xref: /linux/drivers/bus/arm-cci.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
31 
32 static void __iomem *cci_ctrl_base;
33 static unsigned long cci_ctrl_phys;
34 
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
36 struct cci_nb_ports {
37 	unsigned int nb_ace;
38 	unsigned int nb_ace_lite;
39 };
40 
41 static const struct cci_nb_ports cci400_ports = {
42 	.nb_ace = 2,
43 	.nb_ace_lite = 3
44 };
45 
46 #define CCI400_PORTS_DATA	(&cci400_ports)
47 #else
48 #define CCI400_PORTS_DATA	(NULL)
49 #endif
50 
51 static const struct of_device_id arm_cci_matches[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54 #endif
55 #ifdef CONFIG_ARM_CCI500_PMU
56 	{ .compatible = "arm,cci-500", },
57 #endif
58 	{},
59 };
60 
61 #ifdef CONFIG_ARM_CCI_PMU
62 
63 #define DRIVER_NAME		"ARM-CCI"
64 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
65 
66 #define CCI_PMCR		0x0100
67 #define CCI_PID2		0x0fe8
68 
69 #define CCI_PMCR_CEN		0x00000001
70 #define CCI_PMCR_NCNT_MASK	0x0000f800
71 #define CCI_PMCR_NCNT_SHIFT	11
72 
73 #define CCI_PID2_REV_MASK	0xf0
74 #define CCI_PID2_REV_SHIFT	4
75 
76 #define CCI_PMU_EVT_SEL		0x000
77 #define CCI_PMU_CNTR		0x004
78 #define CCI_PMU_CNTR_CTRL	0x008
79 #define CCI_PMU_OVRFLW		0x00c
80 
81 #define CCI_PMU_OVRFLW_FLAG	1
82 
83 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
84 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
85 #define CCI_PMU_CNTR_MASK		((1ULL << 32) -1)
86 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
87 
88 #define CCI_PMU_MAX_HW_CNTRS(model) \
89 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
90 
91 /* Types of interfaces that can generate events */
92 enum {
93 	CCI_IF_SLAVE,
94 	CCI_IF_MASTER,
95 #ifdef CONFIG_ARM_CCI500_PMU
96 	CCI_IF_GLOBAL,
97 #endif
98 	CCI_IF_MAX,
99 };
100 
101 struct event_range {
102 	u32 min;
103 	u32 max;
104 };
105 
106 struct cci_pmu_hw_events {
107 	struct perf_event **events;
108 	unsigned long *used_mask;
109 	raw_spinlock_t pmu_lock;
110 };
111 
112 struct cci_pmu;
113 /*
114  * struct cci_pmu_model:
115  * @fixed_hw_cntrs - Number of fixed event counters
116  * @num_hw_cntrs - Maximum number of programmable event counters
117  * @cntr_size - Size of an event counter mapping
118  */
119 struct cci_pmu_model {
120 	char *name;
121 	u32 fixed_hw_cntrs;
122 	u32 num_hw_cntrs;
123 	u32 cntr_size;
124 	u64 nformat_attrs;
125 	u64 nevent_attrs;
126 	struct dev_ext_attribute *format_attrs;
127 	struct dev_ext_attribute *event_attrs;
128 	struct event_range event_ranges[CCI_IF_MAX];
129 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
130 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
131 };
132 
133 static struct cci_pmu_model cci_pmu_models[];
134 
135 struct cci_pmu {
136 	void __iomem *base;
137 	struct pmu pmu;
138 	int nr_irqs;
139 	int *irqs;
140 	unsigned long active_irqs;
141 	const struct cci_pmu_model *model;
142 	struct cci_pmu_hw_events hw_events;
143 	struct platform_device *plat_device;
144 	int num_cntrs;
145 	atomic_t active_events;
146 	struct mutex reserve_mutex;
147 	struct notifier_block cpu_nb;
148 	cpumask_t cpus;
149 };
150 
151 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
152 
153 enum cci_models {
154 #ifdef CONFIG_ARM_CCI400_PMU
155 	CCI400_R0,
156 	CCI400_R1,
157 #endif
158 #ifdef CONFIG_ARM_CCI500_PMU
159 	CCI500_R0,
160 #endif
161 	CCI_MODEL_MAX
162 };
163 
164 static ssize_t cci_pmu_format_show(struct device *dev,
165 			struct device_attribute *attr, char *buf);
166 static ssize_t cci_pmu_event_show(struct device *dev,
167 			struct device_attribute *attr, char *buf);
168 
169 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
170 	{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }
171 
172 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
173 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
174 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
175 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
176 
177 /* CCI400 PMU Specific definitions */
178 
179 #ifdef CONFIG_ARM_CCI400_PMU
180 
181 /* Port ids */
182 #define CCI400_PORT_S0		0
183 #define CCI400_PORT_S1		1
184 #define CCI400_PORT_S2		2
185 #define CCI400_PORT_S3		3
186 #define CCI400_PORT_S4		4
187 #define CCI400_PORT_M0		5
188 #define CCI400_PORT_M1		6
189 #define CCI400_PORT_M2		7
190 
191 #define CCI400_R1_PX		5
192 
193 /*
194  * Instead of an event id to monitor CCI cycles, a dedicated counter is
195  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
196  * make use of this event in hardware.
197  */
198 enum cci400_perf_events {
199 	CCI400_PMU_CYCLES = 0xff
200 };
201 
202 #define CCI400_PMU_CYCLE_CNTR_IDX	0
203 #define CCI400_PMU_CNTR0_IDX		1
204 
205 /*
206  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
207  * ports and bits 4:0 are event codes. There are different event codes
208  * associated with each port type.
209  *
210  * Additionally, the range of events associated with the port types changed
211  * between Rev0 and Rev1.
212  *
213  * The constants below define the range of valid codes for each port type for
214  * the different revisions and are used to validate the event to be monitored.
215  */
216 
217 #define CCI400_PMU_EVENT_MASK		0xffUL
218 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
219 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
220 #define CCI400_PMU_EVENT_CODE_SHIFT	0
221 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
222 #define CCI400_PMU_EVENT_SOURCE(event) \
223 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
224 			CCI400_PMU_EVENT_SOURCE_MASK)
225 #define CCI400_PMU_EVENT_CODE(event) \
226 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
227 
228 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
229 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
230 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
231 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
232 
233 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
234 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
235 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
236 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
237 
238 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
239 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
240 					(unsigned long)_config)
241 
242 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
243 			struct device_attribute *attr, char *buf);
244 
245 static struct dev_ext_attribute cci400_pmu_format_attrs[] = {
246 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
247 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
248 };
249 
250 static struct dev_ext_attribute cci400_r0_pmu_event_attrs[] = {
251 	/* Slave events */
252 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
253 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
254 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
255 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
256 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
257 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
258 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
259 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
260 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
272 	/* Master events */
273 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
274 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
275 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
276 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
277 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
278 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
279 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
280 	/* Special event for cycles counter */
281 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
282 };
283 
284 static struct dev_ext_attribute cci400_r1_pmu_event_attrs[] = {
285 	/* Slave events */
286 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
287 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
288 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
289 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
290 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
291 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
292 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
293 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
294 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
295 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
296 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
297 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
298 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
299 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
300 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
301 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
302 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
303 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
304 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
305 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
306 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
307 	/* Master events */
308 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
309 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
310 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
311 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
312 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
313 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
314 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
315 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
316 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
317 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
318 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
319 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
320 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
321 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
322 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
323 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
324 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
325 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
326 	/* Special event for cycles counter */
327 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
328 };
329 
330 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
331 			struct device_attribute *attr, char *buf)
332 {
333 	struct dev_ext_attribute *eattr = container_of(attr,
334 				struct dev_ext_attribute, attr);
335 	return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
336 }
337 
338 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
339 				struct cci_pmu_hw_events *hw,
340 				unsigned long cci_event)
341 {
342 	int idx;
343 
344 	/* cycles event idx is fixed */
345 	if (cci_event == CCI400_PMU_CYCLES) {
346 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
347 			return -EAGAIN;
348 
349 		return CCI400_PMU_CYCLE_CNTR_IDX;
350 	}
351 
352 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
353 		if (!test_and_set_bit(idx, hw->used_mask))
354 			return idx;
355 
356 	/* No counters available */
357 	return -EAGAIN;
358 }
359 
360 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
361 {
362 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
363 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
364 	int if_type;
365 
366 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
367 		return -ENOENT;
368 
369 	if (hw_event == CCI400_PMU_CYCLES)
370 		return hw_event;
371 
372 	switch (ev_source) {
373 	case CCI400_PORT_S0:
374 	case CCI400_PORT_S1:
375 	case CCI400_PORT_S2:
376 	case CCI400_PORT_S3:
377 	case CCI400_PORT_S4:
378 		/* Slave Interface */
379 		if_type = CCI_IF_SLAVE;
380 		break;
381 	case CCI400_PORT_M0:
382 	case CCI400_PORT_M1:
383 	case CCI400_PORT_M2:
384 		/* Master Interface */
385 		if_type = CCI_IF_MASTER;
386 		break;
387 	default:
388 		return -ENOENT;
389 	}
390 
391 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
392 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
393 		return hw_event;
394 
395 	return -ENOENT;
396 }
397 
398 static int probe_cci400_revision(void)
399 {
400 	int rev;
401 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
402 	rev >>= CCI_PID2_REV_SHIFT;
403 
404 	if (rev < CCI400_R1_PX)
405 		return CCI400_R0;
406 	else
407 		return CCI400_R1;
408 }
409 
410 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
411 {
412 	if (platform_has_secure_cci_access())
413 		return &cci_pmu_models[probe_cci400_revision()];
414 	return NULL;
415 }
416 #else	/* !CONFIG_ARM_CCI400_PMU */
417 static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
418 {
419 	return NULL;
420 }
421 #endif	/* CONFIG_ARM_CCI400_PMU */
422 
423 #ifdef CONFIG_ARM_CCI500_PMU
424 
425 /*
426  * CCI500 provides 8 independent event counters that can count
427  * any of the events available.
428  *
429  * CCI500 PMU event id is an 9-bit value made of two parts.
430  *	 bits [8:5] - Source for the event
431  *		      0x0-0x6 - Slave interfaces
432  *		      0x8-0xD - Master interfaces
433  *		      0xf     - Global Events
434  *		      0x7,0xe - Reserved
435  *
436  *	 bits [4:0] - Event code (specific to type of interface)
437  */
438 
439 /* Port ids */
440 #define CCI500_PORT_S0			0x0
441 #define CCI500_PORT_S1			0x1
442 #define CCI500_PORT_S2			0x2
443 #define CCI500_PORT_S3			0x3
444 #define CCI500_PORT_S4			0x4
445 #define CCI500_PORT_S5			0x5
446 #define CCI500_PORT_S6			0x6
447 
448 #define CCI500_PORT_M0			0x8
449 #define CCI500_PORT_M1			0x9
450 #define CCI500_PORT_M2			0xa
451 #define CCI500_PORT_M3			0xb
452 #define CCI500_PORT_M4			0xc
453 #define CCI500_PORT_M5			0xd
454 
455 #define CCI500_PORT_GLOBAL 		0xf
456 
457 #define CCI500_PMU_EVENT_MASK		0x1ffUL
458 #define CCI500_PMU_EVENT_SOURCE_SHIFT	0x5
459 #define CCI500_PMU_EVENT_SOURCE_MASK	0xf
460 #define CCI500_PMU_EVENT_CODE_SHIFT	0x0
461 #define CCI500_PMU_EVENT_CODE_MASK	0x1f
462 
463 #define CCI500_PMU_EVENT_SOURCE(event)	\
464 	((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
465 #define CCI500_PMU_EVENT_CODE(event)	\
466 	((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
467 
468 #define CCI500_SLAVE_PORT_MIN_EV	0x00
469 #define CCI500_SLAVE_PORT_MAX_EV	0x1f
470 #define CCI500_MASTER_PORT_MIN_EV	0x00
471 #define CCI500_MASTER_PORT_MAX_EV	0x06
472 #define CCI500_GLOBAL_PORT_MIN_EV	0x00
473 #define CCI500_GLOBAL_PORT_MAX_EV	0x0f
474 
475 
476 #define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
477 	CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
478 					(unsigned long) _config)
479 
480 static ssize_t cci500_pmu_global_event_show(struct device *dev,
481 				struct device_attribute *attr, char *buf);
482 
483 static struct dev_ext_attribute cci500_pmu_format_attrs[] = {
484 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
485 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
486 };
487 
488 static struct dev_ext_attribute cci500_pmu_event_attrs[] = {
489 	/* Slave events */
490 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
491 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
492 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
493 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
494 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
495 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
496 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
497 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
498 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
499 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
500 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
501 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
502 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
503 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
504 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
505 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
506 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
507 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
508 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
509 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
510 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
511 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
512 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
513 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
514 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
515 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
516 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
517 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
518 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
519 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
520 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
521 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
522 
523 	/* Master events */
524 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
525 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
526 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
527 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
528 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
529 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
530 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
531 
532 	/* Global events */
533 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
534 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
535 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
536 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
537 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
538 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
539 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
540 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
541 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
542 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
543 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
544 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
545 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
546 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
547 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
548 	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
549 };
550 
551 static ssize_t cci500_pmu_global_event_show(struct device *dev,
552 				struct device_attribute *attr, char *buf)
553 {
554 	struct dev_ext_attribute *eattr = container_of(attr,
555 					struct dev_ext_attribute, attr);
556 	/* Global events have single fixed source code */
557 	return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
558 				(unsigned long)eattr->var, CCI500_PORT_GLOBAL);
559 }
560 
561 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
562 					unsigned long hw_event)
563 {
564 	u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event);
565 	u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event);
566 	int if_type;
567 
568 	if (hw_event & ~CCI500_PMU_EVENT_MASK)
569 		return -ENOENT;
570 
571 	switch (ev_source) {
572 	case CCI500_PORT_S0:
573 	case CCI500_PORT_S1:
574 	case CCI500_PORT_S2:
575 	case CCI500_PORT_S3:
576 	case CCI500_PORT_S4:
577 	case CCI500_PORT_S5:
578 	case CCI500_PORT_S6:
579 		if_type = CCI_IF_SLAVE;
580 		break;
581 	case CCI500_PORT_M0:
582 	case CCI500_PORT_M1:
583 	case CCI500_PORT_M2:
584 	case CCI500_PORT_M3:
585 	case CCI500_PORT_M4:
586 	case CCI500_PORT_M5:
587 		if_type = CCI_IF_MASTER;
588 		break;
589 	case CCI500_PORT_GLOBAL:
590 		if_type = CCI_IF_GLOBAL;
591 		break;
592 	default:
593 		return -ENOENT;
594 	}
595 
596 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
597 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
598 		return hw_event;
599 
600 	return -ENOENT;
601 }
602 #endif	/* CONFIG_ARM_CCI500_PMU */
603 
604 static ssize_t cci_pmu_format_show(struct device *dev,
605 			struct device_attribute *attr, char *buf)
606 {
607 	struct dev_ext_attribute *eattr = container_of(attr,
608 				struct dev_ext_attribute, attr);
609 	return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
610 }
611 
612 static ssize_t cci_pmu_event_show(struct device *dev,
613 			struct device_attribute *attr, char *buf)
614 {
615 	struct dev_ext_attribute *eattr = container_of(attr,
616 				struct dev_ext_attribute, attr);
617 	/* source parameter is mandatory for normal PMU events */
618 	return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
619 					 (unsigned long)eattr->var);
620 }
621 
622 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
623 {
624 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
625 }
626 
627 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
628 {
629 	return readl_relaxed(cci_pmu->base +
630 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
631 }
632 
633 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
634 			       int idx, unsigned int offset)
635 {
636 	return writel_relaxed(value, cci_pmu->base +
637 			      CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
638 }
639 
640 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
641 {
642 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
643 }
644 
645 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
646 {
647 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
648 }
649 
650 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
651 {
652 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
653 }
654 
655 /*
656  * Returns the number of programmable counters actually implemented
657  * by the cci
658  */
659 static u32 pmu_get_max_counters(void)
660 {
661 	return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
662 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
663 }
664 
665 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
666 {
667 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
668 	unsigned long cci_event = event->hw.config_base;
669 	int idx;
670 
671 	if (cci_pmu->model->get_event_idx)
672 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
673 
674 	/* Generic code to find an unused idx from the mask */
675 	for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
676 		if (!test_and_set_bit(idx, hw->used_mask))
677 			return idx;
678 
679 	/* No counters available */
680 	return -EAGAIN;
681 }
682 
683 static int pmu_map_event(struct perf_event *event)
684 {
685 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
686 
687 	if (event->attr.type < PERF_TYPE_MAX ||
688 			!cci_pmu->model->validate_hw_event)
689 		return -ENOENT;
690 
691 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
692 }
693 
694 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
695 {
696 	int i;
697 	struct platform_device *pmu_device = cci_pmu->plat_device;
698 
699 	if (unlikely(!pmu_device))
700 		return -ENODEV;
701 
702 	if (cci_pmu->nr_irqs < 1) {
703 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
704 		return -ENODEV;
705 	}
706 
707 	/*
708 	 * Register all available CCI PMU interrupts. In the interrupt handler
709 	 * we iterate over the counters checking for interrupt source (the
710 	 * overflowing counter) and clear it.
711 	 *
712 	 * This should allow handling of non-unique interrupt for the counters.
713 	 */
714 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
715 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
716 				"arm-cci-pmu", cci_pmu);
717 		if (err) {
718 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
719 				cci_pmu->irqs[i]);
720 			return err;
721 		}
722 
723 		set_bit(i, &cci_pmu->active_irqs);
724 	}
725 
726 	return 0;
727 }
728 
729 static void pmu_free_irq(struct cci_pmu *cci_pmu)
730 {
731 	int i;
732 
733 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
734 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
735 			continue;
736 
737 		free_irq(cci_pmu->irqs[i], cci_pmu);
738 	}
739 }
740 
741 static u32 pmu_read_counter(struct perf_event *event)
742 {
743 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
744 	struct hw_perf_event *hw_counter = &event->hw;
745 	int idx = hw_counter->idx;
746 	u32 value;
747 
748 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
749 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
750 		return 0;
751 	}
752 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
753 
754 	return value;
755 }
756 
757 static void pmu_write_counter(struct perf_event *event, u32 value)
758 {
759 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
760 	struct hw_perf_event *hw_counter = &event->hw;
761 	int idx = hw_counter->idx;
762 
763 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
764 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
765 	else
766 		pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
767 }
768 
769 static u64 pmu_event_update(struct perf_event *event)
770 {
771 	struct hw_perf_event *hwc = &event->hw;
772 	u64 delta, prev_raw_count, new_raw_count;
773 
774 	do {
775 		prev_raw_count = local64_read(&hwc->prev_count);
776 		new_raw_count = pmu_read_counter(event);
777 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
778 		 new_raw_count) != prev_raw_count);
779 
780 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
781 
782 	local64_add(delta, &event->count);
783 
784 	return new_raw_count;
785 }
786 
787 static void pmu_read(struct perf_event *event)
788 {
789 	pmu_event_update(event);
790 }
791 
792 void pmu_event_set_period(struct perf_event *event)
793 {
794 	struct hw_perf_event *hwc = &event->hw;
795 	/*
796 	 * The CCI PMU counters have a period of 2^32. To account for the
797 	 * possiblity of extreme interrupt latency we program for a period of
798 	 * half that. Hopefully we can handle the interrupt before another 2^31
799 	 * events occur and the counter overtakes its previous value.
800 	 */
801 	u64 val = 1ULL << 31;
802 	local64_set(&hwc->prev_count, val);
803 	pmu_write_counter(event, val);
804 }
805 
806 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
807 {
808 	unsigned long flags;
809 	struct cci_pmu *cci_pmu = dev;
810 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
811 	int idx, handled = IRQ_NONE;
812 
813 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
814 	/*
815 	 * Iterate over counters and update the corresponding perf events.
816 	 * This should work regardless of whether we have per-counter overflow
817 	 * interrupt or a combined overflow interrupt.
818 	 */
819 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
820 		struct perf_event *event = events->events[idx];
821 		struct hw_perf_event *hw_counter;
822 
823 		if (!event)
824 			continue;
825 
826 		hw_counter = &event->hw;
827 
828 		/* Did this counter overflow? */
829 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
830 		      CCI_PMU_OVRFLW_FLAG))
831 			continue;
832 
833 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
834 							CCI_PMU_OVRFLW);
835 
836 		pmu_event_update(event);
837 		pmu_event_set_period(event);
838 		handled = IRQ_HANDLED;
839 	}
840 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
841 
842 	return IRQ_RETVAL(handled);
843 }
844 
845 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
846 {
847 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
848 	if (ret) {
849 		pmu_free_irq(cci_pmu);
850 		return ret;
851 	}
852 	return 0;
853 }
854 
855 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
856 {
857 	pmu_free_irq(cci_pmu);
858 }
859 
860 static void hw_perf_event_destroy(struct perf_event *event)
861 {
862 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
863 	atomic_t *active_events = &cci_pmu->active_events;
864 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
865 
866 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
867 		cci_pmu_put_hw(cci_pmu);
868 		mutex_unlock(reserve_mutex);
869 	}
870 }
871 
872 static void cci_pmu_enable(struct pmu *pmu)
873 {
874 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
875 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
876 	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
877 	unsigned long flags;
878 	u32 val;
879 
880 	if (!enabled)
881 		return;
882 
883 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
884 
885 	/* Enable all the PMU counters. */
886 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
887 	writel(val, cci_ctrl_base + CCI_PMCR);
888 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
889 
890 }
891 
892 static void cci_pmu_disable(struct pmu *pmu)
893 {
894 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
895 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
896 	unsigned long flags;
897 	u32 val;
898 
899 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
900 
901 	/* Disable all the PMU counters. */
902 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
903 	writel(val, cci_ctrl_base + CCI_PMCR);
904 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
905 }
906 
907 /*
908  * Check if the idx represents a non-programmable counter.
909  * All the fixed event counters are mapped before the programmable
910  * counters.
911  */
912 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
913 {
914 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
915 }
916 
917 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
918 {
919 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
920 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
921 	struct hw_perf_event *hwc = &event->hw;
922 	int idx = hwc->idx;
923 	unsigned long flags;
924 
925 	/*
926 	 * To handle interrupt latency, we always reprogram the period
927 	 * regardlesss of PERF_EF_RELOAD.
928 	 */
929 	if (pmu_flags & PERF_EF_RELOAD)
930 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
931 
932 	hwc->state = 0;
933 
934 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
935 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
936 		return;
937 	}
938 
939 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
940 
941 	/* Configure the counter unless you are counting a fixed event */
942 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
943 		pmu_set_event(cci_pmu, idx, hwc->config_base);
944 
945 	pmu_event_set_period(event);
946 	pmu_enable_counter(cci_pmu, idx);
947 
948 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
949 }
950 
951 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
952 {
953 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
954 	struct hw_perf_event *hwc = &event->hw;
955 	int idx = hwc->idx;
956 
957 	if (hwc->state & PERF_HES_STOPPED)
958 		return;
959 
960 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
961 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
962 		return;
963 	}
964 
965 	/*
966 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
967 	 * cci_pmu_start()
968 	 */
969 	pmu_disable_counter(cci_pmu, idx);
970 	pmu_event_update(event);
971 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
972 }
973 
974 static int cci_pmu_add(struct perf_event *event, int flags)
975 {
976 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
977 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
978 	struct hw_perf_event *hwc = &event->hw;
979 	int idx;
980 	int err = 0;
981 
982 	perf_pmu_disable(event->pmu);
983 
984 	/* If we don't have a space for the counter then finish early. */
985 	idx = pmu_get_event_idx(hw_events, event);
986 	if (idx < 0) {
987 		err = idx;
988 		goto out;
989 	}
990 
991 	event->hw.idx = idx;
992 	hw_events->events[idx] = event;
993 
994 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
995 	if (flags & PERF_EF_START)
996 		cci_pmu_start(event, PERF_EF_RELOAD);
997 
998 	/* Propagate our changes to the userspace mapping. */
999 	perf_event_update_userpage(event);
1000 
1001 out:
1002 	perf_pmu_enable(event->pmu);
1003 	return err;
1004 }
1005 
1006 static void cci_pmu_del(struct perf_event *event, int flags)
1007 {
1008 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1009 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1010 	struct hw_perf_event *hwc = &event->hw;
1011 	int idx = hwc->idx;
1012 
1013 	cci_pmu_stop(event, PERF_EF_UPDATE);
1014 	hw_events->events[idx] = NULL;
1015 	clear_bit(idx, hw_events->used_mask);
1016 
1017 	perf_event_update_userpage(event);
1018 }
1019 
1020 static int
1021 validate_event(struct pmu *cci_pmu,
1022                struct cci_pmu_hw_events *hw_events,
1023                struct perf_event *event)
1024 {
1025 	if (is_software_event(event))
1026 		return 1;
1027 
1028 	/*
1029 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1030 	 * core perf code won't check that the pmu->ctx == leader->ctx
1031 	 * until after pmu->event_init(event).
1032 	 */
1033 	if (event->pmu != cci_pmu)
1034 		return 0;
1035 
1036 	if (event->state < PERF_EVENT_STATE_OFF)
1037 		return 1;
1038 
1039 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1040 		return 1;
1041 
1042 	return pmu_get_event_idx(hw_events, event) >= 0;
1043 }
1044 
1045 static int
1046 validate_group(struct perf_event *event)
1047 {
1048 	struct perf_event *sibling, *leader = event->group_leader;
1049 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1050 	unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
1051 	struct cci_pmu_hw_events fake_pmu = {
1052 		/*
1053 		 * Initialise the fake PMU. We only need to populate the
1054 		 * used_mask for the purposes of validation.
1055 		 */
1056 		.used_mask = mask,
1057 	};
1058 	memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1059 
1060 	if (!validate_event(event->pmu, &fake_pmu, leader))
1061 		return -EINVAL;
1062 
1063 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
1064 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1065 			return -EINVAL;
1066 	}
1067 
1068 	if (!validate_event(event->pmu, &fake_pmu, event))
1069 		return -EINVAL;
1070 
1071 	return 0;
1072 }
1073 
1074 static int
1075 __hw_perf_event_init(struct perf_event *event)
1076 {
1077 	struct hw_perf_event *hwc = &event->hw;
1078 	int mapping;
1079 
1080 	mapping = pmu_map_event(event);
1081 
1082 	if (mapping < 0) {
1083 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1084 			 event->attr.config);
1085 		return mapping;
1086 	}
1087 
1088 	/*
1089 	 * We don't assign an index until we actually place the event onto
1090 	 * hardware. Use -1 to signify that we haven't decided where to put it
1091 	 * yet.
1092 	 */
1093 	hwc->idx		= -1;
1094 	hwc->config_base	= 0;
1095 	hwc->config		= 0;
1096 	hwc->event_base		= 0;
1097 
1098 	/*
1099 	 * Store the event encoding into the config_base field.
1100 	 */
1101 	hwc->config_base	    |= (unsigned long)mapping;
1102 
1103 	/*
1104 	 * Limit the sample_period to half of the counter width. That way, the
1105 	 * new counter value is far less likely to overtake the previous one
1106 	 * unless you have some serious IRQ latency issues.
1107 	 */
1108 	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
1109 	hwc->last_period    = hwc->sample_period;
1110 	local64_set(&hwc->period_left, hwc->sample_period);
1111 
1112 	if (event->group_leader != event) {
1113 		if (validate_group(event) != 0)
1114 			return -EINVAL;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int cci_pmu_event_init(struct perf_event *event)
1121 {
1122 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1123 	atomic_t *active_events = &cci_pmu->active_events;
1124 	int err = 0;
1125 	int cpu;
1126 
1127 	if (event->attr.type != event->pmu->type)
1128 		return -ENOENT;
1129 
1130 	/* Shared by all CPUs, no meaningful state to sample */
1131 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1132 		return -EOPNOTSUPP;
1133 
1134 	/* We have no filtering of any kind */
1135 	if (event->attr.exclude_user	||
1136 	    event->attr.exclude_kernel	||
1137 	    event->attr.exclude_hv	||
1138 	    event->attr.exclude_idle	||
1139 	    event->attr.exclude_host	||
1140 	    event->attr.exclude_guest)
1141 		return -EINVAL;
1142 
1143 	/*
1144 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1145 	 * and rewrite its affinity dynamically rather than having perf core
1146 	 * handle cpu == -1 and pid == -1 for this case.
1147 	 *
1148 	 * The perf core will pin online CPUs for the duration of this call and
1149 	 * the event being installed into its context, so the PMU's CPU can't
1150 	 * change under our feet.
1151 	 */
1152 	cpu = cpumask_first(&cci_pmu->cpus);
1153 	if (event->cpu < 0 || cpu < 0)
1154 		return -EINVAL;
1155 	event->cpu = cpu;
1156 
1157 	event->destroy = hw_perf_event_destroy;
1158 	if (!atomic_inc_not_zero(active_events)) {
1159 		mutex_lock(&cci_pmu->reserve_mutex);
1160 		if (atomic_read(active_events) == 0)
1161 			err = cci_pmu_get_hw(cci_pmu);
1162 		if (!err)
1163 			atomic_inc(active_events);
1164 		mutex_unlock(&cci_pmu->reserve_mutex);
1165 	}
1166 	if (err)
1167 		return err;
1168 
1169 	err = __hw_perf_event_init(event);
1170 	if (err)
1171 		hw_perf_event_destroy(event);
1172 
1173 	return err;
1174 }
1175 
1176 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1177 				     struct device_attribute *attr, char *buf)
1178 {
1179 	struct dev_ext_attribute *eattr = container_of(attr,
1180 					struct dev_ext_attribute, attr);
1181 	struct cci_pmu *cci_pmu = eattr->var;
1182 
1183 	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
1184 			  cpumask_pr_args(&cci_pmu->cpus));
1185 	buf[n++] = '\n';
1186 	buf[n] = '\0';
1187 	return n;
1188 }
1189 
1190 static struct dev_ext_attribute pmu_cpumask_attr = {
1191 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL),
1192 	NULL,		/* Populated in cci_pmu_init */
1193 };
1194 
1195 static struct attribute *pmu_attrs[] = {
1196 	&pmu_cpumask_attr.attr.attr,
1197 	NULL,
1198 };
1199 
1200 static struct attribute_group pmu_attr_group = {
1201 	.attrs = pmu_attrs,
1202 };
1203 
1204 static struct attribute_group pmu_format_attr_group = {
1205 	.name = "format",
1206 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1207 };
1208 
1209 static struct attribute_group pmu_event_attr_group = {
1210 	.name = "events",
1211 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1212 };
1213 
1214 static const struct attribute_group *pmu_attr_groups[] = {
1215 	&pmu_attr_group,
1216 	&pmu_format_attr_group,
1217 	&pmu_event_attr_group,
1218 	NULL
1219 };
1220 
1221 static struct attribute **alloc_attrs(struct platform_device *pdev,
1222 				int n, struct dev_ext_attribute *source)
1223 {
1224 	int i;
1225 	struct attribute **attrs;
1226 
1227 	/* Alloc n + 1 (for terminating NULL) */
1228 	attrs  = devm_kcalloc(&pdev->dev, n + 1, sizeof(struct attribute *),
1229 								GFP_KERNEL);
1230 	if (!attrs)
1231 		return attrs;
1232 	for(i = 0; i < n; i++)
1233 		attrs[i] = &source[i].attr.attr;
1234 	return attrs;
1235 }
1236 
1237 static int cci_pmu_init_attrs(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1238 {
1239 	const struct cci_pmu_model *model = cci_pmu->model;
1240 	struct attribute **attrs;
1241 
1242 	/*
1243 	 * All allocations below are managed, hence doesn't need to be
1244 	 * free'd explicitly in case of an error.
1245 	 */
1246 
1247 	if (model->nevent_attrs) {
1248 		attrs = alloc_attrs(pdev, model->nevent_attrs,
1249 						model->event_attrs);
1250 		if (!attrs)
1251 			return -ENOMEM;
1252 		pmu_event_attr_group.attrs = attrs;
1253 	}
1254 	if (model->nformat_attrs) {
1255 		attrs = alloc_attrs(pdev, model->nformat_attrs,
1256 						 model->format_attrs);
1257 		if (!attrs)
1258 			return -ENOMEM;
1259 		pmu_format_attr_group.attrs = attrs;
1260 	}
1261 	pmu_cpumask_attr.var = cci_pmu;
1262 
1263 	return 0;
1264 }
1265 
1266 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1267 {
1268 	char *name = cci_pmu->model->name;
1269 	u32 num_cntrs;
1270 	int rc;
1271 
1272 	rc = cci_pmu_init_attrs(cci_pmu, pdev);
1273 	if (rc)
1274 		return rc;
1275 
1276 	cci_pmu->pmu = (struct pmu) {
1277 		.name		= cci_pmu->model->name,
1278 		.task_ctx_nr	= perf_invalid_context,
1279 		.pmu_enable	= cci_pmu_enable,
1280 		.pmu_disable	= cci_pmu_disable,
1281 		.event_init	= cci_pmu_event_init,
1282 		.add		= cci_pmu_add,
1283 		.del		= cci_pmu_del,
1284 		.start		= cci_pmu_start,
1285 		.stop		= cci_pmu_stop,
1286 		.read		= pmu_read,
1287 		.attr_groups	= pmu_attr_groups,
1288 	};
1289 
1290 	cci_pmu->plat_device = pdev;
1291 	num_cntrs = pmu_get_max_counters();
1292 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1293 		dev_warn(&pdev->dev,
1294 			"PMU implements more counters(%d) than supported by"
1295 			" the model(%d), truncated.",
1296 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1297 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1298 	}
1299 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1300 
1301 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1302 }
1303 
1304 static int cci_pmu_cpu_notifier(struct notifier_block *self,
1305 				unsigned long action, void *hcpu)
1306 {
1307 	struct cci_pmu *cci_pmu = container_of(self,
1308 					struct cci_pmu, cpu_nb);
1309 	unsigned int cpu = (long)hcpu;
1310 	unsigned int target;
1311 
1312 	switch (action & ~CPU_TASKS_FROZEN) {
1313 	case CPU_DOWN_PREPARE:
1314 		if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
1315 			break;
1316 		target = cpumask_any_but(cpu_online_mask, cpu);
1317 		if (target < 0) // UP, last CPU
1318 			break;
1319 		/*
1320 		 * TODO: migrate context once core races on event->ctx have
1321 		 * been fixed.
1322 		 */
1323 		cpumask_set_cpu(target, &cci_pmu->cpus);
1324 	default:
1325 		break;
1326 	}
1327 
1328 	return NOTIFY_OK;
1329 }
1330 
1331 static struct cci_pmu_model cci_pmu_models[] = {
1332 #ifdef CONFIG_ARM_CCI400_PMU
1333 	[CCI400_R0] = {
1334 		.name = "CCI_400",
1335 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1336 		.num_hw_cntrs = 4,
1337 		.cntr_size = SZ_4K,
1338 		.format_attrs = cci400_pmu_format_attrs,
1339 		.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
1340 		.event_attrs = cci400_r0_pmu_event_attrs,
1341 		.nevent_attrs = ARRAY_SIZE(cci400_r0_pmu_event_attrs),
1342 		.event_ranges = {
1343 			[CCI_IF_SLAVE] = {
1344 				CCI400_R0_SLAVE_PORT_MIN_EV,
1345 				CCI400_R0_SLAVE_PORT_MAX_EV,
1346 			},
1347 			[CCI_IF_MASTER] = {
1348 				CCI400_R0_MASTER_PORT_MIN_EV,
1349 				CCI400_R0_MASTER_PORT_MAX_EV,
1350 			},
1351 		},
1352 		.validate_hw_event = cci400_validate_hw_event,
1353 		.get_event_idx = cci400_get_event_idx,
1354 	},
1355 	[CCI400_R1] = {
1356 		.name = "CCI_400_r1",
1357 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1358 		.num_hw_cntrs = 4,
1359 		.cntr_size = SZ_4K,
1360 		.format_attrs = cci400_pmu_format_attrs,
1361 		.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
1362 		.event_attrs = cci400_r1_pmu_event_attrs,
1363 		.nevent_attrs = ARRAY_SIZE(cci400_r1_pmu_event_attrs),
1364 		.event_ranges = {
1365 			[CCI_IF_SLAVE] = {
1366 				CCI400_R1_SLAVE_PORT_MIN_EV,
1367 				CCI400_R1_SLAVE_PORT_MAX_EV,
1368 			},
1369 			[CCI_IF_MASTER] = {
1370 				CCI400_R1_MASTER_PORT_MIN_EV,
1371 				CCI400_R1_MASTER_PORT_MAX_EV,
1372 			},
1373 		},
1374 		.validate_hw_event = cci400_validate_hw_event,
1375 		.get_event_idx = cci400_get_event_idx,
1376 	},
1377 #endif
1378 #ifdef CONFIG_ARM_CCI500_PMU
1379 	[CCI500_R0] = {
1380 		.name = "CCI_500",
1381 		.fixed_hw_cntrs = 0,
1382 		.num_hw_cntrs = 8,
1383 		.cntr_size = SZ_64K,
1384 		.format_attrs = cci500_pmu_format_attrs,
1385 		.nformat_attrs = ARRAY_SIZE(cci500_pmu_format_attrs),
1386 		.event_attrs = cci500_pmu_event_attrs,
1387 		.nevent_attrs = ARRAY_SIZE(cci500_pmu_event_attrs),
1388 		.event_ranges = {
1389 			[CCI_IF_SLAVE] = {
1390 				CCI500_SLAVE_PORT_MIN_EV,
1391 				CCI500_SLAVE_PORT_MAX_EV,
1392 			},
1393 			[CCI_IF_MASTER] = {
1394 				CCI500_MASTER_PORT_MIN_EV,
1395 				CCI500_MASTER_PORT_MAX_EV,
1396 			},
1397 			[CCI_IF_GLOBAL] = {
1398 				CCI500_GLOBAL_PORT_MIN_EV,
1399 				CCI500_GLOBAL_PORT_MAX_EV,
1400 			},
1401 		},
1402 		.validate_hw_event = cci500_validate_hw_event,
1403 	},
1404 #endif
1405 };
1406 
1407 static const struct of_device_id arm_cci_pmu_matches[] = {
1408 #ifdef CONFIG_ARM_CCI400_PMU
1409 	{
1410 		.compatible = "arm,cci-400-pmu",
1411 		.data	= NULL,
1412 	},
1413 	{
1414 		.compatible = "arm,cci-400-pmu,r0",
1415 		.data	= &cci_pmu_models[CCI400_R0],
1416 	},
1417 	{
1418 		.compatible = "arm,cci-400-pmu,r1",
1419 		.data	= &cci_pmu_models[CCI400_R1],
1420 	},
1421 #endif
1422 #ifdef CONFIG_ARM_CCI500_PMU
1423 	{
1424 		.compatible = "arm,cci-500-pmu,r0",
1425 		.data = &cci_pmu_models[CCI500_R0],
1426 	},
1427 #endif
1428 	{},
1429 };
1430 
1431 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1432 {
1433 	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1434 							pdev->dev.of_node);
1435 	if (!match)
1436 		return NULL;
1437 	if (match->data)
1438 		return match->data;
1439 
1440 	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1441 			 "requires secure access to CCI registers");
1442 	return probe_cci_model(pdev);
1443 }
1444 
1445 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1446 {
1447 	int i;
1448 
1449 	for (i = 0; i < nr_irqs; i++)
1450 		if (irq == irqs[i])
1451 			return true;
1452 
1453 	return false;
1454 }
1455 
1456 static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
1457 {
1458 	struct cci_pmu *cci_pmu;
1459 	const struct cci_pmu_model *model;
1460 
1461 	/*
1462 	 * All allocations are devm_* hence we don't have to free
1463 	 * them explicitly on an error, as it would end up in driver
1464 	 * detach.
1465 	 */
1466 	model = get_cci_model(pdev);
1467 	if (!model) {
1468 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
1469 		return ERR_PTR(-ENODEV);
1470 	}
1471 
1472 	cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1473 	if (!cci_pmu)
1474 		return ERR_PTR(-ENOMEM);
1475 
1476 	cci_pmu->model = model;
1477 	cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1478 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1479 	if (!cci_pmu->irqs)
1480 		return ERR_PTR(-ENOMEM);
1481 	cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1482 					     CCI_PMU_MAX_HW_CNTRS(model),
1483 					     sizeof(*cci_pmu->hw_events.events),
1484 					     GFP_KERNEL);
1485 	if (!cci_pmu->hw_events.events)
1486 		return ERR_PTR(-ENOMEM);
1487 	cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1488 						BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1489 						sizeof(*cci_pmu->hw_events.used_mask),
1490 						GFP_KERNEL);
1491 	if (!cci_pmu->hw_events.used_mask)
1492 		return ERR_PTR(-ENOMEM);
1493 
1494 	return cci_pmu;
1495 }
1496 
1497 
1498 static int cci_pmu_probe(struct platform_device *pdev)
1499 {
1500 	struct resource *res;
1501 	struct cci_pmu *cci_pmu;
1502 	int i, ret, irq;
1503 
1504 	cci_pmu = cci_pmu_alloc(pdev);
1505 	if (IS_ERR(cci_pmu))
1506 		return PTR_ERR(cci_pmu);
1507 
1508 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1509 	cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1510 	if (IS_ERR(cci_pmu->base))
1511 		return -ENOMEM;
1512 
1513 	/*
1514 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1515 	 * together to a common interrupt.
1516 	 */
1517 	cci_pmu->nr_irqs = 0;
1518 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1519 		irq = platform_get_irq(pdev, i);
1520 		if (irq < 0)
1521 			break;
1522 
1523 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1524 			continue;
1525 
1526 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1527 	}
1528 
1529 	/*
1530 	 * Ensure that the device tree has as many interrupts as the number
1531 	 * of counters.
1532 	 */
1533 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1534 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1535 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1536 		return -EINVAL;
1537 	}
1538 
1539 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1540 	mutex_init(&cci_pmu->reserve_mutex);
1541 	atomic_set(&cci_pmu->active_events, 0);
1542 	cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
1543 
1544 	cci_pmu->cpu_nb = (struct notifier_block) {
1545 		.notifier_call	= cci_pmu_cpu_notifier,
1546 		/*
1547 		 * to migrate uncore events, our notifier should be executed
1548 		 * before perf core's notifier.
1549 		 */
1550 		.priority	= CPU_PRI_PERF + 1,
1551 	};
1552 
1553 	ret = register_cpu_notifier(&cci_pmu->cpu_nb);
1554 	if (ret)
1555 		return ret;
1556 
1557 	ret = cci_pmu_init(cci_pmu, pdev);
1558 	if (ret) {
1559 		unregister_cpu_notifier(&cci_pmu->cpu_nb);
1560 		return ret;
1561 	}
1562 
1563 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1564 	return 0;
1565 }
1566 
1567 static int cci_platform_probe(struct platform_device *pdev)
1568 {
1569 	if (!cci_probed())
1570 		return -ENODEV;
1571 
1572 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1573 }
1574 
1575 static struct platform_driver cci_pmu_driver = {
1576 	.driver = {
1577 		   .name = DRIVER_NAME_PMU,
1578 		   .of_match_table = arm_cci_pmu_matches,
1579 		  },
1580 	.probe = cci_pmu_probe,
1581 };
1582 
1583 static struct platform_driver cci_platform_driver = {
1584 	.driver = {
1585 		   .name = DRIVER_NAME,
1586 		   .of_match_table = arm_cci_matches,
1587 		  },
1588 	.probe = cci_platform_probe,
1589 };
1590 
1591 static int __init cci_platform_init(void)
1592 {
1593 	int ret;
1594 
1595 	ret = platform_driver_register(&cci_pmu_driver);
1596 	if (ret)
1597 		return ret;
1598 
1599 	return platform_driver_register(&cci_platform_driver);
1600 }
1601 
1602 #else /* !CONFIG_ARM_CCI_PMU */
1603 
1604 static int __init cci_platform_init(void)
1605 {
1606 	return 0;
1607 }
1608 
1609 #endif /* CONFIG_ARM_CCI_PMU */
1610 
1611 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1612 
1613 #define CCI_PORT_CTRL		0x0
1614 #define CCI_CTRL_STATUS		0xc
1615 
1616 #define CCI_ENABLE_SNOOP_REQ	0x1
1617 #define CCI_ENABLE_DVM_REQ	0x2
1618 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1619 
1620 enum cci_ace_port_type {
1621 	ACE_INVALID_PORT = 0x0,
1622 	ACE_PORT,
1623 	ACE_LITE_PORT,
1624 };
1625 
1626 struct cci_ace_port {
1627 	void __iomem *base;
1628 	unsigned long phys;
1629 	enum cci_ace_port_type type;
1630 	struct device_node *dn;
1631 };
1632 
1633 static struct cci_ace_port *ports;
1634 static unsigned int nb_cci_ports;
1635 
1636 struct cpu_port {
1637 	u64 mpidr;
1638 	u32 port;
1639 };
1640 
1641 /*
1642  * Use the port MSB as valid flag, shift can be made dynamic
1643  * by computing number of bits required for port indexes.
1644  * Code disabling CCI cpu ports runs with D-cache invalidated
1645  * and SCTLR bit clear so data accesses must be kept to a minimum
1646  * to improve performance; for now shift is left static to
1647  * avoid one more data access while disabling the CCI port.
1648  */
1649 #define PORT_VALID_SHIFT	31
1650 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
1651 
1652 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1653 {
1654 	port->port = PORT_VALID | index;
1655 	port->mpidr = mpidr;
1656 }
1657 
1658 static inline bool cpu_port_is_valid(struct cpu_port *port)
1659 {
1660 	return !!(port->port & PORT_VALID);
1661 }
1662 
1663 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1664 {
1665 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1666 }
1667 
1668 static struct cpu_port cpu_port[NR_CPUS];
1669 
1670 /**
1671  * __cci_ace_get_port - Function to retrieve the port index connected to
1672  *			a cpu or device.
1673  *
1674  * @dn: device node of the device to look-up
1675  * @type: port type
1676  *
1677  * Return value:
1678  *	- CCI port index if success
1679  *	- -ENODEV if failure
1680  */
1681 static int __cci_ace_get_port(struct device_node *dn, int type)
1682 {
1683 	int i;
1684 	bool ace_match;
1685 	struct device_node *cci_portn;
1686 
1687 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1688 	for (i = 0; i < nb_cci_ports; i++) {
1689 		ace_match = ports[i].type == type;
1690 		if (ace_match && cci_portn == ports[i].dn)
1691 			return i;
1692 	}
1693 	return -ENODEV;
1694 }
1695 
1696 int cci_ace_get_port(struct device_node *dn)
1697 {
1698 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1699 }
1700 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1701 
1702 static void cci_ace_init_ports(void)
1703 {
1704 	int port, cpu;
1705 	struct device_node *cpun;
1706 
1707 	/*
1708 	 * Port index look-up speeds up the function disabling ports by CPU,
1709 	 * since the logical to port index mapping is done once and does
1710 	 * not change after system boot.
1711 	 * The stashed index array is initialized for all possible CPUs
1712 	 * at probe time.
1713 	 */
1714 	for_each_possible_cpu(cpu) {
1715 		/* too early to use cpu->of_node */
1716 		cpun = of_get_cpu_node(cpu, NULL);
1717 
1718 		if (WARN(!cpun, "Missing cpu device node\n"))
1719 			continue;
1720 
1721 		port = __cci_ace_get_port(cpun, ACE_PORT);
1722 		if (port < 0)
1723 			continue;
1724 
1725 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1726 	}
1727 
1728 	for_each_possible_cpu(cpu) {
1729 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1730 			"CPU %u does not have an associated CCI port\n",
1731 			cpu);
1732 	}
1733 }
1734 /*
1735  * Functions to enable/disable a CCI interconnect slave port
1736  *
1737  * They are called by low-level power management code to disable slave
1738  * interfaces snoops and DVM broadcast.
1739  * Since they may execute with cache data allocation disabled and
1740  * after the caches have been cleaned and invalidated the functions provide
1741  * no explicit locking since they may run with D-cache disabled, so normal
1742  * cacheable kernel locks based on ldrex/strex may not work.
1743  * Locking has to be provided by BSP implementations to ensure proper
1744  * operations.
1745  */
1746 
1747 /**
1748  * cci_port_control() - function to control a CCI port
1749  *
1750  * @port: index of the port to setup
1751  * @enable: if true enables the port, if false disables it
1752  */
1753 static void notrace cci_port_control(unsigned int port, bool enable)
1754 {
1755 	void __iomem *base = ports[port].base;
1756 
1757 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1758 	/*
1759 	 * This function is called from power down procedures
1760 	 * and must not execute any instruction that might
1761 	 * cause the processor to be put in a quiescent state
1762 	 * (eg wfi). Hence, cpu_relax() can not be added to this
1763 	 * read loop to optimize power, since it might hide possibly
1764 	 * disruptive operations.
1765 	 */
1766 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1767 			;
1768 }
1769 
1770 /**
1771  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1772  *			       reference
1773  *
1774  * @mpidr: mpidr of the CPU whose CCI port should be disabled
1775  *
1776  * Disabling a CCI port for a CPU implies disabling the CCI port
1777  * controlling that CPU cluster. Code disabling CPU CCI ports
1778  * must make sure that the CPU running the code is the last active CPU
1779  * in the cluster ie all other CPUs are quiescent in a low power state.
1780  *
1781  * Return:
1782  *	0 on success
1783  *	-ENODEV on port look-up failure
1784  */
1785 int notrace cci_disable_port_by_cpu(u64 mpidr)
1786 {
1787 	int cpu;
1788 	bool is_valid;
1789 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1790 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1791 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1792 			cci_port_control(cpu_port[cpu].port, false);
1793 			return 0;
1794 		}
1795 	}
1796 	return -ENODEV;
1797 }
1798 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1799 
1800 /**
1801  * cci_enable_port_for_self() - enable a CCI port for calling CPU
1802  *
1803  * Enabling a CCI port for the calling CPU implies enabling the CCI
1804  * port controlling that CPU's cluster. Caller must make sure that the
1805  * CPU running the code is the first active CPU in the cluster and all
1806  * other CPUs are quiescent in a low power state  or waiting for this CPU
1807  * to complete the CCI initialization.
1808  *
1809  * Because this is called when the MMU is still off and with no stack,
1810  * the code must be position independent and ideally rely on callee
1811  * clobbered registers only.  To achieve this we must code this function
1812  * entirely in assembler.
1813  *
1814  * On success this returns with the proper CCI port enabled.  In case of
1815  * any failure this never returns as the inability to enable the CCI is
1816  * fatal and there is no possible recovery at this stage.
1817  */
1818 asmlinkage void __naked cci_enable_port_for_self(void)
1819 {
1820 	asm volatile ("\n"
1821 "	.arch armv7-a\n"
1822 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
1823 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1824 "	adr	r1, 5f \n"
1825 "	ldr	r2, [r1] \n"
1826 "	add	r1, r1, r2		@ &cpu_port \n"
1827 "	add	ip, r1, %[sizeof_cpu_port] \n"
1828 
1829 	/* Loop over the cpu_port array looking for a matching MPIDR */
1830 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1831 "	cmp	r2, r0 			@ compare MPIDR \n"
1832 "	bne	2f \n"
1833 
1834 	/* Found a match, now test port validity */
1835 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
1836 "	tst	r3, #"__stringify(PORT_VALID)" \n"
1837 "	bne	3f \n"
1838 
1839 	/* no match, loop with the next cpu_port entry */
1840 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
1841 "	cmp	r1, ip			@ done? \n"
1842 "	blo	1b \n"
1843 
1844 	/* CCI port not found -- cheaply try to stall this CPU */
1845 "cci_port_not_found: \n"
1846 "	wfi \n"
1847 "	wfe \n"
1848 "	b	cci_port_not_found \n"
1849 
1850 	/* Use matched port index to look up the corresponding ports entry */
1851 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
1852 "	adr	r0, 6f \n"
1853 "	ldmia	r0, {r1, r2} \n"
1854 "	sub	r1, r1, r0 		@ virt - phys \n"
1855 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
1856 "	mov	r2, %[sizeof_struct_ace_port] \n"
1857 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
1858 "	sub	r0, r0, r1		@ virt_to_phys() \n"
1859 
1860 	/* Enable the CCI port */
1861 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
1862 "	mov	r3, %[cci_enable_req]\n"
1863 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1864 
1865 	/* poll the status reg for completion */
1866 "	adr	r1, 7f \n"
1867 "	ldr	r0, [r1] \n"
1868 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
1869 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1870 "	tst	r1, %[cci_control_status_bits] \n"
1871 "	bne	4b \n"
1872 
1873 "	mov	r0, #0 \n"
1874 "	bx	lr \n"
1875 
1876 "	.align	2 \n"
1877 "5:	.word	cpu_port - . \n"
1878 "6:	.word	. \n"
1879 "	.word	ports - 6b \n"
1880 "7:	.word	cci_ctrl_phys - . \n"
1881 	: :
1882 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
1883 	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1884 	[cci_control_status_bits] "i" cpu_to_le32(1),
1885 #ifndef __ARMEB__
1886 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1887 #else
1888 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1889 #endif
1890 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1891 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1892 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1893 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1894 
1895 	unreachable();
1896 }
1897 
1898 /**
1899  * __cci_control_port_by_device() - function to control a CCI port by device
1900  *				    reference
1901  *
1902  * @dn: device node pointer of the device whose CCI port should be
1903  *      controlled
1904  * @enable: if true enables the port, if false disables it
1905  *
1906  * Return:
1907  *	0 on success
1908  *	-ENODEV on port look-up failure
1909  */
1910 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1911 {
1912 	int port;
1913 
1914 	if (!dn)
1915 		return -ENODEV;
1916 
1917 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1918 	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1919 				dn->full_name))
1920 		return -ENODEV;
1921 	cci_port_control(port, enable);
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1925 
1926 /**
1927  * __cci_control_port_by_index() - function to control a CCI port by port index
1928  *
1929  * @port: port index previously retrieved with cci_ace_get_port()
1930  * @enable: if true enables the port, if false disables it
1931  *
1932  * Return:
1933  *	0 on success
1934  *	-ENODEV on port index out of range
1935  *	-EPERM if operation carried out on an ACE PORT
1936  */
1937 int notrace __cci_control_port_by_index(u32 port, bool enable)
1938 {
1939 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1940 		return -ENODEV;
1941 	/*
1942 	 * CCI control for ports connected to CPUS is extremely fragile
1943 	 * and must be made to go through a specific and controlled
1944 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1945 	 * indexing is therefore disabled for ACE ports.
1946 	 */
1947 	if (ports[port].type == ACE_PORT)
1948 		return -EPERM;
1949 
1950 	cci_port_control(port, enable);
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1954 
1955 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1956 	{.compatible = "arm,cci-400-ctrl-if", },
1957 	{},
1958 };
1959 
1960 static int cci_probe_ports(struct device_node *np)
1961 {
1962 	struct cci_nb_ports const *cci_config;
1963 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
1964 	struct device_node *cp;
1965 	struct resource res;
1966 	const char *match_str;
1967 	bool is_ace;
1968 
1969 
1970 	cci_config = of_match_node(arm_cci_matches, np)->data;
1971 	if (!cci_config)
1972 		return -ENODEV;
1973 
1974 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1975 
1976 	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1977 	if (!ports)
1978 		return -ENOMEM;
1979 
1980 	for_each_child_of_node(np, cp) {
1981 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1982 			continue;
1983 
1984 		i = nb_ace + nb_ace_lite;
1985 
1986 		if (i >= nb_cci_ports)
1987 			break;
1988 
1989 		if (of_property_read_string(cp, "interface-type",
1990 					&match_str)) {
1991 			WARN(1, "node %s missing interface-type property\n",
1992 				  cp->full_name);
1993 			continue;
1994 		}
1995 		is_ace = strcmp(match_str, "ace") == 0;
1996 		if (!is_ace && strcmp(match_str, "ace-lite")) {
1997 			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1998 					cp->full_name);
1999 			continue;
2000 		}
2001 
2002 		ret = of_address_to_resource(cp, 0, &res);
2003 		if (!ret) {
2004 			ports[i].base = ioremap(res.start, resource_size(&res));
2005 			ports[i].phys = res.start;
2006 		}
2007 		if (ret || !ports[i].base) {
2008 			WARN(1, "unable to ioremap CCI port %d\n", i);
2009 			continue;
2010 		}
2011 
2012 		if (is_ace) {
2013 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
2014 				continue;
2015 			ports[i].type = ACE_PORT;
2016 			++nb_ace;
2017 		} else {
2018 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2019 				continue;
2020 			ports[i].type = ACE_LITE_PORT;
2021 			++nb_ace_lite;
2022 		}
2023 		ports[i].dn = cp;
2024 	}
2025 
2026 	 /* initialize a stashed array of ACE ports to speed-up look-up */
2027 	cci_ace_init_ports();
2028 
2029 	/*
2030 	 * Multi-cluster systems may need this data when non-coherent, during
2031 	 * cluster power-up/power-down. Make sure it reaches main memory.
2032 	 */
2033 	sync_cache_w(&cci_ctrl_base);
2034 	sync_cache_w(&cci_ctrl_phys);
2035 	sync_cache_w(&ports);
2036 	sync_cache_w(&cpu_port);
2037 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2038 	pr_info("ARM CCI driver probed\n");
2039 
2040 	return 0;
2041 }
2042 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2043 static inline int cci_probe_ports(struct device_node *np)
2044 {
2045 	return 0;
2046 }
2047 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2048 
2049 static int cci_probe(void)
2050 {
2051 	int ret;
2052 	struct device_node *np;
2053 	struct resource res;
2054 
2055 	np = of_find_matching_node(NULL, arm_cci_matches);
2056 	if(!np || !of_device_is_available(np))
2057 		return -ENODEV;
2058 
2059 	ret = of_address_to_resource(np, 0, &res);
2060 	if (!ret) {
2061 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
2062 		cci_ctrl_phys =	res.start;
2063 	}
2064 	if (ret || !cci_ctrl_base) {
2065 		WARN(1, "unable to ioremap CCI ctrl\n");
2066 		return -ENXIO;
2067 	}
2068 
2069 	return cci_probe_ports(np);
2070 }
2071 
2072 static int cci_init_status = -EAGAIN;
2073 static DEFINE_MUTEX(cci_probing);
2074 
2075 static int cci_init(void)
2076 {
2077 	if (cci_init_status != -EAGAIN)
2078 		return cci_init_status;
2079 
2080 	mutex_lock(&cci_probing);
2081 	if (cci_init_status == -EAGAIN)
2082 		cci_init_status = cci_probe();
2083 	mutex_unlock(&cci_probing);
2084 	return cci_init_status;
2085 }
2086 
2087 /*
2088  * To sort out early init calls ordering a helper function is provided to
2089  * check if the CCI driver has beed initialized. Function check if the driver
2090  * has been initialized, if not it calls the init function that probes
2091  * the driver and updates the return value.
2092  */
2093 bool cci_probed(void)
2094 {
2095 	return cci_init() == 0;
2096 }
2097 EXPORT_SYMBOL_GPL(cci_probed);
2098 
2099 early_initcall(cci_init);
2100 core_initcall(cci_platform_init);
2101 MODULE_LICENSE("GPL");
2102 MODULE_DESCRIPTION("ARM CCI support");
2103