1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 #include <linux/limits.h> 20 #include <linux/bitops.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 #include <linux/dma-map-ops.h> 25 26 #include "fsl-mc-private.h" 27 28 /* 29 * Default DMA mask for devices on a fsl-mc bus 30 */ 31 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 32 33 static struct fsl_mc_version mc_version; 34 35 /** 36 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 37 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 38 * @num_translation_ranges: number of entries in addr_translation_ranges 39 * @translation_ranges: array of bus to system address translation ranges 40 * @fsl_mc_regs: base address of register bank 41 */ 42 struct fsl_mc { 43 struct fsl_mc_device *root_mc_bus_dev; 44 u8 num_translation_ranges; 45 struct fsl_mc_addr_translation_range *translation_ranges; 46 void __iomem *fsl_mc_regs; 47 }; 48 49 /** 50 * struct fsl_mc_addr_translation_range - bus to system address translation 51 * range 52 * @mc_region_type: Type of MC region for the range being translated 53 * @start_mc_offset: Start MC offset of the range being translated 54 * @end_mc_offset: MC offset of the first byte after the range (last MC 55 * offset of the range is end_mc_offset - 1) 56 * @start_phys_addr: system physical address corresponding to start_mc_addr 57 */ 58 struct fsl_mc_addr_translation_range { 59 enum dprc_region_type mc_region_type; 60 u64 start_mc_offset; 61 u64 end_mc_offset; 62 phys_addr_t start_phys_addr; 63 }; 64 65 #define FSL_MC_GCR1 0x0 66 #define GCR1_P1_STOP BIT(31) 67 #define GCR1_P2_STOP BIT(30) 68 69 #define FSL_MC_FAPR 0x28 70 #define MC_FAPR_PL BIT(18) 71 #define MC_FAPR_BMT BIT(17) 72 73 static phys_addr_t mc_portal_base_phys_addr; 74 75 /** 76 * fsl_mc_bus_match - device to driver matching callback 77 * @dev: the fsl-mc device to match against 78 * @drv: the device driver to search for matching fsl-mc object type 79 * structures 80 * 81 * Returns 1 on success, 0 otherwise. 82 */ 83 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 84 { 85 const struct fsl_mc_device_id *id; 86 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 87 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 88 bool found = false; 89 90 /* When driver_override is set, only bind to the matching driver */ 91 if (mc_dev->driver_override) { 92 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 93 goto out; 94 } 95 96 if (!mc_drv->match_id_table) 97 goto out; 98 99 /* 100 * If the object is not 'plugged' don't match. 101 * Only exception is the root DPRC, which is a special case. 102 */ 103 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 104 !fsl_mc_is_root_dprc(&mc_dev->dev)) 105 goto out; 106 107 /* 108 * Traverse the match_id table of the given driver, trying to find 109 * a matching for the given device. 110 */ 111 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 112 if (id->vendor == mc_dev->obj_desc.vendor && 113 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 114 found = true; 115 116 break; 117 } 118 } 119 120 out: 121 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 122 return found; 123 } 124 125 /* 126 * fsl_mc_bus_uevent - callback invoked when a device is added 127 */ 128 static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env) 129 { 130 const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 131 132 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 133 mc_dev->obj_desc.vendor, 134 mc_dev->obj_desc.type)) 135 return -ENOMEM; 136 137 return 0; 138 } 139 140 static int fsl_mc_dma_configure(struct device *dev) 141 { 142 struct device *dma_dev = dev; 143 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 144 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 145 u32 input_id = mc_dev->icid; 146 int ret; 147 148 while (dev_is_fsl_mc(dma_dev)) 149 dma_dev = dma_dev->parent; 150 151 if (dev_of_node(dma_dev)) 152 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 153 else 154 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 155 156 if (!ret && !mc_drv->driver_managed_dma) { 157 ret = iommu_device_use_default_domain(dev); 158 if (ret) 159 arch_teardown_dma_ops(dev); 160 } 161 162 return ret; 163 } 164 165 static void fsl_mc_dma_cleanup(struct device *dev) 166 { 167 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 168 169 if (!mc_drv->driver_managed_dma) 170 iommu_device_unuse_default_domain(dev); 171 } 172 173 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 174 char *buf) 175 { 176 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 177 178 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 179 mc_dev->obj_desc.type); 180 } 181 static DEVICE_ATTR_RO(modalias); 182 183 static ssize_t driver_override_store(struct device *dev, 184 struct device_attribute *attr, 185 const char *buf, size_t count) 186 { 187 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 188 int ret; 189 190 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 191 return -EINVAL; 192 193 ret = driver_set_override(dev, &mc_dev->driver_override, buf, count); 194 if (ret) 195 return ret; 196 197 return count; 198 } 199 200 static ssize_t driver_override_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 204 205 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 206 } 207 static DEVICE_ATTR_RW(driver_override); 208 209 static struct attribute *fsl_mc_dev_attrs[] = { 210 &dev_attr_modalias.attr, 211 &dev_attr_driver_override.attr, 212 NULL, 213 }; 214 215 ATTRIBUTE_GROUPS(fsl_mc_dev); 216 217 static int scan_fsl_mc_bus(struct device *dev, void *data) 218 { 219 struct fsl_mc_device *root_mc_dev; 220 struct fsl_mc_bus *root_mc_bus; 221 222 if (!fsl_mc_is_root_dprc(dev)) 223 goto exit; 224 225 root_mc_dev = to_fsl_mc_device(dev); 226 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 227 mutex_lock(&root_mc_bus->scan_mutex); 228 dprc_scan_objects(root_mc_dev, false); 229 mutex_unlock(&root_mc_bus->scan_mutex); 230 231 exit: 232 return 0; 233 } 234 235 static ssize_t rescan_store(const struct bus_type *bus, 236 const char *buf, size_t count) 237 { 238 unsigned long val; 239 240 if (kstrtoul(buf, 0, &val) < 0) 241 return -EINVAL; 242 243 if (val) 244 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 245 246 return count; 247 } 248 static BUS_ATTR_WO(rescan); 249 250 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 251 { 252 struct fsl_mc_device *root_mc_dev; 253 unsigned long val; 254 char *buf = data; 255 256 if (!fsl_mc_is_root_dprc(dev)) 257 goto exit; 258 259 root_mc_dev = to_fsl_mc_device(dev); 260 261 if (kstrtoul(buf, 0, &val) < 0) 262 return -EINVAL; 263 264 if (val) 265 enable_dprc_irq(root_mc_dev); 266 else 267 disable_dprc_irq(root_mc_dev); 268 269 exit: 270 return 0; 271 } 272 273 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 274 { 275 struct fsl_mc_device *root_mc_dev; 276 char *buf = data; 277 278 if (!fsl_mc_is_root_dprc(dev)) 279 goto exit; 280 281 root_mc_dev = to_fsl_mc_device(dev); 282 283 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 284 exit: 285 return 0; 286 } 287 288 static ssize_t autorescan_store(const struct bus_type *bus, 289 const char *buf, size_t count) 290 { 291 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 292 293 return count; 294 } 295 296 static ssize_t autorescan_show(const struct bus_type *bus, char *buf) 297 { 298 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 299 return strlen(buf); 300 } 301 302 static BUS_ATTR_RW(autorescan); 303 304 static struct attribute *fsl_mc_bus_attrs[] = { 305 &bus_attr_rescan.attr, 306 &bus_attr_autorescan.attr, 307 NULL, 308 }; 309 310 ATTRIBUTE_GROUPS(fsl_mc_bus); 311 312 struct bus_type fsl_mc_bus_type = { 313 .name = "fsl-mc", 314 .match = fsl_mc_bus_match, 315 .uevent = fsl_mc_bus_uevent, 316 .dma_configure = fsl_mc_dma_configure, 317 .dma_cleanup = fsl_mc_dma_cleanup, 318 .dev_groups = fsl_mc_dev_groups, 319 .bus_groups = fsl_mc_bus_groups, 320 }; 321 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 322 323 struct device_type fsl_mc_bus_dprc_type = { 324 .name = "fsl_mc_bus_dprc" 325 }; 326 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 327 328 struct device_type fsl_mc_bus_dpni_type = { 329 .name = "fsl_mc_bus_dpni" 330 }; 331 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 332 333 struct device_type fsl_mc_bus_dpio_type = { 334 .name = "fsl_mc_bus_dpio" 335 }; 336 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 337 338 struct device_type fsl_mc_bus_dpsw_type = { 339 .name = "fsl_mc_bus_dpsw" 340 }; 341 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 342 343 struct device_type fsl_mc_bus_dpbp_type = { 344 .name = "fsl_mc_bus_dpbp" 345 }; 346 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 347 348 struct device_type fsl_mc_bus_dpcon_type = { 349 .name = "fsl_mc_bus_dpcon" 350 }; 351 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 352 353 struct device_type fsl_mc_bus_dpmcp_type = { 354 .name = "fsl_mc_bus_dpmcp" 355 }; 356 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 357 358 struct device_type fsl_mc_bus_dpmac_type = { 359 .name = "fsl_mc_bus_dpmac" 360 }; 361 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 362 363 struct device_type fsl_mc_bus_dprtc_type = { 364 .name = "fsl_mc_bus_dprtc" 365 }; 366 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 367 368 struct device_type fsl_mc_bus_dpseci_type = { 369 .name = "fsl_mc_bus_dpseci" 370 }; 371 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 372 373 struct device_type fsl_mc_bus_dpdmux_type = { 374 .name = "fsl_mc_bus_dpdmux" 375 }; 376 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 377 378 struct device_type fsl_mc_bus_dpdcei_type = { 379 .name = "fsl_mc_bus_dpdcei" 380 }; 381 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 382 383 struct device_type fsl_mc_bus_dpaiop_type = { 384 .name = "fsl_mc_bus_dpaiop" 385 }; 386 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 387 388 struct device_type fsl_mc_bus_dpci_type = { 389 .name = "fsl_mc_bus_dpci" 390 }; 391 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 392 393 struct device_type fsl_mc_bus_dpdmai_type = { 394 .name = "fsl_mc_bus_dpdmai" 395 }; 396 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 397 398 struct device_type fsl_mc_bus_dpdbg_type = { 399 .name = "fsl_mc_bus_dpdbg" 400 }; 401 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 402 403 static struct device_type *fsl_mc_get_device_type(const char *type) 404 { 405 static const struct { 406 struct device_type *dev_type; 407 const char *type; 408 } dev_types[] = { 409 { &fsl_mc_bus_dprc_type, "dprc" }, 410 { &fsl_mc_bus_dpni_type, "dpni" }, 411 { &fsl_mc_bus_dpio_type, "dpio" }, 412 { &fsl_mc_bus_dpsw_type, "dpsw" }, 413 { &fsl_mc_bus_dpbp_type, "dpbp" }, 414 { &fsl_mc_bus_dpcon_type, "dpcon" }, 415 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 416 { &fsl_mc_bus_dpmac_type, "dpmac" }, 417 { &fsl_mc_bus_dprtc_type, "dprtc" }, 418 { &fsl_mc_bus_dpseci_type, "dpseci" }, 419 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 420 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 421 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 422 { &fsl_mc_bus_dpci_type, "dpci" }, 423 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 424 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 425 { NULL, NULL } 426 }; 427 int i; 428 429 for (i = 0; dev_types[i].dev_type; i++) 430 if (!strcmp(dev_types[i].type, type)) 431 return dev_types[i].dev_type; 432 433 return NULL; 434 } 435 436 static int fsl_mc_driver_probe(struct device *dev) 437 { 438 struct fsl_mc_driver *mc_drv; 439 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 440 int error; 441 442 mc_drv = to_fsl_mc_driver(dev->driver); 443 444 error = mc_drv->probe(mc_dev); 445 if (error < 0) { 446 if (error != -EPROBE_DEFER) 447 dev_err(dev, "%s failed: %d\n", __func__, error); 448 return error; 449 } 450 451 return 0; 452 } 453 454 static int fsl_mc_driver_remove(struct device *dev) 455 { 456 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 457 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 458 459 mc_drv->remove(mc_dev); 460 461 return 0; 462 } 463 464 static void fsl_mc_driver_shutdown(struct device *dev) 465 { 466 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 467 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 468 469 mc_drv->shutdown(mc_dev); 470 } 471 472 /* 473 * __fsl_mc_driver_register - registers a child device driver with the 474 * MC bus 475 * 476 * This function is implicitly invoked from the registration function of 477 * fsl_mc device drivers, which is generated by the 478 * module_fsl_mc_driver() macro. 479 */ 480 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 481 struct module *owner) 482 { 483 int error; 484 485 mc_driver->driver.owner = owner; 486 mc_driver->driver.bus = &fsl_mc_bus_type; 487 488 if (mc_driver->probe) 489 mc_driver->driver.probe = fsl_mc_driver_probe; 490 491 if (mc_driver->remove) 492 mc_driver->driver.remove = fsl_mc_driver_remove; 493 494 if (mc_driver->shutdown) 495 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 496 497 error = driver_register(&mc_driver->driver); 498 if (error < 0) { 499 pr_err("driver_register() failed for %s: %d\n", 500 mc_driver->driver.name, error); 501 return error; 502 } 503 504 return 0; 505 } 506 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 507 508 /* 509 * fsl_mc_driver_unregister - unregisters a device driver from the 510 * MC bus 511 */ 512 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 513 { 514 driver_unregister(&mc_driver->driver); 515 } 516 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 517 518 /** 519 * mc_get_version() - Retrieves the Management Complex firmware 520 * version information 521 * @mc_io: Pointer to opaque I/O object 522 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 523 * @mc_ver_info: Returned version information structure 524 * 525 * Return: '0' on Success; Error code otherwise. 526 */ 527 static int mc_get_version(struct fsl_mc_io *mc_io, 528 u32 cmd_flags, 529 struct fsl_mc_version *mc_ver_info) 530 { 531 struct fsl_mc_command cmd = { 0 }; 532 struct dpmng_rsp_get_version *rsp_params; 533 int err; 534 535 /* prepare command */ 536 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 537 cmd_flags, 538 0); 539 540 /* send command to mc*/ 541 err = mc_send_command(mc_io, &cmd); 542 if (err) 543 return err; 544 545 /* retrieve response parameters */ 546 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 547 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 548 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 549 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 550 551 return 0; 552 } 553 554 /** 555 * fsl_mc_get_version - function to retrieve the MC f/w version information 556 * 557 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 558 */ 559 struct fsl_mc_version *fsl_mc_get_version(void) 560 { 561 if (mc_version.major) 562 return &mc_version; 563 564 return NULL; 565 } 566 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 567 568 /* 569 * fsl_mc_get_root_dprc - function to traverse to the root dprc 570 */ 571 void fsl_mc_get_root_dprc(struct device *dev, 572 struct device **root_dprc_dev) 573 { 574 if (!dev) { 575 *root_dprc_dev = NULL; 576 } else if (!dev_is_fsl_mc(dev)) { 577 *root_dprc_dev = NULL; 578 } else { 579 *root_dprc_dev = dev; 580 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 581 *root_dprc_dev = (*root_dprc_dev)->parent; 582 } 583 } 584 585 static int get_dprc_attr(struct fsl_mc_io *mc_io, 586 int container_id, struct dprc_attributes *attr) 587 { 588 u16 dprc_handle; 589 int error; 590 591 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 592 if (error < 0) { 593 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 594 return error; 595 } 596 597 memset(attr, 0, sizeof(struct dprc_attributes)); 598 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 599 if (error < 0) { 600 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 601 error); 602 goto common_cleanup; 603 } 604 605 error = 0; 606 607 common_cleanup: 608 (void)dprc_close(mc_io, 0, dprc_handle); 609 return error; 610 } 611 612 static int get_dprc_icid(struct fsl_mc_io *mc_io, 613 int container_id, u32 *icid) 614 { 615 struct dprc_attributes attr; 616 int error; 617 618 error = get_dprc_attr(mc_io, container_id, &attr); 619 if (error == 0) 620 *icid = attr.icid; 621 622 return error; 623 } 624 625 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 626 enum dprc_region_type mc_region_type, 627 u64 mc_offset, phys_addr_t *phys_addr) 628 { 629 int i; 630 struct device *root_dprc_dev; 631 struct fsl_mc *mc; 632 633 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 634 mc = dev_get_drvdata(root_dprc_dev->parent); 635 636 if (mc->num_translation_ranges == 0) { 637 /* 638 * Do identity mapping: 639 */ 640 *phys_addr = mc_offset; 641 return 0; 642 } 643 644 for (i = 0; i < mc->num_translation_ranges; i++) { 645 struct fsl_mc_addr_translation_range *range = 646 &mc->translation_ranges[i]; 647 648 if (mc_region_type == range->mc_region_type && 649 mc_offset >= range->start_mc_offset && 650 mc_offset < range->end_mc_offset) { 651 *phys_addr = range->start_phys_addr + 652 (mc_offset - range->start_mc_offset); 653 return 0; 654 } 655 } 656 657 return -EFAULT; 658 } 659 660 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 661 struct fsl_mc_device *mc_bus_dev) 662 { 663 int i; 664 int error; 665 struct resource *regions; 666 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 667 struct device *parent_dev = mc_dev->dev.parent; 668 enum dprc_region_type mc_region_type; 669 670 if (is_fsl_mc_bus_dprc(mc_dev) || 671 is_fsl_mc_bus_dpmcp(mc_dev)) { 672 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 673 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 674 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 675 } else { 676 /* 677 * This function should not have been called for this MC object 678 * type, as this object type is not supposed to have MMIO 679 * regions 680 */ 681 return -EINVAL; 682 } 683 684 regions = kmalloc_array(obj_desc->region_count, 685 sizeof(regions[0]), GFP_KERNEL); 686 if (!regions) 687 return -ENOMEM; 688 689 for (i = 0; i < obj_desc->region_count; i++) { 690 struct dprc_region_desc region_desc; 691 692 error = dprc_get_obj_region(mc_bus_dev->mc_io, 693 0, 694 mc_bus_dev->mc_handle, 695 obj_desc->type, 696 obj_desc->id, i, ®ion_desc); 697 if (error < 0) { 698 dev_err(parent_dev, 699 "dprc_get_obj_region() failed: %d\n", error); 700 goto error_cleanup_regions; 701 } 702 /* 703 * Older MC only returned region offset and no base address 704 * If base address is in the region_desc use it otherwise 705 * revert to old mechanism 706 */ 707 if (region_desc.base_address) { 708 regions[i].start = region_desc.base_address + 709 region_desc.base_offset; 710 } else { 711 error = translate_mc_addr(mc_dev, mc_region_type, 712 region_desc.base_offset, 713 ®ions[i].start); 714 715 /* 716 * Some versions of the MC firmware wrongly report 717 * 0 for register base address of the DPMCP associated 718 * with child DPRC objects thus rendering them unusable. 719 * This is particularly troublesome in ACPI boot 720 * scenarios where the legacy way of extracting this 721 * base address from the device tree does not apply. 722 * Given that DPMCPs share the same base address, 723 * workaround this by using the base address extracted 724 * from the root DPRC container. 725 */ 726 if (is_fsl_mc_bus_dprc(mc_dev) && 727 regions[i].start == region_desc.base_offset) 728 regions[i].start += mc_portal_base_phys_addr; 729 } 730 731 if (error < 0) { 732 dev_err(parent_dev, 733 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 734 region_desc.base_offset, 735 obj_desc->type, obj_desc->id, i); 736 goto error_cleanup_regions; 737 } 738 739 regions[i].end = regions[i].start + region_desc.size - 1; 740 regions[i].name = "fsl-mc object MMIO region"; 741 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 742 regions[i].flags |= IORESOURCE_MEM; 743 } 744 745 mc_dev->regions = regions; 746 return 0; 747 748 error_cleanup_regions: 749 kfree(regions); 750 return error; 751 } 752 753 /* 754 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 755 */ 756 bool fsl_mc_is_root_dprc(struct device *dev) 757 { 758 struct device *root_dprc_dev; 759 760 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 761 if (!root_dprc_dev) 762 return false; 763 return dev == root_dprc_dev; 764 } 765 766 static void fsl_mc_device_release(struct device *dev) 767 { 768 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 769 770 kfree(mc_dev->regions); 771 772 if (is_fsl_mc_bus_dprc(mc_dev)) 773 kfree(to_fsl_mc_bus(mc_dev)); 774 else 775 kfree(mc_dev); 776 } 777 778 /* 779 * Add a newly discovered fsl-mc device to be visible in Linux 780 */ 781 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 782 struct fsl_mc_io *mc_io, 783 struct device *parent_dev, 784 struct fsl_mc_device **new_mc_dev) 785 { 786 int error; 787 struct fsl_mc_device *mc_dev = NULL; 788 struct fsl_mc_bus *mc_bus = NULL; 789 struct fsl_mc_device *parent_mc_dev; 790 791 if (dev_is_fsl_mc(parent_dev)) 792 parent_mc_dev = to_fsl_mc_device(parent_dev); 793 else 794 parent_mc_dev = NULL; 795 796 if (strcmp(obj_desc->type, "dprc") == 0) { 797 /* 798 * Allocate an MC bus device object: 799 */ 800 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 801 if (!mc_bus) 802 return -ENOMEM; 803 804 mutex_init(&mc_bus->scan_mutex); 805 mc_dev = &mc_bus->mc_dev; 806 } else { 807 /* 808 * Allocate a regular fsl_mc_device object: 809 */ 810 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 811 if (!mc_dev) 812 return -ENOMEM; 813 } 814 815 mc_dev->obj_desc = *obj_desc; 816 mc_dev->mc_io = mc_io; 817 device_initialize(&mc_dev->dev); 818 mc_dev->dev.parent = parent_dev; 819 mc_dev->dev.bus = &fsl_mc_bus_type; 820 mc_dev->dev.release = fsl_mc_device_release; 821 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 822 if (!mc_dev->dev.type) { 823 error = -ENODEV; 824 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 825 goto error_cleanup_dev; 826 } 827 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 828 829 if (strcmp(obj_desc->type, "dprc") == 0) { 830 struct fsl_mc_io *mc_io2; 831 832 mc_dev->flags |= FSL_MC_IS_DPRC; 833 834 /* 835 * To get the DPRC's ICID, we need to open the DPRC 836 * in get_dprc_icid(). For child DPRCs, we do so using the 837 * parent DPRC's MC portal instead of the child DPRC's MC 838 * portal, in case the child DPRC is already opened with 839 * its own portal (e.g., the DPRC used by AIOP). 840 * 841 * NOTE: There cannot be more than one active open for a 842 * given MC object, using the same MC portal. 843 */ 844 if (parent_mc_dev) { 845 /* 846 * device being added is a child DPRC device 847 */ 848 mc_io2 = parent_mc_dev->mc_io; 849 } else { 850 /* 851 * device being added is the root DPRC device 852 */ 853 if (!mc_io) { 854 error = -EINVAL; 855 goto error_cleanup_dev; 856 } 857 858 mc_io2 = mc_io; 859 } 860 861 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 862 if (error < 0) 863 goto error_cleanup_dev; 864 } else { 865 /* 866 * A non-DPRC object has to be a child of a DPRC, use the 867 * parent's ICID and interrupt domain. 868 */ 869 mc_dev->icid = parent_mc_dev->icid; 870 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 871 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 872 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 873 dev_set_msi_domain(&mc_dev->dev, 874 dev_get_msi_domain(&parent_mc_dev->dev)); 875 } 876 877 /* 878 * Get MMIO regions for the device from the MC: 879 * 880 * NOTE: the root DPRC is a special case as its MMIO region is 881 * obtained from the device tree 882 */ 883 if (parent_mc_dev && obj_desc->region_count != 0) { 884 error = fsl_mc_device_get_mmio_regions(mc_dev, 885 parent_mc_dev); 886 if (error < 0) 887 goto error_cleanup_dev; 888 } 889 890 /* 891 * The device-specific probe callback will get invoked by device_add() 892 */ 893 error = device_add(&mc_dev->dev); 894 if (error < 0) { 895 dev_err(parent_dev, 896 "device_add() failed for device %s: %d\n", 897 dev_name(&mc_dev->dev), error); 898 goto error_cleanup_dev; 899 } 900 901 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 902 903 *new_mc_dev = mc_dev; 904 return 0; 905 906 error_cleanup_dev: 907 kfree(mc_dev->regions); 908 kfree(mc_bus); 909 kfree(mc_dev); 910 911 return error; 912 } 913 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 914 915 static struct notifier_block fsl_mc_nb; 916 917 /** 918 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 919 * Linux 920 * 921 * @mc_dev: Pointer to an fsl-mc device 922 */ 923 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 924 { 925 kfree(mc_dev->driver_override); 926 mc_dev->driver_override = NULL; 927 928 /* 929 * The device-specific remove callback will get invoked by device_del() 930 */ 931 device_del(&mc_dev->dev); 932 put_device(&mc_dev->dev); 933 } 934 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 935 936 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 937 u16 if_id) 938 { 939 struct fsl_mc_device *mc_bus_dev, *endpoint; 940 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 941 struct dprc_endpoint endpoint1 = {{ 0 }}; 942 struct dprc_endpoint endpoint2 = {{ 0 }}; 943 int state, err; 944 945 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 946 strcpy(endpoint1.type, mc_dev->obj_desc.type); 947 endpoint1.id = mc_dev->obj_desc.id; 948 endpoint1.if_id = if_id; 949 950 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 951 mc_bus_dev->mc_handle, 952 &endpoint1, &endpoint2, 953 &state); 954 955 if (err == -ENOTCONN || state == -1) 956 return ERR_PTR(-ENOTCONN); 957 958 if (err < 0) { 959 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 960 return ERR_PTR(err); 961 } 962 963 strcpy(endpoint_desc.type, endpoint2.type); 964 endpoint_desc.id = endpoint2.id; 965 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 966 967 /* 968 * We know that the device has an endpoint because we verified by 969 * interrogating the firmware. This is the case when the device was not 970 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 971 * Force a rescan of the devices in this container and retry the lookup. 972 */ 973 if (!endpoint) { 974 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 975 976 if (mutex_trylock(&mc_bus->scan_mutex)) { 977 err = dprc_scan_objects(mc_bus_dev, true); 978 mutex_unlock(&mc_bus->scan_mutex); 979 } 980 981 if (err < 0) 982 return ERR_PTR(err); 983 } 984 985 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 986 /* 987 * This means that the endpoint might reside in a different isolation 988 * context (DPRC/container). Not much to do, so return a permssion 989 * error. 990 */ 991 if (!endpoint) 992 return ERR_PTR(-EPERM); 993 994 return endpoint; 995 } 996 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 997 998 static int get_mc_addr_translation_ranges(struct device *dev, 999 struct fsl_mc_addr_translation_range 1000 **ranges, 1001 u8 *num_ranges) 1002 { 1003 struct fsl_mc_addr_translation_range *r; 1004 struct of_range_parser parser; 1005 struct of_range range; 1006 1007 of_range_parser_init(&parser, dev->of_node); 1008 *num_ranges = of_range_count(&parser); 1009 if (!*num_ranges) { 1010 /* 1011 * Missing or empty ranges property ("ranges;") for the 1012 * 'fsl,qoriq-mc' node. In this case, identity mapping 1013 * will be used. 1014 */ 1015 *ranges = NULL; 1016 return 0; 1017 } 1018 1019 *ranges = devm_kcalloc(dev, *num_ranges, 1020 sizeof(struct fsl_mc_addr_translation_range), 1021 GFP_KERNEL); 1022 if (!(*ranges)) 1023 return -ENOMEM; 1024 1025 r = *ranges; 1026 for_each_of_range(&parser, &range) { 1027 r->mc_region_type = range.flags; 1028 r->start_mc_offset = range.bus_addr; 1029 r->end_mc_offset = range.bus_addr + range.size; 1030 r->start_phys_addr = range.cpu_addr; 1031 r++; 1032 } 1033 1034 return 0; 1035 } 1036 1037 /* 1038 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1039 * added 1040 */ 1041 static int fsl_mc_bus_probe(struct platform_device *pdev) 1042 { 1043 struct fsl_mc_obj_desc obj_desc; 1044 int error; 1045 struct fsl_mc *mc; 1046 struct fsl_mc_device *mc_bus_dev = NULL; 1047 struct fsl_mc_io *mc_io = NULL; 1048 int container_id; 1049 phys_addr_t mc_portal_phys_addr; 1050 u32 mc_portal_size, mc_stream_id; 1051 struct resource *plat_res; 1052 1053 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1054 if (!mc) 1055 return -ENOMEM; 1056 1057 platform_set_drvdata(pdev, mc); 1058 1059 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1060 if (plat_res) { 1061 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1062 if (IS_ERR(mc->fsl_mc_regs)) 1063 return PTR_ERR(mc->fsl_mc_regs); 1064 } 1065 1066 if (mc->fsl_mc_regs) { 1067 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1068 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1069 /* 1070 * HW ORs the PL and BMT bit, places the result in bit 1071 * 14 of the StreamID and ORs in the ICID. Calculate it 1072 * accordingly. 1073 */ 1074 mc_stream_id = (mc_stream_id & 0xffff) | 1075 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1076 BIT(14) : 0); 1077 error = acpi_dma_configure_id(&pdev->dev, 1078 DEV_DMA_COHERENT, 1079 &mc_stream_id); 1080 if (error == -EPROBE_DEFER) 1081 return error; 1082 if (error) 1083 dev_warn(&pdev->dev, 1084 "failed to configure dma: %d.\n", 1085 error); 1086 } 1087 1088 /* 1089 * Some bootloaders pause the MC firmware before booting the 1090 * kernel so that MC will not cause faults as soon as the 1091 * SMMU probes due to the fact that there's no configuration 1092 * in place for MC. 1093 * At this point MC should have all its SMMU setup done so make 1094 * sure it is resumed. 1095 */ 1096 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1097 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1098 mc->fsl_mc_regs + FSL_MC_GCR1); 1099 } 1100 1101 /* 1102 * Get physical address of MC portal for the root DPRC: 1103 */ 1104 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1105 mc_portal_phys_addr = plat_res->start; 1106 mc_portal_size = resource_size(plat_res); 1107 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1108 1109 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1110 mc_portal_size, NULL, 1111 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1112 if (error < 0) 1113 return error; 1114 1115 error = mc_get_version(mc_io, 0, &mc_version); 1116 if (error != 0) { 1117 dev_err(&pdev->dev, 1118 "mc_get_version() failed with error %d\n", error); 1119 goto error_cleanup_mc_io; 1120 } 1121 1122 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1123 mc_version.major, mc_version.minor, mc_version.revision); 1124 1125 if (dev_of_node(&pdev->dev)) { 1126 error = get_mc_addr_translation_ranges(&pdev->dev, 1127 &mc->translation_ranges, 1128 &mc->num_translation_ranges); 1129 if (error < 0) 1130 goto error_cleanup_mc_io; 1131 } 1132 1133 error = dprc_get_container_id(mc_io, 0, &container_id); 1134 if (error < 0) { 1135 dev_err(&pdev->dev, 1136 "dprc_get_container_id() failed: %d\n", error); 1137 goto error_cleanup_mc_io; 1138 } 1139 1140 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1141 error = dprc_get_api_version(mc_io, 0, 1142 &obj_desc.ver_major, 1143 &obj_desc.ver_minor); 1144 if (error < 0) 1145 goto error_cleanup_mc_io; 1146 1147 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1148 strcpy(obj_desc.type, "dprc"); 1149 obj_desc.id = container_id; 1150 obj_desc.irq_count = 1; 1151 obj_desc.region_count = 0; 1152 1153 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1154 if (error < 0) 1155 goto error_cleanup_mc_io; 1156 1157 mc->root_mc_bus_dev = mc_bus_dev; 1158 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1159 return 0; 1160 1161 error_cleanup_mc_io: 1162 fsl_destroy_mc_io(mc_io); 1163 return error; 1164 } 1165 1166 /* 1167 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1168 * removed 1169 */ 1170 static int fsl_mc_bus_remove(struct platform_device *pdev) 1171 { 1172 struct fsl_mc *mc = platform_get_drvdata(pdev); 1173 struct fsl_mc_io *mc_io; 1174 1175 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1176 return -EINVAL; 1177 1178 mc_io = mc->root_mc_bus_dev->mc_io; 1179 fsl_mc_device_remove(mc->root_mc_bus_dev); 1180 fsl_destroy_mc_io(mc_io); 1181 1182 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1183 1184 if (mc->fsl_mc_regs) { 1185 /* 1186 * Pause the MC firmware so that it doesn't crash in certain 1187 * scenarios, such as kexec. 1188 */ 1189 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1190 (GCR1_P1_STOP | GCR1_P2_STOP), 1191 mc->fsl_mc_regs + FSL_MC_GCR1); 1192 } 1193 1194 return 0; 1195 } 1196 1197 static void fsl_mc_bus_shutdown(struct platform_device *pdev) 1198 { 1199 fsl_mc_bus_remove(pdev); 1200 } 1201 1202 static const struct of_device_id fsl_mc_bus_match_table[] = { 1203 {.compatible = "fsl,qoriq-mc",}, 1204 {}, 1205 }; 1206 1207 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1208 1209 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1210 {"NXP0008", 0 }, 1211 { } 1212 }; 1213 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1214 1215 static struct platform_driver fsl_mc_bus_driver = { 1216 .driver = { 1217 .name = "fsl_mc_bus", 1218 .pm = NULL, 1219 .of_match_table = fsl_mc_bus_match_table, 1220 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1221 }, 1222 .probe = fsl_mc_bus_probe, 1223 .remove = fsl_mc_bus_remove, 1224 .shutdown = fsl_mc_bus_shutdown, 1225 }; 1226 1227 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1228 unsigned long action, void *data) 1229 { 1230 struct device *dev = data; 1231 struct resource *res; 1232 void __iomem *fsl_mc_regs; 1233 1234 if (action != BUS_NOTIFY_ADD_DEVICE) 1235 return 0; 1236 1237 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1238 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1239 return 0; 1240 1241 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1242 if (!res) 1243 return 0; 1244 1245 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1246 if (!fsl_mc_regs) 1247 return 0; 1248 1249 /* 1250 * Make sure that the MC firmware is paused before the IOMMU setup for 1251 * it is done or otherwise the firmware will crash right after the SMMU 1252 * gets probed and enabled. 1253 */ 1254 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1255 fsl_mc_regs + FSL_MC_GCR1); 1256 iounmap(fsl_mc_regs); 1257 1258 return 0; 1259 } 1260 1261 static struct notifier_block fsl_mc_nb = { 1262 .notifier_call = fsl_mc_bus_notifier, 1263 }; 1264 1265 static int __init fsl_mc_bus_driver_init(void) 1266 { 1267 int error; 1268 1269 error = bus_register(&fsl_mc_bus_type); 1270 if (error < 0) { 1271 pr_err("bus type registration failed: %d\n", error); 1272 goto error_cleanup_cache; 1273 } 1274 1275 error = platform_driver_register(&fsl_mc_bus_driver); 1276 if (error < 0) { 1277 pr_err("platform_driver_register() failed: %d\n", error); 1278 goto error_cleanup_bus; 1279 } 1280 1281 error = dprc_driver_init(); 1282 if (error < 0) 1283 goto error_cleanup_driver; 1284 1285 error = fsl_mc_allocator_driver_init(); 1286 if (error < 0) 1287 goto error_cleanup_dprc_driver; 1288 1289 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1290 1291 error_cleanup_dprc_driver: 1292 dprc_driver_exit(); 1293 1294 error_cleanup_driver: 1295 platform_driver_unregister(&fsl_mc_bus_driver); 1296 1297 error_cleanup_bus: 1298 bus_unregister(&fsl_mc_bus_type); 1299 1300 error_cleanup_cache: 1301 return error; 1302 } 1303 postcore_initcall(fsl_mc_bus_driver_init); 1304