xref: /linux/drivers/bus/mhi/ep/main.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * As per the MHI specification, section 4.3, Interrupt moderation:
58 	 *
59 	 * 1. If BEI flag is not set, cancel any pending intmodt work if started
60 	 * for the event ring and raise IRQ immediately.
61 	 *
62 	 * 2. If both BEI and intmodt are set, and if no IRQ is pending for the
63 	 * same event ring, start the IRQ delayed work as per the value of
64 	 * intmodt. If previous IRQ is pending, then do nothing as the pending
65 	 * IRQ is enough for the host to process the current event ring element.
66 	 *
67 	 * 3. If BEI is set and intmodt is not set, no need to raise IRQ.
68 	 */
69 	if (!bei) {
70 		if (READ_ONCE(ring->irq_pending))
71 			cancel_delayed_work(&ring->intmodt_work);
72 
73 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
74 	} else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
75 		WRITE_ONCE(ring->irq_pending, true);
76 		schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
77 	}
78 
79 	return 0;
80 
81 err_unlock:
82 	mutex_unlock(&mhi_cntrl->event_lock);
83 
84 	return ret;
85 }
86 
87 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
88 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
89 {
90 	struct mhi_ring_element *event;
91 	int ret;
92 
93 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
94 	if (!event)
95 		return -ENOMEM;
96 
97 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
98 	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
99 	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
100 
101 	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
102 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
103 
104 	return ret;
105 }
106 
107 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
108 {
109 	struct mhi_ring_element *event;
110 	int ret;
111 
112 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
113 	if (!event)
114 		return -ENOMEM;
115 
116 	event->dword[0] = MHI_SC_EV_DWORD0(state);
117 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
118 
119 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
120 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
121 
122 	return ret;
123 }
124 
125 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
126 {
127 	struct mhi_ring_element *event;
128 	int ret;
129 
130 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
131 	if (!event)
132 		return -ENOMEM;
133 
134 	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
135 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
136 
137 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
138 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
139 
140 	return ret;
141 }
142 
143 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
144 {
145 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
146 	struct mhi_ring_element *event;
147 	int ret;
148 
149 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
150 	if (!event)
151 		return -ENOMEM;
152 
153 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
154 	event->dword[0] = MHI_CC_EV_DWORD0(code);
155 	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
156 
157 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
158 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
159 
160 	return ret;
161 }
162 
163 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
164 {
165 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
166 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
167 	struct mhi_result result = {};
168 	struct mhi_ep_chan *mhi_chan;
169 	struct mhi_ep_ring *ch_ring;
170 	u32 tmp, ch_id;
171 	int ret;
172 
173 	ch_id = MHI_TRE_GET_CMD_CHID(el);
174 
175 	/* Check if the channel is supported by the controller */
176 	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
177 		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
178 		return -ENODEV;
179 	}
180 
181 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
182 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
183 
184 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
185 	case MHI_PKT_TYPE_START_CHAN_CMD:
186 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
187 
188 		mutex_lock(&mhi_chan->lock);
189 		/* Initialize and configure the corresponding channel ring */
190 		if (!ch_ring->started) {
191 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
192 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
193 			if (ret) {
194 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
195 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
196 							MHI_EV_CC_UNDEFINED_ERR);
197 				if (ret)
198 					dev_err(dev, "Error sending completion event: %d\n", ret);
199 
200 				goto err_unlock;
201 			}
202 
203 			mhi_chan->rd_offset = ch_ring->rd_offset;
204 		}
205 
206 		/* Set channel state to RUNNING */
207 		mhi_chan->state = MHI_CH_STATE_RUNNING;
208 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
209 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
210 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
211 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
212 
213 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
214 		if (ret) {
215 			dev_err(dev, "Error sending command completion event (%u)\n",
216 				MHI_EV_CC_SUCCESS);
217 			goto err_unlock;
218 		}
219 
220 		mutex_unlock(&mhi_chan->lock);
221 
222 		/*
223 		 * Create MHI device only during UL channel start. Since the MHI
224 		 * channels operate in a pair, we'll associate both UL and DL
225 		 * channels to the same device.
226 		 *
227 		 * We also need to check for mhi_dev != NULL because, the host
228 		 * will issue START_CHAN command during resume and we don't
229 		 * destroy the device during suspend.
230 		 */
231 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
232 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
233 			if (ret) {
234 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
235 				mhi_ep_handle_syserr(mhi_cntrl);
236 				return ret;
237 			}
238 		}
239 
240 		/* Finally, enable DB for the channel */
241 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
242 
243 		break;
244 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
245 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
246 		if (!ch_ring->started) {
247 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
248 			return -ENODEV;
249 		}
250 
251 		mutex_lock(&mhi_chan->lock);
252 		/* Disable DB for the channel */
253 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
254 
255 		/* Send channel disconnect status to client drivers */
256 		if (mhi_chan->xfer_cb) {
257 			result.transaction_status = -ENOTCONN;
258 			result.bytes_xferd = 0;
259 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
260 		}
261 
262 		/* Set channel state to STOP */
263 		mhi_chan->state = MHI_CH_STATE_STOP;
264 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
265 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
266 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
267 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
268 
269 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
270 		if (ret) {
271 			dev_err(dev, "Error sending command completion event (%u)\n",
272 				MHI_EV_CC_SUCCESS);
273 			goto err_unlock;
274 		}
275 
276 		mutex_unlock(&mhi_chan->lock);
277 		break;
278 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
279 		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
280 		if (!ch_ring->started) {
281 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
282 			return -ENODEV;
283 		}
284 
285 		mutex_lock(&mhi_chan->lock);
286 		/* Stop and reset the transfer ring */
287 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
288 
289 		/* Send channel disconnect status to client driver */
290 		if (mhi_chan->xfer_cb) {
291 			result.transaction_status = -ENOTCONN;
292 			result.bytes_xferd = 0;
293 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
294 		}
295 
296 		/* Set channel state to DISABLED */
297 		mhi_chan->state = MHI_CH_STATE_DISABLED;
298 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
299 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
300 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
301 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
302 
303 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
304 		if (ret) {
305 			dev_err(dev, "Error sending command completion event (%u)\n",
306 				MHI_EV_CC_SUCCESS);
307 			goto err_unlock;
308 		}
309 
310 		mutex_unlock(&mhi_chan->lock);
311 		break;
312 	default:
313 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
314 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
315 		return -EINVAL;
316 	}
317 
318 	return 0;
319 
320 err_unlock:
321 	mutex_unlock(&mhi_chan->lock);
322 
323 	return ret;
324 }
325 
326 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
327 {
328 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
329 								mhi_dev->ul_chan;
330 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
331 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
332 
333 	return !!(mhi_chan->rd_offset == ring->wr_offset);
334 }
335 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
336 
337 static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
338 {
339 	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
340 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
341 	struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
342 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
343 	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
344 	struct mhi_result result = {};
345 	int ret;
346 
347 	if (mhi_chan->xfer_cb) {
348 		result.buf_addr = buf_info->cb_buf;
349 		result.dir = mhi_chan->dir;
350 		result.bytes_xferd = buf_info->size;
351 
352 		mhi_chan->xfer_cb(mhi_dev, &result);
353 	}
354 
355 	/*
356 	 * The host will split the data packet into multiple TREs if it can't fit
357 	 * the packet in a single TRE. In that case, CHAIN flag will be set by the
358 	 * host for all TREs except the last one.
359 	 */
360 	if (buf_info->code != MHI_EV_CC_OVERFLOW) {
361 		if (MHI_TRE_DATA_GET_CHAIN(el)) {
362 			/*
363 			 * IEOB (Interrupt on End of Block) flag will be set by the host if
364 			 * it expects the completion event for all TREs of a TD.
365 			 */
366 			if (MHI_TRE_DATA_GET_IEOB(el)) {
367 				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368 							     MHI_TRE_DATA_GET_LEN(el),
369 							     MHI_EV_CC_EOB);
370 				if (ret < 0) {
371 					dev_err(&mhi_chan->mhi_dev->dev,
372 						"Error sending transfer compl. event\n");
373 					goto err_free_tre_buf;
374 				}
375 			}
376 		} else {
377 			/*
378 			 * IEOT (Interrupt on End of Transfer) flag will be set by the host
379 			 * for the last TRE of the TD and expects the completion event for
380 			 * the same.
381 			 */
382 			if (MHI_TRE_DATA_GET_IEOT(el)) {
383 				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
384 							     MHI_TRE_DATA_GET_LEN(el),
385 							     MHI_EV_CC_EOT);
386 				if (ret < 0) {
387 					dev_err(&mhi_chan->mhi_dev->dev,
388 						"Error sending transfer compl. event\n");
389 					goto err_free_tre_buf;
390 				}
391 			}
392 		}
393 	}
394 
395 	mhi_ep_ring_inc_index(ring);
396 
397 err_free_tre_buf:
398 	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
399 }
400 
401 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
402 			       struct mhi_ep_ring *ring)
403 {
404 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
405 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
406 	size_t tr_len, read_offset, write_offset;
407 	struct mhi_ep_buf_info buf_info = {};
408 	u32 len = MHI_EP_DEFAULT_MTU;
409 	struct mhi_ring_element *el;
410 	bool tr_done = false;
411 	void *buf_addr;
412 	u32 buf_left;
413 	int ret;
414 
415 	buf_left = len;
416 
417 	do {
418 		/* Don't process the transfer ring if the channel is not in RUNNING state */
419 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
420 			dev_err(dev, "Channel not available\n");
421 			return -ENODEV;
422 		}
423 
424 		el = &ring->ring_cache[mhi_chan->rd_offset];
425 
426 		/* Check if there is data pending to be read from previous read operation */
427 		if (mhi_chan->tre_bytes_left) {
428 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
429 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
430 		} else {
431 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
432 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
433 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
434 
435 			tr_len = min(buf_left, mhi_chan->tre_size);
436 		}
437 
438 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
439 		write_offset = len - buf_left;
440 
441 		buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
442 		if (!buf_addr)
443 			return -ENOMEM;
444 
445 		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
446 		buf_info.dev_addr = buf_addr + write_offset;
447 		buf_info.size = tr_len;
448 		buf_info.cb = mhi_ep_read_completion;
449 		buf_info.cb_buf = buf_addr;
450 		buf_info.mhi_dev = mhi_chan->mhi_dev;
451 
452 		if (mhi_chan->tre_bytes_left - tr_len)
453 			buf_info.code = MHI_EV_CC_OVERFLOW;
454 
455 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
456 		ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
457 		if (ret < 0) {
458 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
459 			goto err_free_buf_addr;
460 		}
461 
462 		buf_left -= tr_len;
463 		mhi_chan->tre_bytes_left -= tr_len;
464 
465 		if (!mhi_chan->tre_bytes_left) {
466 			if (MHI_TRE_DATA_GET_IEOT(el))
467 				tr_done = true;
468 
469 			mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
470 		}
471 	} while (buf_left && !tr_done);
472 
473 	return 0;
474 
475 err_free_buf_addr:
476 	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
477 
478 	return ret;
479 }
480 
481 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
482 {
483 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
484 	struct mhi_result result = {};
485 	struct mhi_ep_chan *mhi_chan;
486 	int ret;
487 
488 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
489 
490 	/*
491 	 * Bail out if transfer callback is not registered for the channel.
492 	 * This is most likely due to the client driver not loaded at this point.
493 	 */
494 	if (!mhi_chan->xfer_cb) {
495 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
496 		return -ENODEV;
497 	}
498 
499 	if (ring->ch_id % 2) {
500 		/* DL channel */
501 		result.dir = mhi_chan->dir;
502 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
503 	} else {
504 		/* UL channel */
505 		do {
506 			ret = mhi_ep_read_channel(mhi_cntrl, ring);
507 			if (ret < 0) {
508 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
509 				return ret;
510 			}
511 
512 			/* Read until the ring becomes empty */
513 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
514 	}
515 
516 	return 0;
517 }
518 
519 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
520 {
521 	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
522 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
523 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
524 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
525 	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
526 	struct device *dev = &mhi_dev->dev;
527 	struct mhi_result result = {};
528 	int ret;
529 
530 	if (mhi_chan->xfer_cb) {
531 		result.buf_addr = buf_info->cb_buf;
532 		result.dir = mhi_chan->dir;
533 		result.bytes_xferd = buf_info->size;
534 
535 		mhi_chan->xfer_cb(mhi_dev, &result);
536 	}
537 
538 	ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
539 					   buf_info->code);
540 	if (ret) {
541 		dev_err(dev, "Error sending transfer completion event\n");
542 		return;
543 	}
544 
545 	mhi_ep_ring_inc_index(ring);
546 }
547 
548 /* TODO: Handle partially formed TDs */
549 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
550 {
551 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
552 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
553 	struct device *dev = &mhi_chan->mhi_dev->dev;
554 	struct mhi_ep_buf_info buf_info = {};
555 	struct mhi_ring_element *el;
556 	u32 buf_left, read_offset;
557 	struct mhi_ep_ring *ring;
558 	size_t tr_len;
559 	u32 tre_len;
560 	int ret;
561 
562 	buf_left = skb->len;
563 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
564 
565 	mutex_lock(&mhi_chan->lock);
566 
567 	do {
568 		/* Don't process the transfer ring if the channel is not in RUNNING state */
569 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
570 			dev_err(dev, "Channel not available\n");
571 			ret = -ENODEV;
572 			goto err_exit;
573 		}
574 
575 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
576 			dev_err(dev, "TRE not available!\n");
577 			ret = -ENOSPC;
578 			goto err_exit;
579 		}
580 
581 		el = &ring->ring_cache[mhi_chan->rd_offset];
582 		tre_len = MHI_TRE_DATA_GET_LEN(el);
583 
584 		tr_len = min(buf_left, tre_len);
585 		read_offset = skb->len - buf_left;
586 
587 		buf_info.dev_addr = skb->data + read_offset;
588 		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
589 		buf_info.size = tr_len;
590 		buf_info.cb = mhi_ep_skb_completion;
591 		buf_info.cb_buf = skb;
592 		buf_info.mhi_dev = mhi_dev;
593 
594 		/*
595 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
596 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
597 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
598 		 * the EOT event to the host indicating the packet boundary.
599 		 */
600 		if (buf_left - tr_len)
601 			buf_info.code = MHI_EV_CC_OVERFLOW;
602 		else
603 			buf_info.code = MHI_EV_CC_EOT;
604 
605 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
606 		ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
607 		if (ret < 0) {
608 			dev_err(dev, "Error writing to the channel\n");
609 			goto err_exit;
610 		}
611 
612 		buf_left -= tr_len;
613 
614 		/*
615 		 * Update the read offset cached in mhi_chan. Actual read offset
616 		 * will be updated by the completion handler.
617 		 */
618 		mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
619 	} while (buf_left);
620 
621 	mutex_unlock(&mhi_chan->lock);
622 
623 	return 0;
624 
625 err_exit:
626 	mutex_unlock(&mhi_chan->lock);
627 
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
631 
632 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
633 {
634 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
635 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
636 	int ret;
637 
638 	/* Update the number of event rings (NER) programmed by the host */
639 	mhi_ep_mmio_update_ner(mhi_cntrl);
640 
641 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
642 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
643 
644 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
645 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
646 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
647 
648 	/* Get the channel context base pointer from host */
649 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
650 
651 	/* Allocate and map memory for caching host channel context */
652 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
653 				   &mhi_cntrl->ch_ctx_cache_phys,
654 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
655 				   ch_ctx_host_size);
656 	if (ret) {
657 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
658 		return ret;
659 	}
660 
661 	/* Get the event context base pointer from host */
662 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
663 
664 	/* Allocate and map memory for caching host event context */
665 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
666 				   &mhi_cntrl->ev_ctx_cache_phys,
667 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
668 				   ev_ctx_host_size);
669 	if (ret) {
670 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
671 		goto err_ch_ctx;
672 	}
673 
674 	/* Get the command context base pointer from host */
675 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
676 
677 	/* Allocate and map memory for caching host command context */
678 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
679 				   &mhi_cntrl->cmd_ctx_cache_phys,
680 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
681 				   cmd_ctx_host_size);
682 	if (ret) {
683 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
684 		goto err_ev_ctx;
685 	}
686 
687 	/* Initialize command ring */
688 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
689 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
690 	if (ret) {
691 		dev_err(dev, "Failed to start the command ring\n");
692 		goto err_cmd_ctx;
693 	}
694 
695 	return ret;
696 
697 err_cmd_ctx:
698 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
699 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
700 
701 err_ev_ctx:
702 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
703 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
704 
705 err_ch_ctx:
706 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
707 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
708 
709 	return ret;
710 }
711 
712 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
713 {
714 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
715 
716 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
717 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
718 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
719 
720 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
721 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
722 
723 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
724 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
725 
726 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
727 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
728 }
729 
730 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
731 {
732 	/*
733 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
734 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
735 	 * associated with hw channels always get triggered.
736 	 */
737 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
738 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
739 }
740 
741 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
742 {
743 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
744 	enum mhi_state state;
745 	bool mhi_reset;
746 	u32 count = 0;
747 	int ret;
748 
749 	/* Wait for Host to set the M0 state */
750 	do {
751 		msleep(M0_WAIT_DELAY_MS);
752 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
753 		if (mhi_reset) {
754 			/* Clear the MHI reset if host is in reset state */
755 			mhi_ep_mmio_clear_reset(mhi_cntrl);
756 			dev_info(dev, "Detected Host reset while waiting for M0\n");
757 		}
758 		count++;
759 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
760 
761 	if (state != MHI_STATE_M0) {
762 		dev_err(dev, "Host failed to enter M0\n");
763 		return -ETIMEDOUT;
764 	}
765 
766 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
767 	if (ret) {
768 		dev_err(dev, "Failed to cache host config\n");
769 		return ret;
770 	}
771 
772 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
773 
774 	/* Enable all interrupts now */
775 	mhi_ep_enable_int(mhi_cntrl);
776 
777 	return 0;
778 }
779 
780 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
781 {
782 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
783 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
784 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
785 	struct mhi_ring_element *el;
786 	int ret;
787 
788 	/* Update the write offset for the ring */
789 	ret = mhi_ep_update_wr_offset(ring);
790 	if (ret) {
791 		dev_err(dev, "Error updating write offset for ring\n");
792 		return;
793 	}
794 
795 	/* Sanity check to make sure there are elements in the ring */
796 	if (ring->rd_offset == ring->wr_offset)
797 		return;
798 
799 	/*
800 	 * Process command ring element till write offset. In case of an error, just try to
801 	 * process next element.
802 	 */
803 	while (ring->rd_offset != ring->wr_offset) {
804 		el = &ring->ring_cache[ring->rd_offset];
805 
806 		ret = mhi_ep_process_cmd_ring(ring, el);
807 		if (ret && ret != -ENODEV)
808 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
809 
810 		mhi_ep_ring_inc_index(ring);
811 	}
812 }
813 
814 static void mhi_ep_ch_ring_worker(struct work_struct *work)
815 {
816 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
817 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
818 	struct mhi_ep_ring_item *itr, *tmp;
819 	struct mhi_ep_ring *ring;
820 	struct mhi_ep_chan *chan;
821 	unsigned long flags;
822 	LIST_HEAD(head);
823 	int ret;
824 
825 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
826 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
827 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
828 
829 	/* Process each queued channel ring. In case of an error, just process next element. */
830 	list_for_each_entry_safe(itr, tmp, &head, node) {
831 		list_del(&itr->node);
832 		ring = itr->ring;
833 
834 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
835 		mutex_lock(&chan->lock);
836 
837 		/*
838 		 * The ring could've stopped while we waited to grab the (chan->lock), so do
839 		 * a sanity check before going further.
840 		 */
841 		if (!ring->started) {
842 			mutex_unlock(&chan->lock);
843 			kfree(itr);
844 			continue;
845 		}
846 
847 		/* Update the write offset for the ring */
848 		ret = mhi_ep_update_wr_offset(ring);
849 		if (ret) {
850 			dev_err(dev, "Error updating write offset for ring\n");
851 			mutex_unlock(&chan->lock);
852 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
853 			continue;
854 		}
855 
856 		/* Sanity check to make sure there are elements in the ring */
857 		if (chan->rd_offset == ring->wr_offset) {
858 			mutex_unlock(&chan->lock);
859 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
860 			continue;
861 		}
862 
863 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
864 		ret = mhi_ep_process_ch_ring(ring);
865 		if (ret) {
866 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
867 				ring->ch_id, ret);
868 			mutex_unlock(&chan->lock);
869 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
870 			continue;
871 		}
872 
873 		mutex_unlock(&chan->lock);
874 		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
875 	}
876 }
877 
878 static void mhi_ep_state_worker(struct work_struct *work)
879 {
880 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
881 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
882 	struct mhi_ep_state_transition *itr, *tmp;
883 	unsigned long flags;
884 	LIST_HEAD(head);
885 	int ret;
886 
887 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
888 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
889 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
890 
891 	list_for_each_entry_safe(itr, tmp, &head, node) {
892 		list_del(&itr->node);
893 		dev_dbg(dev, "Handling MHI state transition to %s\n",
894 			 mhi_state_str(itr->state));
895 
896 		switch (itr->state) {
897 		case MHI_STATE_M0:
898 			ret = mhi_ep_set_m0_state(mhi_cntrl);
899 			if (ret)
900 				dev_err(dev, "Failed to transition to M0 state\n");
901 			break;
902 		case MHI_STATE_M3:
903 			ret = mhi_ep_set_m3_state(mhi_cntrl);
904 			if (ret)
905 				dev_err(dev, "Failed to transition to M3 state\n");
906 			break;
907 		default:
908 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
909 			break;
910 		}
911 		kfree(itr);
912 	}
913 }
914 
915 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
916 				    u32 ch_idx)
917 {
918 	struct mhi_ep_ring_item *item;
919 	struct mhi_ep_ring *ring;
920 	bool work = !!ch_int;
921 	LIST_HEAD(head);
922 	u32 i;
923 
924 	/* First add the ring items to a local list */
925 	for_each_set_bit(i, &ch_int, 32) {
926 		/* Channel index varies for each register: 0, 32, 64, 96 */
927 		u32 ch_id = ch_idx + i;
928 
929 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
930 		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
931 		if (!item)
932 			return;
933 
934 		item->ring = ring;
935 		list_add_tail(&item->node, &head);
936 	}
937 
938 	/* Now, splice the local list into ch_db_list and queue the work item */
939 	if (work) {
940 		spin_lock(&mhi_cntrl->list_lock);
941 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
942 		spin_unlock(&mhi_cntrl->list_lock);
943 
944 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
945 	}
946 }
947 
948 /*
949  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
950  * For checking all interrupts, we need to loop through each registers and then
951  * check for bits set.
952  */
953 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
954 {
955 	u32 ch_int, ch_idx, i;
956 
957 	/* Bail out if there is no channel doorbell interrupt */
958 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
959 		return;
960 
961 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
962 		ch_idx = i * MHI_MASK_CH_LEN;
963 
964 		/* Only process channel interrupt if the mask is enabled */
965 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
966 		if (ch_int) {
967 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
968 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
969 							mhi_cntrl->chdb[i].status);
970 		}
971 	}
972 }
973 
974 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
975 					 enum mhi_state state)
976 {
977 	struct mhi_ep_state_transition *item;
978 
979 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
980 	if (!item)
981 		return;
982 
983 	item->state = state;
984 	spin_lock(&mhi_cntrl->list_lock);
985 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
986 	spin_unlock(&mhi_cntrl->list_lock);
987 
988 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
989 }
990 
991 /*
992  * Interrupt handler that services interrupts raised by the host writing to
993  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
994  * channel interrupts.
995  */
996 static irqreturn_t mhi_ep_irq(int irq, void *data)
997 {
998 	struct mhi_ep_cntrl *mhi_cntrl = data;
999 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1000 	enum mhi_state state;
1001 	u32 int_value;
1002 	bool mhi_reset;
1003 
1004 	/* Acknowledge the ctrl interrupt */
1005 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
1006 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
1007 
1008 	/* Check for ctrl interrupt */
1009 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
1010 		dev_dbg(dev, "Processing ctrl interrupt\n");
1011 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
1012 		if (mhi_reset) {
1013 			dev_info(dev, "Host triggered MHI reset!\n");
1014 			disable_irq_nosync(mhi_cntrl->irq);
1015 			schedule_work(&mhi_cntrl->reset_work);
1016 			return IRQ_HANDLED;
1017 		}
1018 
1019 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1020 	}
1021 
1022 	/* Check for command doorbell interrupt */
1023 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1024 		dev_dbg(dev, "Processing command doorbell interrupt\n");
1025 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1026 	}
1027 
1028 	/* Check for channel interrupts */
1029 	mhi_ep_check_channel_interrupt(mhi_cntrl);
1030 
1031 	return IRQ_HANDLED;
1032 }
1033 
1034 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1035 {
1036 	struct mhi_ep_ring *ch_ring, *ev_ring;
1037 	struct mhi_result result = {};
1038 	struct mhi_ep_chan *mhi_chan;
1039 	int i;
1040 
1041 	/* Stop all the channels */
1042 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1043 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1044 		if (!mhi_chan->ring.started)
1045 			continue;
1046 
1047 		mutex_lock(&mhi_chan->lock);
1048 		/* Send channel disconnect status to client drivers */
1049 		if (mhi_chan->xfer_cb) {
1050 			result.transaction_status = -ENOTCONN;
1051 			result.bytes_xferd = 0;
1052 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1053 		}
1054 
1055 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1056 		mutex_unlock(&mhi_chan->lock);
1057 	}
1058 
1059 	flush_workqueue(mhi_cntrl->wq);
1060 
1061 	/* Destroy devices associated with all channels */
1062 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1063 
1064 	/* Stop and reset the transfer rings */
1065 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1066 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1067 		if (!mhi_chan->ring.started)
1068 			continue;
1069 
1070 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1071 		mutex_lock(&mhi_chan->lock);
1072 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1073 		mutex_unlock(&mhi_chan->lock);
1074 	}
1075 
1076 	/* Stop and reset the event rings */
1077 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1078 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1079 		if (!ev_ring->started)
1080 			continue;
1081 
1082 		mutex_lock(&mhi_cntrl->event_lock);
1083 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1084 		mutex_unlock(&mhi_cntrl->event_lock);
1085 	}
1086 
1087 	/* Stop and reset the command ring */
1088 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1089 
1090 	mhi_ep_free_host_cfg(mhi_cntrl);
1091 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1092 
1093 	mhi_cntrl->enabled = false;
1094 }
1095 
1096 static void mhi_ep_reset_worker(struct work_struct *work)
1097 {
1098 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1099 	enum mhi_state cur_state;
1100 
1101 	mhi_ep_power_down(mhi_cntrl);
1102 
1103 	mutex_lock(&mhi_cntrl->state_lock);
1104 
1105 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1106 	mhi_ep_mmio_reset(mhi_cntrl);
1107 	cur_state = mhi_cntrl->mhi_state;
1108 
1109 	/*
1110 	 * Only proceed further if the reset is due to SYS_ERR. The host will
1111 	 * issue reset during shutdown also and we don't need to do re-init in
1112 	 * that case.
1113 	 */
1114 	if (cur_state == MHI_STATE_SYS_ERR)
1115 		mhi_ep_power_up(mhi_cntrl);
1116 
1117 	mutex_unlock(&mhi_cntrl->state_lock);
1118 }
1119 
1120 /*
1121  * We don't need to do anything special other than setting the MHI SYS_ERR
1122  * state. The host will reset all contexts and issue MHI RESET so that we
1123  * could also recover from error state.
1124  */
1125 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1126 {
1127 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1128 	int ret;
1129 
1130 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1131 	if (ret)
1132 		return;
1133 
1134 	/* Signal host that the device went to SYS_ERR state */
1135 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1136 	if (ret)
1137 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1138 }
1139 
1140 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1141 {
1142 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1143 	int ret, i;
1144 
1145 	/*
1146 	 * Mask all interrupts until the state machine is ready. Interrupts will
1147 	 * be enabled later with mhi_ep_enable().
1148 	 */
1149 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1150 	mhi_ep_mmio_init(mhi_cntrl);
1151 
1152 	mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
1153 				       sizeof(*mhi_cntrl->mhi_event),
1154 				       GFP_KERNEL);
1155 	if (!mhi_cntrl->mhi_event)
1156 		return -ENOMEM;
1157 
1158 	/* Initialize command, channel and event rings */
1159 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1160 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1161 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1162 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1163 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1164 
1165 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1166 
1167 	/* Set AMSS EE before signaling ready state */
1168 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1169 
1170 	/* All set, notify the host that we are ready */
1171 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1172 	if (ret)
1173 		goto err_free_event;
1174 
1175 	dev_dbg(dev, "READY state notification sent to the host\n");
1176 
1177 	ret = mhi_ep_enable(mhi_cntrl);
1178 	if (ret) {
1179 		dev_err(dev, "Failed to enable MHI endpoint\n");
1180 		goto err_free_event;
1181 	}
1182 
1183 	enable_irq(mhi_cntrl->irq);
1184 	mhi_cntrl->enabled = true;
1185 
1186 	return 0;
1187 
1188 err_free_event:
1189 	kfree(mhi_cntrl->mhi_event);
1190 
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1194 
1195 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1196 {
1197 	if (mhi_cntrl->enabled) {
1198 		mhi_ep_abort_transfer(mhi_cntrl);
1199 		kfree(mhi_cntrl->mhi_event);
1200 		disable_irq(mhi_cntrl->irq);
1201 	}
1202 }
1203 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1204 
1205 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1206 {
1207 	struct mhi_ep_chan *mhi_chan;
1208 	u32 tmp;
1209 	int i;
1210 
1211 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1212 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1213 
1214 		if (!mhi_chan->mhi_dev)
1215 			continue;
1216 
1217 		mutex_lock(&mhi_chan->lock);
1218 		/* Skip if the channel is not currently running */
1219 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1220 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1221 			mutex_unlock(&mhi_chan->lock);
1222 			continue;
1223 		}
1224 
1225 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1226 		/* Set channel state to SUSPENDED */
1227 		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1228 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1229 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1230 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1231 		mutex_unlock(&mhi_chan->lock);
1232 	}
1233 }
1234 
1235 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1236 {
1237 	struct mhi_ep_chan *mhi_chan;
1238 	u32 tmp;
1239 	int i;
1240 
1241 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1242 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1243 
1244 		if (!mhi_chan->mhi_dev)
1245 			continue;
1246 
1247 		mutex_lock(&mhi_chan->lock);
1248 		/* Skip if the channel is not currently suspended */
1249 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1250 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1251 			mutex_unlock(&mhi_chan->lock);
1252 			continue;
1253 		}
1254 
1255 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1256 		/* Set channel state to RUNNING */
1257 		mhi_chan->state = MHI_CH_STATE_RUNNING;
1258 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1259 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1260 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1261 		mutex_unlock(&mhi_chan->lock);
1262 	}
1263 }
1264 
1265 static void mhi_ep_release_device(struct device *dev)
1266 {
1267 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1268 
1269 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1270 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1271 
1272 	/*
1273 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1274 	 * devices for the channels will only get created in mhi_ep_create_device()
1275 	 * if the mhi_dev associated with it is NULL.
1276 	 */
1277 	if (mhi_dev->ul_chan)
1278 		mhi_dev->ul_chan->mhi_dev = NULL;
1279 
1280 	if (mhi_dev->dl_chan)
1281 		mhi_dev->dl_chan->mhi_dev = NULL;
1282 
1283 	kfree(mhi_dev);
1284 }
1285 
1286 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1287 						 enum mhi_device_type dev_type)
1288 {
1289 	struct mhi_ep_device *mhi_dev;
1290 	struct device *dev;
1291 
1292 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1293 	if (!mhi_dev)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	dev = &mhi_dev->dev;
1297 	device_initialize(dev);
1298 	dev->bus = &mhi_ep_bus_type;
1299 	dev->release = mhi_ep_release_device;
1300 
1301 	/* Controller device is always allocated first */
1302 	if (dev_type == MHI_DEVICE_CONTROLLER)
1303 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1304 		dev->parent = mhi_cntrl->cntrl_dev;
1305 	else
1306 		/* for MHI client devices, parent is the MHI controller device */
1307 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1308 
1309 	mhi_dev->mhi_cntrl = mhi_cntrl;
1310 	mhi_dev->dev_type = dev_type;
1311 
1312 	return mhi_dev;
1313 }
1314 
1315 /*
1316  * MHI channels are always defined in pairs with UL as the even numbered
1317  * channel and DL as odd numbered one. This function gets UL channel (primary)
1318  * as the ch_id and always looks after the next entry in channel list for
1319  * the corresponding DL channel (secondary).
1320  */
1321 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1322 {
1323 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1324 	struct device *dev = mhi_cntrl->cntrl_dev;
1325 	struct mhi_ep_device *mhi_dev;
1326 	int ret;
1327 
1328 	/* Check if the channel name is same for both UL and DL */
1329 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1330 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1331 			mhi_chan->name, mhi_chan[1].name);
1332 		return -EINVAL;
1333 	}
1334 
1335 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1336 	if (IS_ERR(mhi_dev))
1337 		return PTR_ERR(mhi_dev);
1338 
1339 	/* Configure primary channel */
1340 	mhi_dev->ul_chan = mhi_chan;
1341 	get_device(&mhi_dev->dev);
1342 	mhi_chan->mhi_dev = mhi_dev;
1343 
1344 	/* Configure secondary channel as well */
1345 	mhi_chan++;
1346 	mhi_dev->dl_chan = mhi_chan;
1347 	get_device(&mhi_dev->dev);
1348 	mhi_chan->mhi_dev = mhi_dev;
1349 
1350 	/* Channel name is same for both UL and DL */
1351 	mhi_dev->name = mhi_chan->name;
1352 	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1353 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1354 		     mhi_dev->name);
1355 	if (ret) {
1356 		put_device(&mhi_dev->dev);
1357 		return ret;
1358 	}
1359 
1360 	ret = device_add(&mhi_dev->dev);
1361 	if (ret)
1362 		put_device(&mhi_dev->dev);
1363 
1364 	return ret;
1365 }
1366 
1367 static int mhi_ep_destroy_device(struct device *dev, void *data)
1368 {
1369 	struct mhi_ep_device *mhi_dev;
1370 	struct mhi_ep_cntrl *mhi_cntrl;
1371 	struct mhi_ep_chan *ul_chan, *dl_chan;
1372 
1373 	if (dev->bus != &mhi_ep_bus_type)
1374 		return 0;
1375 
1376 	mhi_dev = to_mhi_ep_device(dev);
1377 	mhi_cntrl = mhi_dev->mhi_cntrl;
1378 
1379 	/* Only destroy devices created for channels */
1380 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1381 		return 0;
1382 
1383 	ul_chan = mhi_dev->ul_chan;
1384 	dl_chan = mhi_dev->dl_chan;
1385 
1386 	if (ul_chan)
1387 		put_device(&ul_chan->mhi_dev->dev);
1388 
1389 	if (dl_chan)
1390 		put_device(&dl_chan->mhi_dev->dev);
1391 
1392 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1393 		 mhi_dev->name);
1394 
1395 	/* Notify the client and remove the device from MHI bus */
1396 	device_del(dev);
1397 	put_device(dev);
1398 
1399 	return 0;
1400 }
1401 
1402 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1403 			    const struct mhi_ep_cntrl_config *config)
1404 {
1405 	const struct mhi_ep_channel_config *ch_cfg;
1406 	struct device *dev = mhi_cntrl->cntrl_dev;
1407 	u32 chan, i;
1408 	int ret = -EINVAL;
1409 
1410 	mhi_cntrl->max_chan = config->max_channels;
1411 
1412 	/*
1413 	 * Allocate max_channels supported by the MHI endpoint and populate
1414 	 * only the defined channels
1415 	 */
1416 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1417 				      GFP_KERNEL);
1418 	if (!mhi_cntrl->mhi_chan)
1419 		return -ENOMEM;
1420 
1421 	for (i = 0; i < config->num_channels; i++) {
1422 		struct mhi_ep_chan *mhi_chan;
1423 
1424 		ch_cfg = &config->ch_cfg[i];
1425 
1426 		chan = ch_cfg->num;
1427 		if (chan >= mhi_cntrl->max_chan) {
1428 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1429 				chan, mhi_cntrl->max_chan);
1430 			goto error_chan_cfg;
1431 		}
1432 
1433 		/* Bi-directional and direction less channels are not supported */
1434 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1435 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1436 				ch_cfg->dir, chan);
1437 			goto error_chan_cfg;
1438 		}
1439 
1440 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1441 		mhi_chan->name = ch_cfg->name;
1442 		mhi_chan->chan = chan;
1443 		mhi_chan->dir = ch_cfg->dir;
1444 		mutex_init(&mhi_chan->lock);
1445 	}
1446 
1447 	return 0;
1448 
1449 error_chan_cfg:
1450 	kfree(mhi_cntrl->mhi_chan);
1451 
1452 	return ret;
1453 }
1454 
1455 /*
1456  * Allocate channel and command rings here. Event rings will be allocated
1457  * in mhi_ep_power_up() as the config comes from the host.
1458  */
1459 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1460 				const struct mhi_ep_cntrl_config *config)
1461 {
1462 	struct mhi_ep_device *mhi_dev;
1463 	int ret;
1464 
1465 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1466 		return -EINVAL;
1467 
1468 	if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
1469 	    !mhi_cntrl->read_async || !mhi_cntrl->write_async)
1470 		return -EINVAL;
1471 
1472 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1473 	if (ret)
1474 		return ret;
1475 
1476 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1477 	if (!mhi_cntrl->mhi_cmd) {
1478 		ret = -ENOMEM;
1479 		goto err_free_ch;
1480 	}
1481 
1482 	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1483 							sizeof(struct mhi_ring_element), 0,
1484 							SLAB_CACHE_DMA, NULL);
1485 	if (!mhi_cntrl->ev_ring_el_cache) {
1486 		ret = -ENOMEM;
1487 		goto err_free_cmd;
1488 	}
1489 
1490 	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1491 						      SLAB_CACHE_DMA, NULL);
1492 	if (!mhi_cntrl->tre_buf_cache) {
1493 		ret = -ENOMEM;
1494 		goto err_destroy_ev_ring_el_cache;
1495 	}
1496 
1497 	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1498 							sizeof(struct mhi_ep_ring_item), 0,
1499 							0, NULL);
1500 	if (!mhi_cntrl->ring_item_cache) {
1501 		ret = -ENOMEM;
1502 		goto err_destroy_tre_buf_cache;
1503 	}
1504 
1505 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1506 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1507 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1508 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1509 
1510 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1511 	if (!mhi_cntrl->wq) {
1512 		ret = -ENOMEM;
1513 		goto err_destroy_ring_item_cache;
1514 	}
1515 
1516 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1517 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1518 	spin_lock_init(&mhi_cntrl->list_lock);
1519 	mutex_init(&mhi_cntrl->state_lock);
1520 	mutex_init(&mhi_cntrl->event_lock);
1521 
1522 	/* Set MHI version and AMSS EE before enumeration */
1523 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1524 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1525 
1526 	/* Set controller index */
1527 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1528 	if (ret < 0)
1529 		goto err_destroy_wq;
1530 
1531 	mhi_cntrl->index = ret;
1532 
1533 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1534 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1535 			  "doorbell_irq", mhi_cntrl);
1536 	if (ret) {
1537 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1538 		goto err_ida_free;
1539 	}
1540 
1541 	/* Allocate the controller device */
1542 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1543 	if (IS_ERR(mhi_dev)) {
1544 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1545 		ret = PTR_ERR(mhi_dev);
1546 		goto err_free_irq;
1547 	}
1548 
1549 	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1550 	if (ret)
1551 		goto err_put_dev;
1552 
1553 	mhi_dev->name = dev_name(&mhi_dev->dev);
1554 	mhi_cntrl->mhi_dev = mhi_dev;
1555 
1556 	ret = device_add(&mhi_dev->dev);
1557 	if (ret)
1558 		goto err_put_dev;
1559 
1560 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1561 
1562 	return 0;
1563 
1564 err_put_dev:
1565 	put_device(&mhi_dev->dev);
1566 err_free_irq:
1567 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1568 err_ida_free:
1569 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1570 err_destroy_wq:
1571 	destroy_workqueue(mhi_cntrl->wq);
1572 err_destroy_ring_item_cache:
1573 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1574 err_destroy_ev_ring_el_cache:
1575 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1576 err_destroy_tre_buf_cache:
1577 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1578 err_free_cmd:
1579 	kfree(mhi_cntrl->mhi_cmd);
1580 err_free_ch:
1581 	kfree(mhi_cntrl->mhi_chan);
1582 
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1586 
1587 /*
1588  * It is expected that the controller drivers will power down the MHI EP stack
1589  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1590  */
1591 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1592 {
1593 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1594 
1595 	destroy_workqueue(mhi_cntrl->wq);
1596 
1597 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1598 
1599 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1600 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1601 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1602 	kfree(mhi_cntrl->mhi_cmd);
1603 	kfree(mhi_cntrl->mhi_chan);
1604 
1605 	device_del(&mhi_dev->dev);
1606 	put_device(&mhi_dev->dev);
1607 
1608 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1609 }
1610 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1611 
1612 static int mhi_ep_driver_probe(struct device *dev)
1613 {
1614 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1615 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1616 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1617 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1618 
1619 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1620 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1621 
1622 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1623 }
1624 
1625 static int mhi_ep_driver_remove(struct device *dev)
1626 {
1627 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1628 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1629 	struct mhi_result result = {};
1630 	struct mhi_ep_chan *mhi_chan;
1631 	int dir;
1632 
1633 	/* Skip if it is a controller device */
1634 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1635 		return 0;
1636 
1637 	/* Disconnect the channels associated with the driver */
1638 	for (dir = 0; dir < 2; dir++) {
1639 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1640 
1641 		if (!mhi_chan)
1642 			continue;
1643 
1644 		mutex_lock(&mhi_chan->lock);
1645 		/* Send channel disconnect status to the client driver */
1646 		if (mhi_chan->xfer_cb) {
1647 			result.transaction_status = -ENOTCONN;
1648 			result.bytes_xferd = 0;
1649 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1650 		}
1651 
1652 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1653 		mhi_chan->xfer_cb = NULL;
1654 		mutex_unlock(&mhi_chan->lock);
1655 	}
1656 
1657 	/* Remove the client driver now */
1658 	mhi_drv->remove(mhi_dev);
1659 
1660 	return 0;
1661 }
1662 
1663 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1664 {
1665 	struct device_driver *driver = &mhi_drv->driver;
1666 
1667 	if (!mhi_drv->probe || !mhi_drv->remove)
1668 		return -EINVAL;
1669 
1670 	/* Client drivers should have callbacks defined for both channels */
1671 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1672 		return -EINVAL;
1673 
1674 	driver->bus = &mhi_ep_bus_type;
1675 	driver->owner = owner;
1676 	driver->probe = mhi_ep_driver_probe;
1677 	driver->remove = mhi_ep_driver_remove;
1678 
1679 	return driver_register(driver);
1680 }
1681 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1682 
1683 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1684 {
1685 	driver_unregister(&mhi_drv->driver);
1686 }
1687 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1688 
1689 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1690 {
1691 	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1692 
1693 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1694 					mhi_dev->name);
1695 }
1696 
1697 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1698 {
1699 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1700 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1701 	const struct mhi_device_id *id;
1702 
1703 	/*
1704 	 * If the device is a controller type then there is no client driver
1705 	 * associated with it
1706 	 */
1707 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1708 		return 0;
1709 
1710 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1711 		if (!strcmp(mhi_dev->name, id->chan)) {
1712 			mhi_dev->id = id;
1713 			return 1;
1714 		}
1715 
1716 	return 0;
1717 };
1718 
1719 struct bus_type mhi_ep_bus_type = {
1720 	.name = "mhi_ep",
1721 	.dev_name = "mhi_ep",
1722 	.match = mhi_ep_match,
1723 	.uevent = mhi_ep_uevent,
1724 };
1725 
1726 static int __init mhi_ep_init(void)
1727 {
1728 	return bus_register(&mhi_ep_bus_type);
1729 }
1730 
1731 static void __exit mhi_ep_exit(void)
1732 {
1733 	bus_unregister(&mhi_ep_bus_type);
1734 }
1735 
1736 postcore_initcall(mhi_ep_init);
1737 module_exit(mhi_ep_exit);
1738 
1739 MODULE_LICENSE("GPL v2");
1740 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1741 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1742