xref: /linux/drivers/bluetooth/hci_qca.c (revision df2e3152f1cb798ed8ffa7e488c50261e6dc50e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwrseq/consumer.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/serdev.h>
34 #include <linux/string_choices.h>
35 #include <linux/mutex.h>
36 #include <linux/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 
41 #include "hci_uart.h"
42 #include "btqca.h"
43 
44 /* HCI_IBS protocol messages */
45 #define HCI_IBS_SLEEP_IND	0xFE
46 #define HCI_IBS_WAKE_IND	0xFD
47 #define HCI_IBS_WAKE_ACK	0xFC
48 #define HCI_MAX_IBS_SIZE	10
49 
50 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
51 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
52 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
53 #define CMD_TRANS_TIMEOUT_MS		100
54 #define MEMDUMP_TIMEOUT_MS		8000
55 #define IBS_DISABLE_SSR_TIMEOUT_MS \
56 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
57 #define FW_DOWNLOAD_TIMEOUT_MS		3000
58 
59 /* susclk rate */
60 #define SUSCLK_RATE_32KHZ	32768
61 
62 /* Controller debug log header */
63 #define QCA_DEBUG_HANDLE	0x2EDC
64 
65 /* max retry count when init fails */
66 #define MAX_INIT_RETRIES 3
67 
68 /* Controller dump header */
69 #define QCA_SSR_DUMP_HANDLE		0x0108
70 #define QCA_DUMP_PACKET_SIZE		255
71 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
72 #define QCA_CRASHBYTE_PACKET_LEN	1096
73 #define QCA_MEMDUMP_BYTE		0xFB
74 
75 enum qca_flags {
76 	QCA_IBS_DISABLED,
77 	QCA_DROP_VENDOR_EVENT,
78 	QCA_SUSPENDING,
79 	QCA_MEMDUMP_COLLECTION,
80 	QCA_HW_ERROR_EVENT,
81 	QCA_SSR_TRIGGERED,
82 	QCA_BT_OFF,
83 	QCA_ROM_FW,
84 	QCA_DEBUGFS_CREATED,
85 };
86 
87 enum qca_capabilities {
88 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
89 	QCA_CAP_VALID_LE_STATES = BIT(1),
90 };
91 
92 /* HCI_IBS transmit side sleep protocol states */
93 enum tx_ibs_states {
94 	HCI_IBS_TX_ASLEEP,
95 	HCI_IBS_TX_WAKING,
96 	HCI_IBS_TX_AWAKE,
97 };
98 
99 /* HCI_IBS receive side sleep protocol states */
100 enum rx_states {
101 	HCI_IBS_RX_ASLEEP,
102 	HCI_IBS_RX_AWAKE,
103 };
104 
105 /* HCI_IBS transmit and receive side clock state vote */
106 enum hci_ibs_clock_state_vote {
107 	HCI_IBS_VOTE_STATS_UPDATE,
108 	HCI_IBS_TX_VOTE_CLOCK_ON,
109 	HCI_IBS_TX_VOTE_CLOCK_OFF,
110 	HCI_IBS_RX_VOTE_CLOCK_ON,
111 	HCI_IBS_RX_VOTE_CLOCK_OFF,
112 };
113 
114 /* Controller memory dump states */
115 enum qca_memdump_states {
116 	QCA_MEMDUMP_IDLE,
117 	QCA_MEMDUMP_COLLECTING,
118 	QCA_MEMDUMP_COLLECTED,
119 	QCA_MEMDUMP_TIMEOUT,
120 };
121 
122 struct qca_memdump_info {
123 	u32 current_seq_no;
124 	u32 received_dump;
125 	u32 ram_dump_size;
126 };
127 
128 struct qca_memdump_event_hdr {
129 	__u8    evt;
130 	__u8    plen;
131 	__u16   opcode;
132 	__le16   seq_no;
133 	__u8    reserved;
134 } __packed;
135 
136 
137 struct qca_dump_size {
138 	__le32 dump_size;
139 } __packed;
140 
141 struct qca_data {
142 	struct hci_uart *hu;
143 	struct sk_buff *rx_skb;
144 	struct sk_buff_head txq;
145 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
146 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
147 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
148 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
149 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
150 	bool tx_vote;		/* Clock must be on for TX */
151 	bool rx_vote;		/* Clock must be on for RX */
152 	struct timer_list tx_idle_timer;
153 	u32 tx_idle_delay;
154 	struct timer_list wake_retrans_timer;
155 	u32 wake_retrans;
156 	struct workqueue_struct *workqueue;
157 	struct work_struct ws_awake_rx;
158 	struct work_struct ws_awake_device;
159 	struct work_struct ws_rx_vote_off;
160 	struct work_struct ws_tx_vote_off;
161 	struct work_struct ctrl_memdump_evt;
162 	struct delayed_work ctrl_memdump_timeout;
163 	struct qca_memdump_info *qca_memdump;
164 	unsigned long flags;
165 	struct completion drop_ev_comp;
166 	wait_queue_head_t suspend_wait_q;
167 	enum qca_memdump_states memdump_state;
168 	struct mutex hci_memdump_lock;
169 
170 	u16 fw_version;
171 	u16 controller_id;
172 	/* For debugging purpose */
173 	u64 ibs_sent_wacks;
174 	u64 ibs_sent_slps;
175 	u64 ibs_sent_wakes;
176 	u64 ibs_recv_wacks;
177 	u64 ibs_recv_slps;
178 	u64 ibs_recv_wakes;
179 	u64 vote_last_jif;
180 	u32 vote_on_ms;
181 	u32 vote_off_ms;
182 	u64 tx_votes_on;
183 	u64 rx_votes_on;
184 	u64 tx_votes_off;
185 	u64 rx_votes_off;
186 	u64 votes_on;
187 	u64 votes_off;
188 };
189 
190 enum qca_speed_type {
191 	QCA_INIT_SPEED = 1,
192 	QCA_OPER_SPEED
193 };
194 
195 /*
196  * Voltage regulator information required for configuring the
197  * QCA Bluetooth chipset
198  */
199 struct qca_vreg {
200 	const char *name;
201 	unsigned int load_uA;
202 };
203 
204 struct qca_device_data {
205 	enum qca_btsoc_type soc_type;
206 	struct qca_vreg *vregs;
207 	size_t num_vregs;
208 	uint32_t capabilities;
209 };
210 
211 /*
212  * Platform data for the QCA Bluetooth power driver.
213  */
214 struct qca_power {
215 	struct device *dev;
216 	struct regulator_bulk_data *vreg_bulk;
217 	int num_vregs;
218 	bool vregs_on;
219 	struct pwrseq_desc *pwrseq;
220 };
221 
222 struct qca_serdev {
223 	struct hci_uart	 serdev_hu;
224 	struct gpio_desc *bt_en;
225 	struct gpio_desc *sw_ctrl;
226 	struct clk	 *susclk;
227 	enum qca_btsoc_type btsoc_type;
228 	struct qca_power *bt_power;
229 	u32 init_speed;
230 	u32 oper_speed;
231 	bool bdaddr_property_broken;
232 	const char *firmware_name[2];
233 };
234 
235 static int qca_regulator_enable(struct qca_serdev *qcadev);
236 static void qca_regulator_disable(struct qca_serdev *qcadev);
237 static void qca_power_shutdown(struct hci_uart *hu);
238 static int qca_power_off(struct hci_dev *hdev);
239 static void qca_controller_memdump(struct work_struct *work);
240 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
241 
242 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
243 {
244 	enum qca_btsoc_type soc_type;
245 
246 	if (hu->serdev) {
247 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248 
249 		soc_type = qsd->btsoc_type;
250 	} else {
251 		soc_type = QCA_ROME;
252 	}
253 
254 	return soc_type;
255 }
256 
257 static const char *qca_get_firmware_name(struct hci_uart *hu)
258 {
259 	if (hu->serdev) {
260 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
261 
262 		return qsd->firmware_name[0];
263 	} else {
264 		return NULL;
265 	}
266 }
267 
268 static const char *qca_get_rampatch_name(struct hci_uart *hu)
269 {
270 	if (hu->serdev) {
271 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
272 
273 		return qsd->firmware_name[1];
274 	} else {
275 		return NULL;
276 	}
277 }
278 
279 static void __serial_clock_on(struct tty_struct *tty)
280 {
281 	/* TODO: Some chipset requires to enable UART clock on client
282 	 * side to save power consumption or manual work is required.
283 	 * Please put your code to control UART clock here if needed
284 	 */
285 }
286 
287 static void __serial_clock_off(struct tty_struct *tty)
288 {
289 	/* TODO: Some chipset requires to disable UART clock on client
290 	 * side to save power consumption or manual work is required.
291 	 * Please put your code to control UART clock off here if needed
292 	 */
293 }
294 
295 /* serial_clock_vote needs to be called with the ibs lock held */
296 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
297 {
298 	struct qca_data *qca = hu->priv;
299 	unsigned int diff;
300 
301 	bool old_vote = (qca->tx_vote | qca->rx_vote);
302 	bool new_vote;
303 
304 	switch (vote) {
305 	case HCI_IBS_VOTE_STATS_UPDATE:
306 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
307 
308 		if (old_vote)
309 			qca->vote_off_ms += diff;
310 		else
311 			qca->vote_on_ms += diff;
312 		return;
313 
314 	case HCI_IBS_TX_VOTE_CLOCK_ON:
315 		qca->tx_vote = true;
316 		qca->tx_votes_on++;
317 		break;
318 
319 	case HCI_IBS_RX_VOTE_CLOCK_ON:
320 		qca->rx_vote = true;
321 		qca->rx_votes_on++;
322 		break;
323 
324 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
325 		qca->tx_vote = false;
326 		qca->tx_votes_off++;
327 		break;
328 
329 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
330 		qca->rx_vote = false;
331 		qca->rx_votes_off++;
332 		break;
333 
334 	default:
335 		BT_ERR("Voting irregularity");
336 		return;
337 	}
338 
339 	new_vote = qca->rx_vote | qca->tx_vote;
340 
341 	if (new_vote != old_vote) {
342 		if (new_vote)
343 			__serial_clock_on(hu->tty);
344 		else
345 			__serial_clock_off(hu->tty);
346 
347 		BT_DBG("Vote serial clock %s(%s)", str_true_false(new_vote),
348 		       str_true_false(vote));
349 
350 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
351 
352 		if (new_vote) {
353 			qca->votes_on++;
354 			qca->vote_off_ms += diff;
355 		} else {
356 			qca->votes_off++;
357 			qca->vote_on_ms += diff;
358 		}
359 		qca->vote_last_jif = jiffies;
360 	}
361 }
362 
363 /* Builds and sends an HCI_IBS command packet.
364  * These are very simple packets with only 1 cmd byte.
365  */
366 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
367 {
368 	int err = 0;
369 	struct sk_buff *skb = NULL;
370 	struct qca_data *qca = hu->priv;
371 
372 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
373 
374 	skb = bt_skb_alloc(1, GFP_ATOMIC);
375 	if (!skb) {
376 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
377 		return -ENOMEM;
378 	}
379 
380 	/* Assign HCI_IBS type */
381 	skb_put_u8(skb, cmd);
382 
383 	skb_queue_tail(&qca->txq, skb);
384 
385 	return err;
386 }
387 
388 static void qca_wq_awake_device(struct work_struct *work)
389 {
390 	struct qca_data *qca = container_of(work, struct qca_data,
391 					    ws_awake_device);
392 	struct hci_uart *hu = qca->hu;
393 	unsigned long retrans_delay;
394 	unsigned long flags;
395 
396 	BT_DBG("hu %p wq awake device", hu);
397 
398 	/* Vote for serial clock */
399 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
400 
401 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
402 
403 	/* Send wake indication to device */
404 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
405 		BT_ERR("Failed to send WAKE to device");
406 
407 	qca->ibs_sent_wakes++;
408 
409 	/* Start retransmit timer */
410 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
411 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
412 
413 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
414 
415 	/* Actually send the packets */
416 	hci_uart_tx_wakeup(hu);
417 }
418 
419 static void qca_wq_awake_rx(struct work_struct *work)
420 {
421 	struct qca_data *qca = container_of(work, struct qca_data,
422 					    ws_awake_rx);
423 	struct hci_uart *hu = qca->hu;
424 	unsigned long flags;
425 
426 	BT_DBG("hu %p wq awake rx", hu);
427 
428 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
429 
430 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
431 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
432 
433 	/* Always acknowledge device wake up,
434 	 * sending IBS message doesn't count as TX ON.
435 	 */
436 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
437 		BT_ERR("Failed to acknowledge device wake up");
438 
439 	qca->ibs_sent_wacks++;
440 
441 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
442 
443 	/* Actually send the packets */
444 	hci_uart_tx_wakeup(hu);
445 }
446 
447 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
448 {
449 	struct qca_data *qca = container_of(work, struct qca_data,
450 					    ws_rx_vote_off);
451 	struct hci_uart *hu = qca->hu;
452 
453 	BT_DBG("hu %p rx clock vote off", hu);
454 
455 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
456 }
457 
458 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
459 {
460 	struct qca_data *qca = container_of(work, struct qca_data,
461 					    ws_tx_vote_off);
462 	struct hci_uart *hu = qca->hu;
463 
464 	BT_DBG("hu %p tx clock vote off", hu);
465 
466 	/* Run HCI tx handling unlocked */
467 	hci_uart_tx_wakeup(hu);
468 
469 	/* Now that message queued to tty driver, vote for tty clocks off.
470 	 * It is up to the tty driver to pend the clocks off until tx done.
471 	 */
472 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
473 }
474 
475 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
476 {
477 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
478 	struct hci_uart *hu = qca->hu;
479 	unsigned long flags;
480 
481 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
482 
483 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
484 				 flags, SINGLE_DEPTH_NESTING);
485 
486 	switch (qca->tx_ibs_state) {
487 	case HCI_IBS_TX_AWAKE:
488 		/* TX_IDLE, go to SLEEP */
489 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
490 			BT_ERR("Failed to send SLEEP to device");
491 			break;
492 		}
493 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
494 		qca->ibs_sent_slps++;
495 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
496 		break;
497 
498 	case HCI_IBS_TX_ASLEEP:
499 	case HCI_IBS_TX_WAKING:
500 	default:
501 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
502 		break;
503 	}
504 
505 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
506 }
507 
508 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
509 {
510 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
511 	struct hci_uart *hu = qca->hu;
512 	unsigned long flags, retrans_delay;
513 	bool retransmit = false;
514 
515 	BT_DBG("hu %p wake retransmit timeout in %d state",
516 		hu, qca->tx_ibs_state);
517 
518 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
519 				 flags, SINGLE_DEPTH_NESTING);
520 
521 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
522 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
523 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524 		return;
525 	}
526 
527 	switch (qca->tx_ibs_state) {
528 	case HCI_IBS_TX_WAKING:
529 		/* No WAKE_ACK, retransmit WAKE */
530 		retransmit = true;
531 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
532 			BT_ERR("Failed to acknowledge device wake up");
533 			break;
534 		}
535 		qca->ibs_sent_wakes++;
536 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
537 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
538 		break;
539 
540 	case HCI_IBS_TX_ASLEEP:
541 	case HCI_IBS_TX_AWAKE:
542 	default:
543 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
544 		break;
545 	}
546 
547 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
548 
549 	if (retransmit)
550 		hci_uart_tx_wakeup(hu);
551 }
552 
553 
554 static void qca_controller_memdump_timeout(struct work_struct *work)
555 {
556 	struct qca_data *qca = container_of(work, struct qca_data,
557 					ctrl_memdump_timeout.work);
558 	struct hci_uart *hu = qca->hu;
559 
560 	mutex_lock(&qca->hci_memdump_lock);
561 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
562 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
563 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
564 			/* Inject hw error event to reset the device
565 			 * and driver.
566 			 */
567 			hci_reset_dev(hu->hdev);
568 		}
569 	}
570 
571 	mutex_unlock(&qca->hci_memdump_lock);
572 }
573 
574 
575 /* Initialize protocol */
576 static int qca_open(struct hci_uart *hu)
577 {
578 	struct qca_serdev *qcadev;
579 	struct qca_data *qca;
580 
581 	BT_DBG("hu %p qca_open", hu);
582 
583 	if (!hci_uart_has_flow_control(hu))
584 		return -EOPNOTSUPP;
585 
586 	qca = kzalloc(sizeof(*qca), GFP_KERNEL);
587 	if (!qca)
588 		return -ENOMEM;
589 
590 	skb_queue_head_init(&qca->txq);
591 	skb_queue_head_init(&qca->tx_wait_q);
592 	skb_queue_head_init(&qca->rx_memdump_q);
593 	spin_lock_init(&qca->hci_ibs_lock);
594 	mutex_init(&qca->hci_memdump_lock);
595 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
596 	if (!qca->workqueue) {
597 		BT_ERR("QCA Workqueue not initialized properly");
598 		kfree(qca);
599 		return -ENOMEM;
600 	}
601 
602 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
603 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
604 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
605 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
606 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
607 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
608 			  qca_controller_memdump_timeout);
609 	init_waitqueue_head(&qca->suspend_wait_q);
610 
611 	qca->hu = hu;
612 	init_completion(&qca->drop_ev_comp);
613 
614 	/* Assume we start with both sides asleep -- extra wakes OK */
615 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
616 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
617 
618 	qca->vote_last_jif = jiffies;
619 
620 	hu->priv = qca;
621 
622 	if (hu->serdev) {
623 		qcadev = serdev_device_get_drvdata(hu->serdev);
624 
625 		switch (qcadev->btsoc_type) {
626 		case QCA_WCN3988:
627 		case QCA_WCN3990:
628 		case QCA_WCN3991:
629 		case QCA_WCN3998:
630 		case QCA_WCN6750:
631 			hu->init_speed = qcadev->init_speed;
632 			break;
633 
634 		default:
635 			break;
636 		}
637 
638 		if (qcadev->oper_speed)
639 			hu->oper_speed = qcadev->oper_speed;
640 	}
641 
642 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
643 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
644 
645 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
646 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
647 
648 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
649 	       qca->tx_idle_delay, qca->wake_retrans);
650 
651 	return 0;
652 }
653 
654 static void qca_debugfs_init(struct hci_dev *hdev)
655 {
656 	struct hci_uart *hu = hci_get_drvdata(hdev);
657 	struct qca_data *qca = hu->priv;
658 	struct dentry *ibs_dir;
659 	umode_t mode;
660 
661 	if (!hdev->debugfs)
662 		return;
663 
664 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
665 		return;
666 
667 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
668 
669 	/* read only */
670 	mode = 0444;
671 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
672 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
673 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
674 			   &qca->ibs_sent_slps);
675 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
676 			   &qca->ibs_sent_wakes);
677 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
678 			   &qca->ibs_sent_wacks);
679 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
680 			   &qca->ibs_recv_slps);
681 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
682 			   &qca->ibs_recv_wakes);
683 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
684 			   &qca->ibs_recv_wacks);
685 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
686 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
687 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
688 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
689 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
690 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
691 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
692 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
693 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
694 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
695 
696 	/* read/write */
697 	mode = 0644;
698 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
699 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
700 			   &qca->tx_idle_delay);
701 }
702 
703 /* Flush protocol data */
704 static int qca_flush(struct hci_uart *hu)
705 {
706 	struct qca_data *qca = hu->priv;
707 
708 	BT_DBG("hu %p qca flush", hu);
709 
710 	skb_queue_purge(&qca->tx_wait_q);
711 	skb_queue_purge(&qca->txq);
712 
713 	return 0;
714 }
715 
716 /* Close protocol */
717 static int qca_close(struct hci_uart *hu)
718 {
719 	struct qca_data *qca = hu->priv;
720 
721 	BT_DBG("hu %p qca close", hu);
722 
723 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
724 
725 	skb_queue_purge(&qca->tx_wait_q);
726 	skb_queue_purge(&qca->txq);
727 	skb_queue_purge(&qca->rx_memdump_q);
728 	/*
729 	 * Shut the timers down so they can't be rearmed when
730 	 * destroy_workqueue() drains pending work which in turn might try
731 	 * to arm a timer.  After shutdown rearm attempts are silently
732 	 * ignored by the timer core code.
733 	 */
734 	timer_shutdown_sync(&qca->tx_idle_timer);
735 	timer_shutdown_sync(&qca->wake_retrans_timer);
736 	destroy_workqueue(qca->workqueue);
737 	qca->hu = NULL;
738 
739 	kfree_skb(qca->rx_skb);
740 
741 	hu->priv = NULL;
742 
743 	kfree(qca);
744 
745 	return 0;
746 }
747 
748 /* Called upon a wake-up-indication from the device.
749  */
750 static void device_want_to_wakeup(struct hci_uart *hu)
751 {
752 	unsigned long flags;
753 	struct qca_data *qca = hu->priv;
754 
755 	BT_DBG("hu %p want to wake up", hu);
756 
757 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
758 
759 	qca->ibs_recv_wakes++;
760 
761 	/* Don't wake the rx up when suspending. */
762 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
763 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
764 		return;
765 	}
766 
767 	switch (qca->rx_ibs_state) {
768 	case HCI_IBS_RX_ASLEEP:
769 		/* Make sure clock is on - we may have turned clock off since
770 		 * receiving the wake up indicator awake rx clock.
771 		 */
772 		queue_work(qca->workqueue, &qca->ws_awake_rx);
773 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
774 		return;
775 
776 	case HCI_IBS_RX_AWAKE:
777 		/* Always acknowledge device wake up,
778 		 * sending IBS message doesn't count as TX ON.
779 		 */
780 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
781 			BT_ERR("Failed to acknowledge device wake up");
782 			break;
783 		}
784 		qca->ibs_sent_wacks++;
785 		break;
786 
787 	default:
788 		/* Any other state is illegal */
789 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
790 		       qca->rx_ibs_state);
791 		break;
792 	}
793 
794 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
795 
796 	/* Actually send the packets */
797 	hci_uart_tx_wakeup(hu);
798 }
799 
800 /* Called upon a sleep-indication from the device.
801  */
802 static void device_want_to_sleep(struct hci_uart *hu)
803 {
804 	unsigned long flags;
805 	struct qca_data *qca = hu->priv;
806 
807 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
808 
809 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
810 
811 	qca->ibs_recv_slps++;
812 
813 	switch (qca->rx_ibs_state) {
814 	case HCI_IBS_RX_AWAKE:
815 		/* Update state */
816 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
817 		/* Vote off rx clock under workqueue */
818 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
819 		break;
820 
821 	case HCI_IBS_RX_ASLEEP:
822 		break;
823 
824 	default:
825 		/* Any other state is illegal */
826 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
827 		       qca->rx_ibs_state);
828 		break;
829 	}
830 
831 	wake_up_interruptible(&qca->suspend_wait_q);
832 
833 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
834 }
835 
836 /* Called upon wake-up-acknowledgement from the device
837  */
838 static void device_woke_up(struct hci_uart *hu)
839 {
840 	unsigned long flags, idle_delay;
841 	struct qca_data *qca = hu->priv;
842 	struct sk_buff *skb = NULL;
843 
844 	BT_DBG("hu %p woke up", hu);
845 
846 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
847 
848 	qca->ibs_recv_wacks++;
849 
850 	/* Don't react to the wake-up-acknowledgment when suspending. */
851 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
852 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
853 		return;
854 	}
855 
856 	switch (qca->tx_ibs_state) {
857 	case HCI_IBS_TX_AWAKE:
858 		/* Expect one if we send 2 WAKEs */
859 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
860 		       qca->tx_ibs_state);
861 		break;
862 
863 	case HCI_IBS_TX_WAKING:
864 		/* Send pending packets */
865 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
866 			skb_queue_tail(&qca->txq, skb);
867 
868 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
869 		del_timer(&qca->wake_retrans_timer);
870 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
871 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
872 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
873 		break;
874 
875 	case HCI_IBS_TX_ASLEEP:
876 	default:
877 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
878 		       qca->tx_ibs_state);
879 		break;
880 	}
881 
882 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
883 
884 	/* Actually send the packets */
885 	hci_uart_tx_wakeup(hu);
886 }
887 
888 /* Enqueue frame for transmission (padding, crc, etc) may be called from
889  * two simultaneous tasklets.
890  */
891 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
892 {
893 	unsigned long flags = 0, idle_delay;
894 	struct qca_data *qca = hu->priv;
895 
896 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
897 	       qca->tx_ibs_state);
898 
899 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
900 		/* As SSR is in progress, ignore the packets */
901 		bt_dev_dbg(hu->hdev, "SSR is in progress");
902 		kfree_skb(skb);
903 		return 0;
904 	}
905 
906 	/* Prepend skb with frame type */
907 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
908 
909 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
910 
911 	/* Don't go to sleep in middle of patch download or
912 	 * Out-Of-Band(GPIOs control) sleep is selected.
913 	 * Don't wake the device up when suspending.
914 	 */
915 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
916 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
917 		skb_queue_tail(&qca->txq, skb);
918 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
919 		return 0;
920 	}
921 
922 	/* Act according to current state */
923 	switch (qca->tx_ibs_state) {
924 	case HCI_IBS_TX_AWAKE:
925 		BT_DBG("Device awake, sending normally");
926 		skb_queue_tail(&qca->txq, skb);
927 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
928 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
929 		break;
930 
931 	case HCI_IBS_TX_ASLEEP:
932 		BT_DBG("Device asleep, waking up and queueing packet");
933 		/* Save packet for later */
934 		skb_queue_tail(&qca->tx_wait_q, skb);
935 
936 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
937 		/* Schedule a work queue to wake up device */
938 		queue_work(qca->workqueue, &qca->ws_awake_device);
939 		break;
940 
941 	case HCI_IBS_TX_WAKING:
942 		BT_DBG("Device waking up, queueing packet");
943 		/* Transient state; just keep packet for later */
944 		skb_queue_tail(&qca->tx_wait_q, skb);
945 		break;
946 
947 	default:
948 		BT_ERR("Illegal tx state: %d (losing packet)",
949 		       qca->tx_ibs_state);
950 		dev_kfree_skb_irq(skb);
951 		break;
952 	}
953 
954 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
955 
956 	return 0;
957 }
958 
959 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
960 {
961 	struct hci_uart *hu = hci_get_drvdata(hdev);
962 
963 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
964 
965 	device_want_to_sleep(hu);
966 
967 	kfree_skb(skb);
968 	return 0;
969 }
970 
971 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
972 {
973 	struct hci_uart *hu = hci_get_drvdata(hdev);
974 
975 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
976 
977 	device_want_to_wakeup(hu);
978 
979 	kfree_skb(skb);
980 	return 0;
981 }
982 
983 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
984 {
985 	struct hci_uart *hu = hci_get_drvdata(hdev);
986 
987 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
988 
989 	device_woke_up(hu);
990 
991 	kfree_skb(skb);
992 	return 0;
993 }
994 
995 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
996 {
997 	/* We receive debug logs from chip as an ACL packets.
998 	 * Instead of sending the data to ACL to decode the
999 	 * received data, we are pushing them to the above layers
1000 	 * as a diagnostic packet.
1001 	 */
1002 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
1003 		return hci_recv_diag(hdev, skb);
1004 
1005 	return hci_recv_frame(hdev, skb);
1006 }
1007 
1008 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1009 {
1010 	struct hci_uart *hu = hci_get_drvdata(hdev);
1011 	struct qca_data *qca = hu->priv;
1012 	char buf[80];
1013 
1014 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1015 		qca->controller_id);
1016 	skb_put_data(skb, buf, strlen(buf));
1017 
1018 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1019 		qca->fw_version);
1020 	skb_put_data(skb, buf, strlen(buf));
1021 
1022 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1023 	skb_put_data(skb, buf, strlen(buf));
1024 
1025 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1026 		hu->serdev->dev.driver->name);
1027 	skb_put_data(skb, buf, strlen(buf));
1028 }
1029 
1030 static void qca_controller_memdump(struct work_struct *work)
1031 {
1032 	struct qca_data *qca = container_of(work, struct qca_data,
1033 					    ctrl_memdump_evt);
1034 	struct hci_uart *hu = qca->hu;
1035 	struct sk_buff *skb;
1036 	struct qca_memdump_event_hdr *cmd_hdr;
1037 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1038 	struct qca_dump_size *dump;
1039 	u16 seq_no;
1040 	u32 rx_size;
1041 	int ret = 0;
1042 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1043 
1044 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1045 
1046 		mutex_lock(&qca->hci_memdump_lock);
1047 		/* Skip processing the received packets if timeout detected
1048 		 * or memdump collection completed.
1049 		 */
1050 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1051 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1052 			mutex_unlock(&qca->hci_memdump_lock);
1053 			return;
1054 		}
1055 
1056 		if (!qca_memdump) {
1057 			qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC);
1058 			if (!qca_memdump) {
1059 				mutex_unlock(&qca->hci_memdump_lock);
1060 				return;
1061 			}
1062 
1063 			qca->qca_memdump = qca_memdump;
1064 		}
1065 
1066 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1067 		cmd_hdr = (void *) skb->data;
1068 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1069 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1070 
1071 		if (!seq_no) {
1072 
1073 			/* This is the first frame of memdump packet from
1074 			 * the controller, Disable IBS to receive dump
1075 			 * with out any interruption, ideally time required for
1076 			 * the controller to send the dump is 8 seconds. let us
1077 			 * start timer to handle this asynchronous activity.
1078 			 */
1079 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1080 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1081 			dump = (void *) skb->data;
1082 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1083 			if (!(qca_memdump->ram_dump_size)) {
1084 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1085 				kfree(qca_memdump);
1086 				kfree_skb(skb);
1087 				mutex_unlock(&qca->hci_memdump_lock);
1088 				return;
1089 			}
1090 
1091 			queue_delayed_work(qca->workqueue,
1092 					   &qca->ctrl_memdump_timeout,
1093 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1094 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1095 			qca_memdump->current_seq_no = 0;
1096 			qca_memdump->received_dump = 0;
1097 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1098 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1099 				    ret);
1100 			if (ret < 0) {
1101 				kfree(qca->qca_memdump);
1102 				qca->qca_memdump = NULL;
1103 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1104 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1105 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1106 				clear_bit(QCA_IBS_DISABLED, &qca->flags);
1107 				mutex_unlock(&qca->hci_memdump_lock);
1108 				return;
1109 			}
1110 
1111 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1112 				    qca_memdump->ram_dump_size);
1113 
1114 		}
1115 
1116 		/* If sequence no 0 is missed then there is no point in
1117 		 * accepting the other sequences.
1118 		 */
1119 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1120 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1121 			kfree(qca_memdump);
1122 			kfree_skb(skb);
1123 			mutex_unlock(&qca->hci_memdump_lock);
1124 			return;
1125 		}
1126 		/* There could be chance of missing some packets from
1127 		 * the controller. In such cases let us store the dummy
1128 		 * packets in the buffer.
1129 		 */
1130 		/* For QCA6390, controller does not lost packets but
1131 		 * sequence number field of packet sometimes has error
1132 		 * bits, so skip this checking for missing packet.
1133 		 */
1134 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1135 			(soc_type != QCA_QCA6390) &&
1136 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1137 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1138 				   qca_memdump->current_seq_no);
1139 			rx_size = qca_memdump->received_dump;
1140 			rx_size += QCA_DUMP_PACKET_SIZE;
1141 			if (rx_size > qca_memdump->ram_dump_size) {
1142 				bt_dev_err(hu->hdev,
1143 					   "QCA memdump received %d, no space for missed packet",
1144 					   qca_memdump->received_dump);
1145 				break;
1146 			}
1147 			hci_devcd_append_pattern(hu->hdev, 0x00,
1148 				QCA_DUMP_PACKET_SIZE);
1149 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1150 			qca_memdump->current_seq_no++;
1151 		}
1152 
1153 		rx_size = qca_memdump->received_dump  + skb->len;
1154 		if (rx_size <= qca_memdump->ram_dump_size) {
1155 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1156 			    (seq_no != qca_memdump->current_seq_no)) {
1157 				bt_dev_err(hu->hdev,
1158 					   "QCA memdump unexpected packet %d",
1159 					   seq_no);
1160 			}
1161 			bt_dev_dbg(hu->hdev,
1162 				   "QCA memdump packet %d with length %d",
1163 				   seq_no, skb->len);
1164 			hci_devcd_append(hu->hdev, skb);
1165 			qca_memdump->current_seq_no += 1;
1166 			qca_memdump->received_dump = rx_size;
1167 		} else {
1168 			bt_dev_err(hu->hdev,
1169 				   "QCA memdump received no space for packet %d",
1170 				    qca_memdump->current_seq_no);
1171 		}
1172 
1173 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1174 			bt_dev_info(hu->hdev,
1175 				"QCA memdump Done, received %d, total %d",
1176 				qca_memdump->received_dump,
1177 				qca_memdump->ram_dump_size);
1178 			hci_devcd_complete(hu->hdev);
1179 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1180 			kfree(qca->qca_memdump);
1181 			qca->qca_memdump = NULL;
1182 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1183 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1184 		}
1185 
1186 		mutex_unlock(&qca->hci_memdump_lock);
1187 	}
1188 
1189 }
1190 
1191 static int qca_controller_memdump_event(struct hci_dev *hdev,
1192 					struct sk_buff *skb)
1193 {
1194 	struct hci_uart *hu = hci_get_drvdata(hdev);
1195 	struct qca_data *qca = hu->priv;
1196 
1197 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1198 	skb_queue_tail(&qca->rx_memdump_q, skb);
1199 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1200 
1201 	return 0;
1202 }
1203 
1204 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1205 {
1206 	struct hci_uart *hu = hci_get_drvdata(hdev);
1207 	struct qca_data *qca = hu->priv;
1208 
1209 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1210 		struct hci_event_hdr *hdr = (void *)skb->data;
1211 
1212 		/* For the WCN3990 the vendor command for a baudrate change
1213 		 * isn't sent as synchronous HCI command, because the
1214 		 * controller sends the corresponding vendor event with the
1215 		 * new baudrate. The event is received and properly decoded
1216 		 * after changing the baudrate of the host port. It needs to
1217 		 * be dropped, otherwise it can be misinterpreted as
1218 		 * response to a later firmware download command (also a
1219 		 * vendor command).
1220 		 */
1221 
1222 		if (hdr->evt == HCI_EV_VENDOR)
1223 			complete(&qca->drop_ev_comp);
1224 
1225 		kfree_skb(skb);
1226 
1227 		return 0;
1228 	}
1229 	/* We receive chip memory dump as an event packet, With a dedicated
1230 	 * handler followed by a hardware error event. When this event is
1231 	 * received we store dump into a file before closing hci. This
1232 	 * dump will help in triaging the issues.
1233 	 */
1234 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1235 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1236 		return qca_controller_memdump_event(hdev, skb);
1237 
1238 	return hci_recv_frame(hdev, skb);
1239 }
1240 
1241 #define QCA_IBS_SLEEP_IND_EVENT \
1242 	.type = HCI_IBS_SLEEP_IND, \
1243 	.hlen = 0, \
1244 	.loff = 0, \
1245 	.lsize = 0, \
1246 	.maxlen = HCI_MAX_IBS_SIZE
1247 
1248 #define QCA_IBS_WAKE_IND_EVENT \
1249 	.type = HCI_IBS_WAKE_IND, \
1250 	.hlen = 0, \
1251 	.loff = 0, \
1252 	.lsize = 0, \
1253 	.maxlen = HCI_MAX_IBS_SIZE
1254 
1255 #define QCA_IBS_WAKE_ACK_EVENT \
1256 	.type = HCI_IBS_WAKE_ACK, \
1257 	.hlen = 0, \
1258 	.loff = 0, \
1259 	.lsize = 0, \
1260 	.maxlen = HCI_MAX_IBS_SIZE
1261 
1262 static const struct h4_recv_pkt qca_recv_pkts[] = {
1263 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1264 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1265 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1266 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1267 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1268 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1269 };
1270 
1271 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1272 {
1273 	struct qca_data *qca = hu->priv;
1274 
1275 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1276 		return -EUNATCH;
1277 
1278 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1279 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1280 	if (IS_ERR(qca->rx_skb)) {
1281 		int err = PTR_ERR(qca->rx_skb);
1282 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1283 		qca->rx_skb = NULL;
1284 		return err;
1285 	}
1286 
1287 	return count;
1288 }
1289 
1290 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1291 {
1292 	struct qca_data *qca = hu->priv;
1293 
1294 	return skb_dequeue(&qca->txq);
1295 }
1296 
1297 static uint8_t qca_get_baudrate_value(int speed)
1298 {
1299 	switch (speed) {
1300 	case 9600:
1301 		return QCA_BAUDRATE_9600;
1302 	case 19200:
1303 		return QCA_BAUDRATE_19200;
1304 	case 38400:
1305 		return QCA_BAUDRATE_38400;
1306 	case 57600:
1307 		return QCA_BAUDRATE_57600;
1308 	case 115200:
1309 		return QCA_BAUDRATE_115200;
1310 	case 230400:
1311 		return QCA_BAUDRATE_230400;
1312 	case 460800:
1313 		return QCA_BAUDRATE_460800;
1314 	case 500000:
1315 		return QCA_BAUDRATE_500000;
1316 	case 921600:
1317 		return QCA_BAUDRATE_921600;
1318 	case 1000000:
1319 		return QCA_BAUDRATE_1000000;
1320 	case 2000000:
1321 		return QCA_BAUDRATE_2000000;
1322 	case 3000000:
1323 		return QCA_BAUDRATE_3000000;
1324 	case 3200000:
1325 		return QCA_BAUDRATE_3200000;
1326 	case 3500000:
1327 		return QCA_BAUDRATE_3500000;
1328 	default:
1329 		return QCA_BAUDRATE_115200;
1330 	}
1331 }
1332 
1333 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1334 {
1335 	struct hci_uart *hu = hci_get_drvdata(hdev);
1336 	struct qca_data *qca = hu->priv;
1337 	struct sk_buff *skb;
1338 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1339 
1340 	if (baudrate > QCA_BAUDRATE_3200000)
1341 		return -EINVAL;
1342 
1343 	cmd[4] = baudrate;
1344 
1345 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1346 	if (!skb) {
1347 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1348 		return -ENOMEM;
1349 	}
1350 
1351 	/* Assign commands to change baudrate and packet type. */
1352 	skb_put_data(skb, cmd, sizeof(cmd));
1353 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1354 
1355 	skb_queue_tail(&qca->txq, skb);
1356 	hci_uart_tx_wakeup(hu);
1357 
1358 	/* Wait for the baudrate change request to be sent */
1359 
1360 	while (!skb_queue_empty(&qca->txq))
1361 		usleep_range(100, 200);
1362 
1363 	if (hu->serdev)
1364 		serdev_device_wait_until_sent(hu->serdev,
1365 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1366 
1367 	/* Give the controller time to process the request */
1368 	switch (qca_soc_type(hu)) {
1369 	case QCA_WCN3988:
1370 	case QCA_WCN3990:
1371 	case QCA_WCN3991:
1372 	case QCA_WCN3998:
1373 	case QCA_WCN6750:
1374 	case QCA_WCN6855:
1375 	case QCA_WCN7850:
1376 		usleep_range(1000, 10000);
1377 		break;
1378 
1379 	default:
1380 		msleep(300);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1387 {
1388 	if (hu->serdev)
1389 		serdev_device_set_baudrate(hu->serdev, speed);
1390 	else
1391 		hci_uart_set_baudrate(hu, speed);
1392 }
1393 
1394 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1395 {
1396 	int ret;
1397 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1398 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1399 
1400 	/* These power pulses are single byte command which are sent
1401 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1402 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1403 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1404 	 * and also we use the same power inputs to turn on and off for
1405 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1406 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1407 	 * save power. Disabling hardware flow control is mandatory while
1408 	 * sending power pulses to SoC.
1409 	 */
1410 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1411 
1412 	serdev_device_write_flush(hu->serdev);
1413 	hci_uart_set_flow_control(hu, true);
1414 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1415 	if (ret < 0) {
1416 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1417 		return ret;
1418 	}
1419 
1420 	serdev_device_wait_until_sent(hu->serdev, timeout);
1421 	hci_uart_set_flow_control(hu, false);
1422 
1423 	/* Give to controller time to boot/shutdown */
1424 	if (on)
1425 		msleep(100);
1426 	else
1427 		usleep_range(1000, 10000);
1428 
1429 	return 0;
1430 }
1431 
1432 static unsigned int qca_get_speed(struct hci_uart *hu,
1433 				  enum qca_speed_type speed_type)
1434 {
1435 	unsigned int speed = 0;
1436 
1437 	if (speed_type == QCA_INIT_SPEED) {
1438 		if (hu->init_speed)
1439 			speed = hu->init_speed;
1440 		else if (hu->proto->init_speed)
1441 			speed = hu->proto->init_speed;
1442 	} else {
1443 		if (hu->oper_speed)
1444 			speed = hu->oper_speed;
1445 		else if (hu->proto->oper_speed)
1446 			speed = hu->proto->oper_speed;
1447 	}
1448 
1449 	return speed;
1450 }
1451 
1452 static int qca_check_speeds(struct hci_uart *hu)
1453 {
1454 	switch (qca_soc_type(hu)) {
1455 	case QCA_WCN3988:
1456 	case QCA_WCN3990:
1457 	case QCA_WCN3991:
1458 	case QCA_WCN3998:
1459 	case QCA_WCN6750:
1460 	case QCA_WCN6855:
1461 	case QCA_WCN7850:
1462 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1463 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1464 			return -EINVAL;
1465 		break;
1466 
1467 	default:
1468 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1469 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1470 			return -EINVAL;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1477 {
1478 	unsigned int speed, qca_baudrate;
1479 	struct qca_data *qca = hu->priv;
1480 	int ret = 0;
1481 
1482 	if (speed_type == QCA_INIT_SPEED) {
1483 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1484 		if (speed)
1485 			host_set_baudrate(hu, speed);
1486 	} else {
1487 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1488 
1489 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1490 		if (!speed)
1491 			return 0;
1492 
1493 		/* Disable flow control for wcn3990 to deassert RTS while
1494 		 * changing the baudrate of chip and host.
1495 		 */
1496 		switch (soc_type) {
1497 		case QCA_WCN3988:
1498 		case QCA_WCN3990:
1499 		case QCA_WCN3991:
1500 		case QCA_WCN3998:
1501 		case QCA_WCN6750:
1502 		case QCA_WCN6855:
1503 		case QCA_WCN7850:
1504 			hci_uart_set_flow_control(hu, true);
1505 			break;
1506 
1507 		default:
1508 			break;
1509 		}
1510 
1511 		switch (soc_type) {
1512 		case QCA_WCN3990:
1513 			reinit_completion(&qca->drop_ev_comp);
1514 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1515 			break;
1516 
1517 		default:
1518 			break;
1519 		}
1520 
1521 		qca_baudrate = qca_get_baudrate_value(speed);
1522 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1523 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1524 		if (ret)
1525 			goto error;
1526 
1527 		host_set_baudrate(hu, speed);
1528 
1529 error:
1530 		switch (soc_type) {
1531 		case QCA_WCN3988:
1532 		case QCA_WCN3990:
1533 		case QCA_WCN3991:
1534 		case QCA_WCN3998:
1535 		case QCA_WCN6750:
1536 		case QCA_WCN6855:
1537 		case QCA_WCN7850:
1538 			hci_uart_set_flow_control(hu, false);
1539 			break;
1540 
1541 		default:
1542 			break;
1543 		}
1544 
1545 		switch (soc_type) {
1546 		case QCA_WCN3990:
1547 			/* Wait for the controller to send the vendor event
1548 			 * for the baudrate change command.
1549 			 */
1550 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1551 						 msecs_to_jiffies(100))) {
1552 				bt_dev_err(hu->hdev,
1553 					   "Failed to change controller baudrate\n");
1554 				ret = -ETIMEDOUT;
1555 			}
1556 
1557 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1558 			break;
1559 
1560 		default:
1561 			break;
1562 		}
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 static int qca_send_crashbuffer(struct hci_uart *hu)
1569 {
1570 	struct qca_data *qca = hu->priv;
1571 	struct sk_buff *skb;
1572 
1573 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1574 	if (!skb) {
1575 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1576 		return -ENOMEM;
1577 	}
1578 
1579 	/* We forcefully crash the controller, by sending 0xfb byte for
1580 	 * 1024 times. We also might have chance of losing data, To be
1581 	 * on safer side we send 1096 bytes to the SoC.
1582 	 */
1583 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1584 	       QCA_CRASHBYTE_PACKET_LEN);
1585 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1586 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1587 	skb_queue_tail(&qca->txq, skb);
1588 	hci_uart_tx_wakeup(hu);
1589 
1590 	return 0;
1591 }
1592 
1593 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1594 {
1595 	struct hci_uart *hu = hci_get_drvdata(hdev);
1596 	struct qca_data *qca = hu->priv;
1597 
1598 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1599 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1600 
1601 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1602 }
1603 
1604 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1605 {
1606 	struct hci_uart *hu = hci_get_drvdata(hdev);
1607 	struct qca_data *qca = hu->priv;
1608 
1609 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1610 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1611 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1612 
1613 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1614 		/* If hardware error event received for other than QCA
1615 		 * soc memory dump event, then we need to crash the SOC
1616 		 * and wait here for 8 seconds to get the dump packets.
1617 		 * This will block main thread to be on hold until we
1618 		 * collect dump.
1619 		 */
1620 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1621 		qca_send_crashbuffer(hu);
1622 		qca_wait_for_dump_collection(hdev);
1623 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1624 		/* Let us wait here until memory dump collected or
1625 		 * memory dump timer expired.
1626 		 */
1627 		bt_dev_info(hdev, "waiting for dump to complete");
1628 		qca_wait_for_dump_collection(hdev);
1629 	}
1630 
1631 	mutex_lock(&qca->hci_memdump_lock);
1632 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1633 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1634 		hci_devcd_abort(hu->hdev);
1635 		if (qca->qca_memdump) {
1636 			kfree(qca->qca_memdump);
1637 			qca->qca_memdump = NULL;
1638 		}
1639 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1640 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1641 	}
1642 	mutex_unlock(&qca->hci_memdump_lock);
1643 
1644 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1645 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1646 		cancel_work_sync(&qca->ctrl_memdump_evt);
1647 		skb_queue_purge(&qca->rx_memdump_q);
1648 	}
1649 
1650 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1651 }
1652 
1653 static void qca_reset(struct hci_dev *hdev)
1654 {
1655 	struct hci_uart *hu = hci_get_drvdata(hdev);
1656 	struct qca_data *qca = hu->priv;
1657 
1658 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1659 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1660 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1661 		qca_send_crashbuffer(hu);
1662 		qca_wait_for_dump_collection(hdev);
1663 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1664 		/* Let us wait here until memory dump collected or
1665 		 * memory dump timer expired.
1666 		 */
1667 		bt_dev_info(hdev, "waiting for dump to complete");
1668 		qca_wait_for_dump_collection(hdev);
1669 	}
1670 
1671 	mutex_lock(&qca->hci_memdump_lock);
1672 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1673 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1674 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1675 			/* Inject hw error event to reset the device
1676 			 * and driver.
1677 			 */
1678 			hci_reset_dev(hu->hdev);
1679 		}
1680 	}
1681 	mutex_unlock(&qca->hci_memdump_lock);
1682 }
1683 
1684 static bool qca_wakeup(struct hci_dev *hdev)
1685 {
1686 	struct hci_uart *hu = hci_get_drvdata(hdev);
1687 	bool wakeup;
1688 
1689 	if (!hu->serdev)
1690 		return true;
1691 
1692 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1693 	 * So we need to use the device handle of the serdev driver to get the
1694 	 * status of device may wakeup.
1695 	 */
1696 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1697 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1698 
1699 	return wakeup;
1700 }
1701 
1702 static int qca_port_reopen(struct hci_uart *hu)
1703 {
1704 	int ret;
1705 
1706 	/* Now the device is in ready state to communicate with host.
1707 	 * To sync host with device we need to reopen port.
1708 	 * Without this, we will have RTS and CTS synchronization
1709 	 * issues.
1710 	 */
1711 	serdev_device_close(hu->serdev);
1712 	ret = serdev_device_open(hu->serdev);
1713 	if (ret) {
1714 		bt_dev_err(hu->hdev, "failed to open port");
1715 		return ret;
1716 	}
1717 
1718 	hci_uart_set_flow_control(hu, false);
1719 
1720 	return 0;
1721 }
1722 
1723 static int qca_regulator_init(struct hci_uart *hu)
1724 {
1725 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1726 	struct qca_serdev *qcadev;
1727 	int ret;
1728 	bool sw_ctrl_state;
1729 
1730 	/* Check for vregs status, may be hci down has turned
1731 	 * off the voltage regulator.
1732 	 */
1733 	qcadev = serdev_device_get_drvdata(hu->serdev);
1734 
1735 	if (!qcadev->bt_power->vregs_on) {
1736 		serdev_device_close(hu->serdev);
1737 		ret = qca_regulator_enable(qcadev);
1738 		if (ret)
1739 			return ret;
1740 
1741 		ret = serdev_device_open(hu->serdev);
1742 		if (ret) {
1743 			bt_dev_err(hu->hdev, "failed to open port");
1744 			return ret;
1745 		}
1746 	}
1747 
1748 	switch (soc_type) {
1749 	case QCA_WCN3988:
1750 	case QCA_WCN3990:
1751 	case QCA_WCN3991:
1752 	case QCA_WCN3998:
1753 		/* Forcefully enable wcn399x to enter in to boot mode. */
1754 		host_set_baudrate(hu, 2400);
1755 		ret = qca_send_power_pulse(hu, false);
1756 		if (ret)
1757 			return ret;
1758 		break;
1759 
1760 	default:
1761 		break;
1762 	}
1763 
1764 	/* For wcn6750 need to enable gpio bt_en */
1765 	if (qcadev->bt_en) {
1766 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1767 		msleep(50);
1768 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1769 		msleep(50);
1770 		if (qcadev->sw_ctrl) {
1771 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1772 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1773 		}
1774 	}
1775 
1776 	qca_set_speed(hu, QCA_INIT_SPEED);
1777 
1778 	switch (soc_type) {
1779 	case QCA_WCN3988:
1780 	case QCA_WCN3990:
1781 	case QCA_WCN3991:
1782 	case QCA_WCN3998:
1783 		ret = qca_send_power_pulse(hu, true);
1784 		if (ret)
1785 			return ret;
1786 		break;
1787 
1788 	default:
1789 		break;
1790 	}
1791 
1792 	return qca_port_reopen(hu);
1793 }
1794 
1795 static int qca_power_on(struct hci_dev *hdev)
1796 {
1797 	struct hci_uart *hu = hci_get_drvdata(hdev);
1798 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1799 	struct qca_serdev *qcadev;
1800 	struct qca_data *qca = hu->priv;
1801 	int ret = 0;
1802 
1803 	/* Non-serdev device usually is powered by external power
1804 	 * and don't need additional action in driver for power on
1805 	 */
1806 	if (!hu->serdev)
1807 		return 0;
1808 
1809 	switch (soc_type) {
1810 	case QCA_WCN3988:
1811 	case QCA_WCN3990:
1812 	case QCA_WCN3991:
1813 	case QCA_WCN3998:
1814 	case QCA_WCN6750:
1815 	case QCA_WCN6855:
1816 	case QCA_WCN7850:
1817 	case QCA_QCA6390:
1818 		ret = qca_regulator_init(hu);
1819 		break;
1820 
1821 	default:
1822 		qcadev = serdev_device_get_drvdata(hu->serdev);
1823 		if (qcadev->bt_en) {
1824 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1825 			/* Controller needs time to bootup. */
1826 			msleep(150);
1827 		}
1828 	}
1829 
1830 	clear_bit(QCA_BT_OFF, &qca->flags);
1831 	return ret;
1832 }
1833 
1834 static void hci_coredump_qca(struct hci_dev *hdev)
1835 {
1836 	int err;
1837 	static const u8 param[] = { 0x26 };
1838 
1839 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1840 	if (err < 0)
1841 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1842 }
1843 
1844 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
1845 {
1846 	/* QCA uses 1 as non-HCI data path id for HFP */
1847 	*data_path_id = 1;
1848 	return 0;
1849 }
1850 
1851 static int qca_configure_hfp_offload(struct hci_dev *hdev)
1852 {
1853 	bt_dev_info(hdev, "HFP non-HCI data transport is supported");
1854 	hdev->get_data_path_id = qca_get_data_path_id;
1855 	/* Do not need to send HCI_Configure_Data_Path to configure non-HCI
1856 	 * data transport path for QCA controllers, so set below field as NULL.
1857 	 */
1858 	hdev->get_codec_config_data = NULL;
1859 	return 0;
1860 }
1861 
1862 static int qca_setup(struct hci_uart *hu)
1863 {
1864 	struct hci_dev *hdev = hu->hdev;
1865 	struct qca_data *qca = hu->priv;
1866 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1867 	unsigned int retries = 0;
1868 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1869 	const char *firmware_name = qca_get_firmware_name(hu);
1870 	const char *rampatch_name = qca_get_rampatch_name(hu);
1871 	int ret;
1872 	struct qca_btsoc_version ver;
1873 	struct qca_serdev *qcadev;
1874 	const char *soc_name;
1875 
1876 	ret = qca_check_speeds(hu);
1877 	if (ret)
1878 		return ret;
1879 
1880 	clear_bit(QCA_ROM_FW, &qca->flags);
1881 	/* Patch downloading has to be done without IBS mode */
1882 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1883 
1884 	/* Enable controller to do both LE scan and BR/EDR inquiry
1885 	 * simultaneously.
1886 	 */
1887 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1888 
1889 	switch (soc_type) {
1890 	case QCA_QCA2066:
1891 		soc_name = "qca2066";
1892 		break;
1893 
1894 	case QCA_WCN3988:
1895 	case QCA_WCN3990:
1896 	case QCA_WCN3991:
1897 	case QCA_WCN3998:
1898 		soc_name = "wcn399x";
1899 		break;
1900 
1901 	case QCA_WCN6750:
1902 		soc_name = "wcn6750";
1903 		break;
1904 
1905 	case QCA_WCN6855:
1906 		soc_name = "wcn6855";
1907 		break;
1908 
1909 	case QCA_WCN7850:
1910 		soc_name = "wcn7850";
1911 		break;
1912 
1913 	default:
1914 		soc_name = "ROME/QCA6390";
1915 	}
1916 	bt_dev_info(hdev, "setting up %s", soc_name);
1917 
1918 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1919 
1920 retry:
1921 	ret = qca_power_on(hdev);
1922 	if (ret)
1923 		goto out;
1924 
1925 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1926 
1927 	switch (soc_type) {
1928 	case QCA_WCN3988:
1929 	case QCA_WCN3990:
1930 	case QCA_WCN3991:
1931 	case QCA_WCN3998:
1932 	case QCA_WCN6750:
1933 	case QCA_WCN6855:
1934 	case QCA_WCN7850:
1935 		qcadev = serdev_device_get_drvdata(hu->serdev);
1936 		if (qcadev->bdaddr_property_broken)
1937 			set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1938 
1939 		hci_set_aosp_capable(hdev);
1940 
1941 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1942 		if (ret)
1943 			goto out;
1944 		break;
1945 
1946 	default:
1947 		qca_set_speed(hu, QCA_INIT_SPEED);
1948 	}
1949 
1950 	/* Setup user speed if needed */
1951 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1952 	if (speed) {
1953 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1954 		if (ret)
1955 			goto out;
1956 
1957 		qca_baudrate = qca_get_baudrate_value(speed);
1958 	}
1959 
1960 	switch (soc_type) {
1961 	case QCA_WCN3988:
1962 	case QCA_WCN3990:
1963 	case QCA_WCN3991:
1964 	case QCA_WCN3998:
1965 	case QCA_WCN6750:
1966 	case QCA_WCN6855:
1967 	case QCA_WCN7850:
1968 		break;
1969 
1970 	default:
1971 		/* Get QCA version information */
1972 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1973 		if (ret)
1974 			goto out;
1975 	}
1976 
1977 	/* Setup patch / NVM configurations */
1978 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1979 			firmware_name, rampatch_name);
1980 	if (!ret) {
1981 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1982 		qca_debugfs_init(hdev);
1983 		hu->hdev->hw_error = qca_hw_error;
1984 		hu->hdev->reset = qca_reset;
1985 		if (hu->serdev) {
1986 			if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1987 				hu->hdev->wakeup = qca_wakeup;
1988 		}
1989 	} else if (ret == -ENOENT) {
1990 		/* No patch/nvm-config found, run with original fw/config */
1991 		set_bit(QCA_ROM_FW, &qca->flags);
1992 		ret = 0;
1993 	} else if (ret == -EAGAIN) {
1994 		/*
1995 		 * Userspace firmware loader will return -EAGAIN in case no
1996 		 * patch/nvm-config is found, so run with original fw/config.
1997 		 */
1998 		set_bit(QCA_ROM_FW, &qca->flags);
1999 		ret = 0;
2000 	}
2001 
2002 out:
2003 	if (ret && retries < MAX_INIT_RETRIES) {
2004 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
2005 		qca_power_shutdown(hu);
2006 		if (hu->serdev) {
2007 			serdev_device_close(hu->serdev);
2008 			ret = serdev_device_open(hu->serdev);
2009 			if (ret) {
2010 				bt_dev_err(hdev, "failed to open port");
2011 				return ret;
2012 			}
2013 		}
2014 		retries++;
2015 		goto retry;
2016 	}
2017 
2018 	/* Setup bdaddr */
2019 	if (soc_type == QCA_ROME)
2020 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
2021 	else
2022 		hu->hdev->set_bdaddr = qca_set_bdaddr;
2023 
2024 	if (soc_type == QCA_QCA2066)
2025 		qca_configure_hfp_offload(hdev);
2026 
2027 	qca->fw_version = le16_to_cpu(ver.patch_ver);
2028 	qca->controller_id = le16_to_cpu(ver.rom_ver);
2029 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
2030 
2031 	return ret;
2032 }
2033 
2034 static const struct hci_uart_proto qca_proto = {
2035 	.id		= HCI_UART_QCA,
2036 	.name		= "QCA",
2037 	.manufacturer	= 29,
2038 	.init_speed	= 115200,
2039 	.oper_speed	= 3000000,
2040 	.open		= qca_open,
2041 	.close		= qca_close,
2042 	.flush		= qca_flush,
2043 	.setup		= qca_setup,
2044 	.recv		= qca_recv,
2045 	.enqueue	= qca_enqueue,
2046 	.dequeue	= qca_dequeue,
2047 };
2048 
2049 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2050 	.soc_type = QCA_WCN3988,
2051 	.vregs = (struct qca_vreg []) {
2052 		{ "vddio", 15000  },
2053 		{ "vddxo", 80000  },
2054 		{ "vddrf", 300000 },
2055 		{ "vddch0", 450000 },
2056 	},
2057 	.num_vregs = 4,
2058 };
2059 
2060 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2061 	.soc_type = QCA_WCN3990,
2062 	.vregs = (struct qca_vreg []) {
2063 		{ "vddio", 15000  },
2064 		{ "vddxo", 80000  },
2065 		{ "vddrf", 300000 },
2066 		{ "vddch0", 450000 },
2067 	},
2068 	.num_vregs = 4,
2069 };
2070 
2071 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2072 	.soc_type = QCA_WCN3991,
2073 	.vregs = (struct qca_vreg []) {
2074 		{ "vddio", 15000  },
2075 		{ "vddxo", 80000  },
2076 		{ "vddrf", 300000 },
2077 		{ "vddch0", 450000 },
2078 	},
2079 	.num_vregs = 4,
2080 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2081 };
2082 
2083 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2084 	.soc_type = QCA_WCN3998,
2085 	.vregs = (struct qca_vreg []) {
2086 		{ "vddio", 10000  },
2087 		{ "vddxo", 80000  },
2088 		{ "vddrf", 300000 },
2089 		{ "vddch0", 450000 },
2090 	},
2091 	.num_vregs = 4,
2092 };
2093 
2094 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2095 	.soc_type = QCA_QCA2066,
2096 	.num_vregs = 0,
2097 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2098 };
2099 
2100 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2101 	.soc_type = QCA_QCA6390,
2102 	.num_vregs = 0,
2103 };
2104 
2105 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2106 	.soc_type = QCA_WCN6750,
2107 	.vregs = (struct qca_vreg []) {
2108 		{ "vddio", 5000 },
2109 		{ "vddaon", 26000 },
2110 		{ "vddbtcxmx", 126000 },
2111 		{ "vddrfacmn", 12500 },
2112 		{ "vddrfa0p8", 102000 },
2113 		{ "vddrfa1p7", 302000 },
2114 		{ "vddrfa1p2", 257000 },
2115 		{ "vddrfa2p2", 1700000 },
2116 		{ "vddasd", 200 },
2117 	},
2118 	.num_vregs = 9,
2119 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2120 };
2121 
2122 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2123 	.soc_type = QCA_WCN6855,
2124 	.vregs = (struct qca_vreg []) {
2125 		{ "vddio", 5000 },
2126 		{ "vddbtcxmx", 126000 },
2127 		{ "vddrfacmn", 12500 },
2128 		{ "vddrfa0p8", 102000 },
2129 		{ "vddrfa1p7", 302000 },
2130 		{ "vddrfa1p2", 257000 },
2131 	},
2132 	.num_vregs = 6,
2133 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2134 };
2135 
2136 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2137 	.soc_type = QCA_WCN7850,
2138 	.vregs = (struct qca_vreg []) {
2139 		{ "vddio", 5000 },
2140 		{ "vddaon", 26000 },
2141 		{ "vdddig", 126000 },
2142 		{ "vddrfa0p8", 102000 },
2143 		{ "vddrfa1p2", 257000 },
2144 		{ "vddrfa1p9", 302000 },
2145 	},
2146 	.num_vregs = 6,
2147 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2148 };
2149 
2150 static void qca_power_shutdown(struct hci_uart *hu)
2151 {
2152 	struct qca_serdev *qcadev;
2153 	struct qca_data *qca = hu->priv;
2154 	unsigned long flags;
2155 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2156 	bool sw_ctrl_state;
2157 	struct qca_power *power;
2158 
2159 	/* From this point we go into power off state. But serial port is
2160 	 * still open, stop queueing the IBS data and flush all the buffered
2161 	 * data in skb's.
2162 	 */
2163 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2164 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2165 	qca_flush(hu);
2166 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2167 
2168 	/* Non-serdev device usually is powered by external power
2169 	 * and don't need additional action in driver for power down
2170 	 */
2171 	if (!hu->serdev)
2172 		return;
2173 
2174 	qcadev = serdev_device_get_drvdata(hu->serdev);
2175 	power = qcadev->bt_power;
2176 
2177 	if (power && power->pwrseq) {
2178 		pwrseq_power_off(power->pwrseq);
2179 		set_bit(QCA_BT_OFF, &qca->flags);
2180 		return;
2181         }
2182 
2183 	switch (soc_type) {
2184 	case QCA_WCN3988:
2185 	case QCA_WCN3990:
2186 	case QCA_WCN3991:
2187 	case QCA_WCN3998:
2188 		host_set_baudrate(hu, 2400);
2189 		qca_send_power_pulse(hu, false);
2190 		qca_regulator_disable(qcadev);
2191 		break;
2192 
2193 	case QCA_WCN6750:
2194 	case QCA_WCN6855:
2195 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2196 		msleep(100);
2197 		qca_regulator_disable(qcadev);
2198 		if (qcadev->sw_ctrl) {
2199 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2200 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2201 		}
2202 		break;
2203 
2204 	default:
2205 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2206 	}
2207 
2208 	set_bit(QCA_BT_OFF, &qca->flags);
2209 }
2210 
2211 static int qca_power_off(struct hci_dev *hdev)
2212 {
2213 	struct hci_uart *hu = hci_get_drvdata(hdev);
2214 	struct qca_data *qca = hu->priv;
2215 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2216 
2217 	hu->hdev->hw_error = NULL;
2218 	hu->hdev->reset = NULL;
2219 
2220 	del_timer_sync(&qca->wake_retrans_timer);
2221 	del_timer_sync(&qca->tx_idle_timer);
2222 
2223 	/* Stop sending shutdown command if soc crashes. */
2224 	if (soc_type != QCA_ROME
2225 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2226 		qca_send_pre_shutdown_cmd(hdev);
2227 		usleep_range(8000, 10000);
2228 	}
2229 
2230 	qca_power_shutdown(hu);
2231 	return 0;
2232 }
2233 
2234 static int qca_regulator_enable(struct qca_serdev *qcadev)
2235 {
2236 	struct qca_power *power = qcadev->bt_power;
2237 	int ret;
2238 
2239 	if (power->pwrseq)
2240 		return pwrseq_power_on(power->pwrseq);
2241 
2242 	/* Already enabled */
2243 	if (power->vregs_on)
2244 		return 0;
2245 
2246 	BT_DBG("enabling %d regulators)", power->num_vregs);
2247 
2248 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2249 	if (ret)
2250 		return ret;
2251 
2252 	power->vregs_on = true;
2253 
2254 	ret = clk_prepare_enable(qcadev->susclk);
2255 	if (ret)
2256 		qca_regulator_disable(qcadev);
2257 
2258 	return ret;
2259 }
2260 
2261 static void qca_regulator_disable(struct qca_serdev *qcadev)
2262 {
2263 	struct qca_power *power;
2264 
2265 	if (!qcadev)
2266 		return;
2267 
2268 	power = qcadev->bt_power;
2269 
2270 	/* Already disabled? */
2271 	if (!power->vregs_on)
2272 		return;
2273 
2274 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2275 	power->vregs_on = false;
2276 
2277 	clk_disable_unprepare(qcadev->susclk);
2278 }
2279 
2280 static int qca_init_regulators(struct qca_power *qca,
2281 				const struct qca_vreg *vregs, size_t num_vregs)
2282 {
2283 	struct regulator_bulk_data *bulk;
2284 	int ret;
2285 	int i;
2286 
2287 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2288 	if (!bulk)
2289 		return -ENOMEM;
2290 
2291 	for (i = 0; i < num_vregs; i++)
2292 		bulk[i].supply = vregs[i].name;
2293 
2294 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2295 	if (ret < 0)
2296 		return ret;
2297 
2298 	for (i = 0; i < num_vregs; i++) {
2299 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2300 		if (ret)
2301 			return ret;
2302 	}
2303 
2304 	qca->vreg_bulk = bulk;
2305 	qca->num_vregs = num_vregs;
2306 
2307 	return 0;
2308 }
2309 
2310 static int qca_serdev_probe(struct serdev_device *serdev)
2311 {
2312 	struct qca_serdev *qcadev;
2313 	struct hci_dev *hdev;
2314 	const struct qca_device_data *data;
2315 	int err;
2316 	bool power_ctrl_enabled = true;
2317 
2318 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2319 	if (!qcadev)
2320 		return -ENOMEM;
2321 
2322 	qcadev->serdev_hu.serdev = serdev;
2323 	data = device_get_match_data(&serdev->dev);
2324 	serdev_device_set_drvdata(serdev, qcadev);
2325 	device_property_read_string_array(&serdev->dev, "firmware-name",
2326 					 qcadev->firmware_name, ARRAY_SIZE(qcadev->firmware_name));
2327 	device_property_read_u32(&serdev->dev, "max-speed",
2328 				 &qcadev->oper_speed);
2329 	if (!qcadev->oper_speed)
2330 		BT_DBG("UART will pick default operating speed");
2331 
2332 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2333 			"qcom,local-bd-address-broken");
2334 
2335 	if (data)
2336 		qcadev->btsoc_type = data->soc_type;
2337 	else
2338 		qcadev->btsoc_type = QCA_ROME;
2339 
2340 	switch (qcadev->btsoc_type) {
2341 	case QCA_WCN3988:
2342 	case QCA_WCN3990:
2343 	case QCA_WCN3991:
2344 	case QCA_WCN3998:
2345 	case QCA_WCN6750:
2346 	case QCA_WCN6855:
2347 	case QCA_WCN7850:
2348 	case QCA_QCA6390:
2349 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2350 						sizeof(struct qca_power),
2351 						GFP_KERNEL);
2352 		if (!qcadev->bt_power)
2353 			return -ENOMEM;
2354 		break;
2355 	default:
2356 		break;
2357 	}
2358 
2359 	switch (qcadev->btsoc_type) {
2360 	case QCA_WCN6855:
2361 	case QCA_WCN7850:
2362 		if (!device_property_present(&serdev->dev, "enable-gpios")) {
2363 			/*
2364 			 * Backward compatibility with old DT sources. If the
2365 			 * node doesn't have the 'enable-gpios' property then
2366 			 * let's use the power sequencer. Otherwise, let's
2367 			 * drive everything ourselves.
2368 			 */
2369 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2370 								   "bluetooth");
2371 			if (IS_ERR(qcadev->bt_power->pwrseq))
2372 				return PTR_ERR(qcadev->bt_power->pwrseq);
2373 
2374 			break;
2375 		}
2376 		fallthrough;
2377 	case QCA_WCN3988:
2378 	case QCA_WCN3990:
2379 	case QCA_WCN3991:
2380 	case QCA_WCN3998:
2381 	case QCA_WCN6750:
2382 		qcadev->bt_power->dev = &serdev->dev;
2383 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2384 					  data->num_vregs);
2385 		if (err) {
2386 			BT_ERR("Failed to init regulators:%d", err);
2387 			return err;
2388 		}
2389 
2390 		qcadev->bt_power->vregs_on = false;
2391 
2392 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2393 					       GPIOD_OUT_LOW);
2394 		if (IS_ERR(qcadev->bt_en) &&
2395 		    (data->soc_type == QCA_WCN6750 ||
2396 		     data->soc_type == QCA_WCN6855)) {
2397 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2398 			return PTR_ERR(qcadev->bt_en);
2399 		}
2400 
2401 		if (!qcadev->bt_en)
2402 			power_ctrl_enabled = false;
2403 
2404 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2405 					       GPIOD_IN);
2406 		if (IS_ERR(qcadev->sw_ctrl) &&
2407 		    (data->soc_type == QCA_WCN6750 ||
2408 		     data->soc_type == QCA_WCN6855 ||
2409 		     data->soc_type == QCA_WCN7850)) {
2410 			dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2411 			return PTR_ERR(qcadev->sw_ctrl);
2412 		}
2413 
2414 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2415 		if (IS_ERR(qcadev->susclk)) {
2416 			dev_err(&serdev->dev, "failed to acquire clk\n");
2417 			return PTR_ERR(qcadev->susclk);
2418 		}
2419 		break;
2420 
2421 	case QCA_QCA6390:
2422 		if (dev_of_node(&serdev->dev)) {
2423 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2424 								   "bluetooth");
2425 			if (IS_ERR(qcadev->bt_power->pwrseq))
2426 				return PTR_ERR(qcadev->bt_power->pwrseq);
2427 			break;
2428 		}
2429 		fallthrough;
2430 
2431 	default:
2432 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2433 					       GPIOD_OUT_LOW);
2434 		if (IS_ERR(qcadev->bt_en)) {
2435 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2436 			return PTR_ERR(qcadev->bt_en);
2437 		}
2438 
2439 		if (!qcadev->bt_en)
2440 			power_ctrl_enabled = false;
2441 
2442 		qcadev->susclk = devm_clk_get_optional_enabled_with_rate(
2443 					&serdev->dev, NULL, SUSCLK_RATE_32KHZ);
2444 		if (IS_ERR(qcadev->susclk)) {
2445 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2446 			return PTR_ERR(qcadev->susclk);
2447 		}
2448 	}
2449 
2450 	err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2451 	if (err) {
2452 		BT_ERR("serdev registration failed");
2453 		return err;
2454 	}
2455 
2456 	hdev = qcadev->serdev_hu.hdev;
2457 
2458 	if (power_ctrl_enabled) {
2459 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2460 		hdev->shutdown = qca_power_off;
2461 	}
2462 
2463 	if (data) {
2464 		/* Wideband speech support must be set per driver since it can't
2465 		 * be queried via hci. Same with the valid le states quirk.
2466 		 */
2467 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2468 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2469 				&hdev->quirks);
2470 
2471 		if (!(data->capabilities & QCA_CAP_VALID_LE_STATES))
2472 			set_bit(HCI_QUIRK_BROKEN_LE_STATES, &hdev->quirks);
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static void qca_serdev_remove(struct serdev_device *serdev)
2479 {
2480 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2481 	struct qca_power *power = qcadev->bt_power;
2482 
2483 	switch (qcadev->btsoc_type) {
2484 	case QCA_WCN3988:
2485 	case QCA_WCN3990:
2486 	case QCA_WCN3991:
2487 	case QCA_WCN3998:
2488 	case QCA_WCN6750:
2489 	case QCA_WCN6855:
2490 	case QCA_WCN7850:
2491 		if (power->vregs_on)
2492 			qca_power_shutdown(&qcadev->serdev_hu);
2493 		break;
2494 	default:
2495 		break;
2496 	}
2497 
2498 	hci_uart_unregister_device(&qcadev->serdev_hu);
2499 }
2500 
2501 static void qca_serdev_shutdown(struct device *dev)
2502 {
2503 	int ret;
2504 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2505 	struct serdev_device *serdev = to_serdev_device(dev);
2506 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2507 	struct hci_uart *hu = &qcadev->serdev_hu;
2508 	struct hci_dev *hdev = hu->hdev;
2509 	const u8 ibs_wake_cmd[] = { 0xFD };
2510 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2511 
2512 	if (qcadev->btsoc_type == QCA_QCA6390) {
2513 		/* The purpose of sending the VSC is to reset SOC into a initial
2514 		 * state and the state will ensure next hdev->setup() success.
2515 		 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that
2516 		 * hdev->setup() can do its job regardless of SoC state, so
2517 		 * don't need to send the VSC.
2518 		 * if HCI_SETUP is set, it means that hdev->setup() was never
2519 		 * invoked and the SOC is already in the initial state, so
2520 		 * don't also need to send the VSC.
2521 		 */
2522 		if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) ||
2523 		    hci_dev_test_flag(hdev, HCI_SETUP))
2524 			return;
2525 
2526 		/* The serdev must be in open state when control logic arrives
2527 		 * here, so also fix the use-after-free issue caused by that
2528 		 * the serdev is flushed or wrote after it is closed.
2529 		 */
2530 		serdev_device_write_flush(serdev);
2531 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2532 					      sizeof(ibs_wake_cmd));
2533 		if (ret < 0) {
2534 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2535 			return;
2536 		}
2537 		serdev_device_wait_until_sent(serdev, timeout);
2538 		usleep_range(8000, 10000);
2539 
2540 		serdev_device_write_flush(serdev);
2541 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2542 					      sizeof(edl_reset_soc_cmd));
2543 		if (ret < 0) {
2544 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2545 			return;
2546 		}
2547 		serdev_device_wait_until_sent(serdev, timeout);
2548 		usleep_range(8000, 10000);
2549 	}
2550 }
2551 
2552 static int __maybe_unused qca_suspend(struct device *dev)
2553 {
2554 	struct serdev_device *serdev = to_serdev_device(dev);
2555 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2556 	struct hci_uart *hu = &qcadev->serdev_hu;
2557 	struct qca_data *qca = hu->priv;
2558 	unsigned long flags;
2559 	bool tx_pending = false;
2560 	int ret = 0;
2561 	u8 cmd;
2562 	u32 wait_timeout = 0;
2563 
2564 	set_bit(QCA_SUSPENDING, &qca->flags);
2565 
2566 	/* if BT SoC is running with default firmware then it does not
2567 	 * support in-band sleep
2568 	 */
2569 	if (test_bit(QCA_ROM_FW, &qca->flags))
2570 		return 0;
2571 
2572 	/* During SSR after memory dump collection, controller will be
2573 	 * powered off and then powered on.If controller is powered off
2574 	 * during SSR then we should wait until SSR is completed.
2575 	 */
2576 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2577 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2578 		return 0;
2579 
2580 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2581 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2582 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2583 					IBS_DISABLE_SSR_TIMEOUT_MS :
2584 					FW_DOWNLOAD_TIMEOUT_MS;
2585 
2586 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2587 		 * and during memory dump collection. It is reset to false,
2588 		 * After FW download complete.
2589 		 */
2590 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2591 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2592 
2593 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2594 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2595 			ret = -ETIMEDOUT;
2596 			goto error;
2597 		}
2598 	}
2599 
2600 	cancel_work_sync(&qca->ws_awake_device);
2601 	cancel_work_sync(&qca->ws_awake_rx);
2602 
2603 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2604 				 flags, SINGLE_DEPTH_NESTING);
2605 
2606 	switch (qca->tx_ibs_state) {
2607 	case HCI_IBS_TX_WAKING:
2608 		del_timer(&qca->wake_retrans_timer);
2609 		fallthrough;
2610 	case HCI_IBS_TX_AWAKE:
2611 		del_timer(&qca->tx_idle_timer);
2612 
2613 		serdev_device_write_flush(hu->serdev);
2614 		cmd = HCI_IBS_SLEEP_IND;
2615 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2616 
2617 		if (ret < 0) {
2618 			BT_ERR("Failed to send SLEEP to device");
2619 			break;
2620 		}
2621 
2622 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2623 		qca->ibs_sent_slps++;
2624 		tx_pending = true;
2625 		break;
2626 
2627 	case HCI_IBS_TX_ASLEEP:
2628 		break;
2629 
2630 	default:
2631 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2632 		ret = -EINVAL;
2633 		break;
2634 	}
2635 
2636 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2637 
2638 	if (ret < 0)
2639 		goto error;
2640 
2641 	if (tx_pending) {
2642 		serdev_device_wait_until_sent(hu->serdev,
2643 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2644 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2645 	}
2646 
2647 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2648 	 * to sleep, so that the packet does not wake the system later.
2649 	 */
2650 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2651 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2652 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2653 	if (ret == 0) {
2654 		ret = -ETIMEDOUT;
2655 		goto error;
2656 	}
2657 
2658 	return 0;
2659 
2660 error:
2661 	clear_bit(QCA_SUSPENDING, &qca->flags);
2662 
2663 	return ret;
2664 }
2665 
2666 static int __maybe_unused qca_resume(struct device *dev)
2667 {
2668 	struct serdev_device *serdev = to_serdev_device(dev);
2669 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2670 	struct hci_uart *hu = &qcadev->serdev_hu;
2671 	struct qca_data *qca = hu->priv;
2672 
2673 	clear_bit(QCA_SUSPENDING, &qca->flags);
2674 
2675 	return 0;
2676 }
2677 
2678 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2679 
2680 #ifdef CONFIG_OF
2681 static const struct of_device_id qca_bluetooth_of_match[] = {
2682 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2683 	{ .compatible = "qcom,qca6174-bt" },
2684 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2685 	{ .compatible = "qcom,qca9377-bt" },
2686 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2687 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2688 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2689 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2690 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2691 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2692 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2693 	{ /* sentinel */ }
2694 };
2695 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2696 #endif
2697 
2698 #ifdef CONFIG_ACPI
2699 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2700 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2701 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2702 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2703 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2704 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2705 	{ },
2706 };
2707 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2708 #endif
2709 
2710 #ifdef CONFIG_DEV_COREDUMP
2711 static void hciqca_coredump(struct device *dev)
2712 {
2713 	struct serdev_device *serdev = to_serdev_device(dev);
2714 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2715 	struct hci_uart *hu = &qcadev->serdev_hu;
2716 	struct hci_dev  *hdev = hu->hdev;
2717 
2718 	if (hdev->dump.coredump)
2719 		hdev->dump.coredump(hdev);
2720 }
2721 #endif
2722 
2723 static struct serdev_device_driver qca_serdev_driver = {
2724 	.probe = qca_serdev_probe,
2725 	.remove = qca_serdev_remove,
2726 	.driver = {
2727 		.name = "hci_uart_qca",
2728 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2729 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2730 		.shutdown = qca_serdev_shutdown,
2731 		.pm = &qca_pm_ops,
2732 #ifdef CONFIG_DEV_COREDUMP
2733 		.coredump = hciqca_coredump,
2734 #endif
2735 	},
2736 };
2737 
2738 int __init qca_init(void)
2739 {
2740 	serdev_device_driver_register(&qca_serdev_driver);
2741 
2742 	return hci_uart_register_proto(&qca_proto);
2743 }
2744 
2745 int __exit qca_deinit(void)
2746 {
2747 	serdev_device_driver_unregister(&qca_serdev_driver);
2748 
2749 	return hci_uart_unregister_proto(&qca_proto);
2750 }
2751