1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/limits.h> 19 #include <linux/bitops.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/acpi.h> 22 #include <linux/iommu.h> 23 #include <linux/dma-map-ops.h> 24 25 #include "fsl-mc-private.h" 26 27 /* 28 * Default DMA mask for devices on a fsl-mc bus 29 */ 30 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 31 32 static struct fsl_mc_version mc_version; 33 34 /** 35 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 36 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 37 * @num_translation_ranges: number of entries in addr_translation_ranges 38 * @translation_ranges: array of bus to system address translation ranges 39 * @fsl_mc_regs: base address of register bank 40 */ 41 struct fsl_mc { 42 struct fsl_mc_device *root_mc_bus_dev; 43 u8 num_translation_ranges; 44 struct fsl_mc_addr_translation_range *translation_ranges; 45 void __iomem *fsl_mc_regs; 46 }; 47 48 /** 49 * struct fsl_mc_addr_translation_range - bus to system address translation 50 * range 51 * @mc_region_type: Type of MC region for the range being translated 52 * @start_mc_offset: Start MC offset of the range being translated 53 * @end_mc_offset: MC offset of the first byte after the range (last MC 54 * offset of the range is end_mc_offset - 1) 55 * @start_phys_addr: system physical address corresponding to start_mc_addr 56 */ 57 struct fsl_mc_addr_translation_range { 58 enum dprc_region_type mc_region_type; 59 u64 start_mc_offset; 60 u64 end_mc_offset; 61 phys_addr_t start_phys_addr; 62 }; 63 64 #define FSL_MC_GCR1 0x0 65 #define GCR1_P1_STOP BIT(31) 66 #define GCR1_P2_STOP BIT(30) 67 68 #define FSL_MC_FAPR 0x28 69 #define MC_FAPR_PL BIT(18) 70 #define MC_FAPR_BMT BIT(17) 71 72 static phys_addr_t mc_portal_base_phys_addr; 73 74 /** 75 * fsl_mc_bus_match - device to driver matching callback 76 * @dev: the fsl-mc device to match against 77 * @drv: the device driver to search for matching fsl-mc object type 78 * structures 79 * 80 * Returns 1 on success, 0 otherwise. 81 */ 82 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 83 { 84 const struct fsl_mc_device_id *id; 85 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 86 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 87 bool found = false; 88 89 /* When driver_override is set, only bind to the matching driver */ 90 if (mc_dev->driver_override) { 91 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 92 goto out; 93 } 94 95 if (!mc_drv->match_id_table) 96 goto out; 97 98 /* 99 * If the object is not 'plugged' don't match. 100 * Only exception is the root DPRC, which is a special case. 101 */ 102 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 103 !fsl_mc_is_root_dprc(&mc_dev->dev)) 104 goto out; 105 106 /* 107 * Traverse the match_id table of the given driver, trying to find 108 * a matching for the given device. 109 */ 110 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 111 if (id->vendor == mc_dev->obj_desc.vendor && 112 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 113 found = true; 114 115 break; 116 } 117 } 118 119 out: 120 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 121 return found; 122 } 123 124 /* 125 * fsl_mc_bus_uevent - callback invoked when a device is added 126 */ 127 static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env) 128 { 129 const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 130 131 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 132 mc_dev->obj_desc.vendor, 133 mc_dev->obj_desc.type)) 134 return -ENOMEM; 135 136 return 0; 137 } 138 139 static int fsl_mc_dma_configure(struct device *dev) 140 { 141 struct device *dma_dev = dev; 142 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 143 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 144 u32 input_id = mc_dev->icid; 145 int ret; 146 147 while (dev_is_fsl_mc(dma_dev)) 148 dma_dev = dma_dev->parent; 149 150 if (dev_of_node(dma_dev)) 151 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 152 else 153 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 154 155 if (!ret && !mc_drv->driver_managed_dma) { 156 ret = iommu_device_use_default_domain(dev); 157 if (ret) 158 arch_teardown_dma_ops(dev); 159 } 160 161 return ret; 162 } 163 164 static void fsl_mc_dma_cleanup(struct device *dev) 165 { 166 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 167 168 if (!mc_drv->driver_managed_dma) 169 iommu_device_unuse_default_domain(dev); 170 } 171 172 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 173 char *buf) 174 { 175 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 176 177 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 178 mc_dev->obj_desc.type); 179 } 180 static DEVICE_ATTR_RO(modalias); 181 182 static ssize_t driver_override_store(struct device *dev, 183 struct device_attribute *attr, 184 const char *buf, size_t count) 185 { 186 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 187 int ret; 188 189 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 190 return -EINVAL; 191 192 ret = driver_set_override(dev, &mc_dev->driver_override, buf, count); 193 if (ret) 194 return ret; 195 196 return count; 197 } 198 199 static ssize_t driver_override_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 203 204 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 205 } 206 static DEVICE_ATTR_RW(driver_override); 207 208 static struct attribute *fsl_mc_dev_attrs[] = { 209 &dev_attr_modalias.attr, 210 &dev_attr_driver_override.attr, 211 NULL, 212 }; 213 214 ATTRIBUTE_GROUPS(fsl_mc_dev); 215 216 static int scan_fsl_mc_bus(struct device *dev, void *data) 217 { 218 struct fsl_mc_device *root_mc_dev; 219 struct fsl_mc_bus *root_mc_bus; 220 221 if (!fsl_mc_is_root_dprc(dev)) 222 goto exit; 223 224 root_mc_dev = to_fsl_mc_device(dev); 225 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 226 mutex_lock(&root_mc_bus->scan_mutex); 227 dprc_scan_objects(root_mc_dev, false); 228 mutex_unlock(&root_mc_bus->scan_mutex); 229 230 exit: 231 return 0; 232 } 233 234 static ssize_t rescan_store(const struct bus_type *bus, 235 const char *buf, size_t count) 236 { 237 unsigned long val; 238 239 if (kstrtoul(buf, 0, &val) < 0) 240 return -EINVAL; 241 242 if (val) 243 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 244 245 return count; 246 } 247 static BUS_ATTR_WO(rescan); 248 249 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 250 { 251 struct fsl_mc_device *root_mc_dev; 252 unsigned long val; 253 char *buf = data; 254 255 if (!fsl_mc_is_root_dprc(dev)) 256 goto exit; 257 258 root_mc_dev = to_fsl_mc_device(dev); 259 260 if (kstrtoul(buf, 0, &val) < 0) 261 return -EINVAL; 262 263 if (val) 264 enable_dprc_irq(root_mc_dev); 265 else 266 disable_dprc_irq(root_mc_dev); 267 268 exit: 269 return 0; 270 } 271 272 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 273 { 274 struct fsl_mc_device *root_mc_dev; 275 char *buf = data; 276 277 if (!fsl_mc_is_root_dprc(dev)) 278 goto exit; 279 280 root_mc_dev = to_fsl_mc_device(dev); 281 282 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 283 exit: 284 return 0; 285 } 286 287 static ssize_t autorescan_store(const struct bus_type *bus, 288 const char *buf, size_t count) 289 { 290 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 291 292 return count; 293 } 294 295 static ssize_t autorescan_show(const struct bus_type *bus, char *buf) 296 { 297 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 298 return strlen(buf); 299 } 300 301 static BUS_ATTR_RW(autorescan); 302 303 static struct attribute *fsl_mc_bus_attrs[] = { 304 &bus_attr_rescan.attr, 305 &bus_attr_autorescan.attr, 306 NULL, 307 }; 308 309 ATTRIBUTE_GROUPS(fsl_mc_bus); 310 311 struct bus_type fsl_mc_bus_type = { 312 .name = "fsl-mc", 313 .match = fsl_mc_bus_match, 314 .uevent = fsl_mc_bus_uevent, 315 .dma_configure = fsl_mc_dma_configure, 316 .dma_cleanup = fsl_mc_dma_cleanup, 317 .dev_groups = fsl_mc_dev_groups, 318 .bus_groups = fsl_mc_bus_groups, 319 }; 320 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 321 322 struct device_type fsl_mc_bus_dprc_type = { 323 .name = "fsl_mc_bus_dprc" 324 }; 325 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 326 327 struct device_type fsl_mc_bus_dpni_type = { 328 .name = "fsl_mc_bus_dpni" 329 }; 330 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 331 332 struct device_type fsl_mc_bus_dpio_type = { 333 .name = "fsl_mc_bus_dpio" 334 }; 335 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 336 337 struct device_type fsl_mc_bus_dpsw_type = { 338 .name = "fsl_mc_bus_dpsw" 339 }; 340 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 341 342 struct device_type fsl_mc_bus_dpbp_type = { 343 .name = "fsl_mc_bus_dpbp" 344 }; 345 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 346 347 struct device_type fsl_mc_bus_dpcon_type = { 348 .name = "fsl_mc_bus_dpcon" 349 }; 350 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 351 352 struct device_type fsl_mc_bus_dpmcp_type = { 353 .name = "fsl_mc_bus_dpmcp" 354 }; 355 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 356 357 struct device_type fsl_mc_bus_dpmac_type = { 358 .name = "fsl_mc_bus_dpmac" 359 }; 360 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 361 362 struct device_type fsl_mc_bus_dprtc_type = { 363 .name = "fsl_mc_bus_dprtc" 364 }; 365 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 366 367 struct device_type fsl_mc_bus_dpseci_type = { 368 .name = "fsl_mc_bus_dpseci" 369 }; 370 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 371 372 struct device_type fsl_mc_bus_dpdmux_type = { 373 .name = "fsl_mc_bus_dpdmux" 374 }; 375 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 376 377 struct device_type fsl_mc_bus_dpdcei_type = { 378 .name = "fsl_mc_bus_dpdcei" 379 }; 380 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 381 382 struct device_type fsl_mc_bus_dpaiop_type = { 383 .name = "fsl_mc_bus_dpaiop" 384 }; 385 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 386 387 struct device_type fsl_mc_bus_dpci_type = { 388 .name = "fsl_mc_bus_dpci" 389 }; 390 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 391 392 struct device_type fsl_mc_bus_dpdmai_type = { 393 .name = "fsl_mc_bus_dpdmai" 394 }; 395 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 396 397 struct device_type fsl_mc_bus_dpdbg_type = { 398 .name = "fsl_mc_bus_dpdbg" 399 }; 400 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 401 402 static struct device_type *fsl_mc_get_device_type(const char *type) 403 { 404 static const struct { 405 struct device_type *dev_type; 406 const char *type; 407 } dev_types[] = { 408 { &fsl_mc_bus_dprc_type, "dprc" }, 409 { &fsl_mc_bus_dpni_type, "dpni" }, 410 { &fsl_mc_bus_dpio_type, "dpio" }, 411 { &fsl_mc_bus_dpsw_type, "dpsw" }, 412 { &fsl_mc_bus_dpbp_type, "dpbp" }, 413 { &fsl_mc_bus_dpcon_type, "dpcon" }, 414 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 415 { &fsl_mc_bus_dpmac_type, "dpmac" }, 416 { &fsl_mc_bus_dprtc_type, "dprtc" }, 417 { &fsl_mc_bus_dpseci_type, "dpseci" }, 418 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 419 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 420 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 421 { &fsl_mc_bus_dpci_type, "dpci" }, 422 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 423 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 424 { NULL, NULL } 425 }; 426 int i; 427 428 for (i = 0; dev_types[i].dev_type; i++) 429 if (!strcmp(dev_types[i].type, type)) 430 return dev_types[i].dev_type; 431 432 return NULL; 433 } 434 435 static int fsl_mc_driver_probe(struct device *dev) 436 { 437 struct fsl_mc_driver *mc_drv; 438 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 439 int error; 440 441 mc_drv = to_fsl_mc_driver(dev->driver); 442 443 error = mc_drv->probe(mc_dev); 444 if (error < 0) { 445 if (error != -EPROBE_DEFER) 446 dev_err(dev, "%s failed: %d\n", __func__, error); 447 return error; 448 } 449 450 return 0; 451 } 452 453 static int fsl_mc_driver_remove(struct device *dev) 454 { 455 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 456 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 457 int error; 458 459 error = mc_drv->remove(mc_dev); 460 if (error < 0) { 461 dev_err(dev, "%s failed: %d\n", __func__, error); 462 return error; 463 } 464 465 return 0; 466 } 467 468 static void fsl_mc_driver_shutdown(struct device *dev) 469 { 470 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 471 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 472 473 mc_drv->shutdown(mc_dev); 474 } 475 476 /* 477 * __fsl_mc_driver_register - registers a child device driver with the 478 * MC bus 479 * 480 * This function is implicitly invoked from the registration function of 481 * fsl_mc device drivers, which is generated by the 482 * module_fsl_mc_driver() macro. 483 */ 484 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 485 struct module *owner) 486 { 487 int error; 488 489 mc_driver->driver.owner = owner; 490 mc_driver->driver.bus = &fsl_mc_bus_type; 491 492 if (mc_driver->probe) 493 mc_driver->driver.probe = fsl_mc_driver_probe; 494 495 if (mc_driver->remove) 496 mc_driver->driver.remove = fsl_mc_driver_remove; 497 498 if (mc_driver->shutdown) 499 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 500 501 error = driver_register(&mc_driver->driver); 502 if (error < 0) { 503 pr_err("driver_register() failed for %s: %d\n", 504 mc_driver->driver.name, error); 505 return error; 506 } 507 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 511 512 /* 513 * fsl_mc_driver_unregister - unregisters a device driver from the 514 * MC bus 515 */ 516 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 517 { 518 driver_unregister(&mc_driver->driver); 519 } 520 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 521 522 /** 523 * mc_get_version() - Retrieves the Management Complex firmware 524 * version information 525 * @mc_io: Pointer to opaque I/O object 526 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 527 * @mc_ver_info: Returned version information structure 528 * 529 * Return: '0' on Success; Error code otherwise. 530 */ 531 static int mc_get_version(struct fsl_mc_io *mc_io, 532 u32 cmd_flags, 533 struct fsl_mc_version *mc_ver_info) 534 { 535 struct fsl_mc_command cmd = { 0 }; 536 struct dpmng_rsp_get_version *rsp_params; 537 int err; 538 539 /* prepare command */ 540 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 541 cmd_flags, 542 0); 543 544 /* send command to mc*/ 545 err = mc_send_command(mc_io, &cmd); 546 if (err) 547 return err; 548 549 /* retrieve response parameters */ 550 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 551 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 552 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 553 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 554 555 return 0; 556 } 557 558 /** 559 * fsl_mc_get_version - function to retrieve the MC f/w version information 560 * 561 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 562 */ 563 struct fsl_mc_version *fsl_mc_get_version(void) 564 { 565 if (mc_version.major) 566 return &mc_version; 567 568 return NULL; 569 } 570 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 571 572 /* 573 * fsl_mc_get_root_dprc - function to traverse to the root dprc 574 */ 575 void fsl_mc_get_root_dprc(struct device *dev, 576 struct device **root_dprc_dev) 577 { 578 if (!dev) { 579 *root_dprc_dev = NULL; 580 } else if (!dev_is_fsl_mc(dev)) { 581 *root_dprc_dev = NULL; 582 } else { 583 *root_dprc_dev = dev; 584 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 585 *root_dprc_dev = (*root_dprc_dev)->parent; 586 } 587 } 588 589 static int get_dprc_attr(struct fsl_mc_io *mc_io, 590 int container_id, struct dprc_attributes *attr) 591 { 592 u16 dprc_handle; 593 int error; 594 595 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 596 if (error < 0) { 597 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 598 return error; 599 } 600 601 memset(attr, 0, sizeof(struct dprc_attributes)); 602 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 603 if (error < 0) { 604 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 605 error); 606 goto common_cleanup; 607 } 608 609 error = 0; 610 611 common_cleanup: 612 (void)dprc_close(mc_io, 0, dprc_handle); 613 return error; 614 } 615 616 static int get_dprc_icid(struct fsl_mc_io *mc_io, 617 int container_id, u32 *icid) 618 { 619 struct dprc_attributes attr; 620 int error; 621 622 error = get_dprc_attr(mc_io, container_id, &attr); 623 if (error == 0) 624 *icid = attr.icid; 625 626 return error; 627 } 628 629 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 630 enum dprc_region_type mc_region_type, 631 u64 mc_offset, phys_addr_t *phys_addr) 632 { 633 int i; 634 struct device *root_dprc_dev; 635 struct fsl_mc *mc; 636 637 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 638 mc = dev_get_drvdata(root_dprc_dev->parent); 639 640 if (mc->num_translation_ranges == 0) { 641 /* 642 * Do identity mapping: 643 */ 644 *phys_addr = mc_offset; 645 return 0; 646 } 647 648 for (i = 0; i < mc->num_translation_ranges; i++) { 649 struct fsl_mc_addr_translation_range *range = 650 &mc->translation_ranges[i]; 651 652 if (mc_region_type == range->mc_region_type && 653 mc_offset >= range->start_mc_offset && 654 mc_offset < range->end_mc_offset) { 655 *phys_addr = range->start_phys_addr + 656 (mc_offset - range->start_mc_offset); 657 return 0; 658 } 659 } 660 661 return -EFAULT; 662 } 663 664 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 665 struct fsl_mc_device *mc_bus_dev) 666 { 667 int i; 668 int error; 669 struct resource *regions; 670 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 671 struct device *parent_dev = mc_dev->dev.parent; 672 enum dprc_region_type mc_region_type; 673 674 if (is_fsl_mc_bus_dprc(mc_dev) || 675 is_fsl_mc_bus_dpmcp(mc_dev)) { 676 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 677 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 678 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 679 } else { 680 /* 681 * This function should not have been called for this MC object 682 * type, as this object type is not supposed to have MMIO 683 * regions 684 */ 685 return -EINVAL; 686 } 687 688 regions = kmalloc_array(obj_desc->region_count, 689 sizeof(regions[0]), GFP_KERNEL); 690 if (!regions) 691 return -ENOMEM; 692 693 for (i = 0; i < obj_desc->region_count; i++) { 694 struct dprc_region_desc region_desc; 695 696 error = dprc_get_obj_region(mc_bus_dev->mc_io, 697 0, 698 mc_bus_dev->mc_handle, 699 obj_desc->type, 700 obj_desc->id, i, ®ion_desc); 701 if (error < 0) { 702 dev_err(parent_dev, 703 "dprc_get_obj_region() failed: %d\n", error); 704 goto error_cleanup_regions; 705 } 706 /* 707 * Older MC only returned region offset and no base address 708 * If base address is in the region_desc use it otherwise 709 * revert to old mechanism 710 */ 711 if (region_desc.base_address) { 712 regions[i].start = region_desc.base_address + 713 region_desc.base_offset; 714 } else { 715 error = translate_mc_addr(mc_dev, mc_region_type, 716 region_desc.base_offset, 717 ®ions[i].start); 718 719 /* 720 * Some versions of the MC firmware wrongly report 721 * 0 for register base address of the DPMCP associated 722 * with child DPRC objects thus rendering them unusable. 723 * This is particularly troublesome in ACPI boot 724 * scenarios where the legacy way of extracting this 725 * base address from the device tree does not apply. 726 * Given that DPMCPs share the same base address, 727 * workaround this by using the base address extracted 728 * from the root DPRC container. 729 */ 730 if (is_fsl_mc_bus_dprc(mc_dev) && 731 regions[i].start == region_desc.base_offset) 732 regions[i].start += mc_portal_base_phys_addr; 733 } 734 735 if (error < 0) { 736 dev_err(parent_dev, 737 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 738 region_desc.base_offset, 739 obj_desc->type, obj_desc->id, i); 740 goto error_cleanup_regions; 741 } 742 743 regions[i].end = regions[i].start + region_desc.size - 1; 744 regions[i].name = "fsl-mc object MMIO region"; 745 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 746 regions[i].flags |= IORESOURCE_MEM; 747 } 748 749 mc_dev->regions = regions; 750 return 0; 751 752 error_cleanup_regions: 753 kfree(regions); 754 return error; 755 } 756 757 /* 758 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 759 */ 760 bool fsl_mc_is_root_dprc(struct device *dev) 761 { 762 struct device *root_dprc_dev; 763 764 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 765 if (!root_dprc_dev) 766 return false; 767 return dev == root_dprc_dev; 768 } 769 770 static void fsl_mc_device_release(struct device *dev) 771 { 772 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 773 774 kfree(mc_dev->regions); 775 776 if (is_fsl_mc_bus_dprc(mc_dev)) 777 kfree(to_fsl_mc_bus(mc_dev)); 778 else 779 kfree(mc_dev); 780 } 781 782 /* 783 * Add a newly discovered fsl-mc device to be visible in Linux 784 */ 785 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 786 struct fsl_mc_io *mc_io, 787 struct device *parent_dev, 788 struct fsl_mc_device **new_mc_dev) 789 { 790 int error; 791 struct fsl_mc_device *mc_dev = NULL; 792 struct fsl_mc_bus *mc_bus = NULL; 793 struct fsl_mc_device *parent_mc_dev; 794 795 if (dev_is_fsl_mc(parent_dev)) 796 parent_mc_dev = to_fsl_mc_device(parent_dev); 797 else 798 parent_mc_dev = NULL; 799 800 if (strcmp(obj_desc->type, "dprc") == 0) { 801 /* 802 * Allocate an MC bus device object: 803 */ 804 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 805 if (!mc_bus) 806 return -ENOMEM; 807 808 mutex_init(&mc_bus->scan_mutex); 809 mc_dev = &mc_bus->mc_dev; 810 } else { 811 /* 812 * Allocate a regular fsl_mc_device object: 813 */ 814 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 815 if (!mc_dev) 816 return -ENOMEM; 817 } 818 819 mc_dev->obj_desc = *obj_desc; 820 mc_dev->mc_io = mc_io; 821 device_initialize(&mc_dev->dev); 822 mc_dev->dev.parent = parent_dev; 823 mc_dev->dev.bus = &fsl_mc_bus_type; 824 mc_dev->dev.release = fsl_mc_device_release; 825 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 826 if (!mc_dev->dev.type) { 827 error = -ENODEV; 828 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 829 goto error_cleanup_dev; 830 } 831 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 832 833 if (strcmp(obj_desc->type, "dprc") == 0) { 834 struct fsl_mc_io *mc_io2; 835 836 mc_dev->flags |= FSL_MC_IS_DPRC; 837 838 /* 839 * To get the DPRC's ICID, we need to open the DPRC 840 * in get_dprc_icid(). For child DPRCs, we do so using the 841 * parent DPRC's MC portal instead of the child DPRC's MC 842 * portal, in case the child DPRC is already opened with 843 * its own portal (e.g., the DPRC used by AIOP). 844 * 845 * NOTE: There cannot be more than one active open for a 846 * given MC object, using the same MC portal. 847 */ 848 if (parent_mc_dev) { 849 /* 850 * device being added is a child DPRC device 851 */ 852 mc_io2 = parent_mc_dev->mc_io; 853 } else { 854 /* 855 * device being added is the root DPRC device 856 */ 857 if (!mc_io) { 858 error = -EINVAL; 859 goto error_cleanup_dev; 860 } 861 862 mc_io2 = mc_io; 863 } 864 865 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 866 if (error < 0) 867 goto error_cleanup_dev; 868 } else { 869 /* 870 * A non-DPRC object has to be a child of a DPRC, use the 871 * parent's ICID and interrupt domain. 872 */ 873 mc_dev->icid = parent_mc_dev->icid; 874 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 875 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 876 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 877 dev_set_msi_domain(&mc_dev->dev, 878 dev_get_msi_domain(&parent_mc_dev->dev)); 879 } 880 881 /* 882 * Get MMIO regions for the device from the MC: 883 * 884 * NOTE: the root DPRC is a special case as its MMIO region is 885 * obtained from the device tree 886 */ 887 if (parent_mc_dev && obj_desc->region_count != 0) { 888 error = fsl_mc_device_get_mmio_regions(mc_dev, 889 parent_mc_dev); 890 if (error < 0) 891 goto error_cleanup_dev; 892 } 893 894 /* 895 * The device-specific probe callback will get invoked by device_add() 896 */ 897 error = device_add(&mc_dev->dev); 898 if (error < 0) { 899 dev_err(parent_dev, 900 "device_add() failed for device %s: %d\n", 901 dev_name(&mc_dev->dev), error); 902 goto error_cleanup_dev; 903 } 904 905 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 906 907 *new_mc_dev = mc_dev; 908 return 0; 909 910 error_cleanup_dev: 911 kfree(mc_dev->regions); 912 kfree(mc_bus); 913 kfree(mc_dev); 914 915 return error; 916 } 917 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 918 919 static struct notifier_block fsl_mc_nb; 920 921 /** 922 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 923 * Linux 924 * 925 * @mc_dev: Pointer to an fsl-mc device 926 */ 927 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 928 { 929 kfree(mc_dev->driver_override); 930 mc_dev->driver_override = NULL; 931 932 /* 933 * The device-specific remove callback will get invoked by device_del() 934 */ 935 device_del(&mc_dev->dev); 936 put_device(&mc_dev->dev); 937 } 938 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 939 940 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 941 u16 if_id) 942 { 943 struct fsl_mc_device *mc_bus_dev, *endpoint; 944 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 945 struct dprc_endpoint endpoint1 = {{ 0 }}; 946 struct dprc_endpoint endpoint2 = {{ 0 }}; 947 int state, err; 948 949 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 950 strcpy(endpoint1.type, mc_dev->obj_desc.type); 951 endpoint1.id = mc_dev->obj_desc.id; 952 endpoint1.if_id = if_id; 953 954 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 955 mc_bus_dev->mc_handle, 956 &endpoint1, &endpoint2, 957 &state); 958 959 if (err == -ENOTCONN || state == -1) 960 return ERR_PTR(-ENOTCONN); 961 962 if (err < 0) { 963 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 964 return ERR_PTR(err); 965 } 966 967 strcpy(endpoint_desc.type, endpoint2.type); 968 endpoint_desc.id = endpoint2.id; 969 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 970 971 /* 972 * We know that the device has an endpoint because we verified by 973 * interrogating the firmware. This is the case when the device was not 974 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 975 * Force a rescan of the devices in this container and retry the lookup. 976 */ 977 if (!endpoint) { 978 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 979 980 if (mutex_trylock(&mc_bus->scan_mutex)) { 981 err = dprc_scan_objects(mc_bus_dev, true); 982 mutex_unlock(&mc_bus->scan_mutex); 983 } 984 985 if (err < 0) 986 return ERR_PTR(err); 987 } 988 989 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 990 /* 991 * This means that the endpoint might reside in a different isolation 992 * context (DPRC/container). Not much to do, so return a permssion 993 * error. 994 */ 995 if (!endpoint) 996 return ERR_PTR(-EPERM); 997 998 return endpoint; 999 } 1000 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 1001 1002 static int parse_mc_ranges(struct device *dev, 1003 int *paddr_cells, 1004 int *mc_addr_cells, 1005 int *mc_size_cells, 1006 const __be32 **ranges_start) 1007 { 1008 const __be32 *prop; 1009 int range_tuple_cell_count; 1010 int ranges_len; 1011 int tuple_len; 1012 struct device_node *mc_node = dev->of_node; 1013 1014 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); 1015 if (!(*ranges_start) || !ranges_len) { 1016 dev_warn(dev, 1017 "missing or empty ranges property for device tree node '%pOFn'\n", 1018 mc_node); 1019 return 0; 1020 } 1021 1022 *paddr_cells = of_n_addr_cells(mc_node); 1023 1024 prop = of_get_property(mc_node, "#address-cells", NULL); 1025 if (prop) 1026 *mc_addr_cells = be32_to_cpup(prop); 1027 else 1028 *mc_addr_cells = *paddr_cells; 1029 1030 prop = of_get_property(mc_node, "#size-cells", NULL); 1031 if (prop) 1032 *mc_size_cells = be32_to_cpup(prop); 1033 else 1034 *mc_size_cells = of_n_size_cells(mc_node); 1035 1036 range_tuple_cell_count = *paddr_cells + *mc_addr_cells + 1037 *mc_size_cells; 1038 1039 tuple_len = range_tuple_cell_count * sizeof(__be32); 1040 if (ranges_len % tuple_len != 0) { 1041 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); 1042 return -EINVAL; 1043 } 1044 1045 return ranges_len / tuple_len; 1046 } 1047 1048 static int get_mc_addr_translation_ranges(struct device *dev, 1049 struct fsl_mc_addr_translation_range 1050 **ranges, 1051 u8 *num_ranges) 1052 { 1053 int ret; 1054 int paddr_cells; 1055 int mc_addr_cells; 1056 int mc_size_cells; 1057 int i; 1058 const __be32 *ranges_start; 1059 const __be32 *cell; 1060 1061 ret = parse_mc_ranges(dev, 1062 &paddr_cells, 1063 &mc_addr_cells, 1064 &mc_size_cells, 1065 &ranges_start); 1066 if (ret < 0) 1067 return ret; 1068 1069 *num_ranges = ret; 1070 if (!ret) { 1071 /* 1072 * Missing or empty ranges property ("ranges;") for the 1073 * 'fsl,qoriq-mc' node. In this case, identity mapping 1074 * will be used. 1075 */ 1076 *ranges = NULL; 1077 return 0; 1078 } 1079 1080 *ranges = devm_kcalloc(dev, *num_ranges, 1081 sizeof(struct fsl_mc_addr_translation_range), 1082 GFP_KERNEL); 1083 if (!(*ranges)) 1084 return -ENOMEM; 1085 1086 cell = ranges_start; 1087 for (i = 0; i < *num_ranges; ++i) { 1088 struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; 1089 1090 range->mc_region_type = of_read_number(cell, 1); 1091 range->start_mc_offset = of_read_number(cell + 1, 1092 mc_addr_cells - 1); 1093 cell += mc_addr_cells; 1094 range->start_phys_addr = of_read_number(cell, paddr_cells); 1095 cell += paddr_cells; 1096 range->end_mc_offset = range->start_mc_offset + 1097 of_read_number(cell, mc_size_cells); 1098 1099 cell += mc_size_cells; 1100 } 1101 1102 return 0; 1103 } 1104 1105 /* 1106 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1107 * added 1108 */ 1109 static int fsl_mc_bus_probe(struct platform_device *pdev) 1110 { 1111 struct fsl_mc_obj_desc obj_desc; 1112 int error; 1113 struct fsl_mc *mc; 1114 struct fsl_mc_device *mc_bus_dev = NULL; 1115 struct fsl_mc_io *mc_io = NULL; 1116 int container_id; 1117 phys_addr_t mc_portal_phys_addr; 1118 u32 mc_portal_size, mc_stream_id; 1119 struct resource *plat_res; 1120 1121 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1122 if (!mc) 1123 return -ENOMEM; 1124 1125 platform_set_drvdata(pdev, mc); 1126 1127 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1128 if (plat_res) { 1129 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1130 if (IS_ERR(mc->fsl_mc_regs)) 1131 return PTR_ERR(mc->fsl_mc_regs); 1132 } 1133 1134 if (mc->fsl_mc_regs) { 1135 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1136 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1137 /* 1138 * HW ORs the PL and BMT bit, places the result in bit 1139 * 14 of the StreamID and ORs in the ICID. Calculate it 1140 * accordingly. 1141 */ 1142 mc_stream_id = (mc_stream_id & 0xffff) | 1143 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1144 BIT(14) : 0); 1145 error = acpi_dma_configure_id(&pdev->dev, 1146 DEV_DMA_COHERENT, 1147 &mc_stream_id); 1148 if (error == -EPROBE_DEFER) 1149 return error; 1150 if (error) 1151 dev_warn(&pdev->dev, 1152 "failed to configure dma: %d.\n", 1153 error); 1154 } 1155 1156 /* 1157 * Some bootloaders pause the MC firmware before booting the 1158 * kernel so that MC will not cause faults as soon as the 1159 * SMMU probes due to the fact that there's no configuration 1160 * in place for MC. 1161 * At this point MC should have all its SMMU setup done so make 1162 * sure it is resumed. 1163 */ 1164 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1165 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1166 mc->fsl_mc_regs + FSL_MC_GCR1); 1167 } 1168 1169 /* 1170 * Get physical address of MC portal for the root DPRC: 1171 */ 1172 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1173 mc_portal_phys_addr = plat_res->start; 1174 mc_portal_size = resource_size(plat_res); 1175 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1176 1177 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1178 mc_portal_size, NULL, 1179 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1180 if (error < 0) 1181 return error; 1182 1183 error = mc_get_version(mc_io, 0, &mc_version); 1184 if (error != 0) { 1185 dev_err(&pdev->dev, 1186 "mc_get_version() failed with error %d\n", error); 1187 goto error_cleanup_mc_io; 1188 } 1189 1190 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1191 mc_version.major, mc_version.minor, mc_version.revision); 1192 1193 if (dev_of_node(&pdev->dev)) { 1194 error = get_mc_addr_translation_ranges(&pdev->dev, 1195 &mc->translation_ranges, 1196 &mc->num_translation_ranges); 1197 if (error < 0) 1198 goto error_cleanup_mc_io; 1199 } 1200 1201 error = dprc_get_container_id(mc_io, 0, &container_id); 1202 if (error < 0) { 1203 dev_err(&pdev->dev, 1204 "dprc_get_container_id() failed: %d\n", error); 1205 goto error_cleanup_mc_io; 1206 } 1207 1208 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1209 error = dprc_get_api_version(mc_io, 0, 1210 &obj_desc.ver_major, 1211 &obj_desc.ver_minor); 1212 if (error < 0) 1213 goto error_cleanup_mc_io; 1214 1215 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1216 strcpy(obj_desc.type, "dprc"); 1217 obj_desc.id = container_id; 1218 obj_desc.irq_count = 1; 1219 obj_desc.region_count = 0; 1220 1221 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1222 if (error < 0) 1223 goto error_cleanup_mc_io; 1224 1225 mc->root_mc_bus_dev = mc_bus_dev; 1226 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1227 return 0; 1228 1229 error_cleanup_mc_io: 1230 fsl_destroy_mc_io(mc_io); 1231 return error; 1232 } 1233 1234 /* 1235 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1236 * removed 1237 */ 1238 static int fsl_mc_bus_remove(struct platform_device *pdev) 1239 { 1240 struct fsl_mc *mc = platform_get_drvdata(pdev); 1241 struct fsl_mc_io *mc_io; 1242 1243 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1244 return -EINVAL; 1245 1246 mc_io = mc->root_mc_bus_dev->mc_io; 1247 fsl_mc_device_remove(mc->root_mc_bus_dev); 1248 fsl_destroy_mc_io(mc_io); 1249 1250 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1251 1252 if (mc->fsl_mc_regs) { 1253 /* 1254 * Pause the MC firmware so that it doesn't crash in certain 1255 * scenarios, such as kexec. 1256 */ 1257 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1258 (GCR1_P1_STOP | GCR1_P2_STOP), 1259 mc->fsl_mc_regs + FSL_MC_GCR1); 1260 } 1261 1262 return 0; 1263 } 1264 1265 static void fsl_mc_bus_shutdown(struct platform_device *pdev) 1266 { 1267 fsl_mc_bus_remove(pdev); 1268 } 1269 1270 static const struct of_device_id fsl_mc_bus_match_table[] = { 1271 {.compatible = "fsl,qoriq-mc",}, 1272 {}, 1273 }; 1274 1275 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1276 1277 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1278 {"NXP0008", 0 }, 1279 { } 1280 }; 1281 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1282 1283 static struct platform_driver fsl_mc_bus_driver = { 1284 .driver = { 1285 .name = "fsl_mc_bus", 1286 .pm = NULL, 1287 .of_match_table = fsl_mc_bus_match_table, 1288 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1289 }, 1290 .probe = fsl_mc_bus_probe, 1291 .remove = fsl_mc_bus_remove, 1292 .shutdown = fsl_mc_bus_shutdown, 1293 }; 1294 1295 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1296 unsigned long action, void *data) 1297 { 1298 struct device *dev = data; 1299 struct resource *res; 1300 void __iomem *fsl_mc_regs; 1301 1302 if (action != BUS_NOTIFY_ADD_DEVICE) 1303 return 0; 1304 1305 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1306 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1307 return 0; 1308 1309 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1310 if (!res) 1311 return 0; 1312 1313 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1314 if (!fsl_mc_regs) 1315 return 0; 1316 1317 /* 1318 * Make sure that the MC firmware is paused before the IOMMU setup for 1319 * it is done or otherwise the firmware will crash right after the SMMU 1320 * gets probed and enabled. 1321 */ 1322 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1323 fsl_mc_regs + FSL_MC_GCR1); 1324 iounmap(fsl_mc_regs); 1325 1326 return 0; 1327 } 1328 1329 static struct notifier_block fsl_mc_nb = { 1330 .notifier_call = fsl_mc_bus_notifier, 1331 }; 1332 1333 static int __init fsl_mc_bus_driver_init(void) 1334 { 1335 int error; 1336 1337 error = bus_register(&fsl_mc_bus_type); 1338 if (error < 0) { 1339 pr_err("bus type registration failed: %d\n", error); 1340 goto error_cleanup_cache; 1341 } 1342 1343 error = platform_driver_register(&fsl_mc_bus_driver); 1344 if (error < 0) { 1345 pr_err("platform_driver_register() failed: %d\n", error); 1346 goto error_cleanup_bus; 1347 } 1348 1349 error = dprc_driver_init(); 1350 if (error < 0) 1351 goto error_cleanup_driver; 1352 1353 error = fsl_mc_allocator_driver_init(); 1354 if (error < 0) 1355 goto error_cleanup_dprc_driver; 1356 1357 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1358 1359 error_cleanup_dprc_driver: 1360 dprc_driver_exit(); 1361 1362 error_cleanup_driver: 1363 platform_driver_unregister(&fsl_mc_bus_driver); 1364 1365 error_cleanup_bus: 1366 bus_unregister(&fsl_mc_bus_type); 1367 1368 error_cleanup_cache: 1369 return error; 1370 } 1371 postcore_initcall(fsl_mc_bus_driver_init); 1372