xref: /linux/drivers/bus/mhi/ep/main.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 	 * set this flag for interrupt moderation as per MHI protocol.
59 	 */
60 	if (!bei)
61 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62 
63 	return 0;
64 
65 err_unlock:
66 	mutex_unlock(&mhi_cntrl->event_lock);
67 
68 	return ret;
69 }
70 
71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 	struct mhi_ring_element event = {};
75 
76 	event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
77 	event.dword[0] = MHI_TRE_EV_DWORD0(code, len);
78 	event.dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
79 
80 	return mhi_ep_send_event(mhi_cntrl, ring->er_index, &event, MHI_TRE_DATA_GET_BEI(tre));
81 }
82 
83 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
84 {
85 	struct mhi_ring_element event = {};
86 
87 	event.dword[0] = MHI_SC_EV_DWORD0(state);
88 	event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
89 
90 	return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
91 }
92 
93 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
94 {
95 	struct mhi_ring_element event = {};
96 
97 	event.dword[0] = MHI_EE_EV_DWORD0(exec_env);
98 	event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
99 
100 	return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
101 }
102 
103 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
104 {
105 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
106 	struct mhi_ring_element event = {};
107 
108 	event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
109 	event.dword[0] = MHI_CC_EV_DWORD0(code);
110 	event.dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
111 
112 	return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
113 }
114 
115 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
116 {
117 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
118 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
119 	struct mhi_result result = {};
120 	struct mhi_ep_chan *mhi_chan;
121 	struct mhi_ep_ring *ch_ring;
122 	u32 tmp, ch_id;
123 	int ret;
124 
125 	ch_id = MHI_TRE_GET_CMD_CHID(el);
126 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
127 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
128 
129 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
130 	case MHI_PKT_TYPE_START_CHAN_CMD:
131 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
132 
133 		mutex_lock(&mhi_chan->lock);
134 		/* Initialize and configure the corresponding channel ring */
135 		if (!ch_ring->started) {
136 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
137 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
138 			if (ret) {
139 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
140 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
141 							MHI_EV_CC_UNDEFINED_ERR);
142 				if (ret)
143 					dev_err(dev, "Error sending completion event: %d\n", ret);
144 
145 				goto err_unlock;
146 			}
147 		}
148 
149 		/* Set channel state to RUNNING */
150 		mhi_chan->state = MHI_CH_STATE_RUNNING;
151 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
152 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
153 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
154 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
155 
156 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
157 		if (ret) {
158 			dev_err(dev, "Error sending command completion event (%u)\n",
159 				MHI_EV_CC_SUCCESS);
160 			goto err_unlock;
161 		}
162 
163 		mutex_unlock(&mhi_chan->lock);
164 
165 		/*
166 		 * Create MHI device only during UL channel start. Since the MHI
167 		 * channels operate in a pair, we'll associate both UL and DL
168 		 * channels to the same device.
169 		 *
170 		 * We also need to check for mhi_dev != NULL because, the host
171 		 * will issue START_CHAN command during resume and we don't
172 		 * destroy the device during suspend.
173 		 */
174 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
175 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
176 			if (ret) {
177 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
178 				mhi_ep_handle_syserr(mhi_cntrl);
179 				return ret;
180 			}
181 		}
182 
183 		/* Finally, enable DB for the channel */
184 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
185 
186 		break;
187 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
188 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
189 		if (!ch_ring->started) {
190 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
191 			return -ENODEV;
192 		}
193 
194 		mutex_lock(&mhi_chan->lock);
195 		/* Disable DB for the channel */
196 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
197 
198 		/* Send channel disconnect status to client drivers */
199 		result.transaction_status = -ENOTCONN;
200 		result.bytes_xferd = 0;
201 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
202 
203 		/* Set channel state to STOP */
204 		mhi_chan->state = MHI_CH_STATE_STOP;
205 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
206 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
207 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
208 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
209 
210 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
211 		if (ret) {
212 			dev_err(dev, "Error sending command completion event (%u)\n",
213 				MHI_EV_CC_SUCCESS);
214 			goto err_unlock;
215 		}
216 
217 		mutex_unlock(&mhi_chan->lock);
218 		break;
219 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
220 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
221 		if (!ch_ring->started) {
222 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
223 			return -ENODEV;
224 		}
225 
226 		mutex_lock(&mhi_chan->lock);
227 		/* Stop and reset the transfer ring */
228 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
229 
230 		/* Send channel disconnect status to client driver */
231 		result.transaction_status = -ENOTCONN;
232 		result.bytes_xferd = 0;
233 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
234 
235 		/* Set channel state to DISABLED */
236 		mhi_chan->state = MHI_CH_STATE_DISABLED;
237 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
238 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
239 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
240 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
241 
242 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
243 		if (ret) {
244 			dev_err(dev, "Error sending command completion event (%u)\n",
245 				MHI_EV_CC_SUCCESS);
246 			goto err_unlock;
247 		}
248 
249 		mutex_unlock(&mhi_chan->lock);
250 		break;
251 	default:
252 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
253 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 
259 err_unlock:
260 	mutex_unlock(&mhi_chan->lock);
261 
262 	return ret;
263 }
264 
265 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
266 {
267 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
268 								mhi_dev->ul_chan;
269 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
270 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
271 
272 	return !!(ring->rd_offset == ring->wr_offset);
273 }
274 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
275 
276 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
277 				struct mhi_ep_ring *ring,
278 				struct mhi_result *result,
279 				u32 len)
280 {
281 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
282 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
283 	size_t tr_len, read_offset, write_offset;
284 	struct mhi_ring_element *el;
285 	bool tr_done = false;
286 	void *write_addr;
287 	u64 read_addr;
288 	u32 buf_left;
289 	int ret;
290 
291 	buf_left = len;
292 
293 	do {
294 		/* Don't process the transfer ring if the channel is not in RUNNING state */
295 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
296 			dev_err(dev, "Channel not available\n");
297 			return -ENODEV;
298 		}
299 
300 		el = &ring->ring_cache[ring->rd_offset];
301 
302 		/* Check if there is data pending to be read from previous read operation */
303 		if (mhi_chan->tre_bytes_left) {
304 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
305 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
306 		} else {
307 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
308 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
309 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
310 
311 			tr_len = min(buf_left, mhi_chan->tre_size);
312 		}
313 
314 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
315 		write_offset = len - buf_left;
316 		read_addr = mhi_chan->tre_loc + read_offset;
317 		write_addr = result->buf_addr + write_offset;
318 
319 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
320 		ret = mhi_cntrl->read_from_host(mhi_cntrl, read_addr, write_addr, tr_len);
321 		if (ret < 0) {
322 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
323 			return ret;
324 		}
325 
326 		buf_left -= tr_len;
327 		mhi_chan->tre_bytes_left -= tr_len;
328 
329 		/*
330 		 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
331 		 * read completely:
332 		 *
333 		 * 1. Send completion event to the host based on the flags set in TRE.
334 		 * 2. Increment the local read offset of the transfer ring.
335 		 */
336 		if (!mhi_chan->tre_bytes_left) {
337 			/*
338 			 * The host will split the data packet into multiple TREs if it can't fit
339 			 * the packet in a single TRE. In that case, CHAIN flag will be set by the
340 			 * host for all TREs except the last one.
341 			 */
342 			if (MHI_TRE_DATA_GET_CHAIN(el)) {
343 				/*
344 				 * IEOB (Interrupt on End of Block) flag will be set by the host if
345 				 * it expects the completion event for all TREs of a TD.
346 				 */
347 				if (MHI_TRE_DATA_GET_IEOB(el)) {
348 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
349 								     MHI_TRE_DATA_GET_LEN(el),
350 								     MHI_EV_CC_EOB);
351 					if (ret < 0) {
352 						dev_err(&mhi_chan->mhi_dev->dev,
353 							"Error sending transfer compl. event\n");
354 						return ret;
355 					}
356 				}
357 			} else {
358 				/*
359 				 * IEOT (Interrupt on End of Transfer) flag will be set by the host
360 				 * for the last TRE of the TD and expects the completion event for
361 				 * the same.
362 				 */
363 				if (MHI_TRE_DATA_GET_IEOT(el)) {
364 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
365 								     MHI_TRE_DATA_GET_LEN(el),
366 								     MHI_EV_CC_EOT);
367 					if (ret < 0) {
368 						dev_err(&mhi_chan->mhi_dev->dev,
369 							"Error sending transfer compl. event\n");
370 						return ret;
371 					}
372 				}
373 
374 				tr_done = true;
375 			}
376 
377 			mhi_ep_ring_inc_index(ring);
378 		}
379 
380 		result->bytes_xferd += tr_len;
381 	} while (buf_left && !tr_done);
382 
383 	return 0;
384 }
385 
386 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
387 {
388 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
389 	struct mhi_result result = {};
390 	u32 len = MHI_EP_DEFAULT_MTU;
391 	struct mhi_ep_chan *mhi_chan;
392 	int ret;
393 
394 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
395 
396 	/*
397 	 * Bail out if transfer callback is not registered for the channel.
398 	 * This is most likely due to the client driver not loaded at this point.
399 	 */
400 	if (!mhi_chan->xfer_cb) {
401 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
402 		return -ENODEV;
403 	}
404 
405 	if (ring->ch_id % 2) {
406 		/* DL channel */
407 		result.dir = mhi_chan->dir;
408 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
409 	} else {
410 		/* UL channel */
411 		result.buf_addr = kzalloc(len, GFP_KERNEL);
412 		if (!result.buf_addr)
413 			return -ENOMEM;
414 
415 		do {
416 			ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
417 			if (ret < 0) {
418 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
419 				kfree(result.buf_addr);
420 				return ret;
421 			}
422 
423 			result.dir = mhi_chan->dir;
424 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
425 			result.bytes_xferd = 0;
426 			memset(result.buf_addr, 0, len);
427 
428 			/* Read until the ring becomes empty */
429 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
430 
431 		kfree(result.buf_addr);
432 	}
433 
434 	return 0;
435 }
436 
437 /* TODO: Handle partially formed TDs */
438 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
439 {
440 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
441 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
442 	struct device *dev = &mhi_chan->mhi_dev->dev;
443 	struct mhi_ring_element *el;
444 	u32 buf_left, read_offset;
445 	struct mhi_ep_ring *ring;
446 	enum mhi_ev_ccs code;
447 	void *read_addr;
448 	u64 write_addr;
449 	size_t tr_len;
450 	u32 tre_len;
451 	int ret;
452 
453 	buf_left = skb->len;
454 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
455 
456 	mutex_lock(&mhi_chan->lock);
457 
458 	do {
459 		/* Don't process the transfer ring if the channel is not in RUNNING state */
460 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
461 			dev_err(dev, "Channel not available\n");
462 			ret = -ENODEV;
463 			goto err_exit;
464 		}
465 
466 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
467 			dev_err(dev, "TRE not available!\n");
468 			ret = -ENOSPC;
469 			goto err_exit;
470 		}
471 
472 		el = &ring->ring_cache[ring->rd_offset];
473 		tre_len = MHI_TRE_DATA_GET_LEN(el);
474 
475 		tr_len = min(buf_left, tre_len);
476 		read_offset = skb->len - buf_left;
477 		read_addr = skb->data + read_offset;
478 		write_addr = MHI_TRE_DATA_GET_PTR(el);
479 
480 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
481 		ret = mhi_cntrl->write_to_host(mhi_cntrl, read_addr, write_addr, tr_len);
482 		if (ret < 0) {
483 			dev_err(dev, "Error writing to the channel\n");
484 			goto err_exit;
485 		}
486 
487 		buf_left -= tr_len;
488 		/*
489 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
490 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
491 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
492 		 * the EOT event to the host indicating the packet boundary.
493 		 */
494 		if (buf_left)
495 			code = MHI_EV_CC_OVERFLOW;
496 		else
497 			code = MHI_EV_CC_EOT;
498 
499 		ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
500 		if (ret) {
501 			dev_err(dev, "Error sending transfer completion event\n");
502 			goto err_exit;
503 		}
504 
505 		mhi_ep_ring_inc_index(ring);
506 	} while (buf_left);
507 
508 	mutex_unlock(&mhi_chan->lock);
509 
510 	return 0;
511 
512 err_exit:
513 	mutex_unlock(&mhi_chan->lock);
514 
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
518 
519 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
520 {
521 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
522 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
523 	int ret;
524 
525 	/* Update the number of event rings (NER) programmed by the host */
526 	mhi_ep_mmio_update_ner(mhi_cntrl);
527 
528 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
529 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
530 
531 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
532 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
533 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
534 
535 	/* Get the channel context base pointer from host */
536 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
537 
538 	/* Allocate and map memory for caching host channel context */
539 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
540 				   &mhi_cntrl->ch_ctx_cache_phys,
541 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
542 				   ch_ctx_host_size);
543 	if (ret) {
544 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
545 		return ret;
546 	}
547 
548 	/* Get the event context base pointer from host */
549 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
550 
551 	/* Allocate and map memory for caching host event context */
552 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
553 				   &mhi_cntrl->ev_ctx_cache_phys,
554 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
555 				   ev_ctx_host_size);
556 	if (ret) {
557 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
558 		goto err_ch_ctx;
559 	}
560 
561 	/* Get the command context base pointer from host */
562 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
563 
564 	/* Allocate and map memory for caching host command context */
565 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
566 				   &mhi_cntrl->cmd_ctx_cache_phys,
567 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
568 				   cmd_ctx_host_size);
569 	if (ret) {
570 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
571 		goto err_ev_ctx;
572 	}
573 
574 	/* Initialize command ring */
575 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
576 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
577 	if (ret) {
578 		dev_err(dev, "Failed to start the command ring\n");
579 		goto err_cmd_ctx;
580 	}
581 
582 	return ret;
583 
584 err_cmd_ctx:
585 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
586 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
587 
588 err_ev_ctx:
589 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
590 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
591 
592 err_ch_ctx:
593 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
594 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
595 
596 	return ret;
597 }
598 
599 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
600 {
601 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
602 
603 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
604 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
605 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
606 
607 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
608 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
609 
610 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
611 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
612 
613 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
614 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
615 }
616 
617 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
618 {
619 	/*
620 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
621 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
622 	 * associated with hw channels always get triggered.
623 	 */
624 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
625 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
626 }
627 
628 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
629 {
630 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
631 	enum mhi_state state;
632 	bool mhi_reset;
633 	u32 count = 0;
634 	int ret;
635 
636 	/* Wait for Host to set the M0 state */
637 	do {
638 		msleep(M0_WAIT_DELAY_MS);
639 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
640 		if (mhi_reset) {
641 			/* Clear the MHI reset if host is in reset state */
642 			mhi_ep_mmio_clear_reset(mhi_cntrl);
643 			dev_info(dev, "Detected Host reset while waiting for M0\n");
644 		}
645 		count++;
646 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
647 
648 	if (state != MHI_STATE_M0) {
649 		dev_err(dev, "Host failed to enter M0\n");
650 		return -ETIMEDOUT;
651 	}
652 
653 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
654 	if (ret) {
655 		dev_err(dev, "Failed to cache host config\n");
656 		return ret;
657 	}
658 
659 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
660 
661 	/* Enable all interrupts now */
662 	mhi_ep_enable_int(mhi_cntrl);
663 
664 	return 0;
665 }
666 
667 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
668 {
669 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
670 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
671 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
672 	struct mhi_ring_element *el;
673 	int ret;
674 
675 	/* Update the write offset for the ring */
676 	ret = mhi_ep_update_wr_offset(ring);
677 	if (ret) {
678 		dev_err(dev, "Error updating write offset for ring\n");
679 		return;
680 	}
681 
682 	/* Sanity check to make sure there are elements in the ring */
683 	if (ring->rd_offset == ring->wr_offset)
684 		return;
685 
686 	/*
687 	 * Process command ring element till write offset. In case of an error, just try to
688 	 * process next element.
689 	 */
690 	while (ring->rd_offset != ring->wr_offset) {
691 		el = &ring->ring_cache[ring->rd_offset];
692 
693 		ret = mhi_ep_process_cmd_ring(ring, el);
694 		if (ret)
695 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
696 
697 		mhi_ep_ring_inc_index(ring);
698 	}
699 }
700 
701 static void mhi_ep_ch_ring_worker(struct work_struct *work)
702 {
703 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
704 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
705 	struct mhi_ep_ring_item *itr, *tmp;
706 	struct mhi_ring_element *el;
707 	struct mhi_ep_ring *ring;
708 	struct mhi_ep_chan *chan;
709 	unsigned long flags;
710 	LIST_HEAD(head);
711 	int ret;
712 
713 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
714 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
715 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
716 
717 	/* Process each queued channel ring. In case of an error, just process next element. */
718 	list_for_each_entry_safe(itr, tmp, &head, node) {
719 		list_del(&itr->node);
720 		ring = itr->ring;
721 
722 		/* Update the write offset for the ring */
723 		ret = mhi_ep_update_wr_offset(ring);
724 		if (ret) {
725 			dev_err(dev, "Error updating write offset for ring\n");
726 			kfree(itr);
727 			continue;
728 		}
729 
730 		/* Sanity check to make sure there are elements in the ring */
731 		if (ring->rd_offset == ring->wr_offset) {
732 			kfree(itr);
733 			continue;
734 		}
735 
736 		el = &ring->ring_cache[ring->rd_offset];
737 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
738 
739 		mutex_lock(&chan->lock);
740 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
741 		ret = mhi_ep_process_ch_ring(ring, el);
742 		if (ret) {
743 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
744 				ring->ch_id, ret);
745 			mutex_unlock(&chan->lock);
746 			kfree(itr);
747 			continue;
748 		}
749 
750 		mutex_unlock(&chan->lock);
751 		kfree(itr);
752 	}
753 }
754 
755 static void mhi_ep_state_worker(struct work_struct *work)
756 {
757 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
758 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
759 	struct mhi_ep_state_transition *itr, *tmp;
760 	unsigned long flags;
761 	LIST_HEAD(head);
762 	int ret;
763 
764 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
765 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
766 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
767 
768 	list_for_each_entry_safe(itr, tmp, &head, node) {
769 		list_del(&itr->node);
770 		dev_dbg(dev, "Handling MHI state transition to %s\n",
771 			 mhi_state_str(itr->state));
772 
773 		switch (itr->state) {
774 		case MHI_STATE_M0:
775 			ret = mhi_ep_set_m0_state(mhi_cntrl);
776 			if (ret)
777 				dev_err(dev, "Failed to transition to M0 state\n");
778 			break;
779 		case MHI_STATE_M3:
780 			ret = mhi_ep_set_m3_state(mhi_cntrl);
781 			if (ret)
782 				dev_err(dev, "Failed to transition to M3 state\n");
783 			break;
784 		default:
785 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
786 			break;
787 		}
788 		kfree(itr);
789 	}
790 }
791 
792 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
793 				    u32 ch_idx)
794 {
795 	struct mhi_ep_ring_item *item;
796 	struct mhi_ep_ring *ring;
797 	bool work = !!ch_int;
798 	LIST_HEAD(head);
799 	u32 i;
800 
801 	/* First add the ring items to a local list */
802 	for_each_set_bit(i, &ch_int, 32) {
803 		/* Channel index varies for each register: 0, 32, 64, 96 */
804 		u32 ch_id = ch_idx + i;
805 
806 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
807 		item = kzalloc(sizeof(*item), GFP_ATOMIC);
808 		if (!item)
809 			return;
810 
811 		item->ring = ring;
812 		list_add_tail(&item->node, &head);
813 	}
814 
815 	/* Now, splice the local list into ch_db_list and queue the work item */
816 	if (work) {
817 		spin_lock(&mhi_cntrl->list_lock);
818 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
819 		spin_unlock(&mhi_cntrl->list_lock);
820 
821 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
822 	}
823 }
824 
825 /*
826  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
827  * For checking all interrupts, we need to loop through each registers and then
828  * check for bits set.
829  */
830 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
831 {
832 	u32 ch_int, ch_idx, i;
833 
834 	/* Bail out if there is no channel doorbell interrupt */
835 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
836 		return;
837 
838 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
839 		ch_idx = i * MHI_MASK_CH_LEN;
840 
841 		/* Only process channel interrupt if the mask is enabled */
842 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
843 		if (ch_int) {
844 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
845 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
846 							mhi_cntrl->chdb[i].status);
847 		}
848 	}
849 }
850 
851 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
852 					 enum mhi_state state)
853 {
854 	struct mhi_ep_state_transition *item;
855 
856 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
857 	if (!item)
858 		return;
859 
860 	item->state = state;
861 	spin_lock(&mhi_cntrl->list_lock);
862 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
863 	spin_unlock(&mhi_cntrl->list_lock);
864 
865 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
866 }
867 
868 /*
869  * Interrupt handler that services interrupts raised by the host writing to
870  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
871  * channel interrupts.
872  */
873 static irqreturn_t mhi_ep_irq(int irq, void *data)
874 {
875 	struct mhi_ep_cntrl *mhi_cntrl = data;
876 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
877 	enum mhi_state state;
878 	u32 int_value;
879 	bool mhi_reset;
880 
881 	/* Acknowledge the ctrl interrupt */
882 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
883 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
884 
885 	/* Check for ctrl interrupt */
886 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
887 		dev_dbg(dev, "Processing ctrl interrupt\n");
888 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
889 		if (mhi_reset) {
890 			dev_info(dev, "Host triggered MHI reset!\n");
891 			disable_irq_nosync(mhi_cntrl->irq);
892 			schedule_work(&mhi_cntrl->reset_work);
893 			return IRQ_HANDLED;
894 		}
895 
896 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
897 	}
898 
899 	/* Check for command doorbell interrupt */
900 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
901 		dev_dbg(dev, "Processing command doorbell interrupt\n");
902 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
903 	}
904 
905 	/* Check for channel interrupts */
906 	mhi_ep_check_channel_interrupt(mhi_cntrl);
907 
908 	return IRQ_HANDLED;
909 }
910 
911 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
912 {
913 	struct mhi_ep_ring *ch_ring, *ev_ring;
914 	struct mhi_result result = {};
915 	struct mhi_ep_chan *mhi_chan;
916 	int i;
917 
918 	/* Stop all the channels */
919 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
920 		mhi_chan = &mhi_cntrl->mhi_chan[i];
921 		if (!mhi_chan->ring.started)
922 			continue;
923 
924 		mutex_lock(&mhi_chan->lock);
925 		/* Send channel disconnect status to client drivers */
926 		if (mhi_chan->xfer_cb) {
927 			result.transaction_status = -ENOTCONN;
928 			result.bytes_xferd = 0;
929 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
930 		}
931 
932 		mhi_chan->state = MHI_CH_STATE_DISABLED;
933 		mutex_unlock(&mhi_chan->lock);
934 	}
935 
936 	flush_workqueue(mhi_cntrl->wq);
937 
938 	/* Destroy devices associated with all channels */
939 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
940 
941 	/* Stop and reset the transfer rings */
942 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
943 		mhi_chan = &mhi_cntrl->mhi_chan[i];
944 		if (!mhi_chan->ring.started)
945 			continue;
946 
947 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
948 		mutex_lock(&mhi_chan->lock);
949 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
950 		mutex_unlock(&mhi_chan->lock);
951 	}
952 
953 	/* Stop and reset the event rings */
954 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
955 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
956 		if (!ev_ring->started)
957 			continue;
958 
959 		mutex_lock(&mhi_cntrl->event_lock);
960 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
961 		mutex_unlock(&mhi_cntrl->event_lock);
962 	}
963 
964 	/* Stop and reset the command ring */
965 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
966 
967 	mhi_ep_free_host_cfg(mhi_cntrl);
968 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
969 
970 	mhi_cntrl->enabled = false;
971 }
972 
973 static void mhi_ep_reset_worker(struct work_struct *work)
974 {
975 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
976 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
977 	enum mhi_state cur_state;
978 	int ret;
979 
980 	mhi_ep_abort_transfer(mhi_cntrl);
981 
982 	spin_lock_bh(&mhi_cntrl->state_lock);
983 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
984 	mhi_ep_mmio_reset(mhi_cntrl);
985 	cur_state = mhi_cntrl->mhi_state;
986 	spin_unlock_bh(&mhi_cntrl->state_lock);
987 
988 	/*
989 	 * Only proceed further if the reset is due to SYS_ERR. The host will
990 	 * issue reset during shutdown also and we don't need to do re-init in
991 	 * that case.
992 	 */
993 	if (cur_state == MHI_STATE_SYS_ERR) {
994 		mhi_ep_mmio_init(mhi_cntrl);
995 
996 		/* Set AMSS EE before signaling ready state */
997 		mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
998 
999 		/* All set, notify the host that we are ready */
1000 		ret = mhi_ep_set_ready_state(mhi_cntrl);
1001 		if (ret)
1002 			return;
1003 
1004 		dev_dbg(dev, "READY state notification sent to the host\n");
1005 
1006 		ret = mhi_ep_enable(mhi_cntrl);
1007 		if (ret) {
1008 			dev_err(dev, "Failed to enable MHI endpoint: %d\n", ret);
1009 			return;
1010 		}
1011 
1012 		enable_irq(mhi_cntrl->irq);
1013 	}
1014 }
1015 
1016 /*
1017  * We don't need to do anything special other than setting the MHI SYS_ERR
1018  * state. The host will reset all contexts and issue MHI RESET so that we
1019  * could also recover from error state.
1020  */
1021 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1022 {
1023 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1024 	int ret;
1025 
1026 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1027 	if (ret)
1028 		return;
1029 
1030 	/* Signal host that the device went to SYS_ERR state */
1031 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1032 	if (ret)
1033 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1034 }
1035 
1036 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1037 {
1038 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1039 	int ret, i;
1040 
1041 	/*
1042 	 * Mask all interrupts until the state machine is ready. Interrupts will
1043 	 * be enabled later with mhi_ep_enable().
1044 	 */
1045 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1046 	mhi_ep_mmio_init(mhi_cntrl);
1047 
1048 	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1049 					GFP_KERNEL);
1050 	if (!mhi_cntrl->mhi_event)
1051 		return -ENOMEM;
1052 
1053 	/* Initialize command, channel and event rings */
1054 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1055 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1056 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1057 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1058 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1059 
1060 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1061 
1062 	/* Set AMSS EE before signaling ready state */
1063 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1064 
1065 	/* All set, notify the host that we are ready */
1066 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1067 	if (ret)
1068 		goto err_free_event;
1069 
1070 	dev_dbg(dev, "READY state notification sent to the host\n");
1071 
1072 	ret = mhi_ep_enable(mhi_cntrl);
1073 	if (ret) {
1074 		dev_err(dev, "Failed to enable MHI endpoint\n");
1075 		goto err_free_event;
1076 	}
1077 
1078 	enable_irq(mhi_cntrl->irq);
1079 	mhi_cntrl->enabled = true;
1080 
1081 	return 0;
1082 
1083 err_free_event:
1084 	kfree(mhi_cntrl->mhi_event);
1085 
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1089 
1090 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1091 {
1092 	if (mhi_cntrl->enabled)
1093 		mhi_ep_abort_transfer(mhi_cntrl);
1094 
1095 	kfree(mhi_cntrl->mhi_event);
1096 	disable_irq(mhi_cntrl->irq);
1097 }
1098 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1099 
1100 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1101 {
1102 	struct mhi_ep_chan *mhi_chan;
1103 	u32 tmp;
1104 	int i;
1105 
1106 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1107 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1108 
1109 		if (!mhi_chan->mhi_dev)
1110 			continue;
1111 
1112 		mutex_lock(&mhi_chan->lock);
1113 		/* Skip if the channel is not currently running */
1114 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1115 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1116 			mutex_unlock(&mhi_chan->lock);
1117 			continue;
1118 		}
1119 
1120 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1121 		/* Set channel state to SUSPENDED */
1122 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1123 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1124 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1125 		mutex_unlock(&mhi_chan->lock);
1126 	}
1127 }
1128 
1129 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1130 {
1131 	struct mhi_ep_chan *mhi_chan;
1132 	u32 tmp;
1133 	int i;
1134 
1135 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1136 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1137 
1138 		if (!mhi_chan->mhi_dev)
1139 			continue;
1140 
1141 		mutex_lock(&mhi_chan->lock);
1142 		/* Skip if the channel is not currently suspended */
1143 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1144 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1145 			mutex_unlock(&mhi_chan->lock);
1146 			continue;
1147 		}
1148 
1149 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1150 		/* Set channel state to RUNNING */
1151 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1152 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1153 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1154 		mutex_unlock(&mhi_chan->lock);
1155 	}
1156 }
1157 
1158 static void mhi_ep_release_device(struct device *dev)
1159 {
1160 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1161 
1162 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1163 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1164 
1165 	/*
1166 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1167 	 * devices for the channels will only get created in mhi_ep_create_device()
1168 	 * if the mhi_dev associated with it is NULL.
1169 	 */
1170 	if (mhi_dev->ul_chan)
1171 		mhi_dev->ul_chan->mhi_dev = NULL;
1172 
1173 	if (mhi_dev->dl_chan)
1174 		mhi_dev->dl_chan->mhi_dev = NULL;
1175 
1176 	kfree(mhi_dev);
1177 }
1178 
1179 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1180 						 enum mhi_device_type dev_type)
1181 {
1182 	struct mhi_ep_device *mhi_dev;
1183 	struct device *dev;
1184 
1185 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1186 	if (!mhi_dev)
1187 		return ERR_PTR(-ENOMEM);
1188 
1189 	dev = &mhi_dev->dev;
1190 	device_initialize(dev);
1191 	dev->bus = &mhi_ep_bus_type;
1192 	dev->release = mhi_ep_release_device;
1193 
1194 	/* Controller device is always allocated first */
1195 	if (dev_type == MHI_DEVICE_CONTROLLER)
1196 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1197 		dev->parent = mhi_cntrl->cntrl_dev;
1198 	else
1199 		/* for MHI client devices, parent is the MHI controller device */
1200 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1201 
1202 	mhi_dev->mhi_cntrl = mhi_cntrl;
1203 	mhi_dev->dev_type = dev_type;
1204 
1205 	return mhi_dev;
1206 }
1207 
1208 /*
1209  * MHI channels are always defined in pairs with UL as the even numbered
1210  * channel and DL as odd numbered one. This function gets UL channel (primary)
1211  * as the ch_id and always looks after the next entry in channel list for
1212  * the corresponding DL channel (secondary).
1213  */
1214 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1215 {
1216 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1217 	struct device *dev = mhi_cntrl->cntrl_dev;
1218 	struct mhi_ep_device *mhi_dev;
1219 	int ret;
1220 
1221 	/* Check if the channel name is same for both UL and DL */
1222 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1223 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1224 			mhi_chan->name, mhi_chan[1].name);
1225 		return -EINVAL;
1226 	}
1227 
1228 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1229 	if (IS_ERR(mhi_dev))
1230 		return PTR_ERR(mhi_dev);
1231 
1232 	/* Configure primary channel */
1233 	mhi_dev->ul_chan = mhi_chan;
1234 	get_device(&mhi_dev->dev);
1235 	mhi_chan->mhi_dev = mhi_dev;
1236 
1237 	/* Configure secondary channel as well */
1238 	mhi_chan++;
1239 	mhi_dev->dl_chan = mhi_chan;
1240 	get_device(&mhi_dev->dev);
1241 	mhi_chan->mhi_dev = mhi_dev;
1242 
1243 	/* Channel name is same for both UL and DL */
1244 	mhi_dev->name = mhi_chan->name;
1245 	dev_set_name(&mhi_dev->dev, "%s_%s",
1246 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1247 		     mhi_dev->name);
1248 
1249 	ret = device_add(&mhi_dev->dev);
1250 	if (ret)
1251 		put_device(&mhi_dev->dev);
1252 
1253 	return ret;
1254 }
1255 
1256 static int mhi_ep_destroy_device(struct device *dev, void *data)
1257 {
1258 	struct mhi_ep_device *mhi_dev;
1259 	struct mhi_ep_cntrl *mhi_cntrl;
1260 	struct mhi_ep_chan *ul_chan, *dl_chan;
1261 
1262 	if (dev->bus != &mhi_ep_bus_type)
1263 		return 0;
1264 
1265 	mhi_dev = to_mhi_ep_device(dev);
1266 	mhi_cntrl = mhi_dev->mhi_cntrl;
1267 
1268 	/* Only destroy devices created for channels */
1269 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1270 		return 0;
1271 
1272 	ul_chan = mhi_dev->ul_chan;
1273 	dl_chan = mhi_dev->dl_chan;
1274 
1275 	if (ul_chan)
1276 		put_device(&ul_chan->mhi_dev->dev);
1277 
1278 	if (dl_chan)
1279 		put_device(&dl_chan->mhi_dev->dev);
1280 
1281 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1282 		 mhi_dev->name);
1283 
1284 	/* Notify the client and remove the device from MHI bus */
1285 	device_del(dev);
1286 	put_device(dev);
1287 
1288 	return 0;
1289 }
1290 
1291 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1292 			    const struct mhi_ep_cntrl_config *config)
1293 {
1294 	const struct mhi_ep_channel_config *ch_cfg;
1295 	struct device *dev = mhi_cntrl->cntrl_dev;
1296 	u32 chan, i;
1297 	int ret = -EINVAL;
1298 
1299 	mhi_cntrl->max_chan = config->max_channels;
1300 
1301 	/*
1302 	 * Allocate max_channels supported by the MHI endpoint and populate
1303 	 * only the defined channels
1304 	 */
1305 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1306 				      GFP_KERNEL);
1307 	if (!mhi_cntrl->mhi_chan)
1308 		return -ENOMEM;
1309 
1310 	for (i = 0; i < config->num_channels; i++) {
1311 		struct mhi_ep_chan *mhi_chan;
1312 
1313 		ch_cfg = &config->ch_cfg[i];
1314 
1315 		chan = ch_cfg->num;
1316 		if (chan >= mhi_cntrl->max_chan) {
1317 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1318 				chan, mhi_cntrl->max_chan);
1319 			goto error_chan_cfg;
1320 		}
1321 
1322 		/* Bi-directional and direction less channels are not supported */
1323 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1324 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1325 				ch_cfg->dir, chan);
1326 			goto error_chan_cfg;
1327 		}
1328 
1329 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1330 		mhi_chan->name = ch_cfg->name;
1331 		mhi_chan->chan = chan;
1332 		mhi_chan->dir = ch_cfg->dir;
1333 		mutex_init(&mhi_chan->lock);
1334 	}
1335 
1336 	return 0;
1337 
1338 error_chan_cfg:
1339 	kfree(mhi_cntrl->mhi_chan);
1340 
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Allocate channel and command rings here. Event rings will be allocated
1346  * in mhi_ep_power_up() as the config comes from the host.
1347  */
1348 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1349 				const struct mhi_ep_cntrl_config *config)
1350 {
1351 	struct mhi_ep_device *mhi_dev;
1352 	int ret;
1353 
1354 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1355 		return -EINVAL;
1356 
1357 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1358 	if (ret)
1359 		return ret;
1360 
1361 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1362 	if (!mhi_cntrl->mhi_cmd) {
1363 		ret = -ENOMEM;
1364 		goto err_free_ch;
1365 	}
1366 
1367 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1368 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1369 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1370 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1371 
1372 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1373 	if (!mhi_cntrl->wq) {
1374 		ret = -ENOMEM;
1375 		goto err_free_cmd;
1376 	}
1377 
1378 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1379 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1380 	spin_lock_init(&mhi_cntrl->state_lock);
1381 	spin_lock_init(&mhi_cntrl->list_lock);
1382 	mutex_init(&mhi_cntrl->event_lock);
1383 
1384 	/* Set MHI version and AMSS EE before enumeration */
1385 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1386 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1387 
1388 	/* Set controller index */
1389 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1390 	if (ret < 0)
1391 		goto err_destroy_wq;
1392 
1393 	mhi_cntrl->index = ret;
1394 
1395 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1396 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1397 			  "doorbell_irq", mhi_cntrl);
1398 	if (ret) {
1399 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1400 		goto err_ida_free;
1401 	}
1402 
1403 	/* Allocate the controller device */
1404 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1405 	if (IS_ERR(mhi_dev)) {
1406 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1407 		ret = PTR_ERR(mhi_dev);
1408 		goto err_free_irq;
1409 	}
1410 
1411 	dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1412 	mhi_dev->name = dev_name(&mhi_dev->dev);
1413 	mhi_cntrl->mhi_dev = mhi_dev;
1414 
1415 	ret = device_add(&mhi_dev->dev);
1416 	if (ret)
1417 		goto err_put_dev;
1418 
1419 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1420 
1421 	return 0;
1422 
1423 err_put_dev:
1424 	put_device(&mhi_dev->dev);
1425 err_free_irq:
1426 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1427 err_ida_free:
1428 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1429 err_destroy_wq:
1430 	destroy_workqueue(mhi_cntrl->wq);
1431 err_free_cmd:
1432 	kfree(mhi_cntrl->mhi_cmd);
1433 err_free_ch:
1434 	kfree(mhi_cntrl->mhi_chan);
1435 
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1439 
1440 /*
1441  * It is expected that the controller drivers will power down the MHI EP stack
1442  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1443  */
1444 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1445 {
1446 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1447 
1448 	destroy_workqueue(mhi_cntrl->wq);
1449 
1450 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1451 
1452 	kfree(mhi_cntrl->mhi_cmd);
1453 	kfree(mhi_cntrl->mhi_chan);
1454 
1455 	device_del(&mhi_dev->dev);
1456 	put_device(&mhi_dev->dev);
1457 
1458 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1459 }
1460 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1461 
1462 static int mhi_ep_driver_probe(struct device *dev)
1463 {
1464 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1465 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1466 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1467 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1468 
1469 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1470 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1471 
1472 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1473 }
1474 
1475 static int mhi_ep_driver_remove(struct device *dev)
1476 {
1477 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1478 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1479 	struct mhi_result result = {};
1480 	struct mhi_ep_chan *mhi_chan;
1481 	int dir;
1482 
1483 	/* Skip if it is a controller device */
1484 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1485 		return 0;
1486 
1487 	/* Disconnect the channels associated with the driver */
1488 	for (dir = 0; dir < 2; dir++) {
1489 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1490 
1491 		if (!mhi_chan)
1492 			continue;
1493 
1494 		mutex_lock(&mhi_chan->lock);
1495 		/* Send channel disconnect status to the client driver */
1496 		if (mhi_chan->xfer_cb) {
1497 			result.transaction_status = -ENOTCONN;
1498 			result.bytes_xferd = 0;
1499 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1500 		}
1501 
1502 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1503 		mhi_chan->xfer_cb = NULL;
1504 		mutex_unlock(&mhi_chan->lock);
1505 	}
1506 
1507 	/* Remove the client driver now */
1508 	mhi_drv->remove(mhi_dev);
1509 
1510 	return 0;
1511 }
1512 
1513 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1514 {
1515 	struct device_driver *driver = &mhi_drv->driver;
1516 
1517 	if (!mhi_drv->probe || !mhi_drv->remove)
1518 		return -EINVAL;
1519 
1520 	/* Client drivers should have callbacks defined for both channels */
1521 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1522 		return -EINVAL;
1523 
1524 	driver->bus = &mhi_ep_bus_type;
1525 	driver->owner = owner;
1526 	driver->probe = mhi_ep_driver_probe;
1527 	driver->remove = mhi_ep_driver_remove;
1528 
1529 	return driver_register(driver);
1530 }
1531 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1532 
1533 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1534 {
1535 	driver_unregister(&mhi_drv->driver);
1536 }
1537 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1538 
1539 static int mhi_ep_uevent(struct device *dev, struct kobj_uevent_env *env)
1540 {
1541 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1542 
1543 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1544 					mhi_dev->name);
1545 }
1546 
1547 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1548 {
1549 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1550 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1551 	const struct mhi_device_id *id;
1552 
1553 	/*
1554 	 * If the device is a controller type then there is no client driver
1555 	 * associated with it
1556 	 */
1557 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1558 		return 0;
1559 
1560 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1561 		if (!strcmp(mhi_dev->name, id->chan)) {
1562 			mhi_dev->id = id;
1563 			return 1;
1564 		}
1565 
1566 	return 0;
1567 };
1568 
1569 struct bus_type mhi_ep_bus_type = {
1570 	.name = "mhi_ep",
1571 	.dev_name = "mhi_ep",
1572 	.match = mhi_ep_match,
1573 	.uevent = mhi_ep_uevent,
1574 };
1575 
1576 static int __init mhi_ep_init(void)
1577 {
1578 	return bus_register(&mhi_ep_bus_type);
1579 }
1580 
1581 static void __exit mhi_ep_exit(void)
1582 {
1583 	bus_unregister(&mhi_ep_bus_type);
1584 }
1585 
1586 postcore_initcall(mhi_ep_init);
1587 module_exit(mhi_ep_exit);
1588 
1589 MODULE_LICENSE("GPL v2");
1590 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1591 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1592