1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/limits.h> 19 #include <linux/bitops.h> 20 #include <linux/msi.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 #include <linux/dma-map-ops.h> 25 26 #include "fsl-mc-private.h" 27 28 /* 29 * Default DMA mask for devices on a fsl-mc bus 30 */ 31 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 32 33 static struct fsl_mc_version mc_version; 34 35 /** 36 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 37 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 38 * @num_translation_ranges: number of entries in addr_translation_ranges 39 * @translation_ranges: array of bus to system address translation ranges 40 * @fsl_mc_regs: base address of register bank 41 */ 42 struct fsl_mc { 43 struct fsl_mc_device *root_mc_bus_dev; 44 u8 num_translation_ranges; 45 struct fsl_mc_addr_translation_range *translation_ranges; 46 void __iomem *fsl_mc_regs; 47 }; 48 49 /** 50 * struct fsl_mc_addr_translation_range - bus to system address translation 51 * range 52 * @mc_region_type: Type of MC region for the range being translated 53 * @start_mc_offset: Start MC offset of the range being translated 54 * @end_mc_offset: MC offset of the first byte after the range (last MC 55 * offset of the range is end_mc_offset - 1) 56 * @start_phys_addr: system physical address corresponding to start_mc_addr 57 */ 58 struct fsl_mc_addr_translation_range { 59 enum dprc_region_type mc_region_type; 60 u64 start_mc_offset; 61 u64 end_mc_offset; 62 phys_addr_t start_phys_addr; 63 }; 64 65 #define FSL_MC_GCR1 0x0 66 #define GCR1_P1_STOP BIT(31) 67 #define GCR1_P2_STOP BIT(30) 68 69 #define FSL_MC_FAPR 0x28 70 #define MC_FAPR_PL BIT(18) 71 #define MC_FAPR_BMT BIT(17) 72 73 static phys_addr_t mc_portal_base_phys_addr; 74 75 /** 76 * fsl_mc_bus_match - device to driver matching callback 77 * @dev: the fsl-mc device to match against 78 * @drv: the device driver to search for matching fsl-mc object type 79 * structures 80 * 81 * Returns 1 on success, 0 otherwise. 82 */ 83 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 84 { 85 const struct fsl_mc_device_id *id; 86 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 87 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 88 bool found = false; 89 90 /* When driver_override is set, only bind to the matching driver */ 91 if (mc_dev->driver_override) { 92 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 93 goto out; 94 } 95 96 if (!mc_drv->match_id_table) 97 goto out; 98 99 /* 100 * If the object is not 'plugged' don't match. 101 * Only exception is the root DPRC, which is a special case. 102 */ 103 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 104 !fsl_mc_is_root_dprc(&mc_dev->dev)) 105 goto out; 106 107 /* 108 * Traverse the match_id table of the given driver, trying to find 109 * a matching for the given device. 110 */ 111 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 112 if (id->vendor == mc_dev->obj_desc.vendor && 113 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 114 found = true; 115 116 break; 117 } 118 } 119 120 out: 121 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 122 return found; 123 } 124 125 /* 126 * fsl_mc_bus_uevent - callback invoked when a device is added 127 */ 128 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env) 129 { 130 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 131 132 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 133 mc_dev->obj_desc.vendor, 134 mc_dev->obj_desc.type)) 135 return -ENOMEM; 136 137 return 0; 138 } 139 140 static int fsl_mc_dma_configure(struct device *dev) 141 { 142 struct device *dma_dev = dev; 143 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 144 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 145 u32 input_id = mc_dev->icid; 146 int ret; 147 148 while (dev_is_fsl_mc(dma_dev)) 149 dma_dev = dma_dev->parent; 150 151 if (dev_of_node(dma_dev)) 152 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 153 else 154 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 155 156 if (!ret && !mc_drv->driver_managed_dma) { 157 ret = iommu_device_use_default_domain(dev); 158 if (ret) 159 arch_teardown_dma_ops(dev); 160 } 161 162 return ret; 163 } 164 165 static void fsl_mc_dma_cleanup(struct device *dev) 166 { 167 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 168 169 if (!mc_drv->driver_managed_dma) 170 iommu_device_unuse_default_domain(dev); 171 } 172 173 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 174 char *buf) 175 { 176 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 177 178 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 179 mc_dev->obj_desc.type); 180 } 181 static DEVICE_ATTR_RO(modalias); 182 183 static ssize_t driver_override_store(struct device *dev, 184 struct device_attribute *attr, 185 const char *buf, size_t count) 186 { 187 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 188 int ret; 189 190 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 191 return -EINVAL; 192 193 ret = driver_set_override(dev, &mc_dev->driver_override, buf, count); 194 if (ret) 195 return ret; 196 197 return count; 198 } 199 200 static ssize_t driver_override_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 204 205 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 206 } 207 static DEVICE_ATTR_RW(driver_override); 208 209 static struct attribute *fsl_mc_dev_attrs[] = { 210 &dev_attr_modalias.attr, 211 &dev_attr_driver_override.attr, 212 NULL, 213 }; 214 215 ATTRIBUTE_GROUPS(fsl_mc_dev); 216 217 static int scan_fsl_mc_bus(struct device *dev, void *data) 218 { 219 struct fsl_mc_device *root_mc_dev; 220 struct fsl_mc_bus *root_mc_bus; 221 222 if (!fsl_mc_is_root_dprc(dev)) 223 goto exit; 224 225 root_mc_dev = to_fsl_mc_device(dev); 226 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 227 mutex_lock(&root_mc_bus->scan_mutex); 228 dprc_scan_objects(root_mc_dev, false); 229 mutex_unlock(&root_mc_bus->scan_mutex); 230 231 exit: 232 return 0; 233 } 234 235 static ssize_t rescan_store(struct bus_type *bus, 236 const char *buf, size_t count) 237 { 238 unsigned long val; 239 240 if (kstrtoul(buf, 0, &val) < 0) 241 return -EINVAL; 242 243 if (val) 244 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 245 246 return count; 247 } 248 static BUS_ATTR_WO(rescan); 249 250 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 251 { 252 struct fsl_mc_device *root_mc_dev; 253 unsigned long val; 254 char *buf = data; 255 256 if (!fsl_mc_is_root_dprc(dev)) 257 goto exit; 258 259 root_mc_dev = to_fsl_mc_device(dev); 260 261 if (kstrtoul(buf, 0, &val) < 0) 262 return -EINVAL; 263 264 if (val) 265 enable_dprc_irq(root_mc_dev); 266 else 267 disable_dprc_irq(root_mc_dev); 268 269 exit: 270 return 0; 271 } 272 273 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 274 { 275 struct fsl_mc_device *root_mc_dev; 276 char *buf = data; 277 278 if (!fsl_mc_is_root_dprc(dev)) 279 goto exit; 280 281 root_mc_dev = to_fsl_mc_device(dev); 282 283 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 284 exit: 285 return 0; 286 } 287 288 static ssize_t autorescan_store(struct bus_type *bus, 289 const char *buf, size_t count) 290 { 291 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 292 293 return count; 294 } 295 296 static ssize_t autorescan_show(struct bus_type *bus, char *buf) 297 { 298 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 299 return strlen(buf); 300 } 301 302 static BUS_ATTR_RW(autorescan); 303 304 static struct attribute *fsl_mc_bus_attrs[] = { 305 &bus_attr_rescan.attr, 306 &bus_attr_autorescan.attr, 307 NULL, 308 }; 309 310 ATTRIBUTE_GROUPS(fsl_mc_bus); 311 312 struct bus_type fsl_mc_bus_type = { 313 .name = "fsl-mc", 314 .match = fsl_mc_bus_match, 315 .uevent = fsl_mc_bus_uevent, 316 .dma_configure = fsl_mc_dma_configure, 317 .dma_cleanup = fsl_mc_dma_cleanup, 318 .dev_groups = fsl_mc_dev_groups, 319 .bus_groups = fsl_mc_bus_groups, 320 }; 321 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 322 323 struct device_type fsl_mc_bus_dprc_type = { 324 .name = "fsl_mc_bus_dprc" 325 }; 326 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 327 328 struct device_type fsl_mc_bus_dpni_type = { 329 .name = "fsl_mc_bus_dpni" 330 }; 331 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 332 333 struct device_type fsl_mc_bus_dpio_type = { 334 .name = "fsl_mc_bus_dpio" 335 }; 336 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 337 338 struct device_type fsl_mc_bus_dpsw_type = { 339 .name = "fsl_mc_bus_dpsw" 340 }; 341 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 342 343 struct device_type fsl_mc_bus_dpbp_type = { 344 .name = "fsl_mc_bus_dpbp" 345 }; 346 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 347 348 struct device_type fsl_mc_bus_dpcon_type = { 349 .name = "fsl_mc_bus_dpcon" 350 }; 351 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 352 353 struct device_type fsl_mc_bus_dpmcp_type = { 354 .name = "fsl_mc_bus_dpmcp" 355 }; 356 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 357 358 struct device_type fsl_mc_bus_dpmac_type = { 359 .name = "fsl_mc_bus_dpmac" 360 }; 361 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 362 363 struct device_type fsl_mc_bus_dprtc_type = { 364 .name = "fsl_mc_bus_dprtc" 365 }; 366 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 367 368 struct device_type fsl_mc_bus_dpseci_type = { 369 .name = "fsl_mc_bus_dpseci" 370 }; 371 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 372 373 struct device_type fsl_mc_bus_dpdmux_type = { 374 .name = "fsl_mc_bus_dpdmux" 375 }; 376 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 377 378 struct device_type fsl_mc_bus_dpdcei_type = { 379 .name = "fsl_mc_bus_dpdcei" 380 }; 381 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 382 383 struct device_type fsl_mc_bus_dpaiop_type = { 384 .name = "fsl_mc_bus_dpaiop" 385 }; 386 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 387 388 struct device_type fsl_mc_bus_dpci_type = { 389 .name = "fsl_mc_bus_dpci" 390 }; 391 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 392 393 struct device_type fsl_mc_bus_dpdmai_type = { 394 .name = "fsl_mc_bus_dpdmai" 395 }; 396 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 397 398 struct device_type fsl_mc_bus_dpdbg_type = { 399 .name = "fsl_mc_bus_dpdbg" 400 }; 401 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 402 403 static struct device_type *fsl_mc_get_device_type(const char *type) 404 { 405 static const struct { 406 struct device_type *dev_type; 407 const char *type; 408 } dev_types[] = { 409 { &fsl_mc_bus_dprc_type, "dprc" }, 410 { &fsl_mc_bus_dpni_type, "dpni" }, 411 { &fsl_mc_bus_dpio_type, "dpio" }, 412 { &fsl_mc_bus_dpsw_type, "dpsw" }, 413 { &fsl_mc_bus_dpbp_type, "dpbp" }, 414 { &fsl_mc_bus_dpcon_type, "dpcon" }, 415 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 416 { &fsl_mc_bus_dpmac_type, "dpmac" }, 417 { &fsl_mc_bus_dprtc_type, "dprtc" }, 418 { &fsl_mc_bus_dpseci_type, "dpseci" }, 419 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 420 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 421 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 422 { &fsl_mc_bus_dpci_type, "dpci" }, 423 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 424 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 425 { NULL, NULL } 426 }; 427 int i; 428 429 for (i = 0; dev_types[i].dev_type; i++) 430 if (!strcmp(dev_types[i].type, type)) 431 return dev_types[i].dev_type; 432 433 return NULL; 434 } 435 436 static int fsl_mc_driver_probe(struct device *dev) 437 { 438 struct fsl_mc_driver *mc_drv; 439 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 440 int error; 441 442 mc_drv = to_fsl_mc_driver(dev->driver); 443 444 error = mc_drv->probe(mc_dev); 445 if (error < 0) { 446 if (error != -EPROBE_DEFER) 447 dev_err(dev, "%s failed: %d\n", __func__, error); 448 return error; 449 } 450 451 return 0; 452 } 453 454 static int fsl_mc_driver_remove(struct device *dev) 455 { 456 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 457 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 458 int error; 459 460 error = mc_drv->remove(mc_dev); 461 if (error < 0) { 462 dev_err(dev, "%s failed: %d\n", __func__, error); 463 return error; 464 } 465 466 return 0; 467 } 468 469 static void fsl_mc_driver_shutdown(struct device *dev) 470 { 471 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 472 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 473 474 mc_drv->shutdown(mc_dev); 475 } 476 477 /* 478 * __fsl_mc_driver_register - registers a child device driver with the 479 * MC bus 480 * 481 * This function is implicitly invoked from the registration function of 482 * fsl_mc device drivers, which is generated by the 483 * module_fsl_mc_driver() macro. 484 */ 485 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 486 struct module *owner) 487 { 488 int error; 489 490 mc_driver->driver.owner = owner; 491 mc_driver->driver.bus = &fsl_mc_bus_type; 492 493 if (mc_driver->probe) 494 mc_driver->driver.probe = fsl_mc_driver_probe; 495 496 if (mc_driver->remove) 497 mc_driver->driver.remove = fsl_mc_driver_remove; 498 499 if (mc_driver->shutdown) 500 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 501 502 error = driver_register(&mc_driver->driver); 503 if (error < 0) { 504 pr_err("driver_register() failed for %s: %d\n", 505 mc_driver->driver.name, error); 506 return error; 507 } 508 509 return 0; 510 } 511 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 512 513 /* 514 * fsl_mc_driver_unregister - unregisters a device driver from the 515 * MC bus 516 */ 517 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 518 { 519 driver_unregister(&mc_driver->driver); 520 } 521 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 522 523 /** 524 * mc_get_version() - Retrieves the Management Complex firmware 525 * version information 526 * @mc_io: Pointer to opaque I/O object 527 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 528 * @mc_ver_info: Returned version information structure 529 * 530 * Return: '0' on Success; Error code otherwise. 531 */ 532 static int mc_get_version(struct fsl_mc_io *mc_io, 533 u32 cmd_flags, 534 struct fsl_mc_version *mc_ver_info) 535 { 536 struct fsl_mc_command cmd = { 0 }; 537 struct dpmng_rsp_get_version *rsp_params; 538 int err; 539 540 /* prepare command */ 541 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 542 cmd_flags, 543 0); 544 545 /* send command to mc*/ 546 err = mc_send_command(mc_io, &cmd); 547 if (err) 548 return err; 549 550 /* retrieve response parameters */ 551 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 552 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 553 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 554 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 555 556 return 0; 557 } 558 559 /** 560 * fsl_mc_get_version - function to retrieve the MC f/w version information 561 * 562 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 563 */ 564 struct fsl_mc_version *fsl_mc_get_version(void) 565 { 566 if (mc_version.major) 567 return &mc_version; 568 569 return NULL; 570 } 571 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 572 573 /* 574 * fsl_mc_get_root_dprc - function to traverse to the root dprc 575 */ 576 void fsl_mc_get_root_dprc(struct device *dev, 577 struct device **root_dprc_dev) 578 { 579 if (!dev) { 580 *root_dprc_dev = NULL; 581 } else if (!dev_is_fsl_mc(dev)) { 582 *root_dprc_dev = NULL; 583 } else { 584 *root_dprc_dev = dev; 585 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 586 *root_dprc_dev = (*root_dprc_dev)->parent; 587 } 588 } 589 590 static int get_dprc_attr(struct fsl_mc_io *mc_io, 591 int container_id, struct dprc_attributes *attr) 592 { 593 u16 dprc_handle; 594 int error; 595 596 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 597 if (error < 0) { 598 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 599 return error; 600 } 601 602 memset(attr, 0, sizeof(struct dprc_attributes)); 603 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 604 if (error < 0) { 605 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 606 error); 607 goto common_cleanup; 608 } 609 610 error = 0; 611 612 common_cleanup: 613 (void)dprc_close(mc_io, 0, dprc_handle); 614 return error; 615 } 616 617 static int get_dprc_icid(struct fsl_mc_io *mc_io, 618 int container_id, u32 *icid) 619 { 620 struct dprc_attributes attr; 621 int error; 622 623 error = get_dprc_attr(mc_io, container_id, &attr); 624 if (error == 0) 625 *icid = attr.icid; 626 627 return error; 628 } 629 630 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 631 enum dprc_region_type mc_region_type, 632 u64 mc_offset, phys_addr_t *phys_addr) 633 { 634 int i; 635 struct device *root_dprc_dev; 636 struct fsl_mc *mc; 637 638 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 639 mc = dev_get_drvdata(root_dprc_dev->parent); 640 641 if (mc->num_translation_ranges == 0) { 642 /* 643 * Do identity mapping: 644 */ 645 *phys_addr = mc_offset; 646 return 0; 647 } 648 649 for (i = 0; i < mc->num_translation_ranges; i++) { 650 struct fsl_mc_addr_translation_range *range = 651 &mc->translation_ranges[i]; 652 653 if (mc_region_type == range->mc_region_type && 654 mc_offset >= range->start_mc_offset && 655 mc_offset < range->end_mc_offset) { 656 *phys_addr = range->start_phys_addr + 657 (mc_offset - range->start_mc_offset); 658 return 0; 659 } 660 } 661 662 return -EFAULT; 663 } 664 665 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 666 struct fsl_mc_device *mc_bus_dev) 667 { 668 int i; 669 int error; 670 struct resource *regions; 671 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 672 struct device *parent_dev = mc_dev->dev.parent; 673 enum dprc_region_type mc_region_type; 674 675 if (is_fsl_mc_bus_dprc(mc_dev) || 676 is_fsl_mc_bus_dpmcp(mc_dev)) { 677 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 678 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 679 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 680 } else { 681 /* 682 * This function should not have been called for this MC object 683 * type, as this object type is not supposed to have MMIO 684 * regions 685 */ 686 return -EINVAL; 687 } 688 689 regions = kmalloc_array(obj_desc->region_count, 690 sizeof(regions[0]), GFP_KERNEL); 691 if (!regions) 692 return -ENOMEM; 693 694 for (i = 0; i < obj_desc->region_count; i++) { 695 struct dprc_region_desc region_desc; 696 697 error = dprc_get_obj_region(mc_bus_dev->mc_io, 698 0, 699 mc_bus_dev->mc_handle, 700 obj_desc->type, 701 obj_desc->id, i, ®ion_desc); 702 if (error < 0) { 703 dev_err(parent_dev, 704 "dprc_get_obj_region() failed: %d\n", error); 705 goto error_cleanup_regions; 706 } 707 /* 708 * Older MC only returned region offset and no base address 709 * If base address is in the region_desc use it otherwise 710 * revert to old mechanism 711 */ 712 if (region_desc.base_address) { 713 regions[i].start = region_desc.base_address + 714 region_desc.base_offset; 715 } else { 716 error = translate_mc_addr(mc_dev, mc_region_type, 717 region_desc.base_offset, 718 ®ions[i].start); 719 720 /* 721 * Some versions of the MC firmware wrongly report 722 * 0 for register base address of the DPMCP associated 723 * with child DPRC objects thus rendering them unusable. 724 * This is particularly troublesome in ACPI boot 725 * scenarios where the legacy way of extracting this 726 * base address from the device tree does not apply. 727 * Given that DPMCPs share the same base address, 728 * workaround this by using the base address extracted 729 * from the root DPRC container. 730 */ 731 if (is_fsl_mc_bus_dprc(mc_dev) && 732 regions[i].start == region_desc.base_offset) 733 regions[i].start += mc_portal_base_phys_addr; 734 } 735 736 if (error < 0) { 737 dev_err(parent_dev, 738 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 739 region_desc.base_offset, 740 obj_desc->type, obj_desc->id, i); 741 goto error_cleanup_regions; 742 } 743 744 regions[i].end = regions[i].start + region_desc.size - 1; 745 regions[i].name = "fsl-mc object MMIO region"; 746 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 747 regions[i].flags |= IORESOURCE_MEM; 748 } 749 750 mc_dev->regions = regions; 751 return 0; 752 753 error_cleanup_regions: 754 kfree(regions); 755 return error; 756 } 757 758 /* 759 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 760 */ 761 bool fsl_mc_is_root_dprc(struct device *dev) 762 { 763 struct device *root_dprc_dev; 764 765 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 766 if (!root_dprc_dev) 767 return false; 768 return dev == root_dprc_dev; 769 } 770 771 static void fsl_mc_device_release(struct device *dev) 772 { 773 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 774 775 kfree(mc_dev->regions); 776 777 if (is_fsl_mc_bus_dprc(mc_dev)) 778 kfree(to_fsl_mc_bus(mc_dev)); 779 else 780 kfree(mc_dev); 781 } 782 783 /* 784 * Add a newly discovered fsl-mc device to be visible in Linux 785 */ 786 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 787 struct fsl_mc_io *mc_io, 788 struct device *parent_dev, 789 struct fsl_mc_device **new_mc_dev) 790 { 791 int error; 792 struct fsl_mc_device *mc_dev = NULL; 793 struct fsl_mc_bus *mc_bus = NULL; 794 struct fsl_mc_device *parent_mc_dev; 795 796 if (dev_is_fsl_mc(parent_dev)) 797 parent_mc_dev = to_fsl_mc_device(parent_dev); 798 else 799 parent_mc_dev = NULL; 800 801 if (strcmp(obj_desc->type, "dprc") == 0) { 802 /* 803 * Allocate an MC bus device object: 804 */ 805 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 806 if (!mc_bus) 807 return -ENOMEM; 808 809 mutex_init(&mc_bus->scan_mutex); 810 mc_dev = &mc_bus->mc_dev; 811 } else { 812 /* 813 * Allocate a regular fsl_mc_device object: 814 */ 815 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 816 if (!mc_dev) 817 return -ENOMEM; 818 } 819 820 mc_dev->obj_desc = *obj_desc; 821 mc_dev->mc_io = mc_io; 822 device_initialize(&mc_dev->dev); 823 mc_dev->dev.parent = parent_dev; 824 mc_dev->dev.bus = &fsl_mc_bus_type; 825 mc_dev->dev.release = fsl_mc_device_release; 826 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 827 if (!mc_dev->dev.type) { 828 error = -ENODEV; 829 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 830 goto error_cleanup_dev; 831 } 832 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 833 834 if (strcmp(obj_desc->type, "dprc") == 0) { 835 struct fsl_mc_io *mc_io2; 836 837 mc_dev->flags |= FSL_MC_IS_DPRC; 838 839 /* 840 * To get the DPRC's ICID, we need to open the DPRC 841 * in get_dprc_icid(). For child DPRCs, we do so using the 842 * parent DPRC's MC portal instead of the child DPRC's MC 843 * portal, in case the child DPRC is already opened with 844 * its own portal (e.g., the DPRC used by AIOP). 845 * 846 * NOTE: There cannot be more than one active open for a 847 * given MC object, using the same MC portal. 848 */ 849 if (parent_mc_dev) { 850 /* 851 * device being added is a child DPRC device 852 */ 853 mc_io2 = parent_mc_dev->mc_io; 854 } else { 855 /* 856 * device being added is the root DPRC device 857 */ 858 if (!mc_io) { 859 error = -EINVAL; 860 goto error_cleanup_dev; 861 } 862 863 mc_io2 = mc_io; 864 } 865 866 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 867 if (error < 0) 868 goto error_cleanup_dev; 869 } else { 870 /* 871 * A non-DPRC object has to be a child of a DPRC, use the 872 * parent's ICID and interrupt domain. 873 */ 874 mc_dev->icid = parent_mc_dev->icid; 875 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 876 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 877 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 878 dev_set_msi_domain(&mc_dev->dev, 879 dev_get_msi_domain(&parent_mc_dev->dev)); 880 } 881 882 /* 883 * Get MMIO regions for the device from the MC: 884 * 885 * NOTE: the root DPRC is a special case as its MMIO region is 886 * obtained from the device tree 887 */ 888 if (parent_mc_dev && obj_desc->region_count != 0) { 889 error = fsl_mc_device_get_mmio_regions(mc_dev, 890 parent_mc_dev); 891 if (error < 0) 892 goto error_cleanup_dev; 893 } 894 895 /* 896 * The device-specific probe callback will get invoked by device_add() 897 */ 898 error = device_add(&mc_dev->dev); 899 if (error < 0) { 900 dev_err(parent_dev, 901 "device_add() failed for device %s: %d\n", 902 dev_name(&mc_dev->dev), error); 903 goto error_cleanup_dev; 904 } 905 906 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 907 908 *new_mc_dev = mc_dev; 909 return 0; 910 911 error_cleanup_dev: 912 kfree(mc_dev->regions); 913 kfree(mc_bus); 914 kfree(mc_dev); 915 916 return error; 917 } 918 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 919 920 static struct notifier_block fsl_mc_nb; 921 922 /** 923 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 924 * Linux 925 * 926 * @mc_dev: Pointer to an fsl-mc device 927 */ 928 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 929 { 930 kfree(mc_dev->driver_override); 931 mc_dev->driver_override = NULL; 932 933 /* 934 * The device-specific remove callback will get invoked by device_del() 935 */ 936 device_del(&mc_dev->dev); 937 put_device(&mc_dev->dev); 938 } 939 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 940 941 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 942 u16 if_id) 943 { 944 struct fsl_mc_device *mc_bus_dev, *endpoint; 945 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 946 struct dprc_endpoint endpoint1 = {{ 0 }}; 947 struct dprc_endpoint endpoint2 = {{ 0 }}; 948 int state, err; 949 950 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 951 strcpy(endpoint1.type, mc_dev->obj_desc.type); 952 endpoint1.id = mc_dev->obj_desc.id; 953 endpoint1.if_id = if_id; 954 955 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 956 mc_bus_dev->mc_handle, 957 &endpoint1, &endpoint2, 958 &state); 959 960 if (err == -ENOTCONN || state == -1) 961 return ERR_PTR(-ENOTCONN); 962 963 if (err < 0) { 964 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 965 return ERR_PTR(err); 966 } 967 968 strcpy(endpoint_desc.type, endpoint2.type); 969 endpoint_desc.id = endpoint2.id; 970 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 971 972 /* 973 * We know that the device has an endpoint because we verified by 974 * interrogating the firmware. This is the case when the device was not 975 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 976 * Force a rescan of the devices in this container and retry the lookup. 977 */ 978 if (!endpoint) { 979 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 980 981 if (mutex_trylock(&mc_bus->scan_mutex)) { 982 err = dprc_scan_objects(mc_bus_dev, true); 983 mutex_unlock(&mc_bus->scan_mutex); 984 } 985 986 if (err < 0) 987 return ERR_PTR(err); 988 } 989 990 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 991 /* 992 * This means that the endpoint might reside in a different isolation 993 * context (DPRC/container). Not much to do, so return a permssion 994 * error. 995 */ 996 if (!endpoint) 997 return ERR_PTR(-EPERM); 998 999 return endpoint; 1000 } 1001 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 1002 1003 static int parse_mc_ranges(struct device *dev, 1004 int *paddr_cells, 1005 int *mc_addr_cells, 1006 int *mc_size_cells, 1007 const __be32 **ranges_start) 1008 { 1009 const __be32 *prop; 1010 int range_tuple_cell_count; 1011 int ranges_len; 1012 int tuple_len; 1013 struct device_node *mc_node = dev->of_node; 1014 1015 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); 1016 if (!(*ranges_start) || !ranges_len) { 1017 dev_warn(dev, 1018 "missing or empty ranges property for device tree node '%pOFn'\n", 1019 mc_node); 1020 return 0; 1021 } 1022 1023 *paddr_cells = of_n_addr_cells(mc_node); 1024 1025 prop = of_get_property(mc_node, "#address-cells", NULL); 1026 if (prop) 1027 *mc_addr_cells = be32_to_cpup(prop); 1028 else 1029 *mc_addr_cells = *paddr_cells; 1030 1031 prop = of_get_property(mc_node, "#size-cells", NULL); 1032 if (prop) 1033 *mc_size_cells = be32_to_cpup(prop); 1034 else 1035 *mc_size_cells = of_n_size_cells(mc_node); 1036 1037 range_tuple_cell_count = *paddr_cells + *mc_addr_cells + 1038 *mc_size_cells; 1039 1040 tuple_len = range_tuple_cell_count * sizeof(__be32); 1041 if (ranges_len % tuple_len != 0) { 1042 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); 1043 return -EINVAL; 1044 } 1045 1046 return ranges_len / tuple_len; 1047 } 1048 1049 static int get_mc_addr_translation_ranges(struct device *dev, 1050 struct fsl_mc_addr_translation_range 1051 **ranges, 1052 u8 *num_ranges) 1053 { 1054 int ret; 1055 int paddr_cells; 1056 int mc_addr_cells; 1057 int mc_size_cells; 1058 int i; 1059 const __be32 *ranges_start; 1060 const __be32 *cell; 1061 1062 ret = parse_mc_ranges(dev, 1063 &paddr_cells, 1064 &mc_addr_cells, 1065 &mc_size_cells, 1066 &ranges_start); 1067 if (ret < 0) 1068 return ret; 1069 1070 *num_ranges = ret; 1071 if (!ret) { 1072 /* 1073 * Missing or empty ranges property ("ranges;") for the 1074 * 'fsl,qoriq-mc' node. In this case, identity mapping 1075 * will be used. 1076 */ 1077 *ranges = NULL; 1078 return 0; 1079 } 1080 1081 *ranges = devm_kcalloc(dev, *num_ranges, 1082 sizeof(struct fsl_mc_addr_translation_range), 1083 GFP_KERNEL); 1084 if (!(*ranges)) 1085 return -ENOMEM; 1086 1087 cell = ranges_start; 1088 for (i = 0; i < *num_ranges; ++i) { 1089 struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; 1090 1091 range->mc_region_type = of_read_number(cell, 1); 1092 range->start_mc_offset = of_read_number(cell + 1, 1093 mc_addr_cells - 1); 1094 cell += mc_addr_cells; 1095 range->start_phys_addr = of_read_number(cell, paddr_cells); 1096 cell += paddr_cells; 1097 range->end_mc_offset = range->start_mc_offset + 1098 of_read_number(cell, mc_size_cells); 1099 1100 cell += mc_size_cells; 1101 } 1102 1103 return 0; 1104 } 1105 1106 /* 1107 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1108 * added 1109 */ 1110 static int fsl_mc_bus_probe(struct platform_device *pdev) 1111 { 1112 struct fsl_mc_obj_desc obj_desc; 1113 int error; 1114 struct fsl_mc *mc; 1115 struct fsl_mc_device *mc_bus_dev = NULL; 1116 struct fsl_mc_io *mc_io = NULL; 1117 int container_id; 1118 phys_addr_t mc_portal_phys_addr; 1119 u32 mc_portal_size, mc_stream_id; 1120 struct resource *plat_res; 1121 1122 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1123 if (!mc) 1124 return -ENOMEM; 1125 1126 platform_set_drvdata(pdev, mc); 1127 1128 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1129 if (plat_res) { 1130 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1131 if (IS_ERR(mc->fsl_mc_regs)) 1132 return PTR_ERR(mc->fsl_mc_regs); 1133 } 1134 1135 if (mc->fsl_mc_regs) { 1136 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1137 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1138 /* 1139 * HW ORs the PL and BMT bit, places the result in bit 1140 * 14 of the StreamID and ORs in the ICID. Calculate it 1141 * accordingly. 1142 */ 1143 mc_stream_id = (mc_stream_id & 0xffff) | 1144 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1145 BIT(14) : 0); 1146 error = acpi_dma_configure_id(&pdev->dev, 1147 DEV_DMA_COHERENT, 1148 &mc_stream_id); 1149 if (error == -EPROBE_DEFER) 1150 return error; 1151 if (error) 1152 dev_warn(&pdev->dev, 1153 "failed to configure dma: %d.\n", 1154 error); 1155 } 1156 1157 /* 1158 * Some bootloaders pause the MC firmware before booting the 1159 * kernel so that MC will not cause faults as soon as the 1160 * SMMU probes due to the fact that there's no configuration 1161 * in place for MC. 1162 * At this point MC should have all its SMMU setup done so make 1163 * sure it is resumed. 1164 */ 1165 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1166 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1167 mc->fsl_mc_regs + FSL_MC_GCR1); 1168 } 1169 1170 /* 1171 * Get physical address of MC portal for the root DPRC: 1172 */ 1173 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1174 mc_portal_phys_addr = plat_res->start; 1175 mc_portal_size = resource_size(plat_res); 1176 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1177 1178 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1179 mc_portal_size, NULL, 1180 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1181 if (error < 0) 1182 return error; 1183 1184 error = mc_get_version(mc_io, 0, &mc_version); 1185 if (error != 0) { 1186 dev_err(&pdev->dev, 1187 "mc_get_version() failed with error %d\n", error); 1188 goto error_cleanup_mc_io; 1189 } 1190 1191 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1192 mc_version.major, mc_version.minor, mc_version.revision); 1193 1194 if (dev_of_node(&pdev->dev)) { 1195 error = get_mc_addr_translation_ranges(&pdev->dev, 1196 &mc->translation_ranges, 1197 &mc->num_translation_ranges); 1198 if (error < 0) 1199 goto error_cleanup_mc_io; 1200 } 1201 1202 error = dprc_get_container_id(mc_io, 0, &container_id); 1203 if (error < 0) { 1204 dev_err(&pdev->dev, 1205 "dprc_get_container_id() failed: %d\n", error); 1206 goto error_cleanup_mc_io; 1207 } 1208 1209 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1210 error = dprc_get_api_version(mc_io, 0, 1211 &obj_desc.ver_major, 1212 &obj_desc.ver_minor); 1213 if (error < 0) 1214 goto error_cleanup_mc_io; 1215 1216 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1217 strcpy(obj_desc.type, "dprc"); 1218 obj_desc.id = container_id; 1219 obj_desc.irq_count = 1; 1220 obj_desc.region_count = 0; 1221 1222 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1223 if (error < 0) 1224 goto error_cleanup_mc_io; 1225 1226 mc->root_mc_bus_dev = mc_bus_dev; 1227 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1228 return 0; 1229 1230 error_cleanup_mc_io: 1231 fsl_destroy_mc_io(mc_io); 1232 return error; 1233 } 1234 1235 /* 1236 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1237 * removed 1238 */ 1239 static int fsl_mc_bus_remove(struct platform_device *pdev) 1240 { 1241 struct fsl_mc *mc = platform_get_drvdata(pdev); 1242 struct fsl_mc_io *mc_io; 1243 1244 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1245 return -EINVAL; 1246 1247 mc_io = mc->root_mc_bus_dev->mc_io; 1248 fsl_mc_device_remove(mc->root_mc_bus_dev); 1249 fsl_destroy_mc_io(mc_io); 1250 1251 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1252 1253 if (mc->fsl_mc_regs) { 1254 /* 1255 * Pause the MC firmware so that it doesn't crash in certain 1256 * scenarios, such as kexec. 1257 */ 1258 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1259 (GCR1_P1_STOP | GCR1_P2_STOP), 1260 mc->fsl_mc_regs + FSL_MC_GCR1); 1261 } 1262 1263 return 0; 1264 } 1265 1266 static void fsl_mc_bus_shutdown(struct platform_device *pdev) 1267 { 1268 fsl_mc_bus_remove(pdev); 1269 } 1270 1271 static const struct of_device_id fsl_mc_bus_match_table[] = { 1272 {.compatible = "fsl,qoriq-mc",}, 1273 {}, 1274 }; 1275 1276 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1277 1278 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1279 {"NXP0008", 0 }, 1280 { } 1281 }; 1282 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1283 1284 static struct platform_driver fsl_mc_bus_driver = { 1285 .driver = { 1286 .name = "fsl_mc_bus", 1287 .pm = NULL, 1288 .of_match_table = fsl_mc_bus_match_table, 1289 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1290 }, 1291 .probe = fsl_mc_bus_probe, 1292 .remove = fsl_mc_bus_remove, 1293 .shutdown = fsl_mc_bus_shutdown, 1294 }; 1295 1296 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1297 unsigned long action, void *data) 1298 { 1299 struct device *dev = data; 1300 struct resource *res; 1301 void __iomem *fsl_mc_regs; 1302 1303 if (action != BUS_NOTIFY_ADD_DEVICE) 1304 return 0; 1305 1306 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1307 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1308 return 0; 1309 1310 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1311 if (!res) 1312 return 0; 1313 1314 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1315 if (!fsl_mc_regs) 1316 return 0; 1317 1318 /* 1319 * Make sure that the MC firmware is paused before the IOMMU setup for 1320 * it is done or otherwise the firmware will crash right after the SMMU 1321 * gets probed and enabled. 1322 */ 1323 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1324 fsl_mc_regs + FSL_MC_GCR1); 1325 iounmap(fsl_mc_regs); 1326 1327 return 0; 1328 } 1329 1330 static struct notifier_block fsl_mc_nb = { 1331 .notifier_call = fsl_mc_bus_notifier, 1332 }; 1333 1334 static int __init fsl_mc_bus_driver_init(void) 1335 { 1336 int error; 1337 1338 error = bus_register(&fsl_mc_bus_type); 1339 if (error < 0) { 1340 pr_err("bus type registration failed: %d\n", error); 1341 goto error_cleanup_cache; 1342 } 1343 1344 error = platform_driver_register(&fsl_mc_bus_driver); 1345 if (error < 0) { 1346 pr_err("platform_driver_register() failed: %d\n", error); 1347 goto error_cleanup_bus; 1348 } 1349 1350 error = dprc_driver_init(); 1351 if (error < 0) 1352 goto error_cleanup_driver; 1353 1354 error = fsl_mc_allocator_driver_init(); 1355 if (error < 0) 1356 goto error_cleanup_dprc_driver; 1357 1358 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1359 1360 error_cleanup_dprc_driver: 1361 dprc_driver_exit(); 1362 1363 error_cleanup_driver: 1364 platform_driver_unregister(&fsl_mc_bus_driver); 1365 1366 error_cleanup_bus: 1367 bus_unregister(&fsl_mc_bus_type); 1368 1369 error_cleanup_cache: 1370 return error; 1371 } 1372 postcore_initcall(fsl_mc_bus_driver_init); 1373