1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MHI Endpoint bus stack 4 * 5 * Copyright (C) 2022 Linaro Ltd. 6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> 7 */ 8 9 #include <linux/bitfield.h> 10 #include <linux/delay.h> 11 #include <linux/dma-direction.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/irq.h> 15 #include <linux/mhi_ep.h> 16 #include <linux/mod_devicetable.h> 17 #include <linux/module.h> 18 #include "internal.h" 19 20 #define M0_WAIT_DELAY_MS 100 21 #define M0_WAIT_COUNT 100 22 23 static DEFINE_IDA(mhi_ep_cntrl_ida); 24 25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id); 26 static int mhi_ep_destroy_device(struct device *dev, void *data); 27 28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx, 29 struct mhi_ring_element *el, bool bei) 30 { 31 struct device *dev = &mhi_cntrl->mhi_dev->dev; 32 union mhi_ep_ring_ctx *ctx; 33 struct mhi_ep_ring *ring; 34 int ret; 35 36 mutex_lock(&mhi_cntrl->event_lock); 37 ring = &mhi_cntrl->mhi_event[ring_idx].ring; 38 ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx]; 39 if (!ring->started) { 40 ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx); 41 if (ret) { 42 dev_err(dev, "Error starting event ring (%u)\n", ring_idx); 43 goto err_unlock; 44 } 45 } 46 47 /* Add element to the event ring */ 48 ret = mhi_ep_ring_add_element(ring, el); 49 if (ret) { 50 dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx); 51 goto err_unlock; 52 } 53 54 mutex_unlock(&mhi_cntrl->event_lock); 55 56 /* 57 * As per the MHI specification, section 4.3, Interrupt moderation: 58 * 59 * 1. If BEI flag is not set, cancel any pending intmodt work if started 60 * for the event ring and raise IRQ immediately. 61 * 62 * 2. If both BEI and intmodt are set, and if no IRQ is pending for the 63 * same event ring, start the IRQ delayed work as per the value of 64 * intmodt. If previous IRQ is pending, then do nothing as the pending 65 * IRQ is enough for the host to process the current event ring element. 66 * 67 * 3. If BEI is set and intmodt is not set, no need to raise IRQ. 68 */ 69 if (!bei) { 70 if (READ_ONCE(ring->irq_pending)) 71 cancel_delayed_work(&ring->intmodt_work); 72 73 mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector); 74 } else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) { 75 WRITE_ONCE(ring->irq_pending, true); 76 schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt)); 77 } 78 79 return 0; 80 81 err_unlock: 82 mutex_unlock(&mhi_cntrl->event_lock); 83 84 return ret; 85 } 86 87 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring, 88 struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code) 89 { 90 struct mhi_ring_element *event; 91 int ret; 92 93 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); 94 if (!event) 95 return -ENOMEM; 96 97 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre)); 98 event->dword[0] = MHI_TRE_EV_DWORD0(code, len); 99 event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT); 100 101 ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre)); 102 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 103 104 return ret; 105 } 106 107 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state) 108 { 109 struct mhi_ring_element *event; 110 int ret; 111 112 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); 113 if (!event) 114 return -ENOMEM; 115 116 event->dword[0] = MHI_SC_EV_DWORD0(state); 117 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT); 118 119 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 120 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 121 122 return ret; 123 } 124 125 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env) 126 { 127 struct mhi_ring_element *event; 128 int ret; 129 130 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); 131 if (!event) 132 return -ENOMEM; 133 134 event->dword[0] = MHI_EE_EV_DWORD0(exec_env); 135 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT); 136 137 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 138 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 139 140 return ret; 141 } 142 143 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code) 144 { 145 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; 146 struct mhi_ring_element *event; 147 int ret; 148 149 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL); 150 if (!event) 151 return -ENOMEM; 152 153 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element)); 154 event->dword[0] = MHI_CC_EV_DWORD0(code); 155 event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT); 156 157 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 158 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 159 160 return ret; 161 } 162 163 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el) 164 { 165 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; 166 struct device *dev = &mhi_cntrl->mhi_dev->dev; 167 struct mhi_result result = {}; 168 struct mhi_ep_chan *mhi_chan; 169 struct mhi_ep_ring *ch_ring; 170 u32 tmp, ch_id; 171 int ret; 172 173 ch_id = MHI_TRE_GET_CMD_CHID(el); 174 175 /* Check if the channel is supported by the controller */ 176 if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) { 177 dev_dbg(dev, "Channel (%u) not supported!\n", ch_id); 178 return -ENODEV; 179 } 180 181 mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; 182 ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring; 183 184 switch (MHI_TRE_GET_CMD_TYPE(el)) { 185 case MHI_PKT_TYPE_START_CHAN_CMD: 186 dev_dbg(dev, "Received START command for channel (%u)\n", ch_id); 187 188 mutex_lock(&mhi_chan->lock); 189 /* Initialize and configure the corresponding channel ring */ 190 if (!ch_ring->started) { 191 ret = mhi_ep_ring_start(mhi_cntrl, ch_ring, 192 (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]); 193 if (ret) { 194 dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id); 195 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, 196 MHI_EV_CC_UNDEFINED_ERR); 197 if (ret) 198 dev_err(dev, "Error sending completion event: %d\n", ret); 199 200 goto err_unlock; 201 } 202 203 mhi_chan->rd_offset = ch_ring->rd_offset; 204 } 205 206 /* Set channel state to RUNNING */ 207 mhi_chan->state = MHI_CH_STATE_RUNNING; 208 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 209 tmp &= ~CHAN_CTX_CHSTATE_MASK; 210 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); 211 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 212 213 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 214 if (ret) { 215 dev_err(dev, "Error sending command completion event (%u)\n", 216 MHI_EV_CC_SUCCESS); 217 goto err_unlock; 218 } 219 220 mutex_unlock(&mhi_chan->lock); 221 222 /* 223 * Create MHI device only during UL channel start. Since the MHI 224 * channels operate in a pair, we'll associate both UL and DL 225 * channels to the same device. 226 * 227 * We also need to check for mhi_dev != NULL because, the host 228 * will issue START_CHAN command during resume and we don't 229 * destroy the device during suspend. 230 */ 231 if (!(ch_id % 2) && !mhi_chan->mhi_dev) { 232 ret = mhi_ep_create_device(mhi_cntrl, ch_id); 233 if (ret) { 234 dev_err(dev, "Error creating device for channel (%u)\n", ch_id); 235 mhi_ep_handle_syserr(mhi_cntrl); 236 return ret; 237 } 238 } 239 240 /* Finally, enable DB for the channel */ 241 mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id); 242 243 break; 244 case MHI_PKT_TYPE_STOP_CHAN_CMD: 245 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id); 246 if (!ch_ring->started) { 247 dev_err(dev, "Channel (%u) not opened\n", ch_id); 248 return -ENODEV; 249 } 250 251 mutex_lock(&mhi_chan->lock); 252 /* Disable DB for the channel */ 253 mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id); 254 255 /* Send channel disconnect status to client drivers */ 256 if (mhi_chan->xfer_cb) { 257 result.transaction_status = -ENOTCONN; 258 result.bytes_xferd = 0; 259 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 260 } 261 262 /* Set channel state to STOP */ 263 mhi_chan->state = MHI_CH_STATE_STOP; 264 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 265 tmp &= ~CHAN_CTX_CHSTATE_MASK; 266 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP); 267 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 268 269 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 270 if (ret) { 271 dev_err(dev, "Error sending command completion event (%u)\n", 272 MHI_EV_CC_SUCCESS); 273 goto err_unlock; 274 } 275 276 mutex_unlock(&mhi_chan->lock); 277 break; 278 case MHI_PKT_TYPE_RESET_CHAN_CMD: 279 dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id); 280 if (!ch_ring->started) { 281 dev_err(dev, "Channel (%u) not opened\n", ch_id); 282 return -ENODEV; 283 } 284 285 mutex_lock(&mhi_chan->lock); 286 /* Stop and reset the transfer ring */ 287 mhi_ep_ring_reset(mhi_cntrl, ch_ring); 288 289 /* Send channel disconnect status to client driver */ 290 if (mhi_chan->xfer_cb) { 291 result.transaction_status = -ENOTCONN; 292 result.bytes_xferd = 0; 293 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 294 } 295 296 /* Set channel state to DISABLED */ 297 mhi_chan->state = MHI_CH_STATE_DISABLED; 298 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 299 tmp &= ~CHAN_CTX_CHSTATE_MASK; 300 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); 301 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 302 303 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 304 if (ret) { 305 dev_err(dev, "Error sending command completion event (%u)\n", 306 MHI_EV_CC_SUCCESS); 307 goto err_unlock; 308 } 309 310 mutex_unlock(&mhi_chan->lock); 311 break; 312 default: 313 dev_err(dev, "Invalid command received: %lu for channel (%u)\n", 314 MHI_TRE_GET_CMD_TYPE(el), ch_id); 315 return -EINVAL; 316 } 317 318 return 0; 319 320 err_unlock: 321 mutex_unlock(&mhi_chan->lock); 322 323 return ret; 324 } 325 326 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir) 327 { 328 struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan : 329 mhi_dev->ul_chan; 330 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 331 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 332 333 return !!(mhi_chan->rd_offset == ring->wr_offset); 334 } 335 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty); 336 337 static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info) 338 { 339 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; 340 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 341 struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan; 342 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 343 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; 344 struct mhi_result result = {}; 345 int ret; 346 347 if (mhi_chan->xfer_cb) { 348 result.buf_addr = buf_info->cb_buf; 349 result.dir = mhi_chan->dir; 350 result.bytes_xferd = buf_info->size; 351 352 mhi_chan->xfer_cb(mhi_dev, &result); 353 } 354 355 /* 356 * The host will split the data packet into multiple TREs if it can't fit 357 * the packet in a single TRE. In that case, CHAIN flag will be set by the 358 * host for all TREs except the last one. 359 */ 360 if (buf_info->code != MHI_EV_CC_OVERFLOW) { 361 if (MHI_TRE_DATA_GET_CHAIN(el)) { 362 /* 363 * IEOB (Interrupt on End of Block) flag will be set by the host if 364 * it expects the completion event for all TREs of a TD. 365 */ 366 if (MHI_TRE_DATA_GET_IEOB(el)) { 367 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, 368 MHI_TRE_DATA_GET_LEN(el), 369 MHI_EV_CC_EOB); 370 if (ret < 0) { 371 dev_err(&mhi_chan->mhi_dev->dev, 372 "Error sending transfer compl. event\n"); 373 goto err_free_tre_buf; 374 } 375 } 376 } else { 377 /* 378 * IEOT (Interrupt on End of Transfer) flag will be set by the host 379 * for the last TRE of the TD and expects the completion event for 380 * the same. 381 */ 382 if (MHI_TRE_DATA_GET_IEOT(el)) { 383 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, 384 MHI_TRE_DATA_GET_LEN(el), 385 MHI_EV_CC_EOT); 386 if (ret < 0) { 387 dev_err(&mhi_chan->mhi_dev->dev, 388 "Error sending transfer compl. event\n"); 389 goto err_free_tre_buf; 390 } 391 } 392 } 393 } 394 395 mhi_ep_ring_inc_index(ring); 396 397 err_free_tre_buf: 398 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf); 399 } 400 401 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl, 402 struct mhi_ep_ring *ring) 403 { 404 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 405 struct device *dev = &mhi_cntrl->mhi_dev->dev; 406 size_t tr_len, read_offset; 407 struct mhi_ep_buf_info buf_info = {}; 408 u32 len = MHI_EP_DEFAULT_MTU; 409 struct mhi_ring_element *el; 410 void *buf_addr; 411 int ret; 412 413 do { 414 /* Don't process the transfer ring if the channel is not in RUNNING state */ 415 if (mhi_chan->state != MHI_CH_STATE_RUNNING) { 416 dev_err(dev, "Channel not available\n"); 417 return -ENODEV; 418 } 419 420 el = &ring->ring_cache[mhi_chan->rd_offset]; 421 422 /* Check if there is data pending to be read from previous read operation */ 423 if (mhi_chan->tre_bytes_left) { 424 dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left); 425 tr_len = min(len, mhi_chan->tre_bytes_left); 426 } else { 427 mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el); 428 mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el); 429 mhi_chan->tre_bytes_left = mhi_chan->tre_size; 430 431 tr_len = min(len, mhi_chan->tre_size); 432 } 433 434 read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left; 435 436 buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL); 437 if (!buf_addr) 438 return -ENOMEM; 439 440 buf_info.host_addr = mhi_chan->tre_loc + read_offset; 441 buf_info.dev_addr = buf_addr; 442 buf_info.size = tr_len; 443 buf_info.cb = mhi_ep_read_completion; 444 buf_info.cb_buf = buf_addr; 445 buf_info.mhi_dev = mhi_chan->mhi_dev; 446 447 if (mhi_chan->tre_bytes_left - tr_len) 448 buf_info.code = MHI_EV_CC_OVERFLOW; 449 450 dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id); 451 ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info); 452 if (ret < 0) { 453 dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n"); 454 goto err_free_buf_addr; 455 } 456 457 mhi_chan->tre_bytes_left -= tr_len; 458 459 if (!mhi_chan->tre_bytes_left) 460 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; 461 /* Read until the some buffer is left or the ring becomes not empty */ 462 } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE)); 463 464 return 0; 465 466 err_free_buf_addr: 467 kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr); 468 469 return ret; 470 } 471 472 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring) 473 { 474 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; 475 struct mhi_result result = {}; 476 struct mhi_ep_chan *mhi_chan; 477 int ret; 478 479 mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 480 481 /* 482 * Bail out if transfer callback is not registered for the channel. 483 * This is most likely due to the client driver not loaded at this point. 484 */ 485 if (!mhi_chan->xfer_cb) { 486 dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n"); 487 return -ENODEV; 488 } 489 490 if (ring->ch_id % 2) { 491 /* DL channel */ 492 result.dir = mhi_chan->dir; 493 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 494 } else { 495 /* UL channel */ 496 ret = mhi_ep_read_channel(mhi_cntrl, ring); 497 if (ret < 0) { 498 dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n"); 499 return ret; 500 } 501 } 502 503 return 0; 504 } 505 506 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info) 507 { 508 struct mhi_ep_device *mhi_dev = buf_info->mhi_dev; 509 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 510 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; 511 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 512 struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset]; 513 struct device *dev = &mhi_dev->dev; 514 struct mhi_result result = {}; 515 int ret; 516 517 if (mhi_chan->xfer_cb) { 518 result.buf_addr = buf_info->cb_buf; 519 result.dir = mhi_chan->dir; 520 result.bytes_xferd = buf_info->size; 521 522 mhi_chan->xfer_cb(mhi_dev, &result); 523 } 524 525 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size, 526 buf_info->code); 527 if (ret) { 528 dev_err(dev, "Error sending transfer completion event\n"); 529 return; 530 } 531 532 mhi_ep_ring_inc_index(ring); 533 } 534 535 /* TODO: Handle partially formed TDs */ 536 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb) 537 { 538 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 539 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; 540 struct device *dev = &mhi_chan->mhi_dev->dev; 541 struct mhi_ep_buf_info buf_info = {}; 542 struct mhi_ring_element *el; 543 u32 buf_left, read_offset; 544 struct mhi_ep_ring *ring; 545 size_t tr_len; 546 u32 tre_len; 547 int ret; 548 549 buf_left = skb->len; 550 ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 551 552 mutex_lock(&mhi_chan->lock); 553 554 do { 555 /* Don't process the transfer ring if the channel is not in RUNNING state */ 556 if (mhi_chan->state != MHI_CH_STATE_RUNNING) { 557 dev_err(dev, "Channel not available\n"); 558 ret = -ENODEV; 559 goto err_exit; 560 } 561 562 if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) { 563 dev_err(dev, "TRE not available!\n"); 564 ret = -ENOSPC; 565 goto err_exit; 566 } 567 568 el = &ring->ring_cache[mhi_chan->rd_offset]; 569 tre_len = MHI_TRE_DATA_GET_LEN(el); 570 571 tr_len = min(buf_left, tre_len); 572 read_offset = skb->len - buf_left; 573 574 buf_info.dev_addr = skb->data + read_offset; 575 buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el); 576 buf_info.size = tr_len; 577 buf_info.cb = mhi_ep_skb_completion; 578 buf_info.cb_buf = skb; 579 buf_info.mhi_dev = mhi_dev; 580 581 /* 582 * For all TREs queued by the host for DL channel, only the EOT flag will be set. 583 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to 584 * the host so that the host can adjust the packet boundary to next TREs. Else send 585 * the EOT event to the host indicating the packet boundary. 586 */ 587 if (buf_left - tr_len) 588 buf_info.code = MHI_EV_CC_OVERFLOW; 589 else 590 buf_info.code = MHI_EV_CC_EOT; 591 592 dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id); 593 ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info); 594 if (ret < 0) { 595 dev_err(dev, "Error writing to the channel\n"); 596 goto err_exit; 597 } 598 599 buf_left -= tr_len; 600 601 /* 602 * Update the read offset cached in mhi_chan. Actual read offset 603 * will be updated by the completion handler. 604 */ 605 mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size; 606 } while (buf_left); 607 608 mutex_unlock(&mhi_chan->lock); 609 610 return 0; 611 612 err_exit: 613 mutex_unlock(&mhi_chan->lock); 614 615 return ret; 616 } 617 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb); 618 619 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) 620 { 621 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; 622 struct device *dev = &mhi_cntrl->mhi_dev->dev; 623 int ret; 624 625 /* Update the number of event rings (NER) programmed by the host */ 626 mhi_ep_mmio_update_ner(mhi_cntrl); 627 628 dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n", 629 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings); 630 631 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; 632 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; 633 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; 634 635 /* Get the channel context base pointer from host */ 636 mhi_ep_mmio_get_chc_base(mhi_cntrl); 637 638 /* Allocate and map memory for caching host channel context */ 639 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, 640 &mhi_cntrl->ch_ctx_cache_phys, 641 (void __iomem **) &mhi_cntrl->ch_ctx_cache, 642 ch_ctx_host_size); 643 if (ret) { 644 dev_err(dev, "Failed to allocate and map ch_ctx_cache\n"); 645 return ret; 646 } 647 648 /* Get the event context base pointer from host */ 649 mhi_ep_mmio_get_erc_base(mhi_cntrl); 650 651 /* Allocate and map memory for caching host event context */ 652 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, 653 &mhi_cntrl->ev_ctx_cache_phys, 654 (void __iomem **) &mhi_cntrl->ev_ctx_cache, 655 ev_ctx_host_size); 656 if (ret) { 657 dev_err(dev, "Failed to allocate and map ev_ctx_cache\n"); 658 goto err_ch_ctx; 659 } 660 661 /* Get the command context base pointer from host */ 662 mhi_ep_mmio_get_crc_base(mhi_cntrl); 663 664 /* Allocate and map memory for caching host command context */ 665 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, 666 &mhi_cntrl->cmd_ctx_cache_phys, 667 (void __iomem **) &mhi_cntrl->cmd_ctx_cache, 668 cmd_ctx_host_size); 669 if (ret) { 670 dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n"); 671 goto err_ev_ctx; 672 } 673 674 /* Initialize command ring */ 675 ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring, 676 (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache); 677 if (ret) { 678 dev_err(dev, "Failed to start the command ring\n"); 679 goto err_cmd_ctx; 680 } 681 682 return ret; 683 684 err_cmd_ctx: 685 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, 686 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); 687 688 err_ev_ctx: 689 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, 690 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); 691 692 err_ch_ctx: 693 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, 694 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); 695 696 return ret; 697 } 698 699 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) 700 { 701 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; 702 703 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; 704 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; 705 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; 706 707 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, 708 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); 709 710 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, 711 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); 712 713 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, 714 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); 715 } 716 717 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl) 718 { 719 /* 720 * Doorbell interrupts are enabled when the corresponding channel gets started. 721 * Enabling all interrupts here triggers spurious irqs as some of the interrupts 722 * associated with hw channels always get triggered. 723 */ 724 mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl); 725 mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl); 726 } 727 728 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl) 729 { 730 struct device *dev = &mhi_cntrl->mhi_dev->dev; 731 enum mhi_state state; 732 bool mhi_reset; 733 u32 count = 0; 734 int ret; 735 736 /* Wait for Host to set the M0 state */ 737 do { 738 msleep(M0_WAIT_DELAY_MS); 739 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); 740 if (mhi_reset) { 741 /* Clear the MHI reset if host is in reset state */ 742 mhi_ep_mmio_clear_reset(mhi_cntrl); 743 dev_info(dev, "Detected Host reset while waiting for M0\n"); 744 } 745 count++; 746 } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT); 747 748 if (state != MHI_STATE_M0) { 749 dev_err(dev, "Host failed to enter M0\n"); 750 return -ETIMEDOUT; 751 } 752 753 ret = mhi_ep_cache_host_cfg(mhi_cntrl); 754 if (ret) { 755 dev_err(dev, "Failed to cache host config\n"); 756 return ret; 757 } 758 759 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 760 761 /* Enable all interrupts now */ 762 mhi_ep_enable_int(mhi_cntrl); 763 764 return 0; 765 } 766 767 static void mhi_ep_cmd_ring_worker(struct work_struct *work) 768 { 769 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work); 770 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; 771 struct device *dev = &mhi_cntrl->mhi_dev->dev; 772 struct mhi_ring_element *el; 773 int ret; 774 775 /* Update the write offset for the ring */ 776 ret = mhi_ep_update_wr_offset(ring); 777 if (ret) { 778 dev_err(dev, "Error updating write offset for ring\n"); 779 return; 780 } 781 782 /* Sanity check to make sure there are elements in the ring */ 783 if (ring->rd_offset == ring->wr_offset) 784 return; 785 786 /* 787 * Process command ring element till write offset. In case of an error, just try to 788 * process next element. 789 */ 790 while (ring->rd_offset != ring->wr_offset) { 791 el = &ring->ring_cache[ring->rd_offset]; 792 793 ret = mhi_ep_process_cmd_ring(ring, el); 794 if (ret && ret != -ENODEV) 795 dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset); 796 797 mhi_ep_ring_inc_index(ring); 798 } 799 } 800 801 static void mhi_ep_ch_ring_worker(struct work_struct *work) 802 { 803 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work); 804 struct device *dev = &mhi_cntrl->mhi_dev->dev; 805 struct mhi_ep_ring_item *itr, *tmp; 806 struct mhi_ep_ring *ring; 807 struct mhi_ep_chan *chan; 808 unsigned long flags; 809 LIST_HEAD(head); 810 int ret; 811 812 spin_lock_irqsave(&mhi_cntrl->list_lock, flags); 813 list_splice_tail_init(&mhi_cntrl->ch_db_list, &head); 814 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); 815 816 /* Process each queued channel ring. In case of an error, just process next element. */ 817 list_for_each_entry_safe(itr, tmp, &head, node) { 818 list_del(&itr->node); 819 ring = itr->ring; 820 821 chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 822 mutex_lock(&chan->lock); 823 824 /* 825 * The ring could've stopped while we waited to grab the (chan->lock), so do 826 * a sanity check before going further. 827 */ 828 if (!ring->started) { 829 mutex_unlock(&chan->lock); 830 kfree(itr); 831 continue; 832 } 833 834 /* Update the write offset for the ring */ 835 ret = mhi_ep_update_wr_offset(ring); 836 if (ret) { 837 dev_err(dev, "Error updating write offset for ring\n"); 838 mutex_unlock(&chan->lock); 839 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 840 continue; 841 } 842 843 /* Sanity check to make sure there are elements in the ring */ 844 if (chan->rd_offset == ring->wr_offset) { 845 mutex_unlock(&chan->lock); 846 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 847 continue; 848 } 849 850 dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id); 851 ret = mhi_ep_process_ch_ring(ring); 852 if (ret) { 853 dev_err(dev, "Error processing ring for channel (%u): %d\n", 854 ring->ch_id, ret); 855 mutex_unlock(&chan->lock); 856 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 857 continue; 858 } 859 860 mutex_unlock(&chan->lock); 861 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 862 } 863 } 864 865 static void mhi_ep_state_worker(struct work_struct *work) 866 { 867 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work); 868 struct device *dev = &mhi_cntrl->mhi_dev->dev; 869 struct mhi_ep_state_transition *itr, *tmp; 870 unsigned long flags; 871 LIST_HEAD(head); 872 int ret; 873 874 spin_lock_irqsave(&mhi_cntrl->list_lock, flags); 875 list_splice_tail_init(&mhi_cntrl->st_transition_list, &head); 876 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); 877 878 list_for_each_entry_safe(itr, tmp, &head, node) { 879 list_del(&itr->node); 880 dev_dbg(dev, "Handling MHI state transition to %s\n", 881 mhi_state_str(itr->state)); 882 883 switch (itr->state) { 884 case MHI_STATE_M0: 885 ret = mhi_ep_set_m0_state(mhi_cntrl); 886 if (ret) 887 dev_err(dev, "Failed to transition to M0 state\n"); 888 break; 889 case MHI_STATE_M3: 890 ret = mhi_ep_set_m3_state(mhi_cntrl); 891 if (ret) 892 dev_err(dev, "Failed to transition to M3 state\n"); 893 break; 894 default: 895 dev_err(dev, "Invalid MHI state transition: %d\n", itr->state); 896 break; 897 } 898 kfree(itr); 899 } 900 } 901 902 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int, 903 u32 ch_idx) 904 { 905 struct mhi_ep_ring_item *item; 906 struct mhi_ep_ring *ring; 907 bool work = !!ch_int; 908 LIST_HEAD(head); 909 u32 i; 910 911 /* First add the ring items to a local list */ 912 for_each_set_bit(i, &ch_int, 32) { 913 /* Channel index varies for each register: 0, 32, 64, 96 */ 914 u32 ch_id = ch_idx + i; 915 916 ring = &mhi_cntrl->mhi_chan[ch_id].ring; 917 item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC); 918 if (!item) 919 return; 920 921 item->ring = ring; 922 list_add_tail(&item->node, &head); 923 } 924 925 /* Now, splice the local list into ch_db_list and queue the work item */ 926 if (work) { 927 spin_lock(&mhi_cntrl->list_lock); 928 list_splice_tail_init(&head, &mhi_cntrl->ch_db_list); 929 spin_unlock(&mhi_cntrl->list_lock); 930 931 queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work); 932 } 933 } 934 935 /* 936 * Channel interrupt statuses are contained in 4 registers each of 32bit length. 937 * For checking all interrupts, we need to loop through each registers and then 938 * check for bits set. 939 */ 940 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl) 941 { 942 u32 ch_int, ch_idx, i; 943 944 /* Bail out if there is no channel doorbell interrupt */ 945 if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl)) 946 return; 947 948 for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) { 949 ch_idx = i * MHI_MASK_CH_LEN; 950 951 /* Only process channel interrupt if the mask is enabled */ 952 ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask; 953 if (ch_int) { 954 mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx); 955 mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i), 956 mhi_cntrl->chdb[i].status); 957 } 958 } 959 } 960 961 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl, 962 enum mhi_state state) 963 { 964 struct mhi_ep_state_transition *item; 965 966 item = kzalloc(sizeof(*item), GFP_ATOMIC); 967 if (!item) 968 return; 969 970 item->state = state; 971 spin_lock(&mhi_cntrl->list_lock); 972 list_add_tail(&item->node, &mhi_cntrl->st_transition_list); 973 spin_unlock(&mhi_cntrl->list_lock); 974 975 queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work); 976 } 977 978 /* 979 * Interrupt handler that services interrupts raised by the host writing to 980 * MHICTRL and Command ring doorbell (CRDB) registers for state change and 981 * channel interrupts. 982 */ 983 static irqreturn_t mhi_ep_irq(int irq, void *data) 984 { 985 struct mhi_ep_cntrl *mhi_cntrl = data; 986 struct device *dev = &mhi_cntrl->mhi_dev->dev; 987 enum mhi_state state; 988 u32 int_value; 989 bool mhi_reset; 990 991 /* Acknowledge the ctrl interrupt */ 992 int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS); 993 mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value); 994 995 /* Check for ctrl interrupt */ 996 if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) { 997 dev_dbg(dev, "Processing ctrl interrupt\n"); 998 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); 999 if (mhi_reset) { 1000 dev_info(dev, "Host triggered MHI reset!\n"); 1001 disable_irq_nosync(mhi_cntrl->irq); 1002 schedule_work(&mhi_cntrl->reset_work); 1003 return IRQ_HANDLED; 1004 } 1005 1006 mhi_ep_process_ctrl_interrupt(mhi_cntrl, state); 1007 } 1008 1009 /* Check for command doorbell interrupt */ 1010 if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) { 1011 dev_dbg(dev, "Processing command doorbell interrupt\n"); 1012 queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work); 1013 } 1014 1015 /* Check for channel interrupts */ 1016 mhi_ep_check_channel_interrupt(mhi_cntrl); 1017 1018 return IRQ_HANDLED; 1019 } 1020 1021 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl) 1022 { 1023 struct mhi_ep_ring *ch_ring, *ev_ring; 1024 struct mhi_result result = {}; 1025 struct mhi_ep_chan *mhi_chan; 1026 int i; 1027 1028 /* Stop all the channels */ 1029 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1030 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1031 if (!mhi_chan->ring.started) 1032 continue; 1033 1034 mutex_lock(&mhi_chan->lock); 1035 /* Send channel disconnect status to client drivers */ 1036 if (mhi_chan->xfer_cb) { 1037 result.transaction_status = -ENOTCONN; 1038 result.bytes_xferd = 0; 1039 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 1040 } 1041 1042 mhi_chan->state = MHI_CH_STATE_DISABLED; 1043 mutex_unlock(&mhi_chan->lock); 1044 } 1045 1046 flush_workqueue(mhi_cntrl->wq); 1047 1048 /* Destroy devices associated with all channels */ 1049 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device); 1050 1051 /* Stop and reset the transfer rings */ 1052 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1053 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1054 if (!mhi_chan->ring.started) 1055 continue; 1056 1057 ch_ring = &mhi_cntrl->mhi_chan[i].ring; 1058 mutex_lock(&mhi_chan->lock); 1059 mhi_ep_ring_reset(mhi_cntrl, ch_ring); 1060 mutex_unlock(&mhi_chan->lock); 1061 } 1062 1063 /* Stop and reset the event rings */ 1064 for (i = 0; i < mhi_cntrl->event_rings; i++) { 1065 ev_ring = &mhi_cntrl->mhi_event[i].ring; 1066 if (!ev_ring->started) 1067 continue; 1068 1069 mutex_lock(&mhi_cntrl->event_lock); 1070 mhi_ep_ring_reset(mhi_cntrl, ev_ring); 1071 mutex_unlock(&mhi_cntrl->event_lock); 1072 } 1073 1074 /* Stop and reset the command ring */ 1075 mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring); 1076 1077 mhi_ep_free_host_cfg(mhi_cntrl); 1078 mhi_ep_mmio_mask_interrupts(mhi_cntrl); 1079 1080 mhi_cntrl->enabled = false; 1081 } 1082 1083 static void mhi_ep_reset_worker(struct work_struct *work) 1084 { 1085 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work); 1086 enum mhi_state cur_state; 1087 1088 mhi_ep_power_down(mhi_cntrl); 1089 1090 mutex_lock(&mhi_cntrl->state_lock); 1091 1092 /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */ 1093 mhi_ep_mmio_reset(mhi_cntrl); 1094 cur_state = mhi_cntrl->mhi_state; 1095 1096 /* 1097 * Only proceed further if the reset is due to SYS_ERR. The host will 1098 * issue reset during shutdown also and we don't need to do re-init in 1099 * that case. 1100 */ 1101 if (cur_state == MHI_STATE_SYS_ERR) 1102 mhi_ep_power_up(mhi_cntrl); 1103 1104 mutex_unlock(&mhi_cntrl->state_lock); 1105 } 1106 1107 /* 1108 * We don't need to do anything special other than setting the MHI SYS_ERR 1109 * state. The host will reset all contexts and issue MHI RESET so that we 1110 * could also recover from error state. 1111 */ 1112 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl) 1113 { 1114 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1115 int ret; 1116 1117 ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); 1118 if (ret) 1119 return; 1120 1121 /* Signal host that the device went to SYS_ERR state */ 1122 ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR); 1123 if (ret) 1124 dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret); 1125 } 1126 1127 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl) 1128 { 1129 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1130 int ret, i; 1131 1132 /* 1133 * Mask all interrupts until the state machine is ready. Interrupts will 1134 * be enabled later with mhi_ep_enable(). 1135 */ 1136 mhi_ep_mmio_mask_interrupts(mhi_cntrl); 1137 mhi_ep_mmio_init(mhi_cntrl); 1138 1139 mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings, 1140 sizeof(*mhi_cntrl->mhi_event), 1141 GFP_KERNEL); 1142 if (!mhi_cntrl->mhi_event) 1143 return -ENOMEM; 1144 1145 /* Initialize command, channel and event rings */ 1146 mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0); 1147 for (i = 0; i < mhi_cntrl->max_chan; i++) 1148 mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i); 1149 for (i = 0; i < mhi_cntrl->event_rings; i++) 1150 mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i); 1151 1152 mhi_cntrl->mhi_state = MHI_STATE_RESET; 1153 1154 /* Set AMSS EE before signaling ready state */ 1155 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 1156 1157 /* All set, notify the host that we are ready */ 1158 ret = mhi_ep_set_ready_state(mhi_cntrl); 1159 if (ret) 1160 goto err_free_event; 1161 1162 dev_dbg(dev, "READY state notification sent to the host\n"); 1163 1164 ret = mhi_ep_enable(mhi_cntrl); 1165 if (ret) { 1166 dev_err(dev, "Failed to enable MHI endpoint\n"); 1167 goto err_free_event; 1168 } 1169 1170 enable_irq(mhi_cntrl->irq); 1171 mhi_cntrl->enabled = true; 1172 1173 return 0; 1174 1175 err_free_event: 1176 kfree(mhi_cntrl->mhi_event); 1177 1178 return ret; 1179 } 1180 EXPORT_SYMBOL_GPL(mhi_ep_power_up); 1181 1182 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl) 1183 { 1184 if (mhi_cntrl->enabled) { 1185 mhi_ep_abort_transfer(mhi_cntrl); 1186 kfree(mhi_cntrl->mhi_event); 1187 disable_irq(mhi_cntrl->irq); 1188 } 1189 } 1190 EXPORT_SYMBOL_GPL(mhi_ep_power_down); 1191 1192 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl) 1193 { 1194 struct mhi_ep_chan *mhi_chan; 1195 u32 tmp; 1196 int i; 1197 1198 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1199 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1200 1201 if (!mhi_chan->mhi_dev) 1202 continue; 1203 1204 mutex_lock(&mhi_chan->lock); 1205 /* Skip if the channel is not currently running */ 1206 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); 1207 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) { 1208 mutex_unlock(&mhi_chan->lock); 1209 continue; 1210 } 1211 1212 dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n"); 1213 /* Set channel state to SUSPENDED */ 1214 mhi_chan->state = MHI_CH_STATE_SUSPENDED; 1215 tmp &= ~CHAN_CTX_CHSTATE_MASK; 1216 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED); 1217 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); 1218 mutex_unlock(&mhi_chan->lock); 1219 } 1220 } 1221 1222 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl) 1223 { 1224 struct mhi_ep_chan *mhi_chan; 1225 u32 tmp; 1226 int i; 1227 1228 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1229 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1230 1231 if (!mhi_chan->mhi_dev) 1232 continue; 1233 1234 mutex_lock(&mhi_chan->lock); 1235 /* Skip if the channel is not currently suspended */ 1236 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); 1237 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) { 1238 mutex_unlock(&mhi_chan->lock); 1239 continue; 1240 } 1241 1242 dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n"); 1243 /* Set channel state to RUNNING */ 1244 mhi_chan->state = MHI_CH_STATE_RUNNING; 1245 tmp &= ~CHAN_CTX_CHSTATE_MASK; 1246 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); 1247 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); 1248 mutex_unlock(&mhi_chan->lock); 1249 } 1250 } 1251 1252 static void mhi_ep_release_device(struct device *dev) 1253 { 1254 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1255 1256 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1257 mhi_dev->mhi_cntrl->mhi_dev = NULL; 1258 1259 /* 1260 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI 1261 * devices for the channels will only get created in mhi_ep_create_device() 1262 * if the mhi_dev associated with it is NULL. 1263 */ 1264 if (mhi_dev->ul_chan) 1265 mhi_dev->ul_chan->mhi_dev = NULL; 1266 1267 if (mhi_dev->dl_chan) 1268 mhi_dev->dl_chan->mhi_dev = NULL; 1269 1270 kfree(mhi_dev); 1271 } 1272 1273 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl, 1274 enum mhi_device_type dev_type) 1275 { 1276 struct mhi_ep_device *mhi_dev; 1277 struct device *dev; 1278 1279 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); 1280 if (!mhi_dev) 1281 return ERR_PTR(-ENOMEM); 1282 1283 dev = &mhi_dev->dev; 1284 device_initialize(dev); 1285 dev->bus = &mhi_ep_bus_type; 1286 dev->release = mhi_ep_release_device; 1287 1288 /* Controller device is always allocated first */ 1289 if (dev_type == MHI_DEVICE_CONTROLLER) 1290 /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */ 1291 dev->parent = mhi_cntrl->cntrl_dev; 1292 else 1293 /* for MHI client devices, parent is the MHI controller device */ 1294 dev->parent = &mhi_cntrl->mhi_dev->dev; 1295 1296 mhi_dev->mhi_cntrl = mhi_cntrl; 1297 mhi_dev->dev_type = dev_type; 1298 1299 return mhi_dev; 1300 } 1301 1302 /* 1303 * MHI channels are always defined in pairs with UL as the even numbered 1304 * channel and DL as odd numbered one. This function gets UL channel (primary) 1305 * as the ch_id and always looks after the next entry in channel list for 1306 * the corresponding DL channel (secondary). 1307 */ 1308 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id) 1309 { 1310 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; 1311 struct device *dev = mhi_cntrl->cntrl_dev; 1312 struct mhi_ep_device *mhi_dev; 1313 int ret; 1314 1315 /* Check if the channel name is same for both UL and DL */ 1316 if (strcmp(mhi_chan->name, mhi_chan[1].name)) { 1317 dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n", 1318 mhi_chan->name, mhi_chan[1].name); 1319 return -EINVAL; 1320 } 1321 1322 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER); 1323 if (IS_ERR(mhi_dev)) 1324 return PTR_ERR(mhi_dev); 1325 1326 /* Configure primary channel */ 1327 mhi_dev->ul_chan = mhi_chan; 1328 get_device(&mhi_dev->dev); 1329 mhi_chan->mhi_dev = mhi_dev; 1330 1331 /* Configure secondary channel as well */ 1332 mhi_chan++; 1333 mhi_dev->dl_chan = mhi_chan; 1334 get_device(&mhi_dev->dev); 1335 mhi_chan->mhi_dev = mhi_dev; 1336 1337 /* Channel name is same for both UL and DL */ 1338 mhi_dev->name = mhi_chan->name; 1339 ret = dev_set_name(&mhi_dev->dev, "%s_%s", 1340 dev_name(&mhi_cntrl->mhi_dev->dev), 1341 mhi_dev->name); 1342 if (ret) { 1343 put_device(&mhi_dev->dev); 1344 return ret; 1345 } 1346 1347 ret = device_add(&mhi_dev->dev); 1348 if (ret) 1349 put_device(&mhi_dev->dev); 1350 1351 return ret; 1352 } 1353 1354 static int mhi_ep_destroy_device(struct device *dev, void *data) 1355 { 1356 struct mhi_ep_device *mhi_dev; 1357 struct mhi_ep_cntrl *mhi_cntrl; 1358 struct mhi_ep_chan *ul_chan, *dl_chan; 1359 1360 if (dev->bus != &mhi_ep_bus_type) 1361 return 0; 1362 1363 mhi_dev = to_mhi_ep_device(dev); 1364 mhi_cntrl = mhi_dev->mhi_cntrl; 1365 1366 /* Only destroy devices created for channels */ 1367 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1368 return 0; 1369 1370 ul_chan = mhi_dev->ul_chan; 1371 dl_chan = mhi_dev->dl_chan; 1372 1373 if (ul_chan) 1374 put_device(&ul_chan->mhi_dev->dev); 1375 1376 if (dl_chan) 1377 put_device(&dl_chan->mhi_dev->dev); 1378 1379 dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n", 1380 mhi_dev->name); 1381 1382 /* Notify the client and remove the device from MHI bus */ 1383 device_del(dev); 1384 put_device(dev); 1385 1386 return 0; 1387 } 1388 1389 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl, 1390 const struct mhi_ep_cntrl_config *config) 1391 { 1392 const struct mhi_ep_channel_config *ch_cfg; 1393 struct device *dev = mhi_cntrl->cntrl_dev; 1394 u32 chan, i; 1395 int ret = -EINVAL; 1396 1397 mhi_cntrl->max_chan = config->max_channels; 1398 1399 /* 1400 * Allocate max_channels supported by the MHI endpoint and populate 1401 * only the defined channels 1402 */ 1403 mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan), 1404 GFP_KERNEL); 1405 if (!mhi_cntrl->mhi_chan) 1406 return -ENOMEM; 1407 1408 for (i = 0; i < config->num_channels; i++) { 1409 struct mhi_ep_chan *mhi_chan; 1410 1411 ch_cfg = &config->ch_cfg[i]; 1412 1413 chan = ch_cfg->num; 1414 if (chan >= mhi_cntrl->max_chan) { 1415 dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n", 1416 chan, mhi_cntrl->max_chan); 1417 goto error_chan_cfg; 1418 } 1419 1420 /* Bi-directional and direction less channels are not supported */ 1421 if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) { 1422 dev_err(dev, "Invalid direction (%u) for channel (%u)\n", 1423 ch_cfg->dir, chan); 1424 goto error_chan_cfg; 1425 } 1426 1427 mhi_chan = &mhi_cntrl->mhi_chan[chan]; 1428 mhi_chan->name = ch_cfg->name; 1429 mhi_chan->chan = chan; 1430 mhi_chan->dir = ch_cfg->dir; 1431 mutex_init(&mhi_chan->lock); 1432 } 1433 1434 return 0; 1435 1436 error_chan_cfg: 1437 kfree(mhi_cntrl->mhi_chan); 1438 1439 return ret; 1440 } 1441 1442 /* 1443 * Allocate channel and command rings here. Event rings will be allocated 1444 * in mhi_ep_power_up() as the config comes from the host. 1445 */ 1446 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl, 1447 const struct mhi_ep_cntrl_config *config) 1448 { 1449 struct mhi_ep_device *mhi_dev; 1450 int ret; 1451 1452 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq) 1453 return -EINVAL; 1454 1455 if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync || 1456 !mhi_cntrl->read_async || !mhi_cntrl->write_async) 1457 return -EINVAL; 1458 1459 ret = mhi_ep_chan_init(mhi_cntrl, config); 1460 if (ret) 1461 return ret; 1462 1463 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); 1464 if (!mhi_cntrl->mhi_cmd) { 1465 ret = -ENOMEM; 1466 goto err_free_ch; 1467 } 1468 1469 mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el", 1470 sizeof(struct mhi_ring_element), 0, 1471 0, NULL); 1472 if (!mhi_cntrl->ev_ring_el_cache) { 1473 ret = -ENOMEM; 1474 goto err_free_cmd; 1475 } 1476 1477 mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0, 1478 0, NULL); 1479 if (!mhi_cntrl->tre_buf_cache) { 1480 ret = -ENOMEM; 1481 goto err_destroy_ev_ring_el_cache; 1482 } 1483 1484 mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item", 1485 sizeof(struct mhi_ep_ring_item), 0, 1486 0, NULL); 1487 if (!mhi_cntrl->ring_item_cache) { 1488 ret = -ENOMEM; 1489 goto err_destroy_tre_buf_cache; 1490 } 1491 1492 INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker); 1493 INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker); 1494 INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker); 1495 INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker); 1496 1497 mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0); 1498 if (!mhi_cntrl->wq) { 1499 ret = -ENOMEM; 1500 goto err_destroy_ring_item_cache; 1501 } 1502 1503 INIT_LIST_HEAD(&mhi_cntrl->st_transition_list); 1504 INIT_LIST_HEAD(&mhi_cntrl->ch_db_list); 1505 spin_lock_init(&mhi_cntrl->list_lock); 1506 mutex_init(&mhi_cntrl->state_lock); 1507 mutex_init(&mhi_cntrl->event_lock); 1508 1509 /* Set MHI version and AMSS EE before enumeration */ 1510 mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version); 1511 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 1512 1513 /* Set controller index */ 1514 ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL); 1515 if (ret < 0) 1516 goto err_destroy_wq; 1517 1518 mhi_cntrl->index = ret; 1519 1520 irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN); 1521 ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH, 1522 "doorbell_irq", mhi_cntrl); 1523 if (ret) { 1524 dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n"); 1525 goto err_ida_free; 1526 } 1527 1528 /* Allocate the controller device */ 1529 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER); 1530 if (IS_ERR(mhi_dev)) { 1531 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n"); 1532 ret = PTR_ERR(mhi_dev); 1533 goto err_free_irq; 1534 } 1535 1536 ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index); 1537 if (ret) 1538 goto err_put_dev; 1539 1540 mhi_dev->name = dev_name(&mhi_dev->dev); 1541 mhi_cntrl->mhi_dev = mhi_dev; 1542 1543 ret = device_add(&mhi_dev->dev); 1544 if (ret) 1545 goto err_put_dev; 1546 1547 dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n"); 1548 1549 return 0; 1550 1551 err_put_dev: 1552 put_device(&mhi_dev->dev); 1553 err_free_irq: 1554 free_irq(mhi_cntrl->irq, mhi_cntrl); 1555 err_ida_free: 1556 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); 1557 err_destroy_wq: 1558 destroy_workqueue(mhi_cntrl->wq); 1559 err_destroy_ring_item_cache: 1560 kmem_cache_destroy(mhi_cntrl->ring_item_cache); 1561 err_destroy_ev_ring_el_cache: 1562 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); 1563 err_destroy_tre_buf_cache: 1564 kmem_cache_destroy(mhi_cntrl->tre_buf_cache); 1565 err_free_cmd: 1566 kfree(mhi_cntrl->mhi_cmd); 1567 err_free_ch: 1568 kfree(mhi_cntrl->mhi_chan); 1569 1570 return ret; 1571 } 1572 EXPORT_SYMBOL_GPL(mhi_ep_register_controller); 1573 1574 /* 1575 * It is expected that the controller drivers will power down the MHI EP stack 1576 * using "mhi_ep_power_down()" before calling this function to unregister themselves. 1577 */ 1578 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl) 1579 { 1580 struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev; 1581 1582 destroy_workqueue(mhi_cntrl->wq); 1583 1584 free_irq(mhi_cntrl->irq, mhi_cntrl); 1585 1586 kmem_cache_destroy(mhi_cntrl->tre_buf_cache); 1587 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); 1588 kmem_cache_destroy(mhi_cntrl->ring_item_cache); 1589 kfree(mhi_cntrl->mhi_cmd); 1590 kfree(mhi_cntrl->mhi_chan); 1591 1592 device_del(&mhi_dev->dev); 1593 put_device(&mhi_dev->dev); 1594 1595 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); 1596 } 1597 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller); 1598 1599 static int mhi_ep_driver_probe(struct device *dev) 1600 { 1601 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1602 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); 1603 struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan; 1604 struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan; 1605 1606 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; 1607 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; 1608 1609 return mhi_drv->probe(mhi_dev, mhi_dev->id); 1610 } 1611 1612 static int mhi_ep_driver_remove(struct device *dev) 1613 { 1614 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1615 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); 1616 struct mhi_result result = {}; 1617 struct mhi_ep_chan *mhi_chan; 1618 int dir; 1619 1620 /* Skip if it is a controller device */ 1621 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1622 return 0; 1623 1624 /* Disconnect the channels associated with the driver */ 1625 for (dir = 0; dir < 2; dir++) { 1626 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; 1627 1628 if (!mhi_chan) 1629 continue; 1630 1631 mutex_lock(&mhi_chan->lock); 1632 /* Send channel disconnect status to the client driver */ 1633 if (mhi_chan->xfer_cb) { 1634 result.transaction_status = -ENOTCONN; 1635 result.bytes_xferd = 0; 1636 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 1637 } 1638 1639 mhi_chan->state = MHI_CH_STATE_DISABLED; 1640 mhi_chan->xfer_cb = NULL; 1641 mutex_unlock(&mhi_chan->lock); 1642 } 1643 1644 /* Remove the client driver now */ 1645 mhi_drv->remove(mhi_dev); 1646 1647 return 0; 1648 } 1649 1650 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner) 1651 { 1652 struct device_driver *driver = &mhi_drv->driver; 1653 1654 if (!mhi_drv->probe || !mhi_drv->remove) 1655 return -EINVAL; 1656 1657 /* Client drivers should have callbacks defined for both channels */ 1658 if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb) 1659 return -EINVAL; 1660 1661 driver->bus = &mhi_ep_bus_type; 1662 driver->owner = owner; 1663 driver->probe = mhi_ep_driver_probe; 1664 driver->remove = mhi_ep_driver_remove; 1665 1666 return driver_register(driver); 1667 } 1668 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register); 1669 1670 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv) 1671 { 1672 driver_unregister(&mhi_drv->driver); 1673 } 1674 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister); 1675 1676 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env) 1677 { 1678 const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1679 1680 return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT, 1681 mhi_dev->name); 1682 } 1683 1684 static int mhi_ep_match(struct device *dev, const struct device_driver *drv) 1685 { 1686 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1687 const struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv); 1688 const struct mhi_device_id *id; 1689 1690 /* 1691 * If the device is a controller type then there is no client driver 1692 * associated with it 1693 */ 1694 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1695 return 0; 1696 1697 for (id = mhi_drv->id_table; id->chan[0]; id++) 1698 if (!strcmp(mhi_dev->name, id->chan)) { 1699 mhi_dev->id = id; 1700 return 1; 1701 } 1702 1703 return 0; 1704 }; 1705 1706 struct bus_type mhi_ep_bus_type = { 1707 .name = "mhi_ep", 1708 .dev_name = "mhi_ep", 1709 .match = mhi_ep_match, 1710 .uevent = mhi_ep_uevent, 1711 }; 1712 1713 static int __init mhi_ep_init(void) 1714 { 1715 return bus_register(&mhi_ep_bus_type); 1716 } 1717 1718 static void __exit mhi_ep_exit(void) 1719 { 1720 bus_unregister(&mhi_ep_bus_type); 1721 } 1722 1723 postcore_initcall(mhi_ep_init); 1724 module_exit(mhi_ep_exit); 1725 1726 MODULE_LICENSE("GPL v2"); 1727 MODULE_DESCRIPTION("MHI Bus Endpoint stack"); 1728 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); 1729