xref: /linux/drivers/bus/arm-cci.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
31 
32 #define DRIVER_NAME		"CCI-400"
33 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
34 
35 #define CCI_PORT_CTRL		0x0
36 #define CCI_CTRL_STATUS		0xc
37 
38 #define CCI_ENABLE_SNOOP_REQ	0x1
39 #define CCI_ENABLE_DVM_REQ	0x2
40 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
41 
42 struct cci_nb_ports {
43 	unsigned int nb_ace;
44 	unsigned int nb_ace_lite;
45 };
46 
47 enum cci_ace_port_type {
48 	ACE_INVALID_PORT = 0x0,
49 	ACE_PORT,
50 	ACE_LITE_PORT,
51 };
52 
53 struct cci_ace_port {
54 	void __iomem *base;
55 	unsigned long phys;
56 	enum cci_ace_port_type type;
57 	struct device_node *dn;
58 };
59 
60 static struct cci_ace_port *ports;
61 static unsigned int nb_cci_ports;
62 
63 static void __iomem *cci_ctrl_base;
64 static unsigned long cci_ctrl_phys;
65 
66 #ifdef CONFIG_HW_PERF_EVENTS
67 
68 #define CCI_PMCR		0x0100
69 #define CCI_PID2		0x0fe8
70 
71 #define CCI_PMCR_CEN		0x00000001
72 #define CCI_PMCR_NCNT_MASK	0x0000f800
73 #define CCI_PMCR_NCNT_SHIFT	11
74 
75 #define CCI_PID2_REV_MASK	0xf0
76 #define CCI_PID2_REV_SHIFT	4
77 
78 /* Port ids */
79 #define CCI_PORT_S0	0
80 #define CCI_PORT_S1	1
81 #define CCI_PORT_S2	2
82 #define CCI_PORT_S3	3
83 #define CCI_PORT_S4	4
84 #define CCI_PORT_M0	5
85 #define CCI_PORT_M1	6
86 #define CCI_PORT_M2	7
87 
88 #define CCI_REV_R0		0
89 #define CCI_REV_R1		1
90 #define CCI_REV_R1_PX		5
91 
92 #define CCI_PMU_EVT_SEL		0x000
93 #define CCI_PMU_CNTR		0x004
94 #define CCI_PMU_CNTR_CTRL	0x008
95 #define CCI_PMU_OVRFLW		0x00c
96 
97 #define CCI_PMU_OVRFLW_FLAG	1
98 
99 #define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)
100 
101 #define CCI_PMU_CNTR_MASK	((1ULL << 32) -1)
102 
103 /*
104  * Instead of an event id to monitor CCI cycles, a dedicated counter is
105  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
106  * make use of this event in hardware.
107  */
108 enum cci400_perf_events {
109 	CCI_PMU_CYCLES = 0xff
110 };
111 
112 #define CCI_PMU_EVENT_MASK		0xff
113 #define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
114 #define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)
115 
116 #define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */
117 
118 #define CCI_PMU_CYCLE_CNTR_IDX		0
119 #define CCI_PMU_CNTR0_IDX		1
120 #define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
121 
122 /*
123  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
124  * ports and bits 4:0 are event codes. There are different event codes
125  * associated with each port type.
126  *
127  * Additionally, the range of events associated with the port types changed
128  * between Rev0 and Rev1.
129  *
130  * The constants below define the range of valid codes for each port type for
131  * the different revisions and are used to validate the event to be monitored.
132  */
133 
134 #define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
135 #define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
136 #define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
137 #define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a
138 
139 #define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
140 #define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
141 #define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
142 #define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11
143 
144 struct pmu_port_event_ranges {
145 	u8 slave_min;
146 	u8 slave_max;
147 	u8 master_min;
148 	u8 master_max;
149 };
150 
151 static struct pmu_port_event_ranges port_event_range[] = {
152 	[CCI_REV_R0] = {
153 		.slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
154 		.slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
155 		.master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
156 		.master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
157 	},
158 	[CCI_REV_R1] = {
159 		.slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
160 		.slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
161 		.master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
162 		.master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
163 	},
164 };
165 
166 /*
167  * Export different PMU names for the different revisions so userspace knows
168  * because the event ids are different
169  */
170 static char *const pmu_names[] = {
171 	[CCI_REV_R0] = "CCI_400",
172 	[CCI_REV_R1] = "CCI_400_r1",
173 };
174 
175 struct cci_pmu_hw_events {
176 	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
177 	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
178 	raw_spinlock_t pmu_lock;
179 };
180 
181 struct cci_pmu {
182 	void __iomem *base;
183 	struct pmu pmu;
184 	int nr_irqs;
185 	int irqs[CCI_PMU_MAX_HW_EVENTS];
186 	unsigned long active_irqs;
187 	struct pmu_port_event_ranges *port_ranges;
188 	struct cci_pmu_hw_events hw_events;
189 	struct platform_device *plat_device;
190 	int num_events;
191 	atomic_t active_events;
192 	struct mutex reserve_mutex;
193 	cpumask_t cpus;
194 };
195 static struct cci_pmu *pmu;
196 
197 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
198 
199 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
200 {
201 	int i;
202 
203 	for (i = 0; i < nr_irqs; i++)
204 		if (irq == irqs[i])
205 			return true;
206 
207 	return false;
208 }
209 
210 static int probe_cci_revision(void)
211 {
212 	int rev;
213 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
214 	rev >>= CCI_PID2_REV_SHIFT;
215 
216 	if (rev < CCI_REV_R1_PX)
217 		return CCI_REV_R0;
218 	else
219 		return CCI_REV_R1;
220 }
221 
222 static struct pmu_port_event_ranges *port_range_by_rev(void)
223 {
224 	int rev = probe_cci_revision();
225 
226 	return &port_event_range[rev];
227 }
228 
229 static int pmu_is_valid_slave_event(u8 ev_code)
230 {
231 	return pmu->port_ranges->slave_min <= ev_code &&
232 		ev_code <= pmu->port_ranges->slave_max;
233 }
234 
235 static int pmu_is_valid_master_event(u8 ev_code)
236 {
237 	return pmu->port_ranges->master_min <= ev_code &&
238 		ev_code <= pmu->port_ranges->master_max;
239 }
240 
241 static int pmu_validate_hw_event(u8 hw_event)
242 {
243 	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
244 	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
245 
246 	switch (ev_source) {
247 	case CCI_PORT_S0:
248 	case CCI_PORT_S1:
249 	case CCI_PORT_S2:
250 	case CCI_PORT_S3:
251 	case CCI_PORT_S4:
252 		/* Slave Interface */
253 		if (pmu_is_valid_slave_event(ev_code))
254 			return hw_event;
255 		break;
256 	case CCI_PORT_M0:
257 	case CCI_PORT_M1:
258 	case CCI_PORT_M2:
259 		/* Master Interface */
260 		if (pmu_is_valid_master_event(ev_code))
261 			return hw_event;
262 		break;
263 	}
264 
265 	return -ENOENT;
266 }
267 
268 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
269 {
270 	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
271 		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
272 }
273 
274 static u32 pmu_read_register(int idx, unsigned int offset)
275 {
276 	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
277 }
278 
279 static void pmu_write_register(u32 value, int idx, unsigned int offset)
280 {
281 	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
282 }
283 
284 static void pmu_disable_counter(int idx)
285 {
286 	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
287 }
288 
289 static void pmu_enable_counter(int idx)
290 {
291 	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
292 }
293 
294 static void pmu_set_event(int idx, unsigned long event)
295 {
296 	event &= CCI_PMU_EVENT_MASK;
297 	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
298 }
299 
300 static u32 pmu_get_max_counters(void)
301 {
302 	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
303 		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
304 
305 	/* add 1 for cycle counter */
306 	return n_cnts + 1;
307 }
308 
309 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
310 {
311 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
312 	struct hw_perf_event *hw_event = &event->hw;
313 	unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
314 	int idx;
315 
316 	if (cci_event == CCI_PMU_CYCLES) {
317 		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
318 			return -EAGAIN;
319 
320 		return CCI_PMU_CYCLE_CNTR_IDX;
321 	}
322 
323 	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
324 		if (!test_and_set_bit(idx, hw->used_mask))
325 			return idx;
326 
327 	/* No counters available */
328 	return -EAGAIN;
329 }
330 
331 static int pmu_map_event(struct perf_event *event)
332 {
333 	int mapping;
334 	u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
335 
336 	if (event->attr.type < PERF_TYPE_MAX)
337 		return -ENOENT;
338 
339 	if (config == CCI_PMU_CYCLES)
340 		mapping = config;
341 	else
342 		mapping = pmu_validate_hw_event(config);
343 
344 	return mapping;
345 }
346 
347 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
348 {
349 	int i;
350 	struct platform_device *pmu_device = cci_pmu->plat_device;
351 
352 	if (unlikely(!pmu_device))
353 		return -ENODEV;
354 
355 	if (pmu->nr_irqs < 1) {
356 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
357 		return -ENODEV;
358 	}
359 
360 	/*
361 	 * Register all available CCI PMU interrupts. In the interrupt handler
362 	 * we iterate over the counters checking for interrupt source (the
363 	 * overflowing counter) and clear it.
364 	 *
365 	 * This should allow handling of non-unique interrupt for the counters.
366 	 */
367 	for (i = 0; i < pmu->nr_irqs; i++) {
368 		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
369 				"arm-cci-pmu", cci_pmu);
370 		if (err) {
371 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
372 				pmu->irqs[i]);
373 			return err;
374 		}
375 
376 		set_bit(i, &pmu->active_irqs);
377 	}
378 
379 	return 0;
380 }
381 
382 static void pmu_free_irq(struct cci_pmu *cci_pmu)
383 {
384 	int i;
385 
386 	for (i = 0; i < pmu->nr_irqs; i++) {
387 		if (!test_and_clear_bit(i, &pmu->active_irqs))
388 			continue;
389 
390 		free_irq(pmu->irqs[i], cci_pmu);
391 	}
392 }
393 
394 static u32 pmu_read_counter(struct perf_event *event)
395 {
396 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
397 	struct hw_perf_event *hw_counter = &event->hw;
398 	int idx = hw_counter->idx;
399 	u32 value;
400 
401 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
402 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
403 		return 0;
404 	}
405 	value = pmu_read_register(idx, CCI_PMU_CNTR);
406 
407 	return value;
408 }
409 
410 static void pmu_write_counter(struct perf_event *event, u32 value)
411 {
412 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
413 	struct hw_perf_event *hw_counter = &event->hw;
414 	int idx = hw_counter->idx;
415 
416 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
417 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
418 	else
419 		pmu_write_register(value, idx, CCI_PMU_CNTR);
420 }
421 
422 static u64 pmu_event_update(struct perf_event *event)
423 {
424 	struct hw_perf_event *hwc = &event->hw;
425 	u64 delta, prev_raw_count, new_raw_count;
426 
427 	do {
428 		prev_raw_count = local64_read(&hwc->prev_count);
429 		new_raw_count = pmu_read_counter(event);
430 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
431 		 new_raw_count) != prev_raw_count);
432 
433 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
434 
435 	local64_add(delta, &event->count);
436 
437 	return new_raw_count;
438 }
439 
440 static void pmu_read(struct perf_event *event)
441 {
442 	pmu_event_update(event);
443 }
444 
445 void pmu_event_set_period(struct perf_event *event)
446 {
447 	struct hw_perf_event *hwc = &event->hw;
448 	/*
449 	 * The CCI PMU counters have a period of 2^32. To account for the
450 	 * possiblity of extreme interrupt latency we program for a period of
451 	 * half that. Hopefully we can handle the interrupt before another 2^31
452 	 * events occur and the counter overtakes its previous value.
453 	 */
454 	u64 val = 1ULL << 31;
455 	local64_set(&hwc->prev_count, val);
456 	pmu_write_counter(event, val);
457 }
458 
459 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
460 {
461 	unsigned long flags;
462 	struct cci_pmu *cci_pmu = dev;
463 	struct cci_pmu_hw_events *events = &pmu->hw_events;
464 	int idx, handled = IRQ_NONE;
465 
466 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
467 	/*
468 	 * Iterate over counters and update the corresponding perf events.
469 	 * This should work regardless of whether we have per-counter overflow
470 	 * interrupt or a combined overflow interrupt.
471 	 */
472 	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
473 		struct perf_event *event = events->events[idx];
474 		struct hw_perf_event *hw_counter;
475 
476 		if (!event)
477 			continue;
478 
479 		hw_counter = &event->hw;
480 
481 		/* Did this counter overflow? */
482 		if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
483 		      CCI_PMU_OVRFLW_FLAG))
484 			continue;
485 
486 		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
487 
488 		pmu_event_update(event);
489 		pmu_event_set_period(event);
490 		handled = IRQ_HANDLED;
491 	}
492 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
493 
494 	return IRQ_RETVAL(handled);
495 }
496 
497 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
498 {
499 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
500 	if (ret) {
501 		pmu_free_irq(cci_pmu);
502 		return ret;
503 	}
504 	return 0;
505 }
506 
507 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
508 {
509 	pmu_free_irq(cci_pmu);
510 }
511 
512 static void hw_perf_event_destroy(struct perf_event *event)
513 {
514 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
515 	atomic_t *active_events = &cci_pmu->active_events;
516 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
517 
518 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
519 		cci_pmu_put_hw(cci_pmu);
520 		mutex_unlock(reserve_mutex);
521 	}
522 }
523 
524 static void cci_pmu_enable(struct pmu *pmu)
525 {
526 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
527 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
528 	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
529 	unsigned long flags;
530 	u32 val;
531 
532 	if (!enabled)
533 		return;
534 
535 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
536 
537 	/* Enable all the PMU counters. */
538 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
539 	writel(val, cci_ctrl_base + CCI_PMCR);
540 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
541 
542 }
543 
544 static void cci_pmu_disable(struct pmu *pmu)
545 {
546 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
547 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
548 	unsigned long flags;
549 	u32 val;
550 
551 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
552 
553 	/* Disable all the PMU counters. */
554 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
555 	writel(val, cci_ctrl_base + CCI_PMCR);
556 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
557 }
558 
559 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
560 {
561 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
562 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
563 	struct hw_perf_event *hwc = &event->hw;
564 	int idx = hwc->idx;
565 	unsigned long flags;
566 
567 	/*
568 	 * To handle interrupt latency, we always reprogram the period
569 	 * regardlesss of PERF_EF_RELOAD.
570 	 */
571 	if (pmu_flags & PERF_EF_RELOAD)
572 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
573 
574 	hwc->state = 0;
575 
576 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
577 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
578 		return;
579 	}
580 
581 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
582 
583 	/* Configure the event to count, unless you are counting cycles */
584 	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
585 		pmu_set_event(idx, hwc->config_base);
586 
587 	pmu_event_set_period(event);
588 	pmu_enable_counter(idx);
589 
590 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
591 }
592 
593 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
594 {
595 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
596 	struct hw_perf_event *hwc = &event->hw;
597 	int idx = hwc->idx;
598 
599 	if (hwc->state & PERF_HES_STOPPED)
600 		return;
601 
602 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
603 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
604 		return;
605 	}
606 
607 	/*
608 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
609 	 * cci_pmu_start()
610 	 */
611 	pmu_disable_counter(idx);
612 	pmu_event_update(event);
613 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
614 }
615 
616 static int cci_pmu_add(struct perf_event *event, int flags)
617 {
618 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
619 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
620 	struct hw_perf_event *hwc = &event->hw;
621 	int idx;
622 	int err = 0;
623 
624 	perf_pmu_disable(event->pmu);
625 
626 	/* If we don't have a space for the counter then finish early. */
627 	idx = pmu_get_event_idx(hw_events, event);
628 	if (idx < 0) {
629 		err = idx;
630 		goto out;
631 	}
632 
633 	event->hw.idx = idx;
634 	hw_events->events[idx] = event;
635 
636 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
637 	if (flags & PERF_EF_START)
638 		cci_pmu_start(event, PERF_EF_RELOAD);
639 
640 	/* Propagate our changes to the userspace mapping. */
641 	perf_event_update_userpage(event);
642 
643 out:
644 	perf_pmu_enable(event->pmu);
645 	return err;
646 }
647 
648 static void cci_pmu_del(struct perf_event *event, int flags)
649 {
650 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
651 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
652 	struct hw_perf_event *hwc = &event->hw;
653 	int idx = hwc->idx;
654 
655 	cci_pmu_stop(event, PERF_EF_UPDATE);
656 	hw_events->events[idx] = NULL;
657 	clear_bit(idx, hw_events->used_mask);
658 
659 	perf_event_update_userpage(event);
660 }
661 
662 static int
663 validate_event(struct cci_pmu_hw_events *hw_events,
664 	       struct perf_event *event)
665 {
666 	if (is_software_event(event))
667 		return 1;
668 
669 	if (event->state < PERF_EVENT_STATE_OFF)
670 		return 1;
671 
672 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
673 		return 1;
674 
675 	return pmu_get_event_idx(hw_events, event) >= 0;
676 }
677 
678 static int
679 validate_group(struct perf_event *event)
680 {
681 	struct perf_event *sibling, *leader = event->group_leader;
682 	struct cci_pmu_hw_events fake_pmu = {
683 		/*
684 		 * Initialise the fake PMU. We only need to populate the
685 		 * used_mask for the purposes of validation.
686 		 */
687 		.used_mask = CPU_BITS_NONE,
688 	};
689 
690 	if (!validate_event(&fake_pmu, leader))
691 		return -EINVAL;
692 
693 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
694 		if (!validate_event(&fake_pmu, sibling))
695 			return -EINVAL;
696 	}
697 
698 	if (!validate_event(&fake_pmu, event))
699 		return -EINVAL;
700 
701 	return 0;
702 }
703 
704 static int
705 __hw_perf_event_init(struct perf_event *event)
706 {
707 	struct hw_perf_event *hwc = &event->hw;
708 	int mapping;
709 
710 	mapping = pmu_map_event(event);
711 
712 	if (mapping < 0) {
713 		pr_debug("event %x:%llx not supported\n", event->attr.type,
714 			 event->attr.config);
715 		return mapping;
716 	}
717 
718 	/*
719 	 * We don't assign an index until we actually place the event onto
720 	 * hardware. Use -1 to signify that we haven't decided where to put it
721 	 * yet.
722 	 */
723 	hwc->idx		= -1;
724 	hwc->config_base	= 0;
725 	hwc->config		= 0;
726 	hwc->event_base		= 0;
727 
728 	/*
729 	 * Store the event encoding into the config_base field.
730 	 */
731 	hwc->config_base	    |= (unsigned long)mapping;
732 
733 	/*
734 	 * Limit the sample_period to half of the counter width. That way, the
735 	 * new counter value is far less likely to overtake the previous one
736 	 * unless you have some serious IRQ latency issues.
737 	 */
738 	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
739 	hwc->last_period    = hwc->sample_period;
740 	local64_set(&hwc->period_left, hwc->sample_period);
741 
742 	if (event->group_leader != event) {
743 		if (validate_group(event) != 0)
744 			return -EINVAL;
745 	}
746 
747 	return 0;
748 }
749 
750 static int cci_pmu_event_init(struct perf_event *event)
751 {
752 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
753 	atomic_t *active_events = &cci_pmu->active_events;
754 	int err = 0;
755 	int cpu;
756 
757 	if (event->attr.type != event->pmu->type)
758 		return -ENOENT;
759 
760 	/* Shared by all CPUs, no meaningful state to sample */
761 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
762 		return -EOPNOTSUPP;
763 
764 	/* We have no filtering of any kind */
765 	if (event->attr.exclude_user	||
766 	    event->attr.exclude_kernel	||
767 	    event->attr.exclude_hv	||
768 	    event->attr.exclude_idle	||
769 	    event->attr.exclude_host	||
770 	    event->attr.exclude_guest)
771 		return -EINVAL;
772 
773 	/*
774 	 * Following the example set by other "uncore" PMUs, we accept any CPU
775 	 * and rewrite its affinity dynamically rather than having perf core
776 	 * handle cpu == -1 and pid == -1 for this case.
777 	 *
778 	 * The perf core will pin online CPUs for the duration of this call and
779 	 * the event being installed into its context, so the PMU's CPU can't
780 	 * change under our feet.
781 	 */
782 	cpu = cpumask_first(&cci_pmu->cpus);
783 	if (event->cpu < 0 || cpu < 0)
784 		return -EINVAL;
785 	event->cpu = cpu;
786 
787 	event->destroy = hw_perf_event_destroy;
788 	if (!atomic_inc_not_zero(active_events)) {
789 		mutex_lock(&cci_pmu->reserve_mutex);
790 		if (atomic_read(active_events) == 0)
791 			err = cci_pmu_get_hw(cci_pmu);
792 		if (!err)
793 			atomic_inc(active_events);
794 		mutex_unlock(&cci_pmu->reserve_mutex);
795 	}
796 	if (err)
797 		return err;
798 
799 	err = __hw_perf_event_init(event);
800 	if (err)
801 		hw_perf_event_destroy(event);
802 
803 	return err;
804 }
805 
806 static ssize_t pmu_attr_cpumask_show(struct device *dev,
807 				     struct device_attribute *attr, char *buf)
808 {
809 	int n = cpulist_scnprintf(buf, PAGE_SIZE - 2, &pmu->cpus);
810 
811 	buf[n++] = '\n';
812 	buf[n] = '\0';
813 	return n;
814 }
815 
816 static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);
817 
818 static struct attribute *pmu_attrs[] = {
819 	&dev_attr_cpumask.attr,
820 	NULL,
821 };
822 
823 static struct attribute_group pmu_attr_group = {
824 	.attrs = pmu_attrs,
825 };
826 
827 static const struct attribute_group *pmu_attr_groups[] = {
828 	&pmu_attr_group,
829 	NULL
830 };
831 
832 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
833 {
834 	char *name = pmu_names[probe_cci_revision()];
835 	cci_pmu->pmu = (struct pmu) {
836 		.name		= pmu_names[probe_cci_revision()],
837 		.task_ctx_nr	= perf_invalid_context,
838 		.pmu_enable	= cci_pmu_enable,
839 		.pmu_disable	= cci_pmu_disable,
840 		.event_init	= cci_pmu_event_init,
841 		.add		= cci_pmu_add,
842 		.del		= cci_pmu_del,
843 		.start		= cci_pmu_start,
844 		.stop		= cci_pmu_stop,
845 		.read		= pmu_read,
846 		.attr_groups	= pmu_attr_groups,
847 	};
848 
849 	cci_pmu->plat_device = pdev;
850 	cci_pmu->num_events = pmu_get_max_counters();
851 
852 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
853 }
854 
855 static int cci_pmu_cpu_notifier(struct notifier_block *self,
856 				unsigned long action, void *hcpu)
857 {
858 	unsigned int cpu = (long)hcpu;
859 	unsigned int target;
860 
861 	switch (action & ~CPU_TASKS_FROZEN) {
862 	case CPU_DOWN_PREPARE:
863 		if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
864 			break;
865 		target = cpumask_any_but(cpu_online_mask, cpu);
866 		if (target < 0) // UP, last CPU
867 			break;
868 		/*
869 		 * TODO: migrate context once core races on event->ctx have
870 		 * been fixed.
871 		 */
872 		cpumask_set_cpu(target, &pmu->cpus);
873 	default:
874 		break;
875 	}
876 
877 	return NOTIFY_OK;
878 }
879 
880 static struct notifier_block cci_pmu_cpu_nb = {
881 	.notifier_call	= cci_pmu_cpu_notifier,
882 	/*
883 	 * to migrate uncore events, our notifier should be executed
884 	 * before perf core's notifier.
885 	 */
886 	.priority	= CPU_PRI_PERF + 1,
887 };
888 
889 static const struct of_device_id arm_cci_pmu_matches[] = {
890 	{
891 		.compatible = "arm,cci-400-pmu",
892 	},
893 	{},
894 };
895 
896 static int cci_pmu_probe(struct platform_device *pdev)
897 {
898 	struct resource *res;
899 	int i, ret, irq;
900 
901 	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
902 	if (!pmu)
903 		return -ENOMEM;
904 
905 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
906 	pmu->base = devm_ioremap_resource(&pdev->dev, res);
907 	if (IS_ERR(pmu->base))
908 		return -ENOMEM;
909 
910 	/*
911 	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
912 	 * together to a common interrupt.
913 	 */
914 	pmu->nr_irqs = 0;
915 	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
916 		irq = platform_get_irq(pdev, i);
917 		if (irq < 0)
918 			break;
919 
920 		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
921 			continue;
922 
923 		pmu->irqs[pmu->nr_irqs++] = irq;
924 	}
925 
926 	/*
927 	 * Ensure that the device tree has as many interrupts as the number
928 	 * of counters.
929 	 */
930 	if (i < CCI_PMU_MAX_HW_EVENTS) {
931 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
932 			i, CCI_PMU_MAX_HW_EVENTS);
933 		return -EINVAL;
934 	}
935 
936 	pmu->port_ranges = port_range_by_rev();
937 	if (!pmu->port_ranges) {
938 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
939 		return -EINVAL;
940 	}
941 
942 	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
943 	mutex_init(&pmu->reserve_mutex);
944 	atomic_set(&pmu->active_events, 0);
945 	cpumask_set_cpu(smp_processor_id(), &pmu->cpus);
946 
947 	ret = register_cpu_notifier(&cci_pmu_cpu_nb);
948 	if (ret)
949 		return ret;
950 
951 	ret = cci_pmu_init(pmu, pdev);
952 	if (ret)
953 		return ret;
954 
955 	return 0;
956 }
957 
958 static int cci_platform_probe(struct platform_device *pdev)
959 {
960 	if (!cci_probed())
961 		return -ENODEV;
962 
963 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
964 }
965 
966 #endif /* CONFIG_HW_PERF_EVENTS */
967 
968 struct cpu_port {
969 	u64 mpidr;
970 	u32 port;
971 };
972 
973 /*
974  * Use the port MSB as valid flag, shift can be made dynamic
975  * by computing number of bits required for port indexes.
976  * Code disabling CCI cpu ports runs with D-cache invalidated
977  * and SCTLR bit clear so data accesses must be kept to a minimum
978  * to improve performance; for now shift is left static to
979  * avoid one more data access while disabling the CCI port.
980  */
981 #define PORT_VALID_SHIFT	31
982 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
983 
984 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
985 {
986 	port->port = PORT_VALID | index;
987 	port->mpidr = mpidr;
988 }
989 
990 static inline bool cpu_port_is_valid(struct cpu_port *port)
991 {
992 	return !!(port->port & PORT_VALID);
993 }
994 
995 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
996 {
997 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
998 }
999 
1000 static struct cpu_port cpu_port[NR_CPUS];
1001 
1002 /**
1003  * __cci_ace_get_port - Function to retrieve the port index connected to
1004  *			a cpu or device.
1005  *
1006  * @dn: device node of the device to look-up
1007  * @type: port type
1008  *
1009  * Return value:
1010  *	- CCI port index if success
1011  *	- -ENODEV if failure
1012  */
1013 static int __cci_ace_get_port(struct device_node *dn, int type)
1014 {
1015 	int i;
1016 	bool ace_match;
1017 	struct device_node *cci_portn;
1018 
1019 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1020 	for (i = 0; i < nb_cci_ports; i++) {
1021 		ace_match = ports[i].type == type;
1022 		if (ace_match && cci_portn == ports[i].dn)
1023 			return i;
1024 	}
1025 	return -ENODEV;
1026 }
1027 
1028 int cci_ace_get_port(struct device_node *dn)
1029 {
1030 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1031 }
1032 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1033 
1034 static void cci_ace_init_ports(void)
1035 {
1036 	int port, cpu;
1037 	struct device_node *cpun;
1038 
1039 	/*
1040 	 * Port index look-up speeds up the function disabling ports by CPU,
1041 	 * since the logical to port index mapping is done once and does
1042 	 * not change after system boot.
1043 	 * The stashed index array is initialized for all possible CPUs
1044 	 * at probe time.
1045 	 */
1046 	for_each_possible_cpu(cpu) {
1047 		/* too early to use cpu->of_node */
1048 		cpun = of_get_cpu_node(cpu, NULL);
1049 
1050 		if (WARN(!cpun, "Missing cpu device node\n"))
1051 			continue;
1052 
1053 		port = __cci_ace_get_port(cpun, ACE_PORT);
1054 		if (port < 0)
1055 			continue;
1056 
1057 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1058 	}
1059 
1060 	for_each_possible_cpu(cpu) {
1061 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1062 			"CPU %u does not have an associated CCI port\n",
1063 			cpu);
1064 	}
1065 }
1066 /*
1067  * Functions to enable/disable a CCI interconnect slave port
1068  *
1069  * They are called by low-level power management code to disable slave
1070  * interfaces snoops and DVM broadcast.
1071  * Since they may execute with cache data allocation disabled and
1072  * after the caches have been cleaned and invalidated the functions provide
1073  * no explicit locking since they may run with D-cache disabled, so normal
1074  * cacheable kernel locks based on ldrex/strex may not work.
1075  * Locking has to be provided by BSP implementations to ensure proper
1076  * operations.
1077  */
1078 
1079 /**
1080  * cci_port_control() - function to control a CCI port
1081  *
1082  * @port: index of the port to setup
1083  * @enable: if true enables the port, if false disables it
1084  */
1085 static void notrace cci_port_control(unsigned int port, bool enable)
1086 {
1087 	void __iomem *base = ports[port].base;
1088 
1089 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1090 	/*
1091 	 * This function is called from power down procedures
1092 	 * and must not execute any instruction that might
1093 	 * cause the processor to be put in a quiescent state
1094 	 * (eg wfi). Hence, cpu_relax() can not be added to this
1095 	 * read loop to optimize power, since it might hide possibly
1096 	 * disruptive operations.
1097 	 */
1098 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1099 			;
1100 }
1101 
1102 /**
1103  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1104  *			       reference
1105  *
1106  * @mpidr: mpidr of the CPU whose CCI port should be disabled
1107  *
1108  * Disabling a CCI port for a CPU implies disabling the CCI port
1109  * controlling that CPU cluster. Code disabling CPU CCI ports
1110  * must make sure that the CPU running the code is the last active CPU
1111  * in the cluster ie all other CPUs are quiescent in a low power state.
1112  *
1113  * Return:
1114  *	0 on success
1115  *	-ENODEV on port look-up failure
1116  */
1117 int notrace cci_disable_port_by_cpu(u64 mpidr)
1118 {
1119 	int cpu;
1120 	bool is_valid;
1121 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1122 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1123 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1124 			cci_port_control(cpu_port[cpu].port, false);
1125 			return 0;
1126 		}
1127 	}
1128 	return -ENODEV;
1129 }
1130 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1131 
1132 /**
1133  * cci_enable_port_for_self() - enable a CCI port for calling CPU
1134  *
1135  * Enabling a CCI port for the calling CPU implies enabling the CCI
1136  * port controlling that CPU's cluster. Caller must make sure that the
1137  * CPU running the code is the first active CPU in the cluster and all
1138  * other CPUs are quiescent in a low power state  or waiting for this CPU
1139  * to complete the CCI initialization.
1140  *
1141  * Because this is called when the MMU is still off and with no stack,
1142  * the code must be position independent and ideally rely on callee
1143  * clobbered registers only.  To achieve this we must code this function
1144  * entirely in assembler.
1145  *
1146  * On success this returns with the proper CCI port enabled.  In case of
1147  * any failure this never returns as the inability to enable the CCI is
1148  * fatal and there is no possible recovery at this stage.
1149  */
1150 asmlinkage void __naked cci_enable_port_for_self(void)
1151 {
1152 	asm volatile ("\n"
1153 "	.arch armv7-a\n"
1154 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
1155 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1156 "	adr	r1, 5f \n"
1157 "	ldr	r2, [r1] \n"
1158 "	add	r1, r1, r2		@ &cpu_port \n"
1159 "	add	ip, r1, %[sizeof_cpu_port] \n"
1160 
1161 	/* Loop over the cpu_port array looking for a matching MPIDR */
1162 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1163 "	cmp	r2, r0 			@ compare MPIDR \n"
1164 "	bne	2f \n"
1165 
1166 	/* Found a match, now test port validity */
1167 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
1168 "	tst	r3, #"__stringify(PORT_VALID)" \n"
1169 "	bne	3f \n"
1170 
1171 	/* no match, loop with the next cpu_port entry */
1172 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
1173 "	cmp	r1, ip			@ done? \n"
1174 "	blo	1b \n"
1175 
1176 	/* CCI port not found -- cheaply try to stall this CPU */
1177 "cci_port_not_found: \n"
1178 "	wfi \n"
1179 "	wfe \n"
1180 "	b	cci_port_not_found \n"
1181 
1182 	/* Use matched port index to look up the corresponding ports entry */
1183 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
1184 "	adr	r0, 6f \n"
1185 "	ldmia	r0, {r1, r2} \n"
1186 "	sub	r1, r1, r0 		@ virt - phys \n"
1187 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
1188 "	mov	r2, %[sizeof_struct_ace_port] \n"
1189 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
1190 "	sub	r0, r0, r1		@ virt_to_phys() \n"
1191 
1192 	/* Enable the CCI port */
1193 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
1194 "	mov	r3, %[cci_enable_req]\n"
1195 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1196 
1197 	/* poll the status reg for completion */
1198 "	adr	r1, 7f \n"
1199 "	ldr	r0, [r1] \n"
1200 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
1201 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1202 "	tst	r1, %[cci_control_status_bits] \n"
1203 "	bne	4b \n"
1204 
1205 "	mov	r0, #0 \n"
1206 "	bx	lr \n"
1207 
1208 "	.align	2 \n"
1209 "5:	.word	cpu_port - . \n"
1210 "6:	.word	. \n"
1211 "	.word	ports - 6b \n"
1212 "7:	.word	cci_ctrl_phys - . \n"
1213 	: :
1214 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
1215 	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1216 	[cci_control_status_bits] "i" cpu_to_le32(1),
1217 #ifndef __ARMEB__
1218 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1219 #else
1220 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1221 #endif
1222 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1223 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1224 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1225 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1226 
1227 	unreachable();
1228 }
1229 
1230 /**
1231  * __cci_control_port_by_device() - function to control a CCI port by device
1232  *				    reference
1233  *
1234  * @dn: device node pointer of the device whose CCI port should be
1235  *      controlled
1236  * @enable: if true enables the port, if false disables it
1237  *
1238  * Return:
1239  *	0 on success
1240  *	-ENODEV on port look-up failure
1241  */
1242 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1243 {
1244 	int port;
1245 
1246 	if (!dn)
1247 		return -ENODEV;
1248 
1249 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1250 	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1251 				dn->full_name))
1252 		return -ENODEV;
1253 	cci_port_control(port, enable);
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1257 
1258 /**
1259  * __cci_control_port_by_index() - function to control a CCI port by port index
1260  *
1261  * @port: port index previously retrieved with cci_ace_get_port()
1262  * @enable: if true enables the port, if false disables it
1263  *
1264  * Return:
1265  *	0 on success
1266  *	-ENODEV on port index out of range
1267  *	-EPERM if operation carried out on an ACE PORT
1268  */
1269 int notrace __cci_control_port_by_index(u32 port, bool enable)
1270 {
1271 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1272 		return -ENODEV;
1273 	/*
1274 	 * CCI control for ports connected to CPUS is extremely fragile
1275 	 * and must be made to go through a specific and controlled
1276 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1277 	 * indexing is therefore disabled for ACE ports.
1278 	 */
1279 	if (ports[port].type == ACE_PORT)
1280 		return -EPERM;
1281 
1282 	cci_port_control(port, enable);
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1286 
1287 static const struct cci_nb_ports cci400_ports = {
1288 	.nb_ace = 2,
1289 	.nb_ace_lite = 3
1290 };
1291 
1292 static const struct of_device_id arm_cci_matches[] = {
1293 	{.compatible = "arm,cci-400", .data = &cci400_ports },
1294 	{},
1295 };
1296 
1297 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1298 	{.compatible = "arm,cci-400-ctrl-if", },
1299 	{},
1300 };
1301 
1302 static int cci_probe(void)
1303 {
1304 	struct cci_nb_ports const *cci_config;
1305 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
1306 	struct device_node *np, *cp;
1307 	struct resource res;
1308 	const char *match_str;
1309 	bool is_ace;
1310 
1311 	np = of_find_matching_node(NULL, arm_cci_matches);
1312 	if (!np)
1313 		return -ENODEV;
1314 
1315 	if (!of_device_is_available(np))
1316 		return -ENODEV;
1317 
1318 	cci_config = of_match_node(arm_cci_matches, np)->data;
1319 	if (!cci_config)
1320 		return -ENODEV;
1321 
1322 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1323 
1324 	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1325 	if (!ports)
1326 		return -ENOMEM;
1327 
1328 	ret = of_address_to_resource(np, 0, &res);
1329 	if (!ret) {
1330 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
1331 		cci_ctrl_phys =	res.start;
1332 	}
1333 	if (ret || !cci_ctrl_base) {
1334 		WARN(1, "unable to ioremap CCI ctrl\n");
1335 		ret = -ENXIO;
1336 		goto memalloc_err;
1337 	}
1338 
1339 	for_each_child_of_node(np, cp) {
1340 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1341 			continue;
1342 
1343 		i = nb_ace + nb_ace_lite;
1344 
1345 		if (i >= nb_cci_ports)
1346 			break;
1347 
1348 		if (of_property_read_string(cp, "interface-type",
1349 					&match_str)) {
1350 			WARN(1, "node %s missing interface-type property\n",
1351 				  cp->full_name);
1352 			continue;
1353 		}
1354 		is_ace = strcmp(match_str, "ace") == 0;
1355 		if (!is_ace && strcmp(match_str, "ace-lite")) {
1356 			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1357 					cp->full_name);
1358 			continue;
1359 		}
1360 
1361 		ret = of_address_to_resource(cp, 0, &res);
1362 		if (!ret) {
1363 			ports[i].base = ioremap(res.start, resource_size(&res));
1364 			ports[i].phys = res.start;
1365 		}
1366 		if (ret || !ports[i].base) {
1367 			WARN(1, "unable to ioremap CCI port %d\n", i);
1368 			continue;
1369 		}
1370 
1371 		if (is_ace) {
1372 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
1373 				continue;
1374 			ports[i].type = ACE_PORT;
1375 			++nb_ace;
1376 		} else {
1377 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1378 				continue;
1379 			ports[i].type = ACE_LITE_PORT;
1380 			++nb_ace_lite;
1381 		}
1382 		ports[i].dn = cp;
1383 	}
1384 
1385 	 /* initialize a stashed array of ACE ports to speed-up look-up */
1386 	cci_ace_init_ports();
1387 
1388 	/*
1389 	 * Multi-cluster systems may need this data when non-coherent, during
1390 	 * cluster power-up/power-down. Make sure it reaches main memory.
1391 	 */
1392 	sync_cache_w(&cci_ctrl_base);
1393 	sync_cache_w(&cci_ctrl_phys);
1394 	sync_cache_w(&ports);
1395 	sync_cache_w(&cpu_port);
1396 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1397 	pr_info("ARM CCI driver probed\n");
1398 	return 0;
1399 
1400 memalloc_err:
1401 
1402 	kfree(ports);
1403 	return ret;
1404 }
1405 
1406 static int cci_init_status = -EAGAIN;
1407 static DEFINE_MUTEX(cci_probing);
1408 
1409 static int cci_init(void)
1410 {
1411 	if (cci_init_status != -EAGAIN)
1412 		return cci_init_status;
1413 
1414 	mutex_lock(&cci_probing);
1415 	if (cci_init_status == -EAGAIN)
1416 		cci_init_status = cci_probe();
1417 	mutex_unlock(&cci_probing);
1418 	return cci_init_status;
1419 }
1420 
1421 #ifdef CONFIG_HW_PERF_EVENTS
1422 static struct platform_driver cci_pmu_driver = {
1423 	.driver = {
1424 		   .name = DRIVER_NAME_PMU,
1425 		   .of_match_table = arm_cci_pmu_matches,
1426 		  },
1427 	.probe = cci_pmu_probe,
1428 };
1429 
1430 static struct platform_driver cci_platform_driver = {
1431 	.driver = {
1432 		   .name = DRIVER_NAME,
1433 		   .of_match_table = arm_cci_matches,
1434 		  },
1435 	.probe = cci_platform_probe,
1436 };
1437 
1438 static int __init cci_platform_init(void)
1439 {
1440 	int ret;
1441 
1442 	ret = platform_driver_register(&cci_pmu_driver);
1443 	if (ret)
1444 		return ret;
1445 
1446 	return platform_driver_register(&cci_platform_driver);
1447 }
1448 
1449 #else
1450 
1451 static int __init cci_platform_init(void)
1452 {
1453 	return 0;
1454 }
1455 
1456 #endif
1457 /*
1458  * To sort out early init calls ordering a helper function is provided to
1459  * check if the CCI driver has beed initialized. Function check if the driver
1460  * has been initialized, if not it calls the init function that probes
1461  * the driver and updates the return value.
1462  */
1463 bool cci_probed(void)
1464 {
1465 	return cci_init() == 0;
1466 }
1467 EXPORT_SYMBOL_GPL(cci_probed);
1468 
1469 early_initcall(cci_init);
1470 core_initcall(cci_platform_init);
1471 MODULE_LICENSE("GPL");
1472 MODULE_DESCRIPTION("ARM CCI support");
1473