1 /* 2 * CCI cache coherent interconnect driver 3 * 4 * Copyright (C) 2013 ARM Ltd. 5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 #include <linux/arm-cci.h> 18 #include <linux/io.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_platform.h> 24 #include <linux/perf_event.h> 25 #include <linux/platform_device.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/smp_plat.h> 31 32 static void __iomem *cci_ctrl_base; 33 static unsigned long cci_ctrl_phys; 34 35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL 36 struct cci_nb_ports { 37 unsigned int nb_ace; 38 unsigned int nb_ace_lite; 39 }; 40 41 static const struct cci_nb_ports cci400_ports = { 42 .nb_ace = 2, 43 .nb_ace_lite = 3 44 }; 45 46 #define CCI400_PORTS_DATA (&cci400_ports) 47 #else 48 #define CCI400_PORTS_DATA (NULL) 49 #endif 50 51 static const struct of_device_id arm_cci_matches[] = { 52 #ifdef CONFIG_ARM_CCI400_COMMON 53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA }, 54 #endif 55 #ifdef CONFIG_ARM_CCI500_PMU 56 { .compatible = "arm,cci-500", }, 57 #endif 58 {}, 59 }; 60 61 #ifdef CONFIG_ARM_CCI_PMU 62 63 #define DRIVER_NAME "ARM-CCI" 64 #define DRIVER_NAME_PMU DRIVER_NAME " PMU" 65 66 #define CCI_PMCR 0x0100 67 #define CCI_PID2 0x0fe8 68 69 #define CCI_PMCR_CEN 0x00000001 70 #define CCI_PMCR_NCNT_MASK 0x0000f800 71 #define CCI_PMCR_NCNT_SHIFT 11 72 73 #define CCI_PID2_REV_MASK 0xf0 74 #define CCI_PID2_REV_SHIFT 4 75 76 #define CCI_PMU_EVT_SEL 0x000 77 #define CCI_PMU_CNTR 0x004 78 #define CCI_PMU_CNTR_CTRL 0x008 79 #define CCI_PMU_OVRFLW 0x00c 80 81 #define CCI_PMU_OVRFLW_FLAG 1 82 83 #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size) 84 #define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model)) 85 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) 86 #define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1) 87 88 #define CCI_PMU_MAX_HW_CNTRS(model) \ 89 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs) 90 91 /* Types of interfaces that can generate events */ 92 enum { 93 CCI_IF_SLAVE, 94 CCI_IF_MASTER, 95 #ifdef CONFIG_ARM_CCI500_PMU 96 CCI_IF_GLOBAL, 97 #endif 98 CCI_IF_MAX, 99 }; 100 101 struct event_range { 102 u32 min; 103 u32 max; 104 }; 105 106 struct cci_pmu_hw_events { 107 struct perf_event **events; 108 unsigned long *used_mask; 109 raw_spinlock_t pmu_lock; 110 }; 111 112 struct cci_pmu; 113 /* 114 * struct cci_pmu_model: 115 * @fixed_hw_cntrs - Number of fixed event counters 116 * @num_hw_cntrs - Maximum number of programmable event counters 117 * @cntr_size - Size of an event counter mapping 118 */ 119 struct cci_pmu_model { 120 char *name; 121 u32 fixed_hw_cntrs; 122 u32 num_hw_cntrs; 123 u32 cntr_size; 124 u64 nformat_attrs; 125 u64 nevent_attrs; 126 struct dev_ext_attribute *format_attrs; 127 struct dev_ext_attribute *event_attrs; 128 struct event_range event_ranges[CCI_IF_MAX]; 129 int (*validate_hw_event)(struct cci_pmu *, unsigned long); 130 int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long); 131 }; 132 133 static struct cci_pmu_model cci_pmu_models[]; 134 135 struct cci_pmu { 136 void __iomem *base; 137 struct pmu pmu; 138 int nr_irqs; 139 int *irqs; 140 unsigned long active_irqs; 141 const struct cci_pmu_model *model; 142 struct cci_pmu_hw_events hw_events; 143 struct platform_device *plat_device; 144 int num_cntrs; 145 atomic_t active_events; 146 struct mutex reserve_mutex; 147 struct notifier_block cpu_nb; 148 cpumask_t cpus; 149 }; 150 151 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) 152 153 enum cci_models { 154 #ifdef CONFIG_ARM_CCI400_PMU 155 CCI400_R0, 156 CCI400_R1, 157 #endif 158 #ifdef CONFIG_ARM_CCI500_PMU 159 CCI500_R0, 160 #endif 161 CCI_MODEL_MAX 162 }; 163 164 static ssize_t cci_pmu_format_show(struct device *dev, 165 struct device_attribute *attr, char *buf); 166 static ssize_t cci_pmu_event_show(struct device *dev, 167 struct device_attribute *attr, char *buf); 168 169 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \ 170 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } 171 172 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \ 173 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config) 174 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 175 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config) 176 177 /* CCI400 PMU Specific definitions */ 178 179 #ifdef CONFIG_ARM_CCI400_PMU 180 181 /* Port ids */ 182 #define CCI400_PORT_S0 0 183 #define CCI400_PORT_S1 1 184 #define CCI400_PORT_S2 2 185 #define CCI400_PORT_S3 3 186 #define CCI400_PORT_S4 4 187 #define CCI400_PORT_M0 5 188 #define CCI400_PORT_M1 6 189 #define CCI400_PORT_M2 7 190 191 #define CCI400_R1_PX 5 192 193 /* 194 * Instead of an event id to monitor CCI cycles, a dedicated counter is 195 * provided. Use 0xff to represent CCI cycles and hope that no future revisions 196 * make use of this event in hardware. 197 */ 198 enum cci400_perf_events { 199 CCI400_PMU_CYCLES = 0xff 200 }; 201 202 #define CCI400_PMU_CYCLE_CNTR_IDX 0 203 #define CCI400_PMU_CNTR0_IDX 1 204 205 /* 206 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 207 * ports and bits 4:0 are event codes. There are different event codes 208 * associated with each port type. 209 * 210 * Additionally, the range of events associated with the port types changed 211 * between Rev0 and Rev1. 212 * 213 * The constants below define the range of valid codes for each port type for 214 * the different revisions and are used to validate the event to be monitored. 215 */ 216 217 #define CCI400_PMU_EVENT_MASK 0xffUL 218 #define CCI400_PMU_EVENT_SOURCE_SHIFT 5 219 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7 220 #define CCI400_PMU_EVENT_CODE_SHIFT 0 221 #define CCI400_PMU_EVENT_CODE_MASK 0x1f 222 #define CCI400_PMU_EVENT_SOURCE(event) \ 223 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \ 224 CCI400_PMU_EVENT_SOURCE_MASK) 225 #define CCI400_PMU_EVENT_CODE(event) \ 226 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK) 227 228 #define CCI400_R0_SLAVE_PORT_MIN_EV 0x00 229 #define CCI400_R0_SLAVE_PORT_MAX_EV 0x13 230 #define CCI400_R0_MASTER_PORT_MIN_EV 0x14 231 #define CCI400_R0_MASTER_PORT_MAX_EV 0x1a 232 233 #define CCI400_R1_SLAVE_PORT_MIN_EV 0x00 234 #define CCI400_R1_SLAVE_PORT_MAX_EV 0x14 235 #define CCI400_R1_MASTER_PORT_MIN_EV 0x00 236 #define CCI400_R1_MASTER_PORT_MAX_EV 0x11 237 238 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 239 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \ 240 (unsigned long)_config) 241 242 static ssize_t cci400_pmu_cycle_event_show(struct device *dev, 243 struct device_attribute *attr, char *buf); 244 245 static struct dev_ext_attribute cci400_pmu_format_attrs[] = { 246 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), 247 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"), 248 }; 249 250 static struct dev_ext_attribute cci400_r0_pmu_event_attrs[] = { 251 /* Slave events */ 252 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), 253 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), 254 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), 255 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), 256 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), 257 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), 258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), 259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), 261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), 262 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), 263 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), 264 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), 265 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), 266 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), 267 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), 268 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), 269 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), 270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), 271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), 272 /* Master events */ 273 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14), 274 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15), 275 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16), 276 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17), 277 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18), 278 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19), 279 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A), 280 /* Special event for cycles counter */ 281 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), 282 }; 283 284 static struct dev_ext_attribute cci400_r1_pmu_event_attrs[] = { 285 /* Slave events */ 286 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), 287 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), 288 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), 289 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), 290 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), 291 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), 292 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), 293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), 295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), 296 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), 297 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), 298 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), 299 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), 300 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), 301 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), 302 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), 303 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), 304 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), 305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), 306 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14), 307 /* Master events */ 308 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0), 309 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1), 310 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2), 311 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3), 312 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4), 313 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5), 314 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6), 315 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7), 316 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8), 317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9), 318 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA), 319 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB), 320 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC), 321 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD), 322 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE), 323 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF), 324 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10), 325 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11), 326 /* Special event for cycles counter */ 327 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), 328 }; 329 330 static ssize_t cci400_pmu_cycle_event_show(struct device *dev, 331 struct device_attribute *attr, char *buf) 332 { 333 struct dev_ext_attribute *eattr = container_of(attr, 334 struct dev_ext_attribute, attr); 335 return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var); 336 } 337 338 static int cci400_get_event_idx(struct cci_pmu *cci_pmu, 339 struct cci_pmu_hw_events *hw, 340 unsigned long cci_event) 341 { 342 int idx; 343 344 /* cycles event idx is fixed */ 345 if (cci_event == CCI400_PMU_CYCLES) { 346 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask)) 347 return -EAGAIN; 348 349 return CCI400_PMU_CYCLE_CNTR_IDX; 350 } 351 352 for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) 353 if (!test_and_set_bit(idx, hw->used_mask)) 354 return idx; 355 356 /* No counters available */ 357 return -EAGAIN; 358 } 359 360 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event) 361 { 362 u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event); 363 u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event); 364 int if_type; 365 366 if (hw_event & ~CCI400_PMU_EVENT_MASK) 367 return -ENOENT; 368 369 if (hw_event == CCI400_PMU_CYCLES) 370 return hw_event; 371 372 switch (ev_source) { 373 case CCI400_PORT_S0: 374 case CCI400_PORT_S1: 375 case CCI400_PORT_S2: 376 case CCI400_PORT_S3: 377 case CCI400_PORT_S4: 378 /* Slave Interface */ 379 if_type = CCI_IF_SLAVE; 380 break; 381 case CCI400_PORT_M0: 382 case CCI400_PORT_M1: 383 case CCI400_PORT_M2: 384 /* Master Interface */ 385 if_type = CCI_IF_MASTER; 386 break; 387 default: 388 return -ENOENT; 389 } 390 391 if (ev_code >= cci_pmu->model->event_ranges[if_type].min && 392 ev_code <= cci_pmu->model->event_ranges[if_type].max) 393 return hw_event; 394 395 return -ENOENT; 396 } 397 398 static int probe_cci400_revision(void) 399 { 400 int rev; 401 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; 402 rev >>= CCI_PID2_REV_SHIFT; 403 404 if (rev < CCI400_R1_PX) 405 return CCI400_R0; 406 else 407 return CCI400_R1; 408 } 409 410 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) 411 { 412 if (platform_has_secure_cci_access()) 413 return &cci_pmu_models[probe_cci400_revision()]; 414 return NULL; 415 } 416 #else /* !CONFIG_ARM_CCI400_PMU */ 417 static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) 418 { 419 return NULL; 420 } 421 #endif /* CONFIG_ARM_CCI400_PMU */ 422 423 #ifdef CONFIG_ARM_CCI500_PMU 424 425 /* 426 * CCI500 provides 8 independent event counters that can count 427 * any of the events available. 428 * 429 * CCI500 PMU event id is an 9-bit value made of two parts. 430 * bits [8:5] - Source for the event 431 * 0x0-0x6 - Slave interfaces 432 * 0x8-0xD - Master interfaces 433 * 0xf - Global Events 434 * 0x7,0xe - Reserved 435 * 436 * bits [4:0] - Event code (specific to type of interface) 437 */ 438 439 /* Port ids */ 440 #define CCI500_PORT_S0 0x0 441 #define CCI500_PORT_S1 0x1 442 #define CCI500_PORT_S2 0x2 443 #define CCI500_PORT_S3 0x3 444 #define CCI500_PORT_S4 0x4 445 #define CCI500_PORT_S5 0x5 446 #define CCI500_PORT_S6 0x6 447 448 #define CCI500_PORT_M0 0x8 449 #define CCI500_PORT_M1 0x9 450 #define CCI500_PORT_M2 0xa 451 #define CCI500_PORT_M3 0xb 452 #define CCI500_PORT_M4 0xc 453 #define CCI500_PORT_M5 0xd 454 455 #define CCI500_PORT_GLOBAL 0xf 456 457 #define CCI500_PMU_EVENT_MASK 0x1ffUL 458 #define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5 459 #define CCI500_PMU_EVENT_SOURCE_MASK 0xf 460 #define CCI500_PMU_EVENT_CODE_SHIFT 0x0 461 #define CCI500_PMU_EVENT_CODE_MASK 0x1f 462 463 #define CCI500_PMU_EVENT_SOURCE(event) \ 464 ((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK) 465 #define CCI500_PMU_EVENT_CODE(event) \ 466 ((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK) 467 468 #define CCI500_SLAVE_PORT_MIN_EV 0x00 469 #define CCI500_SLAVE_PORT_MAX_EV 0x1f 470 #define CCI500_MASTER_PORT_MIN_EV 0x00 471 #define CCI500_MASTER_PORT_MAX_EV 0x06 472 #define CCI500_GLOBAL_PORT_MIN_EV 0x00 473 #define CCI500_GLOBAL_PORT_MAX_EV 0x0f 474 475 476 #define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 477 CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \ 478 (unsigned long) _config) 479 480 static ssize_t cci500_pmu_global_event_show(struct device *dev, 481 struct device_attribute *attr, char *buf); 482 483 static struct dev_ext_attribute cci500_pmu_format_attrs[] = { 484 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), 485 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"), 486 }; 487 488 static struct dev_ext_attribute cci500_pmu_event_attrs[] = { 489 /* Slave events */ 490 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0), 491 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1), 492 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2), 493 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3), 494 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4), 495 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5), 496 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6), 497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8), 499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9), 500 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA), 501 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB), 502 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC), 503 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD), 504 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE), 505 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF), 506 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10), 507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11), 508 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12), 509 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13), 510 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14), 511 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15), 512 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16), 513 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17), 514 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18), 515 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19), 516 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A), 517 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B), 518 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C), 519 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D), 520 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E), 521 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F), 522 523 /* Master events */ 524 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0), 525 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1), 526 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2), 527 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3), 528 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4), 529 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5), 530 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6), 531 532 /* Global events */ 533 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0), 534 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1), 535 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2), 536 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3), 537 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4), 538 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5), 539 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6), 540 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7), 541 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8), 542 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9), 543 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA), 544 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB), 545 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC), 546 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD), 547 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE), 548 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF), 549 }; 550 551 static ssize_t cci500_pmu_global_event_show(struct device *dev, 552 struct device_attribute *attr, char *buf) 553 { 554 struct dev_ext_attribute *eattr = container_of(attr, 555 struct dev_ext_attribute, attr); 556 /* Global events have single fixed source code */ 557 return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n", 558 (unsigned long)eattr->var, CCI500_PORT_GLOBAL); 559 } 560 561 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu, 562 unsigned long hw_event) 563 { 564 u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event); 565 u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event); 566 int if_type; 567 568 if (hw_event & ~CCI500_PMU_EVENT_MASK) 569 return -ENOENT; 570 571 switch (ev_source) { 572 case CCI500_PORT_S0: 573 case CCI500_PORT_S1: 574 case CCI500_PORT_S2: 575 case CCI500_PORT_S3: 576 case CCI500_PORT_S4: 577 case CCI500_PORT_S5: 578 case CCI500_PORT_S6: 579 if_type = CCI_IF_SLAVE; 580 break; 581 case CCI500_PORT_M0: 582 case CCI500_PORT_M1: 583 case CCI500_PORT_M2: 584 case CCI500_PORT_M3: 585 case CCI500_PORT_M4: 586 case CCI500_PORT_M5: 587 if_type = CCI_IF_MASTER; 588 break; 589 case CCI500_PORT_GLOBAL: 590 if_type = CCI_IF_GLOBAL; 591 break; 592 default: 593 return -ENOENT; 594 } 595 596 if (ev_code >= cci_pmu->model->event_ranges[if_type].min && 597 ev_code <= cci_pmu->model->event_ranges[if_type].max) 598 return hw_event; 599 600 return -ENOENT; 601 } 602 #endif /* CONFIG_ARM_CCI500_PMU */ 603 604 static ssize_t cci_pmu_format_show(struct device *dev, 605 struct device_attribute *attr, char *buf) 606 { 607 struct dev_ext_attribute *eattr = container_of(attr, 608 struct dev_ext_attribute, attr); 609 return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var); 610 } 611 612 static ssize_t cci_pmu_event_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct dev_ext_attribute *eattr = container_of(attr, 616 struct dev_ext_attribute, attr); 617 /* source parameter is mandatory for normal PMU events */ 618 return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n", 619 (unsigned long)eattr->var); 620 } 621 622 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) 623 { 624 return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu); 625 } 626 627 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset) 628 { 629 return readl_relaxed(cci_pmu->base + 630 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); 631 } 632 633 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value, 634 int idx, unsigned int offset) 635 { 636 return writel_relaxed(value, cci_pmu->base + 637 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); 638 } 639 640 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx) 641 { 642 pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL); 643 } 644 645 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx) 646 { 647 pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL); 648 } 649 650 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event) 651 { 652 pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL); 653 } 654 655 /* 656 * Returns the number of programmable counters actually implemented 657 * by the cci 658 */ 659 static u32 pmu_get_max_counters(void) 660 { 661 return (readl_relaxed(cci_ctrl_base + CCI_PMCR) & 662 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; 663 } 664 665 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) 666 { 667 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 668 unsigned long cci_event = event->hw.config_base; 669 int idx; 670 671 if (cci_pmu->model->get_event_idx) 672 return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event); 673 674 /* Generic code to find an unused idx from the mask */ 675 for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) 676 if (!test_and_set_bit(idx, hw->used_mask)) 677 return idx; 678 679 /* No counters available */ 680 return -EAGAIN; 681 } 682 683 static int pmu_map_event(struct perf_event *event) 684 { 685 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 686 687 if (event->attr.type < PERF_TYPE_MAX || 688 !cci_pmu->model->validate_hw_event) 689 return -ENOENT; 690 691 return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config); 692 } 693 694 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) 695 { 696 int i; 697 struct platform_device *pmu_device = cci_pmu->plat_device; 698 699 if (unlikely(!pmu_device)) 700 return -ENODEV; 701 702 if (cci_pmu->nr_irqs < 1) { 703 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); 704 return -ENODEV; 705 } 706 707 /* 708 * Register all available CCI PMU interrupts. In the interrupt handler 709 * we iterate over the counters checking for interrupt source (the 710 * overflowing counter) and clear it. 711 * 712 * This should allow handling of non-unique interrupt for the counters. 713 */ 714 for (i = 0; i < cci_pmu->nr_irqs; i++) { 715 int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED, 716 "arm-cci-pmu", cci_pmu); 717 if (err) { 718 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", 719 cci_pmu->irqs[i]); 720 return err; 721 } 722 723 set_bit(i, &cci_pmu->active_irqs); 724 } 725 726 return 0; 727 } 728 729 static void pmu_free_irq(struct cci_pmu *cci_pmu) 730 { 731 int i; 732 733 for (i = 0; i < cci_pmu->nr_irqs; i++) { 734 if (!test_and_clear_bit(i, &cci_pmu->active_irqs)) 735 continue; 736 737 free_irq(cci_pmu->irqs[i], cci_pmu); 738 } 739 } 740 741 static u32 pmu_read_counter(struct perf_event *event) 742 { 743 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 744 struct hw_perf_event *hw_counter = &event->hw; 745 int idx = hw_counter->idx; 746 u32 value; 747 748 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 749 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 750 return 0; 751 } 752 value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR); 753 754 return value; 755 } 756 757 static void pmu_write_counter(struct perf_event *event, u32 value) 758 { 759 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 760 struct hw_perf_event *hw_counter = &event->hw; 761 int idx = hw_counter->idx; 762 763 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) 764 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 765 else 766 pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR); 767 } 768 769 static u64 pmu_event_update(struct perf_event *event) 770 { 771 struct hw_perf_event *hwc = &event->hw; 772 u64 delta, prev_raw_count, new_raw_count; 773 774 do { 775 prev_raw_count = local64_read(&hwc->prev_count); 776 new_raw_count = pmu_read_counter(event); 777 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 778 new_raw_count) != prev_raw_count); 779 780 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; 781 782 local64_add(delta, &event->count); 783 784 return new_raw_count; 785 } 786 787 static void pmu_read(struct perf_event *event) 788 { 789 pmu_event_update(event); 790 } 791 792 void pmu_event_set_period(struct perf_event *event) 793 { 794 struct hw_perf_event *hwc = &event->hw; 795 /* 796 * The CCI PMU counters have a period of 2^32. To account for the 797 * possiblity of extreme interrupt latency we program for a period of 798 * half that. Hopefully we can handle the interrupt before another 2^31 799 * events occur and the counter overtakes its previous value. 800 */ 801 u64 val = 1ULL << 31; 802 local64_set(&hwc->prev_count, val); 803 pmu_write_counter(event, val); 804 } 805 806 static irqreturn_t pmu_handle_irq(int irq_num, void *dev) 807 { 808 unsigned long flags; 809 struct cci_pmu *cci_pmu = dev; 810 struct cci_pmu_hw_events *events = &cci_pmu->hw_events; 811 int idx, handled = IRQ_NONE; 812 813 raw_spin_lock_irqsave(&events->pmu_lock, flags); 814 /* 815 * Iterate over counters and update the corresponding perf events. 816 * This should work regardless of whether we have per-counter overflow 817 * interrupt or a combined overflow interrupt. 818 */ 819 for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { 820 struct perf_event *event = events->events[idx]; 821 struct hw_perf_event *hw_counter; 822 823 if (!event) 824 continue; 825 826 hw_counter = &event->hw; 827 828 /* Did this counter overflow? */ 829 if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) & 830 CCI_PMU_OVRFLW_FLAG)) 831 continue; 832 833 pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx, 834 CCI_PMU_OVRFLW); 835 836 pmu_event_update(event); 837 pmu_event_set_period(event); 838 handled = IRQ_HANDLED; 839 } 840 raw_spin_unlock_irqrestore(&events->pmu_lock, flags); 841 842 return IRQ_RETVAL(handled); 843 } 844 845 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) 846 { 847 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); 848 if (ret) { 849 pmu_free_irq(cci_pmu); 850 return ret; 851 } 852 return 0; 853 } 854 855 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) 856 { 857 pmu_free_irq(cci_pmu); 858 } 859 860 static void hw_perf_event_destroy(struct perf_event *event) 861 { 862 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 863 atomic_t *active_events = &cci_pmu->active_events; 864 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; 865 866 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { 867 cci_pmu_put_hw(cci_pmu); 868 mutex_unlock(reserve_mutex); 869 } 870 } 871 872 static void cci_pmu_enable(struct pmu *pmu) 873 { 874 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 875 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 876 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs); 877 unsigned long flags; 878 u32 val; 879 880 if (!enabled) 881 return; 882 883 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 884 885 /* Enable all the PMU counters. */ 886 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; 887 writel(val, cci_ctrl_base + CCI_PMCR); 888 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 889 890 } 891 892 static void cci_pmu_disable(struct pmu *pmu) 893 { 894 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 895 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 896 unsigned long flags; 897 u32 val; 898 899 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 900 901 /* Disable all the PMU counters. */ 902 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; 903 writel(val, cci_ctrl_base + CCI_PMCR); 904 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 905 } 906 907 /* 908 * Check if the idx represents a non-programmable counter. 909 * All the fixed event counters are mapped before the programmable 910 * counters. 911 */ 912 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx) 913 { 914 return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs); 915 } 916 917 static void cci_pmu_start(struct perf_event *event, int pmu_flags) 918 { 919 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 920 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 921 struct hw_perf_event *hwc = &event->hw; 922 int idx = hwc->idx; 923 unsigned long flags; 924 925 /* 926 * To handle interrupt latency, we always reprogram the period 927 * regardlesss of PERF_EF_RELOAD. 928 */ 929 if (pmu_flags & PERF_EF_RELOAD) 930 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 931 932 hwc->state = 0; 933 934 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 935 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 936 return; 937 } 938 939 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 940 941 /* Configure the counter unless you are counting a fixed event */ 942 if (!pmu_fixed_hw_idx(cci_pmu, idx)) 943 pmu_set_event(cci_pmu, idx, hwc->config_base); 944 945 pmu_event_set_period(event); 946 pmu_enable_counter(cci_pmu, idx); 947 948 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 949 } 950 951 static void cci_pmu_stop(struct perf_event *event, int pmu_flags) 952 { 953 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 954 struct hw_perf_event *hwc = &event->hw; 955 int idx = hwc->idx; 956 957 if (hwc->state & PERF_HES_STOPPED) 958 return; 959 960 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 961 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 962 return; 963 } 964 965 /* 966 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See 967 * cci_pmu_start() 968 */ 969 pmu_disable_counter(cci_pmu, idx); 970 pmu_event_update(event); 971 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 972 } 973 974 static int cci_pmu_add(struct perf_event *event, int flags) 975 { 976 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 977 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 978 struct hw_perf_event *hwc = &event->hw; 979 int idx; 980 int err = 0; 981 982 perf_pmu_disable(event->pmu); 983 984 /* If we don't have a space for the counter then finish early. */ 985 idx = pmu_get_event_idx(hw_events, event); 986 if (idx < 0) { 987 err = idx; 988 goto out; 989 } 990 991 event->hw.idx = idx; 992 hw_events->events[idx] = event; 993 994 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 995 if (flags & PERF_EF_START) 996 cci_pmu_start(event, PERF_EF_RELOAD); 997 998 /* Propagate our changes to the userspace mapping. */ 999 perf_event_update_userpage(event); 1000 1001 out: 1002 perf_pmu_enable(event->pmu); 1003 return err; 1004 } 1005 1006 static void cci_pmu_del(struct perf_event *event, int flags) 1007 { 1008 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1009 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1010 struct hw_perf_event *hwc = &event->hw; 1011 int idx = hwc->idx; 1012 1013 cci_pmu_stop(event, PERF_EF_UPDATE); 1014 hw_events->events[idx] = NULL; 1015 clear_bit(idx, hw_events->used_mask); 1016 1017 perf_event_update_userpage(event); 1018 } 1019 1020 static int 1021 validate_event(struct pmu *cci_pmu, 1022 struct cci_pmu_hw_events *hw_events, 1023 struct perf_event *event) 1024 { 1025 if (is_software_event(event)) 1026 return 1; 1027 1028 /* 1029 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 1030 * core perf code won't check that the pmu->ctx == leader->ctx 1031 * until after pmu->event_init(event). 1032 */ 1033 if (event->pmu != cci_pmu) 1034 return 0; 1035 1036 if (event->state < PERF_EVENT_STATE_OFF) 1037 return 1; 1038 1039 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 1040 return 1; 1041 1042 return pmu_get_event_idx(hw_events, event) >= 0; 1043 } 1044 1045 static int 1046 validate_group(struct perf_event *event) 1047 { 1048 struct perf_event *sibling, *leader = event->group_leader; 1049 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1050 unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)]; 1051 struct cci_pmu_hw_events fake_pmu = { 1052 /* 1053 * Initialise the fake PMU. We only need to populate the 1054 * used_mask for the purposes of validation. 1055 */ 1056 .used_mask = mask, 1057 }; 1058 memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long)); 1059 1060 if (!validate_event(event->pmu, &fake_pmu, leader)) 1061 return -EINVAL; 1062 1063 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 1064 if (!validate_event(event->pmu, &fake_pmu, sibling)) 1065 return -EINVAL; 1066 } 1067 1068 if (!validate_event(event->pmu, &fake_pmu, event)) 1069 return -EINVAL; 1070 1071 return 0; 1072 } 1073 1074 static int 1075 __hw_perf_event_init(struct perf_event *event) 1076 { 1077 struct hw_perf_event *hwc = &event->hw; 1078 int mapping; 1079 1080 mapping = pmu_map_event(event); 1081 1082 if (mapping < 0) { 1083 pr_debug("event %x:%llx not supported\n", event->attr.type, 1084 event->attr.config); 1085 return mapping; 1086 } 1087 1088 /* 1089 * We don't assign an index until we actually place the event onto 1090 * hardware. Use -1 to signify that we haven't decided where to put it 1091 * yet. 1092 */ 1093 hwc->idx = -1; 1094 hwc->config_base = 0; 1095 hwc->config = 0; 1096 hwc->event_base = 0; 1097 1098 /* 1099 * Store the event encoding into the config_base field. 1100 */ 1101 hwc->config_base |= (unsigned long)mapping; 1102 1103 /* 1104 * Limit the sample_period to half of the counter width. That way, the 1105 * new counter value is far less likely to overtake the previous one 1106 * unless you have some serious IRQ latency issues. 1107 */ 1108 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; 1109 hwc->last_period = hwc->sample_period; 1110 local64_set(&hwc->period_left, hwc->sample_period); 1111 1112 if (event->group_leader != event) { 1113 if (validate_group(event) != 0) 1114 return -EINVAL; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static int cci_pmu_event_init(struct perf_event *event) 1121 { 1122 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1123 atomic_t *active_events = &cci_pmu->active_events; 1124 int err = 0; 1125 int cpu; 1126 1127 if (event->attr.type != event->pmu->type) 1128 return -ENOENT; 1129 1130 /* Shared by all CPUs, no meaningful state to sample */ 1131 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 1132 return -EOPNOTSUPP; 1133 1134 /* We have no filtering of any kind */ 1135 if (event->attr.exclude_user || 1136 event->attr.exclude_kernel || 1137 event->attr.exclude_hv || 1138 event->attr.exclude_idle || 1139 event->attr.exclude_host || 1140 event->attr.exclude_guest) 1141 return -EINVAL; 1142 1143 /* 1144 * Following the example set by other "uncore" PMUs, we accept any CPU 1145 * and rewrite its affinity dynamically rather than having perf core 1146 * handle cpu == -1 and pid == -1 for this case. 1147 * 1148 * The perf core will pin online CPUs for the duration of this call and 1149 * the event being installed into its context, so the PMU's CPU can't 1150 * change under our feet. 1151 */ 1152 cpu = cpumask_first(&cci_pmu->cpus); 1153 if (event->cpu < 0 || cpu < 0) 1154 return -EINVAL; 1155 event->cpu = cpu; 1156 1157 event->destroy = hw_perf_event_destroy; 1158 if (!atomic_inc_not_zero(active_events)) { 1159 mutex_lock(&cci_pmu->reserve_mutex); 1160 if (atomic_read(active_events) == 0) 1161 err = cci_pmu_get_hw(cci_pmu); 1162 if (!err) 1163 atomic_inc(active_events); 1164 mutex_unlock(&cci_pmu->reserve_mutex); 1165 } 1166 if (err) 1167 return err; 1168 1169 err = __hw_perf_event_init(event); 1170 if (err) 1171 hw_perf_event_destroy(event); 1172 1173 return err; 1174 } 1175 1176 static ssize_t pmu_cpumask_attr_show(struct device *dev, 1177 struct device_attribute *attr, char *buf) 1178 { 1179 struct dev_ext_attribute *eattr = container_of(attr, 1180 struct dev_ext_attribute, attr); 1181 struct cci_pmu *cci_pmu = eattr->var; 1182 1183 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", 1184 cpumask_pr_args(&cci_pmu->cpus)); 1185 buf[n++] = '\n'; 1186 buf[n] = '\0'; 1187 return n; 1188 } 1189 1190 static struct dev_ext_attribute pmu_cpumask_attr = { 1191 __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL), 1192 NULL, /* Populated in cci_pmu_init */ 1193 }; 1194 1195 static struct attribute *pmu_attrs[] = { 1196 &pmu_cpumask_attr.attr.attr, 1197 NULL, 1198 }; 1199 1200 static struct attribute_group pmu_attr_group = { 1201 .attrs = pmu_attrs, 1202 }; 1203 1204 static struct attribute_group pmu_format_attr_group = { 1205 .name = "format", 1206 .attrs = NULL, /* Filled in cci_pmu_init_attrs */ 1207 }; 1208 1209 static struct attribute_group pmu_event_attr_group = { 1210 .name = "events", 1211 .attrs = NULL, /* Filled in cci_pmu_init_attrs */ 1212 }; 1213 1214 static const struct attribute_group *pmu_attr_groups[] = { 1215 &pmu_attr_group, 1216 &pmu_format_attr_group, 1217 &pmu_event_attr_group, 1218 NULL 1219 }; 1220 1221 static struct attribute **alloc_attrs(struct platform_device *pdev, 1222 int n, struct dev_ext_attribute *source) 1223 { 1224 int i; 1225 struct attribute **attrs; 1226 1227 /* Alloc n + 1 (for terminating NULL) */ 1228 attrs = devm_kcalloc(&pdev->dev, n + 1, sizeof(struct attribute *), 1229 GFP_KERNEL); 1230 if (!attrs) 1231 return attrs; 1232 for(i = 0; i < n; i++) 1233 attrs[i] = &source[i].attr.attr; 1234 return attrs; 1235 } 1236 1237 static int cci_pmu_init_attrs(struct cci_pmu *cci_pmu, struct platform_device *pdev) 1238 { 1239 const struct cci_pmu_model *model = cci_pmu->model; 1240 struct attribute **attrs; 1241 1242 /* 1243 * All allocations below are managed, hence doesn't need to be 1244 * free'd explicitly in case of an error. 1245 */ 1246 1247 if (model->nevent_attrs) { 1248 attrs = alloc_attrs(pdev, model->nevent_attrs, 1249 model->event_attrs); 1250 if (!attrs) 1251 return -ENOMEM; 1252 pmu_event_attr_group.attrs = attrs; 1253 } 1254 if (model->nformat_attrs) { 1255 attrs = alloc_attrs(pdev, model->nformat_attrs, 1256 model->format_attrs); 1257 if (!attrs) 1258 return -ENOMEM; 1259 pmu_format_attr_group.attrs = attrs; 1260 } 1261 pmu_cpumask_attr.var = cci_pmu; 1262 1263 return 0; 1264 } 1265 1266 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) 1267 { 1268 char *name = cci_pmu->model->name; 1269 u32 num_cntrs; 1270 int rc; 1271 1272 rc = cci_pmu_init_attrs(cci_pmu, pdev); 1273 if (rc) 1274 return rc; 1275 1276 cci_pmu->pmu = (struct pmu) { 1277 .name = cci_pmu->model->name, 1278 .task_ctx_nr = perf_invalid_context, 1279 .pmu_enable = cci_pmu_enable, 1280 .pmu_disable = cci_pmu_disable, 1281 .event_init = cci_pmu_event_init, 1282 .add = cci_pmu_add, 1283 .del = cci_pmu_del, 1284 .start = cci_pmu_start, 1285 .stop = cci_pmu_stop, 1286 .read = pmu_read, 1287 .attr_groups = pmu_attr_groups, 1288 }; 1289 1290 cci_pmu->plat_device = pdev; 1291 num_cntrs = pmu_get_max_counters(); 1292 if (num_cntrs > cci_pmu->model->num_hw_cntrs) { 1293 dev_warn(&pdev->dev, 1294 "PMU implements more counters(%d) than supported by" 1295 " the model(%d), truncated.", 1296 num_cntrs, cci_pmu->model->num_hw_cntrs); 1297 num_cntrs = cci_pmu->model->num_hw_cntrs; 1298 } 1299 cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs; 1300 1301 return perf_pmu_register(&cci_pmu->pmu, name, -1); 1302 } 1303 1304 static int cci_pmu_cpu_notifier(struct notifier_block *self, 1305 unsigned long action, void *hcpu) 1306 { 1307 struct cci_pmu *cci_pmu = container_of(self, 1308 struct cci_pmu, cpu_nb); 1309 unsigned int cpu = (long)hcpu; 1310 unsigned int target; 1311 1312 switch (action & ~CPU_TASKS_FROZEN) { 1313 case CPU_DOWN_PREPARE: 1314 if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus)) 1315 break; 1316 target = cpumask_any_but(cpu_online_mask, cpu); 1317 if (target < 0) // UP, last CPU 1318 break; 1319 /* 1320 * TODO: migrate context once core races on event->ctx have 1321 * been fixed. 1322 */ 1323 cpumask_set_cpu(target, &cci_pmu->cpus); 1324 default: 1325 break; 1326 } 1327 1328 return NOTIFY_OK; 1329 } 1330 1331 static struct cci_pmu_model cci_pmu_models[] = { 1332 #ifdef CONFIG_ARM_CCI400_PMU 1333 [CCI400_R0] = { 1334 .name = "CCI_400", 1335 .fixed_hw_cntrs = 1, /* Cycle counter */ 1336 .num_hw_cntrs = 4, 1337 .cntr_size = SZ_4K, 1338 .format_attrs = cci400_pmu_format_attrs, 1339 .nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs), 1340 .event_attrs = cci400_r0_pmu_event_attrs, 1341 .nevent_attrs = ARRAY_SIZE(cci400_r0_pmu_event_attrs), 1342 .event_ranges = { 1343 [CCI_IF_SLAVE] = { 1344 CCI400_R0_SLAVE_PORT_MIN_EV, 1345 CCI400_R0_SLAVE_PORT_MAX_EV, 1346 }, 1347 [CCI_IF_MASTER] = { 1348 CCI400_R0_MASTER_PORT_MIN_EV, 1349 CCI400_R0_MASTER_PORT_MAX_EV, 1350 }, 1351 }, 1352 .validate_hw_event = cci400_validate_hw_event, 1353 .get_event_idx = cci400_get_event_idx, 1354 }, 1355 [CCI400_R1] = { 1356 .name = "CCI_400_r1", 1357 .fixed_hw_cntrs = 1, /* Cycle counter */ 1358 .num_hw_cntrs = 4, 1359 .cntr_size = SZ_4K, 1360 .format_attrs = cci400_pmu_format_attrs, 1361 .nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs), 1362 .event_attrs = cci400_r1_pmu_event_attrs, 1363 .nevent_attrs = ARRAY_SIZE(cci400_r1_pmu_event_attrs), 1364 .event_ranges = { 1365 [CCI_IF_SLAVE] = { 1366 CCI400_R1_SLAVE_PORT_MIN_EV, 1367 CCI400_R1_SLAVE_PORT_MAX_EV, 1368 }, 1369 [CCI_IF_MASTER] = { 1370 CCI400_R1_MASTER_PORT_MIN_EV, 1371 CCI400_R1_MASTER_PORT_MAX_EV, 1372 }, 1373 }, 1374 .validate_hw_event = cci400_validate_hw_event, 1375 .get_event_idx = cci400_get_event_idx, 1376 }, 1377 #endif 1378 #ifdef CONFIG_ARM_CCI500_PMU 1379 [CCI500_R0] = { 1380 .name = "CCI_500", 1381 .fixed_hw_cntrs = 0, 1382 .num_hw_cntrs = 8, 1383 .cntr_size = SZ_64K, 1384 .format_attrs = cci500_pmu_format_attrs, 1385 .nformat_attrs = ARRAY_SIZE(cci500_pmu_format_attrs), 1386 .event_attrs = cci500_pmu_event_attrs, 1387 .nevent_attrs = ARRAY_SIZE(cci500_pmu_event_attrs), 1388 .event_ranges = { 1389 [CCI_IF_SLAVE] = { 1390 CCI500_SLAVE_PORT_MIN_EV, 1391 CCI500_SLAVE_PORT_MAX_EV, 1392 }, 1393 [CCI_IF_MASTER] = { 1394 CCI500_MASTER_PORT_MIN_EV, 1395 CCI500_MASTER_PORT_MAX_EV, 1396 }, 1397 [CCI_IF_GLOBAL] = { 1398 CCI500_GLOBAL_PORT_MIN_EV, 1399 CCI500_GLOBAL_PORT_MAX_EV, 1400 }, 1401 }, 1402 .validate_hw_event = cci500_validate_hw_event, 1403 }, 1404 #endif 1405 }; 1406 1407 static const struct of_device_id arm_cci_pmu_matches[] = { 1408 #ifdef CONFIG_ARM_CCI400_PMU 1409 { 1410 .compatible = "arm,cci-400-pmu", 1411 .data = NULL, 1412 }, 1413 { 1414 .compatible = "arm,cci-400-pmu,r0", 1415 .data = &cci_pmu_models[CCI400_R0], 1416 }, 1417 { 1418 .compatible = "arm,cci-400-pmu,r1", 1419 .data = &cci_pmu_models[CCI400_R1], 1420 }, 1421 #endif 1422 #ifdef CONFIG_ARM_CCI500_PMU 1423 { 1424 .compatible = "arm,cci-500-pmu,r0", 1425 .data = &cci_pmu_models[CCI500_R0], 1426 }, 1427 #endif 1428 {}, 1429 }; 1430 1431 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev) 1432 { 1433 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches, 1434 pdev->dev.of_node); 1435 if (!match) 1436 return NULL; 1437 if (match->data) 1438 return match->data; 1439 1440 dev_warn(&pdev->dev, "DEPRECATED compatible property," 1441 "requires secure access to CCI registers"); 1442 return probe_cci_model(pdev); 1443 } 1444 1445 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) 1446 { 1447 int i; 1448 1449 for (i = 0; i < nr_irqs; i++) 1450 if (irq == irqs[i]) 1451 return true; 1452 1453 return false; 1454 } 1455 1456 static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev) 1457 { 1458 struct cci_pmu *cci_pmu; 1459 const struct cci_pmu_model *model; 1460 1461 /* 1462 * All allocations are devm_* hence we don't have to free 1463 * them explicitly on an error, as it would end up in driver 1464 * detach. 1465 */ 1466 model = get_cci_model(pdev); 1467 if (!model) { 1468 dev_warn(&pdev->dev, "CCI PMU version not supported\n"); 1469 return ERR_PTR(-ENODEV); 1470 } 1471 1472 cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL); 1473 if (!cci_pmu) 1474 return ERR_PTR(-ENOMEM); 1475 1476 cci_pmu->model = model; 1477 cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model), 1478 sizeof(*cci_pmu->irqs), GFP_KERNEL); 1479 if (!cci_pmu->irqs) 1480 return ERR_PTR(-ENOMEM); 1481 cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev, 1482 CCI_PMU_MAX_HW_CNTRS(model), 1483 sizeof(*cci_pmu->hw_events.events), 1484 GFP_KERNEL); 1485 if (!cci_pmu->hw_events.events) 1486 return ERR_PTR(-ENOMEM); 1487 cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev, 1488 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)), 1489 sizeof(*cci_pmu->hw_events.used_mask), 1490 GFP_KERNEL); 1491 if (!cci_pmu->hw_events.used_mask) 1492 return ERR_PTR(-ENOMEM); 1493 1494 return cci_pmu; 1495 } 1496 1497 1498 static int cci_pmu_probe(struct platform_device *pdev) 1499 { 1500 struct resource *res; 1501 struct cci_pmu *cci_pmu; 1502 int i, ret, irq; 1503 1504 cci_pmu = cci_pmu_alloc(pdev); 1505 if (IS_ERR(cci_pmu)) 1506 return PTR_ERR(cci_pmu); 1507 1508 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1509 cci_pmu->base = devm_ioremap_resource(&pdev->dev, res); 1510 if (IS_ERR(cci_pmu->base)) 1511 return -ENOMEM; 1512 1513 /* 1514 * CCI PMU has one overflow interrupt per counter; but some may be tied 1515 * together to a common interrupt. 1516 */ 1517 cci_pmu->nr_irqs = 0; 1518 for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) { 1519 irq = platform_get_irq(pdev, i); 1520 if (irq < 0) 1521 break; 1522 1523 if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs)) 1524 continue; 1525 1526 cci_pmu->irqs[cci_pmu->nr_irqs++] = irq; 1527 } 1528 1529 /* 1530 * Ensure that the device tree has as many interrupts as the number 1531 * of counters. 1532 */ 1533 if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) { 1534 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", 1535 i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)); 1536 return -EINVAL; 1537 } 1538 1539 raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock); 1540 mutex_init(&cci_pmu->reserve_mutex); 1541 atomic_set(&cci_pmu->active_events, 0); 1542 cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus); 1543 1544 cci_pmu->cpu_nb = (struct notifier_block) { 1545 .notifier_call = cci_pmu_cpu_notifier, 1546 /* 1547 * to migrate uncore events, our notifier should be executed 1548 * before perf core's notifier. 1549 */ 1550 .priority = CPU_PRI_PERF + 1, 1551 }; 1552 1553 ret = register_cpu_notifier(&cci_pmu->cpu_nb); 1554 if (ret) 1555 return ret; 1556 1557 ret = cci_pmu_init(cci_pmu, pdev); 1558 if (ret) { 1559 unregister_cpu_notifier(&cci_pmu->cpu_nb); 1560 return ret; 1561 } 1562 1563 pr_info("ARM %s PMU driver probed", cci_pmu->model->name); 1564 return 0; 1565 } 1566 1567 static int cci_platform_probe(struct platform_device *pdev) 1568 { 1569 if (!cci_probed()) 1570 return -ENODEV; 1571 1572 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); 1573 } 1574 1575 static struct platform_driver cci_pmu_driver = { 1576 .driver = { 1577 .name = DRIVER_NAME_PMU, 1578 .of_match_table = arm_cci_pmu_matches, 1579 }, 1580 .probe = cci_pmu_probe, 1581 }; 1582 1583 static struct platform_driver cci_platform_driver = { 1584 .driver = { 1585 .name = DRIVER_NAME, 1586 .of_match_table = arm_cci_matches, 1587 }, 1588 .probe = cci_platform_probe, 1589 }; 1590 1591 static int __init cci_platform_init(void) 1592 { 1593 int ret; 1594 1595 ret = platform_driver_register(&cci_pmu_driver); 1596 if (ret) 1597 return ret; 1598 1599 return platform_driver_register(&cci_platform_driver); 1600 } 1601 1602 #else /* !CONFIG_ARM_CCI_PMU */ 1603 1604 static int __init cci_platform_init(void) 1605 { 1606 return 0; 1607 } 1608 1609 #endif /* CONFIG_ARM_CCI_PMU */ 1610 1611 #ifdef CONFIG_ARM_CCI400_PORT_CTRL 1612 1613 #define CCI_PORT_CTRL 0x0 1614 #define CCI_CTRL_STATUS 0xc 1615 1616 #define CCI_ENABLE_SNOOP_REQ 0x1 1617 #define CCI_ENABLE_DVM_REQ 0x2 1618 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) 1619 1620 enum cci_ace_port_type { 1621 ACE_INVALID_PORT = 0x0, 1622 ACE_PORT, 1623 ACE_LITE_PORT, 1624 }; 1625 1626 struct cci_ace_port { 1627 void __iomem *base; 1628 unsigned long phys; 1629 enum cci_ace_port_type type; 1630 struct device_node *dn; 1631 }; 1632 1633 static struct cci_ace_port *ports; 1634 static unsigned int nb_cci_ports; 1635 1636 struct cpu_port { 1637 u64 mpidr; 1638 u32 port; 1639 }; 1640 1641 /* 1642 * Use the port MSB as valid flag, shift can be made dynamic 1643 * by computing number of bits required for port indexes. 1644 * Code disabling CCI cpu ports runs with D-cache invalidated 1645 * and SCTLR bit clear so data accesses must be kept to a minimum 1646 * to improve performance; for now shift is left static to 1647 * avoid one more data access while disabling the CCI port. 1648 */ 1649 #define PORT_VALID_SHIFT 31 1650 #define PORT_VALID (0x1 << PORT_VALID_SHIFT) 1651 1652 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) 1653 { 1654 port->port = PORT_VALID | index; 1655 port->mpidr = mpidr; 1656 } 1657 1658 static inline bool cpu_port_is_valid(struct cpu_port *port) 1659 { 1660 return !!(port->port & PORT_VALID); 1661 } 1662 1663 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) 1664 { 1665 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); 1666 } 1667 1668 static struct cpu_port cpu_port[NR_CPUS]; 1669 1670 /** 1671 * __cci_ace_get_port - Function to retrieve the port index connected to 1672 * a cpu or device. 1673 * 1674 * @dn: device node of the device to look-up 1675 * @type: port type 1676 * 1677 * Return value: 1678 * - CCI port index if success 1679 * - -ENODEV if failure 1680 */ 1681 static int __cci_ace_get_port(struct device_node *dn, int type) 1682 { 1683 int i; 1684 bool ace_match; 1685 struct device_node *cci_portn; 1686 1687 cci_portn = of_parse_phandle(dn, "cci-control-port", 0); 1688 for (i = 0; i < nb_cci_ports; i++) { 1689 ace_match = ports[i].type == type; 1690 if (ace_match && cci_portn == ports[i].dn) 1691 return i; 1692 } 1693 return -ENODEV; 1694 } 1695 1696 int cci_ace_get_port(struct device_node *dn) 1697 { 1698 return __cci_ace_get_port(dn, ACE_LITE_PORT); 1699 } 1700 EXPORT_SYMBOL_GPL(cci_ace_get_port); 1701 1702 static void cci_ace_init_ports(void) 1703 { 1704 int port, cpu; 1705 struct device_node *cpun; 1706 1707 /* 1708 * Port index look-up speeds up the function disabling ports by CPU, 1709 * since the logical to port index mapping is done once and does 1710 * not change after system boot. 1711 * The stashed index array is initialized for all possible CPUs 1712 * at probe time. 1713 */ 1714 for_each_possible_cpu(cpu) { 1715 /* too early to use cpu->of_node */ 1716 cpun = of_get_cpu_node(cpu, NULL); 1717 1718 if (WARN(!cpun, "Missing cpu device node\n")) 1719 continue; 1720 1721 port = __cci_ace_get_port(cpun, ACE_PORT); 1722 if (port < 0) 1723 continue; 1724 1725 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); 1726 } 1727 1728 for_each_possible_cpu(cpu) { 1729 WARN(!cpu_port_is_valid(&cpu_port[cpu]), 1730 "CPU %u does not have an associated CCI port\n", 1731 cpu); 1732 } 1733 } 1734 /* 1735 * Functions to enable/disable a CCI interconnect slave port 1736 * 1737 * They are called by low-level power management code to disable slave 1738 * interfaces snoops and DVM broadcast. 1739 * Since they may execute with cache data allocation disabled and 1740 * after the caches have been cleaned and invalidated the functions provide 1741 * no explicit locking since they may run with D-cache disabled, so normal 1742 * cacheable kernel locks based on ldrex/strex may not work. 1743 * Locking has to be provided by BSP implementations to ensure proper 1744 * operations. 1745 */ 1746 1747 /** 1748 * cci_port_control() - function to control a CCI port 1749 * 1750 * @port: index of the port to setup 1751 * @enable: if true enables the port, if false disables it 1752 */ 1753 static void notrace cci_port_control(unsigned int port, bool enable) 1754 { 1755 void __iomem *base = ports[port].base; 1756 1757 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); 1758 /* 1759 * This function is called from power down procedures 1760 * and must not execute any instruction that might 1761 * cause the processor to be put in a quiescent state 1762 * (eg wfi). Hence, cpu_relax() can not be added to this 1763 * read loop to optimize power, since it might hide possibly 1764 * disruptive operations. 1765 */ 1766 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) 1767 ; 1768 } 1769 1770 /** 1771 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU 1772 * reference 1773 * 1774 * @mpidr: mpidr of the CPU whose CCI port should be disabled 1775 * 1776 * Disabling a CCI port for a CPU implies disabling the CCI port 1777 * controlling that CPU cluster. Code disabling CPU CCI ports 1778 * must make sure that the CPU running the code is the last active CPU 1779 * in the cluster ie all other CPUs are quiescent in a low power state. 1780 * 1781 * Return: 1782 * 0 on success 1783 * -ENODEV on port look-up failure 1784 */ 1785 int notrace cci_disable_port_by_cpu(u64 mpidr) 1786 { 1787 int cpu; 1788 bool is_valid; 1789 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1790 is_valid = cpu_port_is_valid(&cpu_port[cpu]); 1791 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { 1792 cci_port_control(cpu_port[cpu].port, false); 1793 return 0; 1794 } 1795 } 1796 return -ENODEV; 1797 } 1798 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); 1799 1800 /** 1801 * cci_enable_port_for_self() - enable a CCI port for calling CPU 1802 * 1803 * Enabling a CCI port for the calling CPU implies enabling the CCI 1804 * port controlling that CPU's cluster. Caller must make sure that the 1805 * CPU running the code is the first active CPU in the cluster and all 1806 * other CPUs are quiescent in a low power state or waiting for this CPU 1807 * to complete the CCI initialization. 1808 * 1809 * Because this is called when the MMU is still off and with no stack, 1810 * the code must be position independent and ideally rely on callee 1811 * clobbered registers only. To achieve this we must code this function 1812 * entirely in assembler. 1813 * 1814 * On success this returns with the proper CCI port enabled. In case of 1815 * any failure this never returns as the inability to enable the CCI is 1816 * fatal and there is no possible recovery at this stage. 1817 */ 1818 asmlinkage void __naked cci_enable_port_for_self(void) 1819 { 1820 asm volatile ("\n" 1821 " .arch armv7-a\n" 1822 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" 1823 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" 1824 " adr r1, 5f \n" 1825 " ldr r2, [r1] \n" 1826 " add r1, r1, r2 @ &cpu_port \n" 1827 " add ip, r1, %[sizeof_cpu_port] \n" 1828 1829 /* Loop over the cpu_port array looking for a matching MPIDR */ 1830 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" 1831 " cmp r2, r0 @ compare MPIDR \n" 1832 " bne 2f \n" 1833 1834 /* Found a match, now test port validity */ 1835 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" 1836 " tst r3, #"__stringify(PORT_VALID)" \n" 1837 " bne 3f \n" 1838 1839 /* no match, loop with the next cpu_port entry */ 1840 "2: add r1, r1, %[sizeof_struct_cpu_port] \n" 1841 " cmp r1, ip @ done? \n" 1842 " blo 1b \n" 1843 1844 /* CCI port not found -- cheaply try to stall this CPU */ 1845 "cci_port_not_found: \n" 1846 " wfi \n" 1847 " wfe \n" 1848 " b cci_port_not_found \n" 1849 1850 /* Use matched port index to look up the corresponding ports entry */ 1851 "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" 1852 " adr r0, 6f \n" 1853 " ldmia r0, {r1, r2} \n" 1854 " sub r1, r1, r0 @ virt - phys \n" 1855 " ldr r0, [r0, r2] @ *(&ports) \n" 1856 " mov r2, %[sizeof_struct_ace_port] \n" 1857 " mla r0, r2, r3, r0 @ &ports[index] \n" 1858 " sub r0, r0, r1 @ virt_to_phys() \n" 1859 1860 /* Enable the CCI port */ 1861 " ldr r0, [r0, %[offsetof_port_phys]] \n" 1862 " mov r3, %[cci_enable_req]\n" 1863 " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" 1864 1865 /* poll the status reg for completion */ 1866 " adr r1, 7f \n" 1867 " ldr r0, [r1] \n" 1868 " ldr r0, [r0, r1] @ cci_ctrl_base \n" 1869 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" 1870 " tst r1, %[cci_control_status_bits] \n" 1871 " bne 4b \n" 1872 1873 " mov r0, #0 \n" 1874 " bx lr \n" 1875 1876 " .align 2 \n" 1877 "5: .word cpu_port - . \n" 1878 "6: .word . \n" 1879 " .word ports - 6b \n" 1880 "7: .word cci_ctrl_phys - . \n" 1881 : : 1882 [sizeof_cpu_port] "i" (sizeof(cpu_port)), 1883 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), 1884 [cci_control_status_bits] "i" cpu_to_le32(1), 1885 #ifndef __ARMEB__ 1886 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), 1887 #else 1888 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), 1889 #endif 1890 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), 1891 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), 1892 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), 1893 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); 1894 1895 unreachable(); 1896 } 1897 1898 /** 1899 * __cci_control_port_by_device() - function to control a CCI port by device 1900 * reference 1901 * 1902 * @dn: device node pointer of the device whose CCI port should be 1903 * controlled 1904 * @enable: if true enables the port, if false disables it 1905 * 1906 * Return: 1907 * 0 on success 1908 * -ENODEV on port look-up failure 1909 */ 1910 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) 1911 { 1912 int port; 1913 1914 if (!dn) 1915 return -ENODEV; 1916 1917 port = __cci_ace_get_port(dn, ACE_LITE_PORT); 1918 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", 1919 dn->full_name)) 1920 return -ENODEV; 1921 cci_port_control(port, enable); 1922 return 0; 1923 } 1924 EXPORT_SYMBOL_GPL(__cci_control_port_by_device); 1925 1926 /** 1927 * __cci_control_port_by_index() - function to control a CCI port by port index 1928 * 1929 * @port: port index previously retrieved with cci_ace_get_port() 1930 * @enable: if true enables the port, if false disables it 1931 * 1932 * Return: 1933 * 0 on success 1934 * -ENODEV on port index out of range 1935 * -EPERM if operation carried out on an ACE PORT 1936 */ 1937 int notrace __cci_control_port_by_index(u32 port, bool enable) 1938 { 1939 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) 1940 return -ENODEV; 1941 /* 1942 * CCI control for ports connected to CPUS is extremely fragile 1943 * and must be made to go through a specific and controlled 1944 * interface (ie cci_disable_port_by_cpu(); control by general purpose 1945 * indexing is therefore disabled for ACE ports. 1946 */ 1947 if (ports[port].type == ACE_PORT) 1948 return -EPERM; 1949 1950 cci_port_control(port, enable); 1951 return 0; 1952 } 1953 EXPORT_SYMBOL_GPL(__cci_control_port_by_index); 1954 1955 static const struct of_device_id arm_cci_ctrl_if_matches[] = { 1956 {.compatible = "arm,cci-400-ctrl-if", }, 1957 {}, 1958 }; 1959 1960 static int cci_probe_ports(struct device_node *np) 1961 { 1962 struct cci_nb_ports const *cci_config; 1963 int ret, i, nb_ace = 0, nb_ace_lite = 0; 1964 struct device_node *cp; 1965 struct resource res; 1966 const char *match_str; 1967 bool is_ace; 1968 1969 1970 cci_config = of_match_node(arm_cci_matches, np)->data; 1971 if (!cci_config) 1972 return -ENODEV; 1973 1974 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; 1975 1976 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL); 1977 if (!ports) 1978 return -ENOMEM; 1979 1980 for_each_child_of_node(np, cp) { 1981 if (!of_match_node(arm_cci_ctrl_if_matches, cp)) 1982 continue; 1983 1984 i = nb_ace + nb_ace_lite; 1985 1986 if (i >= nb_cci_ports) 1987 break; 1988 1989 if (of_property_read_string(cp, "interface-type", 1990 &match_str)) { 1991 WARN(1, "node %s missing interface-type property\n", 1992 cp->full_name); 1993 continue; 1994 } 1995 is_ace = strcmp(match_str, "ace") == 0; 1996 if (!is_ace && strcmp(match_str, "ace-lite")) { 1997 WARN(1, "node %s containing invalid interface-type property, skipping it\n", 1998 cp->full_name); 1999 continue; 2000 } 2001 2002 ret = of_address_to_resource(cp, 0, &res); 2003 if (!ret) { 2004 ports[i].base = ioremap(res.start, resource_size(&res)); 2005 ports[i].phys = res.start; 2006 } 2007 if (ret || !ports[i].base) { 2008 WARN(1, "unable to ioremap CCI port %d\n", i); 2009 continue; 2010 } 2011 2012 if (is_ace) { 2013 if (WARN_ON(nb_ace >= cci_config->nb_ace)) 2014 continue; 2015 ports[i].type = ACE_PORT; 2016 ++nb_ace; 2017 } else { 2018 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) 2019 continue; 2020 ports[i].type = ACE_LITE_PORT; 2021 ++nb_ace_lite; 2022 } 2023 ports[i].dn = cp; 2024 } 2025 2026 /* initialize a stashed array of ACE ports to speed-up look-up */ 2027 cci_ace_init_ports(); 2028 2029 /* 2030 * Multi-cluster systems may need this data when non-coherent, during 2031 * cluster power-up/power-down. Make sure it reaches main memory. 2032 */ 2033 sync_cache_w(&cci_ctrl_base); 2034 sync_cache_w(&cci_ctrl_phys); 2035 sync_cache_w(&ports); 2036 sync_cache_w(&cpu_port); 2037 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); 2038 pr_info("ARM CCI driver probed\n"); 2039 2040 return 0; 2041 } 2042 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */ 2043 static inline int cci_probe_ports(struct device_node *np) 2044 { 2045 return 0; 2046 } 2047 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */ 2048 2049 static int cci_probe(void) 2050 { 2051 int ret; 2052 struct device_node *np; 2053 struct resource res; 2054 2055 np = of_find_matching_node(NULL, arm_cci_matches); 2056 if(!np || !of_device_is_available(np)) 2057 return -ENODEV; 2058 2059 ret = of_address_to_resource(np, 0, &res); 2060 if (!ret) { 2061 cci_ctrl_base = ioremap(res.start, resource_size(&res)); 2062 cci_ctrl_phys = res.start; 2063 } 2064 if (ret || !cci_ctrl_base) { 2065 WARN(1, "unable to ioremap CCI ctrl\n"); 2066 return -ENXIO; 2067 } 2068 2069 return cci_probe_ports(np); 2070 } 2071 2072 static int cci_init_status = -EAGAIN; 2073 static DEFINE_MUTEX(cci_probing); 2074 2075 static int cci_init(void) 2076 { 2077 if (cci_init_status != -EAGAIN) 2078 return cci_init_status; 2079 2080 mutex_lock(&cci_probing); 2081 if (cci_init_status == -EAGAIN) 2082 cci_init_status = cci_probe(); 2083 mutex_unlock(&cci_probing); 2084 return cci_init_status; 2085 } 2086 2087 /* 2088 * To sort out early init calls ordering a helper function is provided to 2089 * check if the CCI driver has beed initialized. Function check if the driver 2090 * has been initialized, if not it calls the init function that probes 2091 * the driver and updates the return value. 2092 */ 2093 bool cci_probed(void) 2094 { 2095 return cci_init() == 0; 2096 } 2097 EXPORT_SYMBOL_GPL(cci_probed); 2098 2099 early_initcall(cci_init); 2100 core_initcall(cci_platform_init); 2101 MODULE_LICENSE("GPL"); 2102 MODULE_DESCRIPTION("ARM CCI support"); 2103