM; 707 708 /* Populate event ring */ 709 mhi_event = mhi_cntrl->mhi_event; 710 for (i = 0; i < num; i++) { 711 event_cfg = &config->event_cfg[i]; 712 713 mhi_event->er_index = i; 714 mhi_event->ring.elements = event_cfg->num_elements; 715 mhi_event->intmod = event_cfg->irq_moderation_ms; 716 mhi_event->irq = event_cfg->irq; 717 718 if (event_cfg->channel != U32_MAX) { 719 /* This event ring has a dedicated channel */ 720 mhi_event->chan = event_cfg->channel; 721 if (mhi_event->chan >= mhi_cntrl->max_chan) { 722 dev_err(dev, 723 "Event Ring channel not available\n"); 724 goto error_ev_cfg; 725 } 726 727 mhi_event->mhi_chan = 728 &mhi_cntrl->mhi_chan[mhi_event->chan]; 729 } 730 731 /* Priority is fixed to 1 for now */ 732 mhi_event->priority = 1; 733 734 mhi_event->db_cfg.brstmode = event_cfg->mode; 735 if (MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode)) 736 goto error_ev_cfg; 737 738 if (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE) 739 mhi_event->db_cfg.process_db = mhi_db_brstmode; 740 else 741 mhi_event->db_cfg.process_db = mhi_db_brstmode_disable; 742 743 mhi_event->data_type = event_cfg->data_type; 744 745 switch (mhi_event->data_type) { 746 case MHI_ER_DATA: 747 mhi_event->process_event = mhi_process_data_event_ring; 748 break; 749 case MHI_ER_CTRL: 750 mhi_event->process_event = mhi_process_ctrl_ev_ring; 751 break; 752 default: 753 dev_err(dev, "Event Ring type not supported\n"); 754 goto error_ev_cfg; 755 } 756 757 mhi_event->hw_ring = event_cfg->hardware_event; 758 if (mhi_event->hw_ring) 759 mhi_cntrl->hw_ev_rings++; 760 else 761 mhi_cntrl->sw_ev_rings++; 762 763 mhi_event->cl_manage = event_cfg->client_managed; 764 mhi_event->offload_ev = event_cfg->offload_channel; 765 mhi_event++; 766 } 767 768 return 0; 769 770 error_ev_cfg: 771 772 kfree(mhi_cntrl->mhi_event); 773 return -EINVAL; 774 } 775 776 static int parse_ch_cfg(struct mhi_controller *mhi_cntrl, 777 const struct mhi_controller_config *config) 778 { 779 const struct mhi_channel_config *ch_cfg; 780 struct device *dev = mhi_cntrl->cntrl_dev; 781 int i; 782 u32 chan; 783 784 mhi_cntrl->max_chan = config->max_channels; 785 786 /* 787 * The allocation of MHI channels can exceed 32KB in some scenarios, 788 * so to avoid any memory possible allocation failures, vzalloc is 789 * used here 790 */ 791 mhi_cntrl->mhi_chan = vcalloc(mhi_cntrl->max_chan, 792 sizeof(*mhi_cntrl->mhi_chan)); 793 if (!mhi_cntrl->mhi_chan) 794 return -ENOMEM; 795 796 INIT_LIST_HEAD(&mhi_cntrl->lpm_chans); 797 798 /* Populate channel configurations */ 799 for (i = 0; i < config->num_channels; i++) { 800 struct mhi_chan *mhi_chan; 801 802 ch_cfg = &config->ch_cfg[i]; 803 804 chan = ch_cfg->num; 805 if (chan >= mhi_cntrl->max_chan) { 806 dev_err(dev, "Channel %d not available\n", chan); 807 goto error_chan_cfg; 808 } 809 810 mhi_chan = &mhi_cntrl->mhi_chan[chan]; 811 mhi_chan->name = ch_cfg->name; 812 mhi_chan->chan = chan; 813 814 mhi_chan->tre_ring.elements = ch_cfg->num_elements; 815 if (!mhi_chan->tre_ring.elements) 816 goto error_chan_cfg; 817 818 /* 819 * For some channels, local ring length should be bigger than 820 * the transfer ring length due to internal logical channels 821 * in device. So host can queue much more buffers than transfer 822 * ring length. Example, RSC channels should have a larger local 823 * channel length than transfer ring length. 824 */ 825 mhi_chan->buf_ring.elements = ch_cfg->local_elements; 826 if (!mhi_chan->buf_ring.elements) 827 mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements; 828 mhi_chan->er_index = ch_cfg->event_ring; 829 mhi_chan->dir = ch_cfg->dir; 830 831 /* 832 * For most channels, chtype is identical to channel directions. 833 * So, if it is not defined then assign channel direction to 834 * chtype 835 */ 836 mhi_chan->type = ch_cfg->type; 837 if (!mhi_chan->type) 838 mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir; 839 840 mhi_chan->ee_mask = ch_cfg->ee_mask; 841 mhi_chan->db_cfg.pollcfg = ch_cfg->pollcfg; 842 mhi_chan->lpm_notify = ch_cfg->lpm_notify; 843 mhi_chan->offload_ch = ch_cfg->offload_channel; 844 mhi_chan->db_cfg.reset_req = ch_cfg->doorbell_mode_switch; 845 mhi_chan->pre_alloc = ch_cfg->auto_queue; 846 mhi_chan->wake_capable = ch_cfg->wake_capable; 847 848 /* 849 * If MHI host allocates buffers, then the channel direction 850 * should be DMA_FROM_DEVICE 851 */ 852 if (mhi_chan->pre_alloc && mhi_chan->dir != DMA_FROM_DEVICE) { 853 dev_err(dev, "Invalid channel configuration\n"); 854 goto error_chan_cfg; 855 } 856 857 /* 858 * Bi-directional and direction less channel must be an 859 * offload channel 860 */ 861 if ((mhi_chan->dir == DMA_BIDIRECTIONAL || 862 mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) { 863 dev_err(dev, "Invalid channel configuration\n"); 864 goto error_chan_cfg; 865 } 866 867 if (!mhi_chan->offload_ch) { 868 mhi_chan->db_cfg.brstmode = ch_cfg->doorbell; 869 if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) { 870 dev_err(dev, "Invalid Door bell mode\n"); 871 goto error_chan_cfg; 872 } 873 } 874 875 if (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE) 876 mhi_chan->db_cfg.process_db = mhi_db_brstmode; 877 else 878 mhi_chan->db_cfg.process_db = mhi_db_brstmode_disable; 879 880 mhi_chan->configured = true; 881 882 if (mhi_chan->lpm_notify) 883 list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans); 884 } 885 886 return 0; 887 888 error_chan_cfg: 889 vfree(mhi_cntrl->mhi_chan); 890 891 return -EINVAL; 892 } 893 894 static int parse_config(struct mhi_controller *mhi_cntrl, 895 const struct mhi_controller_config *config) 896 { 897 int ret; 898 899 /* Parse MHI channel configuration */ 900 ret = parse_ch_cfg(mhi_cntrl, config); 901 if (ret) 902 return ret; 903 904 /* Parse MHI event configuration */ 905 ret = parse_ev_cfg(mhi_cntrl, config); 906 if (ret) 907 goto error_ev_cfg; 908 909 mhi_cntrl->timeout_ms = config->timeout_ms; 910 if (!mhi_cntrl->timeout_ms) 911 mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS; 912 913 mhi_cntrl->ready_timeout_ms = config->ready_timeout_ms; 914 mhi_cntrl->bounce_buf = config->use_bounce_buf; 915 mhi_cntrl->buffer_len = config->buf_len; 916 if (!mhi_cntrl->buffer_len) 917 mhi_cntrl->buffer_len = MHI_MAX_MTU; 918 919 /* By default, host is allowed to ring DB in both M0 and M2 states */ 920 mhi_cntrl->db_access = MHI_PM_M0 | MHI_PM_M2; 921 if (config->m2_no_db) 922 mhi_cntrl->db_access &= ~MHI_PM_M2; 923 924 return 0; 925 926 error_ev_cfg: 927 vfree(mhi_cntrl->mhi_chan); 928 929 return ret; 930 } 931 932 int mhi_register_controller(struct mhi_controller *mhi_cntrl, 933 const struct mhi_controller_config *config) 934 { 935 struct mhi_event *mhi_event; 936 struct mhi_chan *mhi_chan; 937 struct mhi_cmd *mhi_cmd; 938 struct mhi_device *mhi_dev; 939 int ret, i; 940 941 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->regs || 942 !mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put || 943 !mhi_cntrl->status_cb || !mhi_cntrl->read_reg || 944 !mhi_cntrl->write_reg || !mhi_cntrl->nr_irqs || 945 !mhi_cntrl->irq || !mhi_cntrl->reg_len) 946 return -EINVAL; 947 948 ret = parse_config(mhi_cntrl, config); 949 if (ret) 950 return -EINVAL; 951 952 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, 953 sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); 954 if (!mhi_cntrl->mhi_cmd) { 955 ret = -ENOMEM; 956 goto err_free_event; 957 } 958 959 INIT_LIST_HEAD(&mhi_cntrl->transition_list); 960 mutex_init(&mhi_cntrl->pm_mutex); 961 rwlock_init(&mhi_cntrl->pm_lock); 962 spin_lock_init(&mhi_cntrl->transition_lock); 963 spin_lock_init(&mhi_cntrl->wlock); 964 INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker); 965 init_waitqueue_head(&mhi_cntrl->state_event); 966 967 mhi_cntrl->hiprio_wq = alloc_ordered_workqueue("mhi_hiprio_wq", WQ_HIGHPRI); 968 if (!mhi_cntrl->hiprio_wq) { 969 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate workqueue\n"); 970 ret = -ENOMEM; 971 goto err_free_cmd; 972 } 973 974 mhi_cmd = mhi_cntrl->mhi_cmd; 975 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) 976 spin_lock_init(&mhi_cmd->lock); 977 978 mhi_event = mhi_cntrl->mhi_event; 979 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 980 /* Skip for offload events */ 981 if (mhi_event->offload_ev) 982 continue; 983 984 mhi_event->mhi_cntrl = mhi_cntrl; 985 spin_lock_init(&mhi_event->lock); 986 if (mhi_event->data_type == MHI_ER_CTRL) 987 tasklet_init(&mhi_event->task, mhi_ctrl_ev_task, 988 (ulong)mhi_event); 989 else 990 tasklet_init(&mhi_event->task, mhi_ev_task, 991 (ulong)mhi_event); 992 } 993 994 mhi_chan = mhi_cntrl->mhi_chan; 995 for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { 996 mutex_init(&mhi_chan->mutex); 997 init_completion(&mhi_chan->completion); 998 rwlock_init(&mhi_chan->lock); 999 1000 /* used in setting bei field of TRE */ 1001 mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; 1002 mhi_chan->intmod = mhi_event->intmod; 1003 } 1004 1005 if (mhi_cntrl->bounce_buf) { 1006 mhi_cntrl->map_single = mhi_map_single_use_bb; 1007 mhi_cntrl->unmap_single = mhi_unmap_single_use_bb; 1008 } else { 1009 mhi_cntrl->map_single = mhi_map_single_no_bb; 1010 mhi_cntrl->unmap_single = mhi_unmap_single_no_bb; 1011 } 1012 1013 mhi_cntrl->index = ida_alloc(&mhi_controller_ida, GFP_KERNEL); 1014 if (mhi_cntrl->index < 0) { 1015 ret = mhi_cntrl->index; 1016 goto err_destroy_wq; 1017 } 1018 1019 ret = mhi_init_irq_setup(mhi_cntrl); 1020 if (ret) 1021 goto err_ida_free; 1022 1023 /* Register controller with MHI bus */ 1024 mhi_dev = mhi_alloc_device(mhi_cntrl); 1025 if (IS_ERR(mhi_dev)) { 1026 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate MHI device\n"); 1027 ret = PTR_ERR(mhi_dev); 1028 goto error_setup_irq; 1029 } 1030 1031 mhi_dev->dev_type = MHI_DEVICE_CONTROLLER; 1032 mhi_dev->mhi_cntrl = mhi_cntrl; 1033 dev_set_name(&mhi_dev->dev, "mhi%d", mhi_cntrl->index); 1034 mhi_dev->name = dev_name(&mhi_dev->dev); 1035 1036 /* Init wakeup source */ 1037 device_init_wakeup(&mhi_dev->dev, true); 1038 1039 ret = device_add(&mhi_dev->dev); 1040 if (ret) 1041 goto err_release_dev; 1042 1043 if (mhi_cntrl->edl_trigger) { 1044 ret = sysfs_create_file(&mhi_dev->dev.kobj, &dev_attr_trigger_edl.attr); 1045 if (ret) 1046 goto err_release_dev; 1047 } 1048 1049 mhi_cntrl->mhi_dev = mhi_dev; 1050 1051 mhi_create_debugfs(mhi_cntrl); 1052 1053 return 0; 1054 1055 err_release_dev: 1056 put_device(&mhi_dev->dev); 1057 error_setup_irq: 1058 mhi_deinit_free_irq(mhi_cntrl); 1059 err_ida_free: 1060 ida_free(&mhi_controller_ida, mhi_cntrl->index); 1061 err_destroy_wq: 1062 destroy_workqueue(mhi_cntrl->hiprio_wq); 1063 err_free_cmd: 1064 kfree(mhi_cntrl->mhi_cmd); 1065 err_free_event: 1066 kfree(mhi_cntrl->mhi_event); 1067 vfree(mhi_cntrl->mhi_chan); 1068 1069 return ret; 1070 } 1071 EXPORT_SYMBOL_GPL(mhi_register_controller); 1072 1073 void mhi_unregister_controller(struct mhi_controller *mhi_cntrl) 1074 { 1075 struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev; 1076 struct mhi_chan *mhi_chan = mhi_cntrl->mhi_chan; 1077 unsigned int i; 1078 1079 mhi_deinit_free_irq(mhi_cntrl); 1080 mhi_destroy_debugfs(mhi_cntrl); 1081 1082 if (mhi_cntrl->edl_trigger) 1083 sysfs_remove_file(&mhi_dev->dev.kobj, &dev_attr_trigger_edl.attr); 1084 1085 destroy_workqueue(mhi_cntrl->hiprio_wq); 1086 kfree(mhi_cntrl->mhi_cmd); 1087 kfree(mhi_cntrl->mhi_event); 1088 1089 /* Drop the references to MHI devices created for channels */ 1090 for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { 1091 if (!mhi_chan->mhi_dev) 1092 continue; 1093 1094 put_device(&mhi_chan->mhi_dev->dev); 1095 } 1096 vfree(mhi_cntrl->mhi_chan); 1097 1098 device_del(&mhi_dev->dev); 1099 put_device(&mhi_dev->dev); 1100 1101 ida_free(&mhi_controller_ida, mhi_cntrl->index); 1102 } 1103 EXPORT_SYMBOL_GPL(mhi_unregister_controller); 1104 1105 struct mhi_controller *mhi_alloc_controller(void) 1106 { 1107 struct mhi_controller *mhi_cntrl; 1108 1109 mhi_cntrl = kzalloc(sizeof(*mhi_cntrl), GFP_KERNEL); 1110 1111 return mhi_cntrl; 1112 } 1113 EXPORT_SYMBOL_GPL(mhi_alloc_controller); 1114 1115 void mhi_free_controller(struct mhi_controller *mhi_cntrl) 1116 { 1117 kfree(mhi_cntrl); 1118 } 1119 EXPORT_SYMBOL_GPL(mhi_free_controller); 1120 1121 int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl) 1122 { 1123 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1124 u32 bhi_off, bhie_off; 1125 int ret; 1126 1127 mutex_lock(&mhi_cntrl->pm_mutex); 1128 1129 ret = mhi_init_dev_ctxt(mhi_cntrl); 1130 if (ret) 1131 goto error_dev_ctxt; 1132 1133 ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &bhi_off); 1134 if (ret) { 1135 dev_err(dev, "Error getting BHI offset\n"); 1136 goto error_reg_offset; 1137 } 1138 1139 if (bhi_off >= mhi_cntrl->reg_len) { 1140 dev_err(dev, "BHI offset: 0x%x is out of range: 0x%zx\n", 1141 bhi_off, mhi_cntrl->reg_len); 1142 ret = -ERANGE; 1143 goto error_reg_offset; 1144 } 1145 mhi_cntrl->bhi = mhi_cntrl->regs + bhi_off; 1146 1147 if (mhi_cntrl->fbc_download || mhi_cntrl->rddm_size) { 1148 ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, 1149 &bhie_off); 1150 if (ret) { 1151 dev_err(dev, "Error getting BHIE offset\n"); 1152 goto error_reg_offset; 1153 } 1154 1155 if (bhie_off >= mhi_cntrl->reg_len) { 1156 dev_err(dev, 1157 "BHIe offset: 0x%x is out of range: 0x%zx\n", 1158 bhie_off, mhi_cntrl->reg_len); 1159 ret = -ERANGE; 1160 goto error_reg_offset; 1161 } 1162 mhi_cntrl->bhie = mhi_cntrl->regs + bhie_off; 1163 } 1164 1165 if (mhi_cntrl->rddm_size) { 1166 /* 1167 * This controller supports RDDM, so we need to manually clear 1168 * BHIE RX registers since POR values are undefined. 1169 */ 1170 memset_io(mhi_cntrl->bhie + BHIE_RXVECADDR_LOW_OFFS, 1171 0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS + 1172 4); 1173 /* 1174 * Allocate RDDM table for debugging purpose if specified 1175 */ 1176 mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image, 1177 mhi_cntrl->rddm_size); 1178 if (mhi_cntrl->rddm_image) { 1179 ret = mhi_rddm_prepare(mhi_cntrl, 1180 mhi_cntrl->rddm_image); 1181 if (ret) { 1182 mhi_free_bhie_table(mhi_cntrl, 1183 mhi_cntrl->rddm_image); 1184 goto error_reg_offset; 1185 } 1186 } 1187 } 1188 1189 mutex_unlock(&mhi_cntrl->pm_mutex); 1190 1191 return 0; 1192 1193 error_reg_offset: 1194 mhi_deinit_dev_ctxt(mhi_cntrl); 1195 1196 error_dev_ctxt: 1197 mutex_unlock(&mhi_cntrl->pm_mutex); 1198 1199 return ret; 1200 } 1201 EXPORT_SYMBOL_GPL(mhi_prepare_for_power_up); 1202 1203 void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl) 1204 { 1205 if (mhi_cntrl->fbc_image) { 1206 mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image); 1207 mhi_cntrl->fbc_image = NULL; 1208 } 1209 1210 if (mhi_cntrl->rddm_image) { 1211 mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image); 1212 mhi_cntrl->rddm_image = NULL; 1213 } 1214 1215 mhi_cntrl->bhi = NULL; 1216 mhi_cntrl->bhie = NULL; 1217 1218 mhi_deinit_dev_ctxt(mhi_cntrl); 1219 } 1220 EXPORT_SYMBOL_GPL(mhi_unprepare_after_power_down); 1221 1222 static void mhi_release_device(struct device *dev) 1223 { 1224 struct mhi_device *mhi_dev = to_mhi_device(dev); 1225 1226 /* 1227 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI 1228 * devices for the channels will only get created if the mhi_dev 1229 * associated with it is NULL. This scenario will happen during the 1230 * controller suspend and resume. 1231 */ 1232 if (mhi_dev->ul_chan) 1233 mhi_dev->ul_chan->mhi_dev = NULL; 1234 1235 if (mhi_dev->dl_chan) 1236 mhi_dev->dl_chan->mhi_dev = NULL; 1237 1238 kfree(mhi_dev); 1239 } 1240 1241 struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl) 1242 { 1243 struct mhi_device *mhi_dev; 1244 struct device *dev; 1245 1246 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); 1247 if (!mhi_dev) 1248 return ERR_PTR(-ENOMEM); 1249 1250 dev = &mhi_dev->dev; 1251 device_initialize(dev); 1252 dev->bus = &mhi_bus_type; 1253 dev->release = mhi_release_device; 1254 1255 if (mhi_cntrl->mhi_dev) { 1256 /* for MHI client devices, parent is the MHI controller device */ 1257 dev->parent = &mhi_cntrl->mhi_dev->dev; 1258 } else { 1259 /* for MHI controller device, parent is the bus device (e.g. pci device) */ 1260 dev->parent = mhi_cntrl->cntrl_dev; 1261 } 1262 1263 mhi_dev->mhi_cntrl = mhi_cntrl; 1264 mhi_dev->dev_wake = 0; 1265 1266 return mhi_dev; 1267 } 1268 1269 static int mhi_driver_probe(struct device *dev) 1270 { 1271 struct mhi_device *mhi_dev = to_mhi_device(dev); 1272 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1273 struct device_driver *drv = dev->driver; 1274 struct mhi_driver *mhi_drv = to_mhi_driver(drv); 1275 struct mhi_event *mhi_event; 1276 struct mhi_chan *ul_chan = mhi_dev->ul_chan; 1277 struct mhi_chan *dl_chan = mhi_dev->dl_chan; 1278 int ret; 1279 1280 /* Bring device out of LPM */ 1281 ret = mhi_device_get_sync(mhi_dev); 1282 if (ret) 1283 return ret; 1284 1285 ret = -EINVAL; 1286 1287 if (ul_chan) { 1288 /* 1289 * If channel supports LPM notifications then status_cb should 1290 * be provided 1291 */ 1292 if (ul_chan->lpm_notify && !mhi_drv->status_cb) 1293 goto exit_probe; 1294 1295 /* For non-offload channels then xfer_cb should be provided */ 1296 if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb) 1297 goto exit_probe; 1298 1299 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; 1300 } 1301 1302 ret = -EINVAL; 1303 if (dl_chan) { 1304 /* 1305 * If channel supports LPM notifications then status_cb should 1306 * be provided 1307 */ 1308 if (dl_chan->lpm_notify && !mhi_drv->status_cb) 1309 goto exit_probe; 1310 1311 /* For non-offload channels then xfer_cb should be provided */ 1312 if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb) 1313 goto exit_probe; 1314 1315 mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index]; 1316 1317 /* 1318 * If the channel event ring is managed by client, then 1319 * status_cb must be provided so that the framework can 1320 * notify pending data 1321 */ 1322 if (mhi_event->cl_manage && !mhi_drv->status_cb) 1323 goto exit_probe; 1324 1325 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; 1326 } 1327 1328 /* Call the user provided probe function */ 1329 ret = mhi_drv->probe(mhi_dev, mhi_dev->id); 1330 if (ret) 1331 goto exit_probe; 1332 1333 mhi_device_put(mhi_dev); 1334 1335 return ret; 1336 1337 exit_probe: 1338 mhi_unprepare_from_transfer(mhi_dev); 1339 1340 mhi_device_put(mhi_dev); 1341 1342 return ret; 1343 } 1344 1345 static int mhi_driver_remove(struct device *dev) 1346 { 1347 struct mhi_device *mhi_dev = to_mhi_device(dev); 1348 struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver); 1349 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1350 struct mhi_chan *mhi_chan; 1351 enum mhi_ch_state ch_state[] = { 1352 MHI_CH_STATE_DISABLED, 1353 MHI_CH_STATE_DISABLED 1354 }; 1355 int dir; 1356 1357 /* Skip if it is a controller device */ 1358 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1359 return 0; 1360 1361 /* Reset both channels */ 1362 for (dir = 0; dir < 2; dir++) { 1363 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; 1364 1365 if (!mhi_chan) 1366 continue; 1367 1368 /* Wake all threads waiting for completion */ 1369 write_lock_irq(&mhi_chan->lock); 1370 mhi_chan->ccs = MHI_EV_CC_INVALID; 1371 complete_all(&mhi_chan->completion); 1372 write_unlock_irq(&mhi_chan->lock); 1373 1374 /* Set the channel state to disabled */ 1375 mutex_lock(&mhi_chan->mutex); 1376 write_lock_irq(&mhi_chan->lock); 1377 ch_state[dir] = mhi_chan->ch_state; 1378 mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED; 1379 write_unlock_irq(&mhi_chan->lock); 1380 1381 /* Reset the non-offload channel */ 1382 if (!mhi_chan->offload_ch) 1383 mhi_reset_chan(mhi_cntrl, mhi_chan); 1384 1385 mutex_unlock(&mhi_chan->mutex); 1386 } 1387 1388 mhi_drv->remove(mhi_dev); 1389 1390 /* De-init channel if it was enabled */ 1391 for (dir = 0; dir < 2; dir++) { 1392 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; 1393 1394 if (!mhi_chan) 1395 continue; 1396 1397 mutex_lock(&mhi_chan->mutex); 1398 1399 if ((ch_state[dir] == MHI_CH_STATE_ENABLED || 1400 ch_state[dir] == MHI_CH_STATE_STOP) && 1401 !mhi_chan->offload_ch) 1402 mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); 1403 1404 mhi_chan->ch_state = MHI_CH_STATE_DISABLED; 1405 1406 mutex_unlock(&mhi_chan->mutex); 1407 } 1408 1409 while (mhi_dev->dev_wake) 1410 mhi_device_put(mhi_dev); 1411 1412 return 0; 1413 } 1414 1415 int __mhi_driver_register(struct mhi_driver *mhi_drv, struct module *owner) 1416 { 1417 struct device_driver *driver = &mhi_drv->driver; 1418 1419 if (!mhi_drv->probe || !mhi_drv->remove) 1420 return -EINVAL; 1421 1422 driver->bus = &mhi_bus_type; 1423 driver->owner = owner; 1424 driver->probe = mhi_driver_probe; 1425 driver->remove = mhi_driver_remove; 1426 1427 return driver_register(driver); 1428 } 1429 EXPORT_SYMBOL_GPL(__mhi_driver_register); 1430 1431 void mhi_driver_unregister(struct mhi_driver *mhi_drv) 1432 { 1433 driver_unregister(&mhi_drv->driver); 1434 } 1435 EXPORT_SYMBOL_GPL(mhi_driver_unregister); 1436 1437 static int mhi_uevent(const struct device *dev, struct kobj_uevent_env *env) 1438 { 1439 const struct mhi_device *mhi_dev = to_mhi_device(dev); 1440 1441 return add_uevent_var(env, "MODALIAS=" MHI_DEVICE_MODALIAS_FMT, 1442 mhi_dev->name); 1443 } 1444 1445 static int mhi_match(struct device *dev, const struct device_driver *drv) 1446 { 1447 struct mhi_device *mhi_dev = to_mhi_device(dev); 1448 const struct mhi_driver *mhi_drv = to_mhi_driver(drv); 1449 const struct mhi_device_id *id; 1450 1451 /* 1452 * If the device is a controller type then there is no client driver 1453 * associated with it 1454 */ 1455 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1456 return 0; 1457 1458 for (id = mhi_drv->id_table; id->chan[0]; id++) 1459 if (!strcmp(mhi_dev->name, id->chan)) { 1460 mhi_dev->id = id; 1461 return 1; 1462 } 1463 1464 return 0; 1465 }; 1466 1467 struct bus_type mhi_bus_type = { 1468 .name = "mhi", 1469 .dev_name = "mhi", 1470 .match = mhi_match, 1471 .uevent = mhi_uevent, 1472 .dev_groups = mhi_dev_groups, 1473 }; 1474 1475 static int __init mhi_init(void) 1476 { 1477 mhi_debugfs_init(); 1478 return bus_register(&mhi_bus_type); 1479 } 1480 1481 static void __exit mhi_exit(void) 1482 { 1483 mhi_debugfs_exit(); 1484 bus_unregister(&mhi_bus_type); 1485 } 1486 1487 postcore_initcall(mhi_init); 1488 module_exit(mhi_exit); 1489 1490 MODULE_LICENSE("GPL v2"); 1491 MODULE_DESCRIPTION("Modem Host Interface"); 1492